

Journal of Applied Informatics and Technology

Volume 7 Number 2 (2025) July-December

Editorial

Journal of Applied Informatics and Technology

Editor-in-Chief

Assoc. Prof. Dr. Olarik Surinta

Associate Editors

Assoc. Prof. Dr. Gamgarn Somprasertsri

Assoc. Prof. Dr. Patiwat Littidej

Asst. Prof. Dr. Suwich Tirakoat

Asst. Prof. Dr. Manasawee Kaenampornpan

Asst. Prof. Phuangchompu Chaiala Sangrungruengroj

Dr. Napassakorn Mahantanateeranan

Secretary

Miss Suwicha Chaimuang

Owner

Faculty of Informatics

Mahasarakham University

Editorial Office

Faculty of Informatics

Mahasarakham University

Khamriang Sub-district, Kantarawichai District

Mahasarakham 44150, Thailand

email jit@msu.ac.th

ISSN: 3388-1803 (Online)

Editorial Board Members

National Members

Anantaporn Hanskunatai
Arkitayaporn Rojarath
Aulia Akhrian Syahidi
Jitimon Angskun
Jitraporn Sudhivoraseth
Jutharat Sarawanawong
Khachakrit Liamthaisong
Khanista Namee
Kreangsak Tamee
Kraisak Kesorn
Mahasak Ketcham
Neunghathai Khoponklang
Niyom wongphongkham
Nutchanat Buasri
Nuttachot Promrit
Paiboon Kiattikomol
Phatthira Suwannako
Phayung Meesad
Pipat Reungsang
Preecha Sakorn
Rachada Kongkachandra
Ratanachote Thienmongkol
Rapeepan Pitakoso
Ruethai Nimnoi
Saichon Jaiyen
Saisunnee Jabjone
Sajjaporn Waijanya
Saksun Yampinij
Seksun Saiseesod
Sriporn Kamtumont
Somnuk Puangprongpit
Suchada Namjaidee
Sunya Sarapirome
Surapon Boonlue
Tanasanee Phienthrakul
Warangkhana Kimpan
Wararat Songpan
Weerapong Polnigongit
Wimonmas Pathomwanic
Worawith Sangkatip

King Mongkut's Institute of Technology Ladkrabang, Thailand
Mahasarakham University, Thailand
Thai-Nichi Institute of Technology, Thailand
Suranaree University of Technology, Thailand
National Institute of Development Administration, Thailand
Kasetsart University, Thailand
Mahasarakham University, Thailand
King Mongkut's University of Technology North Bangkok, Thailand
Naresuan University, Thailand
Naresuan University, Thailand
King Mongkut's University of Technology North Bangkok, Thailand
Suranaree University of Technology, Thailand
Khonkaen University, Thailand
Mahasarakham University, Thailand
Silpakorn University, Thailand
King Mongkut's University of Technology Thonburi, Thailand
Mahasarakham University, Thailand
King Mongkut's University of Technology North Bangkok, Thailand
Khonkaen University, Thailand
Mahasarakham University, Thailand
Thammasat University, Thailand
Mahasarakham University, Thailand
Ubon Ratchathani University, Thailand
Mahasarakham University, Thailand
King Mongkut's Institute of Technology Ladkrabang, Thailand
Nakhon Ratchasima Rajabhat University, Thailand
Silpakorn University, Thailand
King Mongkut's University of Technology Thonburi, Thailand
Udon Thani Rajabhat University, Thailand
Suranaree University of Technology, Thailand
Mahasarakham University, Thailand
Nakhonratchasima Rajabhat University, Thailand
Suranaree University of Technology, Thailand
King Mongkut's University of Technology Thonburi, Thailand
Mahidol University, Thailand
King Mongkut's Institute of Technology Ladkrabang, Thailand
Khon Kaen University, Thailand
Suranaree University of Technology, Thailand
Rajabhat Mahasarakham University, Thailand
Mahasarakham University, Thailand

International Members

Abhaya Nayak
Akhilesh Kumar Sharma
Antonis Bikakis
Christopher Khoo Soo Guan
Emmanuel Okafor
Joyce Chao-chen Chen
Kevin Kam Fung Yuen
Laxman Rao Nagubandi
Manik Sharma
Mohd Shahrizal Sunar
Richard Booth
Riri Fitri Sari
Sinh Cong Lam
Suhaidi Hassan
Thiri Haymar Kyaw
Tin Myat Htwe
Tusar Kanti Mishra
Yan Shi

Macquarie University, Australia
Manipal University Jaipur, India
University College London, United Kingdom
Nanyang Technological University, Singapore
King Fahd University of Petroleum and Minerals, Saudi Arabia
National Taiwan Normal University, Taiwan
The Hong Kong Polytechnic University, Hong Kong SAR, China
Osmania University, India
DAV University Jalandhar, India
University of Technology Malaysia, Malaysia
Cardiff University, Wales
University of Indonesia, Indonesia
VNU University of Engineering and Technology, Vietnam
Universiti Utara Malaysia, Malaysia
University of Information Technology, Myanmar
University of Computer Studies, Myanmar
Vellore Institute of Technology, India
Tokai University, Japan

The Journal of Applied Informatics and Technology (JIT) has published Volume 7, Number 2 (2025): July-December, comprising a total of 15 research articles—ten in English and five in Thai. Each article has undergone peer review by at least three experts from different institutions. The authors revised their articles based on the reviewers' comments until they were approved for publication. The editorial team also verified the accuracy of the content, references, and language usage to ensure the highest quality. We sincerely thank all the reviewers for their valuable feedback and thoughtful recommendations.

The following articles have been published in Volume 7, Number 2 (2025):

1) **Warfarin Care: Warfarin Management System for Older Adults**

Author: Narit Hnoohom, Konlakorn Wongpatikaseree, Autchariya Poungkaew, Junporn Kongwatcharapong (Hnoohom et al., 2025)

2) **Measuring Neck Abnormalities for Preliminary Assessment of Neck Pain Disease using Virtual Reality**

Author: Manatsawee Sidajan, Kawintra Sittikraipong, Peerapat Kusumannukul, Sasiwimon Pornwachirawit, Waichaya Suwannakeeree, Sutasinnee Jitanan (Sidajan et al., 2025)

3) **An In-House Time Tracking Application Development with a Low-To-No-Code Platform**

Author: Sorn Tanharaphan, Thanabadee Rodvanich, Yatawee Aupasao, Natsuda Kaothanthong (Tanharaphan et al., 2025)

4) **Leveraging PyThaiNLP for Sentiment Analysis of Thai Online Text: A Comparative Study of Logistic Regression and Support Vector Machine**

Author: Sunisa Duangtham, Setthaphong Lertritrungrot, Nattavadee Hongboonmee, Wansuree Massagram (Duangtham et al., 2025)

5) **The Flood Simulation System as a New Process for Public Participation of Local Administrative Organizations in Tha Wang Pha District, Nan Province**

Author: Chamnan Kumsap, Vissanu Mungkung, Lanyanat Patanan, Phimraphas Ngamsantivongsa, Arisara Charoenpanyanet, Phonpat Hemwan (Kumsap et al., 2025)

6) **Classification of Guanxi Mandarin Orange Grades using Machine Vision Algorithms**

Author: Fulian Huang, Jialin Xie, Shijun Jie, Nattawoot Suwannata (Huang et al., 2025)

7) **Development and Cost-Effectiveness Analysis of a Fogging Pump Control System Commercial Prototype for Oyster Mushroom Cultivation based on Open-System Greenhouse**

Author: Non Pingern, Bhannawat Wanganusorn (Pingern & Wanganusorn, 2025)

- 8) **Web Scraping-based System for E-commerce Price Comparison and Similar Product Segmentation**
Author: Pongsin Jankaew, Wachirawut Thamviset (Jankaew & Thamviset, 2025)
- 9) **A Comparative Study of Sea Lettuce Cultivation in Seawater and Scientific Saltwater using IoT Technology**
Author: Suttipong Klongdee, Sriwaree Sujaritchai, Sommart Promput (Klongdee, Sujaritchai, & Promput, 2025)
- 10) **Utilizing Association Rule Mining to Understand Phishing Risk Awareness Levels of Thai University Academic Staff**
Author: Pita Jarupunphol, Wipawan Buathong (Jarupunphol & Buathong, 2025)
- 11) **Approximate String Matching Algorithm using Single Inverted Lists**
Author: Soontaree Thumsuwan, Nuanprang Sangurai, Chouvalit Khancome (Thumsuwan, Sangurai, & Khancome, 2025)
- 12) **Pneumonia Detection from Chest X-ray Images using Convolutional Neural Networks and Transfer Learning Techniques**
Author: Pongsathorn Chedsom (Chedsom, 2025)
- 13) **Feature Selection with Linear Discriminant Analysis to Improve the Performance of Heart Disease Classification**
Author: Ratiporn Chanklan, Keerachart Suksut, Kedkarn Podhijittikarn (Chanklan, Suksut & Podhijittikarn, 2025)
- 14) **Information System for Wet Garbage Bin Data Management in Local Areas: A Case Study of Langu Subdistrict Administrative Organization, Satun Province**
Author: Norathep Sakphet, Chatirot Jitrugtham, Annop Bunjan, Kullaphat Yingdumnoon, Sakan Rodklai, Chanyanuch Pumpuang (Sakphet et al., 2025)
- 15) **Rice Seed Production with Smart Farm**
Author: chalawan Wantong, Wanida Sumranram, Utis Tahom, Varit Kitthanarut, Ekkaluk Salukkham (Wantong et al., 2025)

The editorial board of JIT sincerely hopes that the 15 articles published in this issue will benefit researchers and serve as a valuable source of knowledge for the advancement of their work. We believe that the insights and findings presented in this issue will contribute to academic and practical developments in the fields of informatics and technology. We warmly invite scholars, practitioners, and students to explore the articles and apply the knowledge gained to their own research and professional activities.

Assoc. Prof. Olarik Surinta, Ph.D.
Editor-in-Chief

References

Chanklan, R., Suksut, K., & Podhijittikarn, K. (2025). Feature Selection with Linear Discriminant Analysis to Improve the Performance of Heart Disease Classification. *Journal of Applied Informatics and Technology*, 7(2), 432-447. <https://ph01.tci-thaijo.org/index.php/jait/article/view/256471>

Chedsom, P. (2025). Pneumonia Detection from Chest X-ray Images using Convolutional Neural Networks and Transfer Learning Techniques. *Journal of Applied Informatics and Technology*, 7(2), 406-431. <https://ph01.tci-thaijo.org/index.php/jait/article/view/255187>

Duangtham, S., Lertritrungrot, S., Hongboonmee, N., & Massagram, W. (2025). Leveraging PyThaiNLP for Sentiment Analysis of Thai Online Text: A Comparative Study of Logistic Regression and Support Vector Machine. *Journal of Applied Informatics and Technology*, 7(2), 255-267. <https://ph01.tci-thaijo.org/index.php/jait/article/view/256625>

Hnoohom, N., Wongpatikaseree, K., Poungkaew, A., & Kongwatcharapong, J. (2025). Warfarin Care: Warfarin Management System for Older Adults. *Journal of Applied Informatics and Technology*, 7(2), 211-234. <https://ph01.tci-thaijo.org/index.php/jait/article/view/255097>

Huang, F. ., Xie, J., Jie, S., & Suwannata, N. (2025). Classification of Guanxi Mandarin Orange Grades using Machine Vision Algorithms. *Journal of Applied Informatics and Technology*, 7(2), 305-324. <https://ph01.tci-thaijo.org/index.php/jait/article/view/257877>

