

การอบแห้งปลาหมึกกะตอยโดยใช้แสงอาทิตย์เป็นพลังงานความร้อนร่วม

สำราญ ภูนาล^{*} และ วัลยรัตน์ จันทร์วงศ์

บทคัดย่อ

งานวิจัยนี้ได้ศึกษาการอบแห้งปลาหมึกกะตอยและเปรียบเทียบระหว่างการตากแดดกับการตากในตู้อบที่มีอากาศร้อนจากตัวเก็บรังสีอาทิตย์แบบแผ่นร้อน ไฟล์ผ่าน โดยสร้างชุดทดลองประกอบด้วยตู้อบพลาสติกใส่ปริมาตร 0.125 ลูกบาศก์เมตร และตัวเก็บรังสีอาทิตย์แบบแผ่นร้อน มีท่อลมต่อเขื่อนระหว่างตู้อบและตัวเก็บรังสีอาทิตย์ ตัวเก็บรังสีอาทิตย์แบบแผ่นร้อนมีรายละเอียดดังนี้ แผ่นดูดกลืนรังสีความร้อนที่จากแผ่นทองแดง มีความหนา 2 มิลลิเมตร ทำด้วยสีดำ พื้นที่รับแสงประมาณ 0.5 ตารางเมตร ผลิตภัณฑ์อบแห้งเป็นปลาหมึกกะตอยสด ปริมาณ 1 กิโลกรัม ทำการทดลองในช่วงเวลา 8.00 – 17.00 น. มีค่าความชื้นรังสีอาทิตย์ต่อดวันเฉลี่ย 661 วัตต์ต่อตารางเมตร เริ่มต้นปลาหมึกมีความชื้น 400 เปอร์เซ็นต์ มาตรฐานแห้ง ผลการวิจัยพบว่าหลังการตากแดดกับการตากในตู้อบที่มีอากาศร้อนจากตัวเก็บรังสีอาทิตย์แบบแผ่นร้อน ผลิตภัณฑ์มีความชื้นเหลือ 170 และ 70 เปอร์เซ็นต์ มาตรฐานแห้ง โดยมีอัตราการลดความชื้นต่อชั่วโมงเป็น 23.4 และ 35.1 เปอร์เซ็นต์ ตามลำดับ เมื่อนำปลาหมึกไปอบต่อในห้องอบด้วยความร้อนจากแก๊สเชื้อเพลิงคล่อง โดยเฉลี่ยประมาณ 22.5 เปอร์เซ็นต์ จากการศึกษาประสิทธิภาพการอบแห้ง ผลิตภัณฑ์เป็นรายชั่วโมงพบว่าประสิทธิภาพการอบแห้งลดลงเมื่อค่าความชื้นรังสีอาทิตย์สูงขึ้นแสดงว่าอัตราการอบแห้งมีค่าสม่ำเสมอ และงานวิจัยนี้มีค่าประสิทธิภาพการอบแห้ง โดยเฉลี่ย 31.0 เปอร์เซ็นต์

คำสำคัญ : ปลาหมึก, การอบแห้ง, ตัวเก็บรังสีอาทิตย์, พลังงานแสงอาทิตย์

ภาควิชาวิทยาศาสตร์ประยุกต์และสังคม, วิทยาลัยเทคโนโลยีอุตสาหกรรม, มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

* ผู้ติดต่อ, อีเมล: spb@kmutnb.ac.th รับเมื่อ 10 ตุลาคม 2557 ตอบรับเมื่อ 30 มีนาคม 2558

Drying of Katoy Squid Using Solar Thermal Energy

Samruay Puban* and Valairat Chantawong

Abstract

This research was aimed to study the dried baby squids (or called Katoy squids in Thai) and to compare the squids dried outdoors with those dried in the oven heated from a flat plate solar collector. The experiment kit was developed including clear plastic chamber of 0.125 cubic meters as well as flat-plate solar collector. The chamber and the flat-plate solar collector are connected by a duct. The flat plate solar collector is composed of the sheet which absorbs the heat from the copper plate with a thickness of 2 mm. This plate was painted black with the approximate area of 0.5 square meters. The one-kilogram squids were experimented during 8.00 - 17.00 hrs. On average, the radiation intensity was over 661 watts per square meters. The squids, at first, indicated 400 percent moisture content. The results reveal that comparing the squids dried by the sunlight with those dried in the specific oven, the moisture content declined to 170 and 70 percent respectively. The rates of moisture reduction were 23.4 and 35.1 percent per hour respectively. When the squids were further dried in the oven with the heat from gas until they showed the moisture as required, the drying time was lessen. Consequently, the gas consumption was reduced by an average of 22.5 percent. The study of the drying efficiency of the squids on hourly basis, it was found that the drying efficiency decreases as the radiation intensity increases. This indicates that the drying rate is invariant. Also, the research pointed out the drying efficiency of 31.0 percent.

Keywords : Squid, Drying, Solar Collector, Solar Energy