Jankaew, P., & Thamviset, W. (2025). Web Scraping-based System for E-commerce Price Comparison and Similar Product Segmentation. *Journal of Applied Informatics and Technology*, 7(2), 346-362. <https://ph01.tci-thaijo.org/index.php/jait/article/view/254655>

Jarupunphol, P., & Buathong, W. (2025). Utilizing Association Rule Mining to Understand Phishing Risk Awareness Levels of Thai University Academic Staff. *Journal of Applied Informatics and Technology*, 7(2), 375-338. <https://ph01.tci-thaijo.org/index.php/jait/article/view/255481>

Klongdee, S., Sujaritchai, S., & Promput, S. (2025). A Comparative Study of Sea Lettuce Cultivation in Seawater and Scientific Saltwater using IoT Technology. *Journal of Applied Informatics and Technology*, 7(2), 363-374. <https://ph01.tci-thaijo.org/index.php/jait/article/view/256295>

Kumsap, C., Mungkung, V., Patanan, L., Ngamsantivongsa, P., Charoenpanyanet, A., & Hemwan, P. (2025). The Flood Simulation System as a New Process for Public Participation of Local Administrative Organizations in Tha Wang Pha District, Nan Province. *Journal of Applied Informatics and Technology*, 7(2), 283-304. <https://ph01.tci-thaijo.org/index.php/jait/article/view/254822>

Pinngern, N., & Wanganusorn, B. (2025). Development and Cost-Effectiveness Analysis of a Fogging Pump Control System Commercial Prototype for Oyster Mushroom Cultivation based on Open-System Greenhouse. *Journal of Applied Informatics and Technology*, 7(2), 325-345. <https://ph01.tci-thaijo.org/index.php/jait/article/view/255212>

Sakphet, N., Jitrugtham, C., Bunjan, A., Yingdumnoon, K., Rodklai, S., & Pumpuang, C. (2025). Information System for Wet Garbage Bin Data Management in Local Areas: A Case Study of Langu Subdistrict Administrative Organization, Satun Province. *Journal of Applied Informatics and Technology*, 7(2), 448-464. <https://ph01.tci-thaijo.org/index.php/jait/article/view/255384>

Sidajan, M., Sittikraipong, K., Kusumannukul, P., Pornwachirawit, S., Suwannakeeree, W., & Jitanan, S. (2025). Measuring Neck Abnormalities for Preliminary Assessment of Neck Pain Disease using Virtual Reality . *Journal of Applied Informatics and Technology*, 7(2), 235-251. <https://ph01.tci-thaijo.org/index.php/jait/article/view/254868>

Tanharaphan, S., Rodvanich, T., Aupasao, Y., & Kaothanthong, N. (2025). An In-House Time Tracking Application Development with a Low-To-No-Code Platform. *Journal of Applied Informatics and Technology*, 7(2), 268-282. <https://ph01.tci-thaijo.org/index.php/jait/article/view/254809>

Thumsuwan, S., Sangurai, N., & Khancome, C. (2025). Approximate String Matching Algorithm using Single Inverted Lists. *Journal of Applied Informatics and Technology*, 7(2), 339-405. <https://ph01.tci-thaijo.org/index.php/jait/article/view/254917>

Wantong, chalawan, Sumranram, W., Tahom, U., Kitthanarut, V., & Salukkham, E. (2025). Rice Seed Production with Smart Farm . *Journal of Applied Informatics and Technology*, 7(2), 465-487. <https://ph01.tci-thaijo.org/index.php/jait/article/view/255470>

Aim & Scope

Journal of Applied Informatics and Technology (JIT) is a peer-reviewed and open-access journal that aims to publish leading edge researches on any possible topic in informatics, technology, and other related areas, both from theoretical and empirical perspectives.

- Journal title: Journal of Applied Informatics and Technology
- Journal Abbreviation:
- Initial: JIT
- Language: English (Start 2026)
- Publication: 2 issues/year
(No. 1: January - June,
No. 2: July - December)
- ISSN 3088-1803 (Online)
- Digital Object Identifier (DOI): 10.14456
- Article Processing Charges (APC): No charge
- Editor-in-Chief: Olarik Surinta
- Publisher: Faculty of Informatics, Mahasarakham University

Scope of the Research

Topics of interest include, but are not limited to, the following:

- Information Technology
- Computer Science
- Geo-Informatics
- Information Science and Management
- Digital Media
- Communication Arts

Types of Manuscripts

The JIT journal welcomes submissions in three academic formats:

- Research article
- Review article
- Academic article

Indexed In

- TCI
- DOAJ
- Scilit
- BASE
- EBSCO

Brief Overview of Review Process

The articles must be original and never be published in any other websites or other journals before. The articles which are considered as “plagiarism” articles are strongly prohibited to be published in the JIT journal. The JIT is dedicated to preventing accusations of dishonest publication-plagiarism, the redundant publication (self-plagiarism), author misrepresentation, and content falsification. The manuscript submitted to JIT should not have a similarity index score of more than 25% and the item in the list should have a similarity index score below or equal to 2% when using plagiarism applications, such as turnitin. The editor will immediately reject any manuscript that fails to meet the requirement of the JIT.

Authors are required to include their names and affiliations in their manuscripts, whereas reviewers are not visible to authors. All submitted manuscripts are subjected to peer-review by at least three independent reviewers and all experts come from various institutions and are not specialists from the same institution as the author. Peer reviews are done by a double-blind review method where the identity of the reviewers and the authors are not disclosed to either party.

The final decision regarding acceptance, revision, or rejection rests with the Editor-in-Chief.

Plagiarism Policy

Acts of plagiarism violate academic policy and will not be tolerated. Plagiarism is a form of misrepresentation. The JIT is dedicated to preventing accusations of dishonest publication-plagiarism, the redundant publication (self-plagiarism), author misrepresentation, and content falsification.

Remark, the manuscript submitted to JIT should not have a similarity index score of more than 25% ($\leq 25\%$) when using plagiarism applications, such as <https://www.turnitin.com>. Especially for the turnitin application, the item in the list should have a similarity index score below or equal to 2% ($\leq 2\%$). The editor will immediately reject any manuscript that fails to meet the requirement of the JIT.

Open Access

JIT journal is open access journal since 2018 which means that all contents is freely available without charge to the user or his/her institution.

Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

All articles published by journal of applied informatics and technology (JIT) are made immediately available worldwide under an open access policy.

- everyone has free access to the manuscript of all articles published in JIT journals.
- everyone is free to use the published material if proper citation of the original publication is given.

Warfarin Care: Warfarin Management System for Older Adults <i>Narit Hnoohom, Konlakorn Wongpatikaseree, Autchariya Poungkaew, Junporn Kongwatcharapong</i>	211
Measuring Neck Abnormalities for Preliminary Assessment of Neck Pain Disease using Virtual Reality <i>Manatsawee Sidajan, Kawintra sittikraipong, Peerapat Kusumannukul, Sasiwimon Pornwachirawit, Waichaya Suwannakeeree, Sutasinee Jitanan</i>	235
An In-House Time Tracking Application Development with a Low-To-No-Code Platform <i>Sorn Tanharaphan, Thanabadee Rodvanich, Yatawee Aupasao, Natsuda Kaothanthong</i>	252
Leveraging PyThaiNLP for Sentiment Analysis of Thai Online Text: A Comparative Study of Logistic Regression and Support Vector Machine <i>Sunisa Duangtham, Setthaphong Leritrirungrot, Nattavadee Hongboonmee, Wansuree Massagram</i>	268
The Flood Simulation System as a New Process for Public Participation of Local Administrative Organizations in Tha Wang Pha District, Nan Province <i>Chamnan Kumsap, Vissanu Mungkung, Lanyanat Patanan, Phimraphas Ngamsantivongsa, Arisara Charoenpanyanet, Phonpat Hemwan</i>	283
Classification of Guanxi Mandarin Orange Grades using Machine Vision Algorithms <i>Fulian Huang, Jialin Xie, Shijun Jie, Nattawoot Suwannata</i>	305
Development and Cost-Effectiveness Analysis of a Fogging Pump Control System Commercial Prototype for Oyster Mushroom Cultivation based on Open-System Greenhouse <i>Non Pinngern, Bhannawat Wanganusorn</i>	325
Web Scraping-based System for E-commerce Price Comparison and Similar Product Segmentation <i>Pongsin Jankaew, Wachirawut Thamviset</i>	346
A Comparative Study of Sea Lettuce Cultivation in Seawater and Scientific Saltwater using IoT Technology <i>Suttipong Klongdee, Sriwaree Sujaritchai, Sommart Promput</i>	363
Utilizing Association Rule Mining to Understand Phishing Risk Awareness Levels of Thai University Academic Staff <i>Pita Jarupunphol, Wipawan Buathong</i>	375
Approximate String Matching Algorithm using Single Inverted Lists <i>Soontaree Thumsuwan, Nuanprang Sangurai, Chouvalit Khancome</i>	389
Pneumonia Detection from Chest X-ray Images using Convolutional Neural Networks and Transfer Learning Techniques <i>Pongsathorn Ched som</i>	406
Feature Selection with Linear Discriminant Analysis to Improve the Performance of Hearth Disease Classification <i>Ratiporn Chanklan, Keerachart Suksut, Kedkarn Podhijittikarn</i>	432
Information System for Wet Garbage Bin Data Management in Local Areas: A Case Study of Langu Subdistrict Administrative Organization, Satun Province <i>Norathep Sakphet, Chatiroj Jitrugtham, Annop Bunjan, Kullaphat Yingdumnoon, Sakan Rodklai, Chanyanuch Pumpuang</i>	448
Rice Seed Production with Smart Farm <i>Chalawan Wantong, Wanida Sumranram, Utis Tahom, Varit Kitthanarut, Ekkaluk Salukkham</i>	465

Warfarin Care: Warfarin Management System for Older Adults

Narit Hnoohom^{1,*}, Konlakorn Wongpatikaseree¹, Autchariya Poungkaew²,
Junporn Kongwatcharapong³

¹ Department of Computer Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand

² Department of Medical Nursing, Faculty of Nursing, Mahidol University, Bangkok 10700, Thailand

³ Department of Pharmacy, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

* Corresponding author: Narit Hnoohom, narit.hno@mahidol.ac.th

Received:

14 December 2023

Revised:

20 February 2024

Accepted:

3 April 2024

Keywords:

Warfarin, Elderly healthcare, Digital health platform, Anticoagulation therapy, Mobile health applications.

Abstract: Warfarin Care emerges as a transformative solution in digital healthcare for the elderly reliant on warfarin. Addressing specific needs, Warfarin Care serves as a communication and information exchange among medical personnel, elderly patients, and family members or caregivers. With a user-friendly interface, rigorous content evaluation, and a shared database architecture, Warfarin Care endeavors to mitigate medication errors and augment overall treatment outcomes. Through the integration of risk assessment, medication history, and warfarin knowledge, medication reminders, and educational tools, the application fosters a deeper understanding of proper medication behavior. The research is based on the clinical trial, in which 60 cases of elderly patients and family members, 30 elderly patients, and 30 family members or caregivers were selected as the sample receiving treatment in the outpatient department of Sakonnakorn Hospital. The study from the clinical trial revealed that the majority of elderly participants fall within the 60–69 age group, predominantly women and married. The data reveals high satisfaction among both elderly users and caregivers, underscoring Warfarin Care's positive impact on enhancing knowledge, confidence, and support for proper medication adherence with user-friendly communication. Users agreed that the use and suitability of the Warfarin Care application

had an average of 4.57 and a S.D. of 0.57 from elderly users and an average of 4.67 and a S.D. of 0.61 from caregivers or family members. The robust data analysis utilizing mean and standard deviation values underscores the application's effectiveness.

1. Introduction

The primary concern in preparing for an era where technology plays a crucial role in an aging society is how to ensure that technological applications support and enhance the quality of life for the elderly across various dimensions. This involves providing access to information technology and innovations that contribute to health promotion, assistance with daily activities, and reduced dependency on others. The goal is to enable active aging, empowering the elderly to rely on themselves and lead fulfilling lives. While longer lifespans are indicative of advancements in medical technology, the changing circumstances bring about shifts in the types of illnesses prevalent among the elderly. While aging, there is an increased likelihood of suffering from chronic diseases, leading to the use of numerous medications with complex management requirements. Some elderly individuals are responsible for their own medication management, posing potential risks such as inappropriate use, overmedication, side effects, and drug interactions. This complexity makes disease control and the prevention of complications more challenging for the elderly. Warfarin serves as an anticoagulant

(Choicharnchaikul, Malathi, & Kanchanachai, 2008), employed to prevent and manage blood clots within blood vessels—a condition particularly prevalent among the elderly. Consequently, its usage has surged in this demographic. Even though it works, warfarin is known to be a high-risk drug (Panichsombat, 2017), with a narrow treatment range based on the INR value, complicated pharmacokinetics and pharmacodynamics, and patients having different reactions to it (Warfarin Clinic, 2014). The general target for warfarin therapy is to maintain the INR within the range of 2–3. However, for certain diseases or specific patients, physicians may consider different INR targets, and it is advisable to consult the attending physician for personalized guidance. If the INR value exceeds 3, it indicates increased blood fluidity, putting the patient at risk of abnormal bleeding, which will be more critical with elderly patients. Conversely, if the INR is below 2, it suggests increased blood viscosity, leading to the formation of blood clots. Patients with low INR values are at risk of developing clots that may block various parts of the body. Numerous factors, including irregular medication intake, patient communication, and various drug interactions, pose potential complications, notably severe bleeding with the potential to cause permanent impairment or death.

For elderly patients undergoing warfarin treatment, stringent monitoring and adherence to prescribed behaviors are imperative due to the drug's narrow treatment window. Inadequate dosage may result in ineffective

treatment and heightened clotting risks, while excessive consumption may induce life-threatening bleeding. Regular INR blood tests are crucial to assessing treatment effectiveness guiding physicians in adjusting individual dosages. While warfarin is undeniably valuable, its use entails considerable risks from the medication, patient factors, and healthcare service systems. Regular monitoring, education on proper drug use, and behavioral guidance are particularly crucial for the elderly within this patient group to ensure optimal treatment outcomes and safety. But there are still problems with how things work. For example, there isn't a good way to make appointments for patients, lab results that aren't normal aren't being checked properly, and there aren't any clear identification tools for warfarin patients or a full list of drugs that interact with warfarin in Thai hospital clinics. The existing warfarin clinics in Thailand predominantly rely on face-to-face interactions, with pharmacists providing counseling and guidance and utilizing the Line Application to track INR values and dispense advice. While applications have been developed for medicine reminders and basic management advice, they fall short in addressing the intricate issues associated with medication use in the elderly. Therefore, incorporating technology and innovative tools into medication management is pivotal to enhancing health outcomes, reducing adverse drug events, and establishing standardized practices in the care of elderly patients.

Considering the aforementioned reasons, the researcher has conceived the idea to create a mobile phone application tailored for elderly individuals utilizing warfarin. The proposed innovation seeks to enhance effective warfarin management by allowing users to regulate their INR levels and monitor potential adverse events from drug usage. The application facilitates consistent adherence to healthcare provider recommendations, enabling users to adjust warfarin dosage according to the treatment plan, link patient information systems with families, and access individual health information. This ensures accurate medication intake in terms of dosage, quantity, and timing, while maintaining optimal drug properties. The research team has selected Sakon Nakhon Hospital for its leadership in collecting patients' data, warfarin information, and enrolling in the warfarin platform, as it aptly represents hospitals under the Ministry of Public Health. The hospital's warfarin administration system and network closely mirror those of other public health facilities, enabling seamless integration with the Ministry of Public Health's network. Upon completion of the research plan, the developed applications and websites can be expanded to enhance the capabilities of existing Warfarin clinic service systems. Especially in the critical context of the COVID-19 outbreak, this initiative aims to improve health outcomes for patients using warfarin.

Consequently, the primary objective of this research is to develop a warfarin management service, Warfarin Care, that

aims to facilitate the monitoring and administration of warfarin usage among elderly individuals. It is designed to empower elderly patients with knowledge about warfarin usage, promote collaboration in medication intake, and ensure self-care while using warfarin under supervised support. This platform relies on the aid of family members and coordinates with nurses and pharmacists, all guided by consultations from cardiovascular physicians. The application is for elderly warfarin users, with the dual purpose of reducing the occurrence and severity of medication errors and establishing a warfarin medication management and monitoring website for medical personnel. This Warfarin Care will assist medical personnel in monitoring the medication-taking behavior of elderly individuals, contributing to enhanced patient safety and overall well-being.

2. Related Work

Presently, healthcare systems globally are placing significant emphasis on the integration of digital technology and health innovations to enhance the efficiency of various components within the health system. Though our research topic mainly focuses on Warfarin's web-based application for effective medication and monitoring for older adults patients and medical personnel, relevant research on Warfarin's digital technology was not provided. On related surveillance and healthcare management systems, systems have been introduced to monitor and assess the risk of various diseases. In United States

(US) healthcare's dynamic landscape, the American Hospital Association (AHA) urges Congress to establish a lasting regulatory framework for enduring telehealth accessibility (American Hospital Association, 2021). Aligned with this, a report on COVID-19's impact supports sustained policy changes for telehealth, emphasizing expanded care access and reduced disease exposure (Koonin *et al.*, 2020). The eHealth system, a transformative tool connecting service providers and recipients, proves beneficial in Australia's Hospital in the Home models, reducing readmission risks and costs (Brown *et al.*, 2023; Amar, April, & Abran, 2024). Meanwhile, the pervasive use of mobile devices, defined by the WHO as Mobile Health, contributes significantly to healthcare delivery through innovative apps (Leavy, 2019; World Health Organization, 2020). Mobile health industry growth, exemplified by over 318,000 health apps in 2018, which benefit from global connectivity (Leavy, 2019). In developing nations, internet and mobile technology adoption, even among low-income households, provides a unique opportunity to bridge healthcare accessibility gaps (World Bank, 2016). This highlights mHealth's potential to connect isolated regions cost-effectively.

In the context of Asian healthcare, Singapore emerges as a key player, with its prioritization of eHealth and innovative healthcare approaches. Insights from the European Commission's report highlight Singapore's globally recognized strategies and tools, showcasing the potential impact

of well-implemented eHealth programs, emphasizing the importance of addressing barriers and understanding user perspectives (European Commission, 2018). In India, studies unravel the transformative potential of Online Health Communities, technological integration in education, and evidence-based approaches for a more effective healthcare system (Kalra, Taneja, & Singhal, 2023; Kant Pal *et al.*, 2023; Kumar *et al.*, 2023). In Japan, a cross-sectional study on eHealth literacy among nursing students emphasizes the need for addressing low perceived eHealth literacy, providing valuable insights for nursing educators (Tanaka *et al.*, 2020). In the dynamic landscape of eHealth research in Southeast Asia (SEA), a comprehensive bibliometric review reveals exponential growth, emphasizing the escalating demand for eHealth in Indonesia, Malaysia, Singapore, and Thailand. While eHealth needs comprehensive guidelines adaptable to local contexts, Singapore stands out for its inclusiveness (Lwin, Punnaikitikashem, & Thananusak, 2023; Sabrina & Defi, 2021). In the pursuit of healthcare transformation in Vietnam, studies focus on patient-centered care and eHealth challenges. The evaluations highlight the need for strategic interventions to overcome challenges caused by government efforts (Dang *et al.*, 2021; Nguyen *et al.*, 2013). Similarly, Indonesia's exploration of eHealth implementation in Surabaya Municipality identifies persistent obstacles and opportunities for improvement, emphasizing the crucial role of government commitment (Kusumasari, Setianto, & Pang, 2018). Together, these

studies contribute valuable insights into shaping patient-centric healthcare models, overcoming challenges, and guiding effective eHealth interventions in diverse Asian contexts.

In Thailand, the “eHealth Strategy – Ministry of Public Health (2017 – 2026)” outlines Thailand’s vision for leveraging information and communication technologies (ICT) in healthcare (Ministry of Public Health, 2017). The strategy focuses on improving patient care, supporting clinical practice and service management, and fostering research and policy through electronic health records. Challenges include the need for digital skills among healthcare personnel and public understanding of eHealth, emphasizing the goal of a robust eHealth strategy by 2021. The eHealth Open Data Platform serves as a centralized hub for health information from hospitals and patients, accessible digitally through websites and mobile applications. This platform includes crucial details such as a list of medicines received, drug allergy information, and laboratory test results for specified items. Furthermore, it facilitates the dissemination of various information to medical personnel, contributing to a more interconnected and responsive healthcare system. In order to assist patients and the elderly with knee issues during the physical therapy session, the knee joint muscle measurement application (Pintusirakun *et al.*, 2023) was created. The gyroscope sensor recorded movement signals that were utilized to record leg movement degree, duration of treatment, and postures used in physical

therapy exercises. After ten participants tried the equipment, the results showed that, with a satisfaction rating of 3.95, people in their 20s were content with the knee joint muscle measurement instrument for physical therapy.

In the pursuit of advancing eHealth service systems and applications for medicine management, several noteworthy initiatives stand out. Notably, the medication reminder application utilizing Optical Character Recognition (OCR) for reading medicine labels demonstrated high user satisfaction, emphasizing the efficacy of systematic drug storage and adherence efforts (Lin *et al.*, 2013). Thai question-answering systems for diabetes employed advanced methods like Cosine, Dice, and Jaccard, with the cosine method achieving a remarkable precision value of 92.50 percent (Chamnanhan *et al.*, 2023). The ST-Med-Box system integrated deep learning methods, providing a comprehensive drug recognition system with a mobile application and cloud management platform, contributing to enhanced medication adherence and management (Chang *et al.*, 2019). Additionally, the AppG health application's clinical trial showcased improved outcomes in warfarin administration, with fewer bleeding events and lower weekly doses in the experimental group compared to the control group (Moraes, Winkelmann, & Colet, 2022). Another study employing the Alfalfa application during the COVID-19 outbreak emphasized the efficiency and safety of online warfarin management, further underscoring the positive impact of digital solutions in

healthcare (Jiang *et al.*, 2022). These diverse applications exemplify the transformative potential of eHealth technologies in medicine management, providing valuable insights for future innovations and improvements in patient care. Additionally, Tang *et al.* (2023) explored Japanese consumers' attitudes toward the digital transformation of over-the-counter (OTC) medicine purchase behavior, finding a preference for a hybrid digital experience design. The study highlighted a positive association between eHealth literacy and digital behaviors in OTC medicine information acquisition, emphasizing the evolving role of digital platforms in medicine management. The "Kinyalaew" application was developed for elderly individuals with chronic illnesses (Hnoohom, Yuenyong, & Chotivatunyu, 2018). This application provides notifications and knowledge about taking medicine for elderly patients with general chronic diseases, lacking specificity for those taking warfarin. While there is no dedicated website for managing and monitoring warfarin use in Thailand, a hospital information exchange website has been developed (Jirapanthong, 2016). This website facilitates cooperation and information sharing among hospitals and organizations, supporting various services. The research aims to explore the use of computer technology to enhance health services in Bangkok, conducting a survey of health services in hospitals and analyzing the attitudes and abilities of medical students and doctors. The objective is to provide recommendations on website services that support health services. A case

Table 1. Literature review of eHealthcare.

Topics	Overview of the studies	Author	Country
Healthcare Land-scape	Telehealth impacts on emergence of the Pandemic.	Koonin <i>et al.</i> (2020)	US
	Improving of Home-based care using virtual care technology.	Brown <i>et al.</i> (2023)	Australia
	Quality improvement of shared clinical data by structuring and mapping using Fast Healthcare Interoperability Resources.	Amar, April, & Abran (2024)	Canada
Asian eHealth-care Dynamics	Leading Singapore eHealth policies and activities.	European Commission (2018)	Singapore
	Transformative potential of digital health platforms in empowering patients.	Kalra, Taneja, & Singhal (2023)	India
	The integration of digital technologies for its transformative potential, contributing to a more dynamic and engaging educational experience.	Kant Pal <i>et al.</i> (2023)	India
eHealth in SEA	Health payment system solution for student health after pandemic through health technology assessment.	Kumar <i>et al.</i> (2023)	India
	Cross-sectional study to explore the perceived eHealth literacy and learning experiences among Japanese undergraduate nursing students.	Tanaka <i>et al.</i> (2020)	Japan
	Japanese consumers' behavior and correlation toward the digital transformation of over-the-counter medicine purchase.	Tang <i>et al.</i> (2023)	Japan
eHealth in Vietnam	The exponential growth of demand for eHealth in SEA.	Lwin, Punnakitika-shem, & Thanarusak (2023)	SEA
	Review of telemedicine guidelines in SEA.	Sabrina & Def (2021)	SEA
eHealth with Aging Population	Opportunities, challenges, and necessary conditions for Vietnam in digital transforming for patient-centered care model.	Dang <i>et al.</i> (2021)	Vietnam
	Challenges of the implementation of e-Health in Sura-baya Municipality, Indonesia.	Kusumasari, Se-tianto, & Pang (2018)	Indonesia
	Knee joint muscle measurement application for physical therapy treatment.	Pintusirakun <i>et al.</i> (2023)	Thailand
eHealth in Thailand	Influential factors on medicine usage in older adults.	Rafhi <i>et al.</i> (2023)	Australia
	Integrating of eHealth platform for aged society.	DEPA (2023)	Thailand
	Influential factors on eHealth utilization behaviors among older adults in Bangkok.	Wongkampun & Pani-trat (2023)	Thailand

study focused on patients with cardiovascular disease, creating a prototype website to simulate the use of computer-based equipment to support clinic operations. The results show satisfaction with the website's use in various scenarios. The CLIPS language was utilized to create an expert system for warfarin dosing management, achieving 100% accuracy in the evaluation with positive feedback (Olomu *et al.*, 2018). Simultaneously, surveyed warfarin patients, particularly younger individuals with internet access, show interest in using mobile devices for improved communication with healthcare providers, indicating the potential benefits of an online or mobile application in enhancing care quality (Sratthaphut, 2015).

As the global population ages, the nuanced interplay of social and individual factors in medication use among older adults becomes a focal point in healthcare research, as evidenced by the study conducted by Rafhi *et al.* (2023) in Australia. The research with 24 participants sheds light on diverse perspectives on medicine use, uncovering varying scores on factors like BMQ necessity, specific concerns, general overuse, and suggested general harm. A prevalent belief emerged that medicines might pose more harm than good, underscoring the complexity of prescription practices among older adults and emphasizing the crucial role of individual experiences and trust in prescribers in influencing medication adherence. Simultaneously, Thailand actively addresses the challenges posed by an aging society, with the eHealth Open Data Platform poised to play a pivotal

role (DEPA, 2023). Projected to be fully operational by 2021, the platform facilitates seamless access to health records for older adults, integrating with wearable devices for continuous health monitoring. This collaborative effort between the public and private sectors aligns with global trends in digital health technologies, representing a significant stride toward establishing a digitally enabled healthcare ecosystem in Thailand. In Bangkok Metropolitan, study of Wongkampun & Panitrat (2023) exploring factors influencing Health Information Technology Utilization Behaviors (HITUB) among older people underscores the importance of tailored activities and collaborative efforts involving family, friends, healthcare professionals, public health service centers, and local communities. These studies collectively provide valuable insights into addressing the multifaceted challenges and opportunities associated with medication use and healthcare technology adoption among the elderly.

3. Materials and Methods

3.1 Warfarin Care

The knowledge and expertise in treating patients in the warfarin clinic was applied from the Sakonnakhon hospital for the elderly who use warfarin in using the application and for medical personnel in using the website. The application and website will allow us to expand the scope of care and monitoring for the elderly and to achieve maximum treatment results and safety.

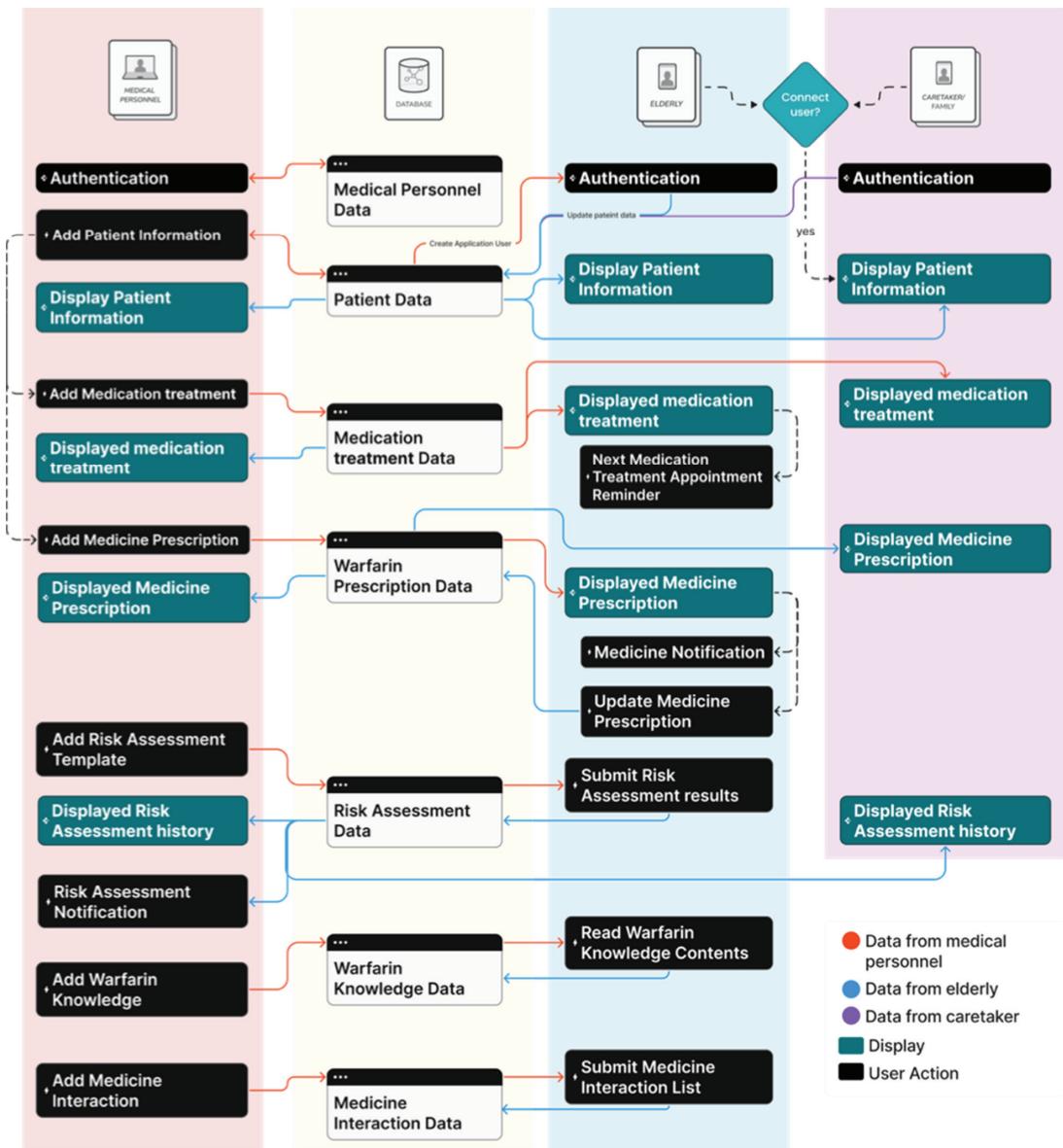


Figure 1. User flow diagram for Warfarin Care.

Warfarin Care was composed of a Warfarin application for the elderly and a Warfarin monitoring website for medical personnel. The warfarin application acted as a reminder and knowledge for the elderly and caregivers or family that use warfarin to understand and be conscious of the importance of warfarin correct usage. While the website will serve

as a medium for medical service providers to track the medication intake and treatment history of each elderly patient, medical personnel can update and send information about treatment, precautions, and medication adjustments as appropriate for each patient's condition.

The application is a medium for patients and caregivers to receive information or follow up on treatment, including sending a preliminary risk assessment to medical service providers to receive timely treatment. The application and website consist of three types of users:

1. Medical personnel user: the user responsible for controlling and accessing all data to analyze and treat patients via the website.
2. Patient user: the elderly user for receiving information on taking medicine and sending information on taking warfarin and symptoms that may be at risk from taking warfarin via application.
3. Caregiver/patient's family user: the user who receives information on medication and treatment and risk assessment from connected elderly users to monitor patients via application.

In Figure 1, which illustrates the workflow diagram of Warfarin Care, the users will consist of three types of users, as mentioned in the previous paragraph. The diagram shows the in-depth information about the Warfarin Care process between each user. The medical personnel mainly provide medicine information and track elderly user data, which creates medication and risk information via application. While caregivers are tracking elderly data to provide safety action in case of emergencies. Warfarin Care can provide user connections

to collect all information so that users, including medical personnel, service providers, patients, or caregivers, can access information efficiently and communicate across devices. The website can access information and make analysis of patient information, including treatment history, history of taking medicine, and risk assessment. The application system will have access to self-information, including treatment history, history of taking medicine, risk assessment, and risk assessment history. By doing a risk assessment or updating the medicine interactions list and medicine taken confirmation, patient information will be recorded and displayed on both the website and application. The website and application are composed of six main functions, which are:

1. user data authentication and configuration: user data authentication and configuration are integral parts of creating a secure and personalized user experience. Authentication ensures the security of the system by confirming the identity of users, while configuration allows users to set their preferences.
2. medication treatment of patients: the medication treatment of patients is a vital component of healthcare, aiming for diagnosis, monitoring, and medical records. The medical personnel were the information providers to keep track of warfarin patients and

update medication data on the Warfarin Care website, as elderly patients and their families could acknowledge the data given by medical personnel through an application.

3. warfarin prescription and taken records of patients: the medical personnel provided medication dosage prescription and medication schedule to keep track of warfarin patients through the Warfarin Care website, as elderly patients and family used applications to confirm warfarin taken, as warfarin needed specific dose and time intake to maintain INR value. The warfarin prescription can be updated via the website, as patients might show signs and symptoms of important blood-related conditions or a heart attack.
4. risk assessment and history records, as warfarin was known to exhibit interactions with various foods and medications. The website provided a risk assessment questionnaire (Tomaselli *et al.*, 2020) for medical personnel to adjust and confirm a list of risk assessments such as blood-related conditions, heart attacks, or medicine interaction questions for the application's users. While the elderly users were able to submit assessments to evaluate preliminary assessments of warfarin effects via application, the risk assessment resulted in high risk, and no warfarin confirmation after 12 hours will be reported to medical personnel.
5. warfarin knowledge data contents: The website provides a content editor page for medical personnel to later add or edit warfarin knowledge for patients. Patients can directly access the warfarin knowledge content list through the warfarin knowledge section of the application.
6. Medical interaction data: The website provides lists of foods and medicines that may interact with warfarin intake; these include vitamin K-rich vegetables, specific fruits, alcoholic beverages, cigarettes, traditional medicine, herbal supplements, antibacterial medications, and other biocidal drugs. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are crucial to avoid, as this combination heightens the risk of severe bleeding. Patients can directly access the warfarin interaction list through the warfarin interaction section in the application, as the elderly can add medicine or food to the warfarin interaction lists

that had to be taken. The medical personnel can visualize the list on the website and provide proper prescriptions to patients.

From Figure 2, the Warfarin Care had been designed to share the database to connect data across devices. The FastAPI was used to create a RESTful API to retrieve or send information from the PostgreSQL database and file storage. The website contained a user interface for visualized data to medical personnel users on a secured website, with a socket.io library to control notification of the website between the client and the server. While the application contained user interfaces for Android and iOS applications using the React Native framework. Firebase cloud messaging was in charge of controlling the notification service to send notifications to application users. As the application was designed for elderly patients, it helped with potential challenges such as decreased eyesight and hearing. The application provided readable text by using clear and legible fonts, maintaining a high contrast between text and background, a simple application layout by utilizing intuitive and large icons with text labels to enhance understanding of the function, touch-friendly buttons, and interactive elements. The website and application language and contents appropriation were adjusted and confirmed by five medical experts with clear and easy-to-understand language. The risk assessment and warfarin knowledge data contents can utilize the “TalkBack” or “VoiceOver” service on mobile devices to read the contents shown in the application.

3.2 Data Analysis

3.2.1 Data collection and measurement setting

The research questionnaire is prepared to evaluate an application for elderly people who use warfarin by conducting a closed-ended questionnaire where the respondents fill out the details in the questionnaire and follow the choices given. The study population is a group of elderly patients and family members from a total of 60 cases, with 30 elderly patients and 30 family members or caregivers, as the sample receiving treatment in the outpatient department of Sakonnakhon Hospital. An area for collecting data is distributing questionnaires by organizing activities for volunteers to test the use of the application for elderly people who use warfarin and making 60 questionnaires to collect research results. The participants had been assigned to use the application for four weeks as a warfarin reminder, warfarin taken history, medication treatment, medication appointment, risk assessment questionnaires, warfarin interaction, and warfarin knowledge contents.

Information used in the study process includes data preparation, data collection Data analysis, interpretation, and conclusion include primary data. It is information collected directly from the source. By using a closed ended questionnaire, data was collected on the sample population.

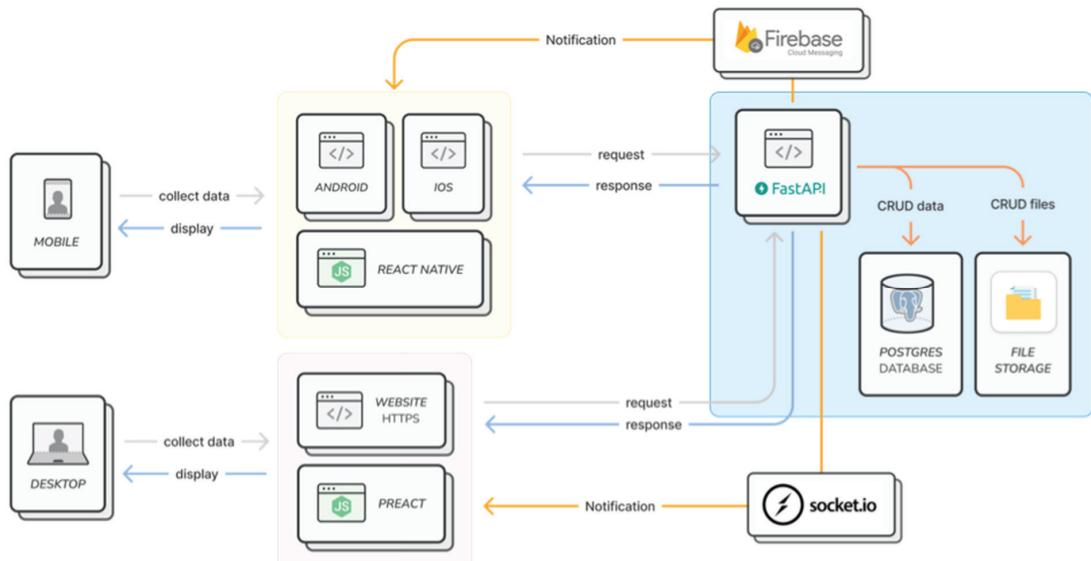


Figure 2. System diagram of Warfarin Care.

3.2.2 Data analysis interpretation

The researcher has set the statistical values for data analysis, describing the variables of this study as follows:

1. Analysis with descriptive statistics: the researcher has taken all the questionnaires and examined them. Analysis was performed using descriptive statistics to explain the results of the study in the following areas:

1.1 Some of the sample characteristics variables are age and gender. These are nominal measures because they can only describe the number of samples based on their properties and not their values. Therefore, appropriate statistics are frequency values and percentage values (Vanichbuncha, 2007).

1.2 Opinion level variables include satisfaction and behavior about perceived benefits from the application, divided into two sections consisting of:

- user satisfaction in knowledge on the use of warfarin, confidence in using warfarin, taking medicine correctly, risk of adverse warfarin reactions management, risk of adverse reactions knowledge from the use of warfarin, and medical personnel can track medication from patients.
- user satisfaction in using the application, including factors such as informative content, user interface design, use of language, usability, and appropriateness.

The questionnaire is a closed-ended question consisting of sub-answers divided into five levels using a rating scale and giving each level a score from the lowest score of 1 to the highest score of 5. The statistics used are frequency, mean, and standard deviation (Vanichbuncha, 2007).

The questionnaire results were used to calculate floor values for data interpretation by determining the range of data to be interpreted. The calculation formula and explanations for each grade level are as follows:

$$Floorvalue = \frac{(maximum-minimum)}{floors} \quad (1)$$

$$Floor = \frac{(5-1)}{5} = 0.80$$

Range interpretation can be concluded as:

- 1.00 – 1.80 : Disagreed
- 1.81 – 2.61 : Slightly disagreed
- 2.62 – 3.42 : Moderate
- 3.43 – 4.23 : Slightly agreed
- 4.24 – 5.00 : Agreed

4. Experimental Results

4.1 Warfarin Care

Warfarin Care had been developed to create communication between medical personnel and elderly patients taking warfarin through a website and application. The website provided information about correct usage of warfarin, medicine interactions, or risk assessment criteria for receiving warfarin and notified medical personnel users when patients submitted a risk assessment at high risk. Figure 3 shows the risk assessment submitted by the elderly patient. The website provided high-risk notifications such as blood-related conditions, heart attacks, or medicine interaction questions, and no warfarin confirmation after 12 hours will be reported to medical personnel. The medical personnel can visualize the details of a certain notification, as shown in the image on the right side.

Figure 4 shows the interfaces of the Warfarin Care website for medical personnel and applications for patients and caregivers.

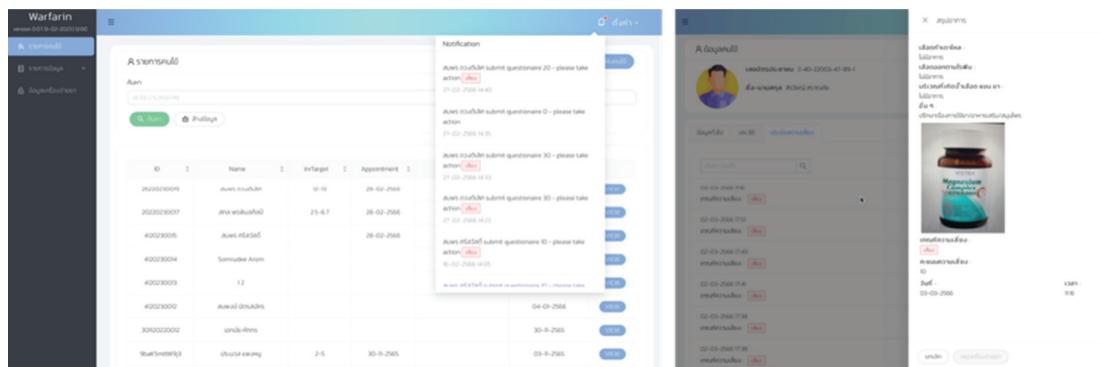


Figure 3. User interfaces of Warfarin Care website for medical personnel.

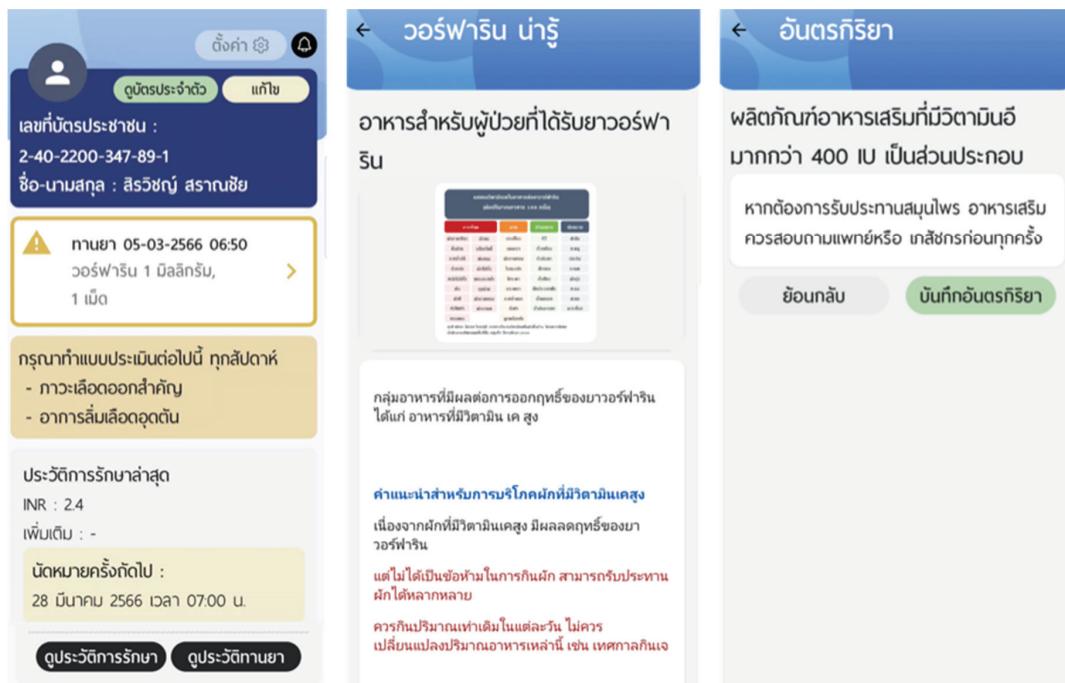


Figure 4. User interfaces of Warfarin Care application for patients and caregivers.

The main page, warfarin knowledge data contents, and medical interaction data, respectively. Patients can directly access the warfarin knowledge content list through the warfarin knowledge section and can access the warfarin interaction list through the warfarin interaction section in the application, as the elderly can add medicine or food to the warfarin interaction lists that had to be taken. The medical personnel can visualize the list on the website and provide proper prescriptions to patients.

4.2 Data Analysis

In this section, we presented the outcomes of an investigation into user satisfaction with the Warfarin Care application, focusing on various facets such as knowledge

acquisition, confidence levels, guidance, risk awareness, and support for anticoagulation medication adherence. The utilization of mean and standard deviation as analytical tools offered a thorough examination of user sentiments.

4.2.1 Analysis interpretation of the elderly satisfactory

In this section, the study presents the findings of an examination of the personal data of elderly individuals, including age, gender, and marital status. The data is elucidated through frequency and percentage values. The results show that the majority of the 30 participants who took the test and completed all 30 assessments fall within the age range of 60–69 years (46.66 percent), then 70–79 years (36.66 percent), 80–89 years (13.33 percent),

Table 2. Satisfaction in using the application among the elderly group that affects the benefits received from the application and the use of the application by the elderly group that affects the usability and suitability received from the application.

Satisfaction with using the application Warfarin Care and the benefits received from the application	\bar{X}	S.D.	Interpretation
Have knowledge about the use of anticoagulants.	4.60	0.56	Agreed
Gain confidence in using anticoagulants.	4.66	0.55	Agreed
Take medicine correctly, both in dosage and time.	4.63	0.56	Agreed
It helps with the use of anticoagulants according to the treatment plan.	4.76	0.50	Agreed
Know the guidelines if there is a risk of adverse reactions from medication, such as easy bleeding or blood clots in important organs, etc.	4.63	0.56	Agreed
Reduce the risk of adverse reactions from the use of anticoagulants.	4.70	0.47	Agreed
Family members are aware and encourage the use of anticoagulants according to the treatment plan.	4.83	0.38	Agreed
It helps health team personnel track medication uses by patients.	4.73	0.45	Agreed
Appropriate content	4.63	0.56	Agreed
Good user interface design	4.60	0.62	Agreed
The media and content language are easy to understand.	4.67	0.55	Agreed
The application is convenient to use and not complicated.	4.47	0.68	Agreed
Overall use and suitability of the Warfarin Care application.	4.57	0.57	Agreed

and over 90 years (3.33 percent). Regarding gender, the majority are women, accounting for 53.30 percent, while men account for 46.70 percent. Regarding gender, the majority are women, accounting for 53.30 percent, while men account for 46.70 percent. The study also categorizes participants by marital status, revealing that the majority are married (66.60 percent), with 30 percent being widowed and 3.33 percent single.

In the next section of the questionnaire, the study focuses on evaluating user

satisfaction with the Warfarin Care application in terms of awareness and support for using warfarin medication through the application. Utilizing mean and standard deviation values to analyze the data, Table 2 shows that participants are most satisfied with being aware of and getting help with taking their warfarin medications as prescribed, which is in line with the treatment plan. The mean score is 4.83 with a standard deviation of 0.38, indicating the highest level of satisfaction. The patients have gained knowledge about the use of anticoagulants with an average of

4.60 and a standard deviation (S.D.) of 0.56; on-time medicine taken; and understanding guidelines for the risk of adverse reactions from medication with an average of 4.63 and a S.D. of 0.61; family members are aware of and encourage the use of anticoagulants according to the treatment plan, with an average of 4.83 and a S.D. of 0.38; and Warfarin Care can help health team personnel track medication use by patients with an average of 4.73 and a S.D. of 0.45. Simultaneously, the presentation of data on application usage and user suitability in terms of language

communication reveals the highest satisfaction level with easy-to-understand language communication. The mean score is 4.67 with a standard deviation of 0.55, indicating the highest level of satisfaction.

4.2.2 Analysis and interpretation of the family members or caregivers satisfactory

In this section, the study presents findings related to the personal data of relatives of elderly participants, including details such as age, gender, and familial relationships. The

Table 3 Satisfaction in using the application among the family members or caregiver group that affects the benefits received from the application and the use of the application by the elderly group that affects the usability and suitability received from the application.

Satisfaction with using the application Warfarin Care and the benefits received from the application	\bar{X}	S.D.	Interpretation
Have knowledge about the use of anticoagulants.	4.70	0.53	Agreed
Gain confidence in using anticoagulants.	4.60	0.56	Agreed
Take medicine correctly, both in dosage and time.	4.70	0.53	Agreed
It helps with the use of anticoagulants according to the treatment plan.	4.67	0.55	Agreed
Know the guidelines if there is a risk of adverse reactions from medication, such as easy bleeding or blood clots in important organs, etc.	4.67	0.61	Agreed
Reduce the risk of adverse reactions from the use of anticoagulants.	4.60	0.62	Agreed
Family members are aware and encourage the use of anticoagulants according to the treatment plan.	4.67	0.55	Agreed
It helps health team personnel track medication uses by patients.	4.63	0.56	Agreed
Appropriate content	4.63	0.52	Agreed
Good user interface design	4.60	0.66	Agreed
The media and content language are easy to understand.	4.67	0.58	Agreed
The application is convenient to use and not complicated.	4.47	0.78	Agreed
Overall use and suitability of the Warfarin Care application.	4.57	0.61	Agreed

analysis involved the use of frequency and percentage values. A total of 30 participants participated in the assessment, resulting in the completion of thirty evaluations. The outcomes highlight that the majority of respondents fall within the age range of 20–29 years, constituting 23.33 percent. Furthermore, participants aged 30–39 years account for 20.00 percent, those aged 40–49 years make up 33.33 percent, individuals aged 50–59 years represent 16.66 percent, and those over 70 years comprise 3.30 percent. Regarding gender distribution, the study indicates that the majority of respondents are female, making up 63.30 percent, while males constitute 36.70 percent. Further categorization of the elderly participants' relatives based on familial relationships reveals that the majority of respondents are children, representing 70 percent. Other relationships include spouses (6.70 percent), siblings (16.70 percent), and sons-in-law (6.70 percent).

The study presented the results of user satisfaction with the Warfarin Care application concerning knowledge, confidence, guidelines, risks, and support for using anticoagulant medication through the application. The chosen analytical tools for this assessment include the calculation of the mean and standard deviation. The summarized findings are detailed in Table 3. With a mean score of 4.70 and a standard deviation of 0.53, the Warfarin Care application has the highest level of satisfaction when it comes to the benefits of learning about how to use anticoagulant medications and the right

way to take them, including the right dosage and timing. The family members know more about anticoagulants and make sure they take their medicine on time (with an average score of 4.70 and a standard deviation of 0.53) and understand the risk of bad reactions to medications (with an average score of 4.67 and a standard deviation of 0.61). The family members also know and encourage the use of anticoagulants according to the treatment plan (with an average score of 4.67 and a standard deviation of 0.55), and Warfarin Care can help health team members keep track of medication use. Additionally, the study examines user satisfaction with the Warfarin Care application in terms of usage and appropriateness among participants. The analysis results show the highest satisfaction levels with content suitability and easy-to-understand language communication, with a mean score of 4.73 and standard deviations of 0.52 and 0.58.

5. Conclusion

5.1 Summary of Warfarin Care

Warfarin Care represents a crucial advancement in digital healthcare technology tailored to the specific needs of the elderly population using warfarin. By facilitating efficient communication and information exchange among medical personnel, elderly patients, and their caregivers, the application and website aim to reduce medication errors and enhance overall treatment outcomes. The user-friendly interface, rigorous content evaluation, and shared database architecture

demonstrate a thoughtful and comprehensive approach to addressing the challenges associated with warfarin usage. Warfarin Care's impact on achieving its objectives is evident in the successful integration of risk assessment, medication history, and knowledge of warfarin usage. The application serves as a medication reminder and educational tool, fostering a better understanding of proper medication behavior. Medical personnel benefit from real-time access to patient data, enabling them to make informed decisions and provide timely interventions.

However, it's essential to acknowledge certain limitations. Warfarin Care's effectiveness heavily relies on user adherence and regular engagement, which might vary among elderly users. Additionally, factors such as technological literacy and access to smartphones or tablets may influence the user's reach. Ongoing efforts should be directed toward addressing these limitations, potentially through user training programs or alternative communication channels. Additionally, the Warfarin Care application did not offer notification sounds, real-time pop-up notifications, or medicine confirmation services to alert the elderly to confirm medication intake, even though users were required to do so by navigating to specific application pages.

In conclusion, while Warfarin Care has showcased promising potential toward maximizing its impact, it requires an ongoing commitment to refinement and adaptation. Warfarin Care can contribute significantly to

the advancement of anticoagulant therapy management for the elderly. This commitment ensures that Warfarin Care remains a relevant, effective, and sustainable tool for both patients and healthcare providers in the dynamic landscape of digital healthcare.

5.2 Summary of the Analysis of Usage Data of the Users

In conclusion, the comprehensive analysis of usage data for both elderly individuals and their caregivers or relatives regarding the Warfarin Care application yielded insightful findings from this clinical trial. Among the elderly participants, the majority, particularly those aged 60–69 years, demonstrated a high level of satisfaction with the application's features, emphasizing its effectiveness in promoting awareness and supporting adherence to anticoagulation medication. The caregivers or relatives, predominantly falling in the age range of 40–49 years, also expressed significant satisfaction, particularly in terms of the application's contribution to knowledge, confidence, and guidance related to anticoagulation medication. Furthermore, overall user satisfaction with the application's language communication and content appropriateness was notably high, highlighting its user-friendly nature. These findings collectively underscore the positive impact of the Warfarin Care application on both elderly users and their caregivers, emphasizing its effectiveness in enhancing knowledge, confidence, and support for proper medication adherence.

6. Discussion

Expanding on further research, A comprehensive longitudinal study could provide valuable insights into Warfarin Care's effectiveness over an extended period of time. This includes assessing whether improved adherence to warfarin regimens translates into better health outcomes for the elderly population, such as reduced incidences of adverse events or hospitalizations related to anticoagulant therapy. Warfarin Care's user experiences and insights can inform iterative improvements, ensuring that Warfarin Care remains responsive to the evolving needs and preferences of its diverse user base.

The traditional practice of nurses and pharmacists making phone calls to monitor patients' medication adherence can be streamlined through the implementation of a dedicated mobile application. The medical team has expressed approval of this approach through its website and application. Notably, patients' knowledge regarding medications and dietary considerations has significantly improved through the use of the application, which is curated based on information provided by medical personnel. Moreover, the involvement of family members in facilitating medication adherence has been instrumental. Users agreed that the use and suitability of the Warfarin Care application had an average of 4.57 and a S.D. of 0.57 from elderly users and an average of 4.67 and a S.D. of 0.61 from caregivers or family members. Incorporating user feedback mechanisms, perhaps through

user surveys, focus groups, or usability testing, will enable developers to identify areas for enhancement and address any emerging challenges promptly.

Additionally, staying attuned to emerging technologies and healthcare trends is paramount for the sustained success of Warfarin Care. The field of digital healthcare is dynamic, with innovations and advancements occurring regularly. Integrating these developments into Warfarin Care's service, such as incorporating artificial intelligence for personalized risk assessments or leveraging wearable devices for real-time health monitoring, can enhance its capabilities and overall impact.

Funding

This project is funded by National Research Council of Thailand (NRCT) of a project entitled “Tele warfarin management and monitoring platform for older adults using digital technology”, Contract No. N34A650496, conducted by the Faculty of Nursing, Mahidol University, Thailand. This project is also funded by the NRCT of a project entitled “Application and website development for Older Adults on Warfarin”, conducted by the Faculty of Engineering, Mahidol University, Thailand.

Acknowledgment

This work is a collaboration with Sakon Nakhon Hospital's medical personnel for leading in collecting patients' data, warfarin information, and enrollment in Warfarin Care, which have helped improve the application

and website's information. The authors would like to thank Dip. MD. Khachol Sriyayang, Thai Board of Cardiology for supporting medical information on the application and website. The authors would like to thank the elderly and their families who participated in the application of satisfactory questionnaires.

Institutional Review Board (IRB)

Certificate of Approval: MU-MOU CoA No. IRB-NS2022/726.1810 by the human research ethics committee of Mahidol University, Thailand.

References

Amar, F., April, A., & Abran, A. (2024). Electronic health record and semantic issues using fast healthcare interoperability resources: Systematic mapping review. *Journal of Medical Internet Research*, 26(e45209). <https://www.jmir.org/2024/1/e45209>

American Hospital Association. (2021). *AHA statement on the Future of Telehealth: COVID-19 is Changing the Delivery of Virtual Care*. Retrieved 10 October 2023, Retrieved from <https://www.aha.org/2021-03-02-aha-statement-future-telehealth-covid-19-changing-delivery-virtual-care>

Brown, J., Cavanagh, J., Dorricott, B., Irving, V., & LaRiviere, C. (2023). Improving the quality and sustainability of home-based acute care models using virtual care technology. *Asia Pacific Journal of Health Management*, 18(3). <https://doi.org/10.24083/apjhm.v18i3.2785>

Chamnanhan, T., Phetkrachang, K. ., Sathiwantana, S., Pongsagorn, P., & Choosong, C. (2023). Measurement of word similarity for diabetes question answering system. *Journal of Applied Informatics and Technology*, 5(2), 86–99. <https://doi.org/10.14456/jait.2023.7> [In Thai]

Chang, W.-J., Chen, L.-B., Hsu, C.-H., Lin, C.-P., & Yang, T.-C. (2019) A deep learning-based intelligent medicine recognition system for chronic patients. *IEEE Access*, 7(1), 44441-44458. <https://doi.org/10.1109/ACCESS.2019.2908843>.

Choicharnchaikul, S., Malathum P., & Kanchanachai, S. (2008). Warfarin use in the elderly: A case study and care. *Ramathibodi Nursing Journal*, 14(3), 366-384. https://www.researchgate.net/publication/277153283_The_Use_of_Warfarin_in_Older_Adults_A_Case_Study_and_Caring [In Thai]

Dang, T. H., Nguyen, T. A., Hoang Van, M., Santin, O., Tran OMT, & Schofield, P. (2021). Patient-centered care: Transforming the health care system in Vietnam with support of digital health technology. *J Med Internet Res*, 23(6), e24601. <https://doi.org/10.2196/24601>

DEPA. (2023). *Digital society series: e-Health open data platform for aged society*. Retrieved 15 October 2023, Retrieved from <https://www.depa.or.th/th/article-view/digital-society-series-e-health-open-data-platform-aged-society>

European Commission. (2018). *Information paper on main eHealth activities outside of the EU*. Retrieved 10 October 2023, Retrieved from https://health.ec.europa.eu/system/files/2018-09/ev_20180515_co23_en_0.pdf

Hnoohom, N., Yuenyong, S., & Chotivatunyu, P. (2018) MEDiDEN: Automatic medicine identification using a deep convolutional neural network. In *2018 International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)*. Springer. <https://doi.org/10.1109/iSAI-NLP.2018.8692824>

Jiang, S. et al. (2022) Efficacy and safety of app-based remote warfarin management during COVID-19-related lockdown: a retrospective cohort study. *J Thromb Thrombolysis*, 54(1), 20-28. <https://doi.org/10.1007/s11239-021-02630-0>.

Jirapanthong, W. (2016) The use of web-based application to support medical operations in Thailand. *Journal of Information Science and Technology (JIST)*, 6(1), 1-7. <https://doi.org/10.14456/jist.2016.1>.

Kalra, S., Taneja, C., & Singhal, N. (2023). Participation in online health communities: Decoding the antecedents and outcomes. *Asia Pacific Journal of Health Management*, 18(2). <https://doi.org/10.24083/apjhm.v18i2.1387>

Kant Pal, S. et al. (2023). Analysing the impact of student health post COVID-19 pandemic and providing a solution using digital technologies. *Asia Pacific Journal of Health Management*, 18(2). <https://doi.org/10.24083/apjhm.v18i2.2411>

Koonin, L. M. et al. (2020). Trends in the use of telehealth during the emergence of the COVID-19 pandemic — United States, January–March 2020. *MMWR Morb Mortal Wkly Rep*, 69, 1595–1599. <http://dx.doi.org/10.15585/mmwr.mm6943a3>

Kumar, A., Mathur, R., Shirmila, T., More, R., Kaikini, R., & Bhalerao, K. (2023). An effective health care system through health technology assessment and evidence based payment system in India. *Asia Pacific Journal of Health Management*, 18(2). <https://doi.org/10.24083/apjhm.v18i2.2403>

Kusumasari, B., Setianto, W., & Pang, L. (2018). A study on digital democracy practice: Opportunities and challenges of e-health implementation in Indonesia. *Jurnal Ilmu Sosial dan Ilmu Politik*, 22(1), 1-10. <https://doi.org/10.22146/jsp.28863>

Leavy, M. (2019). *The Use of Mobile Devices in Healthcare. Elite Learning*. Retrieved 10 October 2023, Retrieved from <https://www.elitelearning.com/resource-center/health-systems-management/the-use-of-mobile-devices-in-healthcare/>

Lin, R., Lai, P., Chin, C., & Kuo, Y. (2013). Intelligent taking medicine reminding system. In *2013 1st International Conference on Orange Technologies (ICOT)* (pp. 39–42). IEEE. <https://doi.org/10.1109/ICOT.2013.6521152>.

Lwin, H.N.N., Punnakitikashem, P., & Thananusak, T. (2023). E-health research in Southeast Asia: A bibliometric review. *Sustainability*, 15(3), 2559. <https://doi.org/10.3390/su15032559>

Ministry of Public Health. (2017). *eHealth strategy, Ministry of Public Health (2017 – 2026)*. Retrieved 10 October 2023, Retrieved from https://ict.moph.go.th/upload_file/files/eHealth_Strategy_E NG_141117.pdf

Moraes, R. M., Winkelmann, E. R., & Colet, C. d. F. (2022). Use of a mobile application for the control of anticoagulation with warfarin: a cluster randomized controlled clinical trial - Ijuí/RS/Brazil. *Journal of Pharmaceutical Sciences*, 58. <https://doi.org/10.1590/s2175-97902022e19153>

Nguyen, Q. T., Naguib, R. N. G., Tawfik, H., & Phuong, N. H. (2013). Strategic challenges facing user- and patient-centred e-health in Vietnam. *International Journal of Healthcare Technology and Management*, 14(5/6), 378-394. <https://doi.org/10.1504/IJHTM.2012.052551>

Olomu, I. O. et al. (2018). Technology use among patients undergoing Warfarin therapy: A report from the michigan anticoagulation quality improvement initiative (MAQI2). *Circulation: Cardiovascular Quality and Outcomes*, 7, A176. https://doi.org/10.1161/circoutcomes.7.suppl_1.176

Panichsombat, T. (2017). *Development of the pharmacy care system for patients using warfarin at Ban Tak Hospital* [Unpublished document]. Tak : Technical Services Pharmacy Group, Ban Tak Hospital.

Pintusirakun, W., Netphlap, R., Koson, T., & Tangwongcharoen, W. (2023). Knee joint muscle measurement application for physical therapy treatment. *Journal of Applied Informatics and Technology*, 6(1), 98–112. <https://ph01.tci-thaijo.org/index.php/jait/article/view/251883> [In Thai]

Rafhi, E., Stupans, I., Park, J. S., & Wang, K. (2023). The influence of social and individual factors on medicine use in older adults. *Asia Pacific Journal of Health Management*, 18(3). <https://doi.org/10.24083/apjhm.v18i3.2691>

Sabrina, M.I. & Defi, I.R. (2021). Telemedicine Guidelines in South East Asia—A Scoping Review. *Front. Neurol.*, 11, 581649. <https://doi.org/10.3389/fneur.2020.581649>

Sratthaphut, L. (2015). Development of an expert system for recommendation on Warfarin dosing adjustment guideline in patient for pharmacist: A pilot study using CLIPS language. *International Journal of Pharmaceutical Sciences*, 11(2), April-June 2015. <https://doi.org/10.14456/ijps.2015.2>

Tanaka, J., Kuroda, H., Igawa, N., Sakurai, T., & Ohnishi, M. (2020). Perceived e-health literacy and learning experiences among Japanese undergraduate nursing students: A cross-sectional study. *Computers, informatics, nursing: CIN*, 38, 198-203. <https://doi.org/10.1097/CIN.0000000000000611>

Tang, G., Izumi, K., Izumisawa, M., & Koyama, S. (2023). Analysis of Japanese consumers' attitudes toward the digital transformation of OTC medicine purchase behavior and eHealth literacy: an online survey for digital experience design. *Front Digit Health*, 5, 1173229. <https://doi.org/10.3389/fdgh.2023.1173229>

Tomaselli, G. F. et al. (2020). 2020 ACC Expert consensus decision pathway on management of bleeding in patients on oral anticoagulants: A report of the American College of Cardiology Solution Set Oversight Committee. *Journal of the American College of Cardiology*, 76(5), 594-622. <https://doi.org/10.1016/j.jacc.2020.04.053>

Vanichbuncha, K. (2007). *Statistical analysis: Statistics for management and research* (10th ed.). Bangkok: Chulalongkorn University Printing House [In Thai].

Warfarin Clinic. (2014). *Knowledge for patients treated with anticoagulant medication (Warfarin: WARFARIN)* [Brochure]. Bangkok : Faculty of Medicine Siriraj Hospital.

Wongkampun, S. & Panitrat, R. (2023). Factors influencing health information technology utilization behaviors among older people in Bangkok metropolitan. *The Journal of Thailand Nursing and Midwifery Council (JTNMC)*, 38(3). <https://doi.org/10.60099/jtnmc.v38i03.263587>

World Bank. (2016). *Digital Dividends: World Development Report 2016*. Retrieved 15 October 2023, Retrieved from <https://documents1.worldbank.org/curated/en/896971468194972881/pdf/102725-PUB-Replacement-PUBLIC.pdf>

World Health Organization (WHO). (2020). *World health statistics 2020: Monitoring health for the SDGs, sustainable development goals (Global report)*. Retrieved 15 October 2023, Retrieved from <https://www.who.int/publications/item/9789240005105>

Measuring Neck Abnormalities for Preliminary Assessment of Neck Pain Disease using Virtual Reality

Manatsawee Sidajan¹, Kawintra sittikraipong², Peerapat Kusumannukul²,
Sasiwimon pornwachirawit², Waichaya Suwannakeeree², Sutasinee Jitanan^{1,*}

¹Department of Computer Science and Information Technology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand

²Department of Physical Therapy, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand

* Corresponding author: Sutasinee Jitanan (sutasineec@nu.ac.th)

Received:
24 November 2023

Revised:
31 January 2024

Accepted:
20 June 2024

Keywords:

Virtual Reality, Measuring Neck Abnormalities, CROM, VAS, Application Design

Abstract: Neck pain is an increasingly prevalent issue in the general population, leading to a growing incidence of chronic cases and potential future health risks. The economic impact is significant, as individuals with neck pain often cease working due to discomfort. Traditional assessments of treatment effectiveness involve the measurement of neck deformity and movement, typically requiring expensive and limited Cervical Range of Motion (CROM) equipment found primarily in large hospitals. The challenges posed by the COVID-19 outbreak further hinder access to such evaluations. This study proposes the development of a Virtual Reality (VR) application designed to measure neck movement range, enabling users to self-administer assessments under the guidance of the VR application. The VR application development process commences with storyboard creation, all components were designed and creates models object using Blender. The development of VR applications for angle measurement follows the storyboard, was executed using the Unity program. Prioritizing user satisfaction, the application capitalizes on the proven accuracy and reliability of VR devices. Usability experimental focused on user independence, with participants autonomously following instructional videos. Noteworthy user satisfaction, reflected in an average score of 4.36 ± 0.52 , underscores the potential of the VR application in addressing neck pain symptoms. The study emphasizes

meticulous design considerations, including character and scene elements, aiming to enhance user engagement and immersion in the virtual environment. Users demonstrated focused attention during the measurement process, unaffected by external factors.

1. Introduction

Neck pain is a symptom caused by defects in the cervical spine joints, neck muscles, and shoulder blade muscles. It is prevalent in the general population and tends to increase annually (Guo *et al.*, 2023). Incorrect postures in everyday life have been a long-standing cause of neck pain (Nainate, 2020). Individuals experiencing neck pain may also encounter complications such as a fear of movement, which can significantly impact their daily lives. If neck pain becomes chronic, it may lead to other future health issues, such as rheumatoid arthritis, osteoporosis, etc. (Sarig Bahat *et al.*, 2018). Additionally, this symptom can affect other mental illnesses, such as stress-related disorders.

According to the Global Burden of Disease (GBD) report, an estimated 124 million cases of neck pain increased worldwide from 1990 to 2017 (Sarig Bahat *et al.*, 2018). Neck pain is a symptom that is commonly attributed to musculoskeletal system and connective tissue disorders. Many patients suffer from the disease, which is ranked 3rd out of 10 in the 2021 annual case report by the Ministry of Public Health of Thailand (Strategy and Planning Division. Ministry of Public Health, 2019). According to studies on

the prevalence of neck pain at the Faculty of Medicine, Chiang Mai University, and medical colleges in Malaysia, 65% of personnel and 1% of students, respectively, experienced neck pain from long periods of computer use (Punwaree, Klaphajone, & Kovindha, 2009; Alshagga *et al.*, 2013). In 2011, a study at Thammasat University found that 46% of undergraduate students between the ages of 18 and 25 had neck pain (Kanchanomai *et al.*, 2011). Subsequently, a study at government health facilities in Yala Province, Thailand, found that a total of 136 people had neck, back, or shoulder pain (Ahmadmusa, 2020). Today, neck pain is the most common health problem among students in the 4th and 5th years of the Faculty of Allied Health Sciences at Naresuan University (Lertsinthai *et al.*, 2020). These studies suggest that neck pain is a prevalent problem that can affect people of all ages, from teenagers to working adults. Therefore, neck pain treatment is crucial and should be widely available.

Furthermore, the increasing number of patients with neck pain has an indirect impact on the economy because they must stop working due to pain (Kazeminasab *et al.*, 2022). The assessment of treatment effectiveness involves the measurement of neck deformity and movement, which necessitates the use of cervical range of motion (CROM) equipment, as shown in Figure 1. However, CROM equipment is not only expensive but also limited in availability, typically found only in large hospitals. The challenges have been exacerbated by the COVID-19 outbreak,

further complicating access to evaluations for neck pain utilizing such equipment in hospitals (Parasate *et al.*, 2022).

The medical field has adopted virtual reality (VR) technology to treat the symptoms of various diseases. VR headsets take users out of the real world by immersing them in a simulated environment, as shown in Figure 2. These VR headsets contain sensors that can track various types of movement, including head tracking, which utilizes gyroscopes, accelerometers, and magnetometers (Freeman *et al.*, 2017). The accuracy of these sensors has been demonstrated in a study conducted by Xu *et al.* (2015).

The VR Oculus Rift presents only a slight degree of deviation when compared to the motion tracking system (Xu *et al.*, 2015), and the VR device can be seamlessly integrated with sensors on mobile phones through the app. Furthermore, a study by Chang *et al.* suggests that the measurement of neck angles using a goniometer sensor from a mobile phone is highly reliable (Chang *et al.*, 2019).

In 2021, Yan *et al.* (2021) concluded that VR can still measure neck angles with an expected deviation of no more than 2 degrees compared to measurements with goniometers. Along with the accuracy between VR and medical devices for measuring the angle of neck movement such as CROM, according to the Santos-Paz study, VR is still very accurate, but the size of VR devices is

large and expensive (Santos-Paz *et al.*, 2022). Addressing this concern, Trinidad-Fernández *et al.* developed an application for the VR Meta Quest 2 HMD device. They chose this device due to its affordability, popularity, and excellent quality and accuracy in measuring neck angles (Trinidad-Fernández *et al.*, 2023). VR applications for measuring neck movement, as discussed in the above articles, typically require expert guidance during usage.

Virtual reality (VR) applications developed for use with head-mounted displays (HMD) are typically customized to suit the specific application and intended purpose. Tao *et al.* (2021) conducted a literature review focusing on the design of VR applications within the healthcare domain. They asserted that effective VR application design enhances user comprehension, leading to increased user retention and repeated usage (Tao *et al.*, 2021). However, prolonged usage of VR applications with HMDs can have adverse effects on user health, including eye strain, dizziness, and the potential for neck injuries. Therefore, it is imperative for VR applications to be meticulously designed to mitigate these health-related concerns.

VR demonstrates high accuracy and reliability when compared to medical measurement devices. VR is becoming exponentially more popular, and most people are aware of this technology. Additionally, the equipment used for measuring neck movement angles, CROM is both expensive and limited in quantity, often only available

in larger hospitals. This means that a physical therapist or specialist must be present while using the equipment. COVID-19 has made it even more difficult to access neck pain assessment using such devices at hospitals.

This study aims to develop a VR application for initial neck injury assessment, leveraging the accuracy and reliability of VR equipment. Therefore, the focus of this research is on designing the application to be user-friendly with the goal of achieving user satisfaction. The application is designed and developed for users to utilize independently, aiming to alleviate the workload of experts and the limitations of CROM devices.

2. Materials and Methods

2.1 VR Device

There are now several varieties of VR technologies, which are grouped into three categories (Heizenrader, 2023). Firstly, Non-Immersive VR: this type of virtual reality is often integrated into daily activities, such as gaming on platforms like PlayStation. Users may not be fully aware that they are experiencing VR. While interacting with the virtual environment through a screen, they control characters without physically entering the virtual world. Secondly, Semi-Immersive VR: this category provides a 3D-viewable

Figure 1. Cervical Range of Motion (CROM)

virtual world. Users can manipulate the virtual environment using a computer mouse, but their body movements are not tracked and replicated within the virtual space. Thirdly, Fully Immersive VR: this is the most advanced form of VR, offering users a complete and immersive experience. Users can move their bodies within the virtual world through motion detection technology. High-resolution head-mounted display (HMD) glasses and various VR controllers are essential for optimal vision and interaction.

In this study, we utilized fully immersive VR through the PICO 4 VR device (PICO, 2023), which is conducive to application development due to the availability of an SDK (Software Development Kit) for creating applications. The device is reasonably priced, making it a cost-effective choice compared to other VR models. Additionally, the device boasts a balanced design where its weight is symmetrically distributed towards the back. This design facilitates prolonged usage as the weight is concentrated towards the front only, and a cushion supports the entire device, both in the front and back, reducing discomfort for the user. The PICO 4 weighs a light 350 grams and offers adjustable pupil distance to accommodate individual user needs.

Figure 2. VR device (PICO 4)

It also features tracking and positioning sensors, including optical sensors on the sensor board, an AKM Semiconductor three-axis, six-axis MEMS gyroscope, and an accelerometer from TDK-InvenSense.

2.2 VR Application Design

The VR application has been designed to align with the process of measuring neck pain levels using the CROM device, as illustrated in Figure 3.

The initial phase of the physical therapy assessment for neck abnormalities involves the completion of a visual analog scale questionnaire (VAS). This instrument prompts the assessor to delineate their pain level on a horizontal 10-centimeter line, the parameters of which range from no pain on the left end to excruciating pain on the right, as illustrated in Figure 4. Subsequently, the measurement of CROM device will be conducted to quantify angles in six distinct directions: Flexion, Extension, Right Lateral

Flexion, Left Lateral Flexion, Right Rotation, and Left Rotation. The data obtained from both the VAS questionnaire and CROM device are subsequently utilized to comprehensively evaluate the assessor's neck condition.

Furthermore, a well-designed VR application has a positive impact on user usability, reducing the occurrence of discomfort during device utilization, such as neck strain and eye fatigue from prolonged VR usage. Deserver's study (Park, Lee, & Ko, 2013) suggests that VR game design should include a user guide to provide users with a foundation and understanding of how the game works for a more enjoyable experience. Another interesting aspect of VR is its ability to immerse users in a simulated reality, creating a more engaging and realistic experience. Therefore, based on the above conclusions, our study designed a VR application featuring a step for measuring neck pain levels in alignment with CROM device and designed

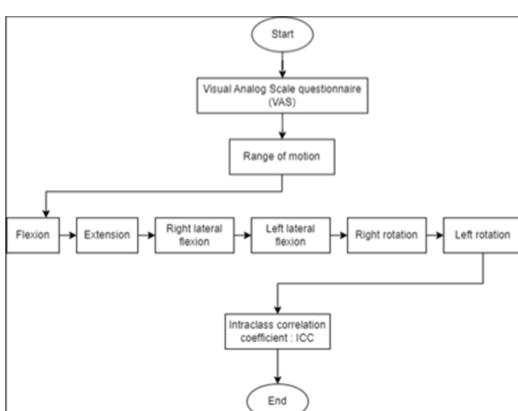


Figure 3. CROM procedure to measure neck abnormalities

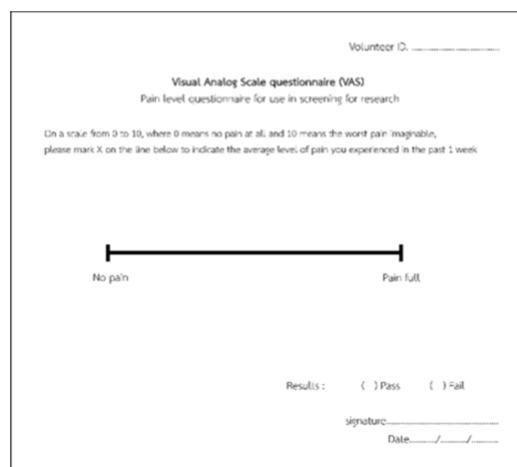
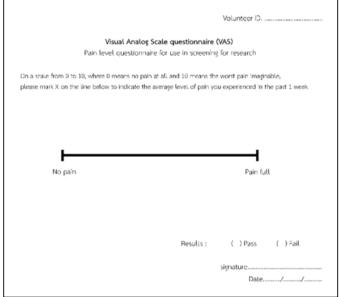


Figure 4. CROM procedure to measure neck abnormalities

the internal environment to be interesting and user-friendly.

Storyboarding is a crucial aspect of application development as it provides a visual representation of the application's direction. It allows for a comprehensive view of the development path, showcasing the overall picture of its progression. Moreover, it outlines the work process in a step-by-step manner, facilitating easy editing and incorporation of additional components within the application.


In this study, the storyboard of the application has been designed, comprising key scenes as follows: user guidance, VAS

measurement, measurement of CROM in Flexion and Extension directions, and measurement of CROM in Right Lateral Flexion and Left Lateral Flexion directions. The procedural steps for each scene adhere uniformly to the guidelines derived from VAS and CROM measurements, as outlined in Table 1. Place tables at the top or bottom of pages. Avoid placing them in the middle of pages. Table heads should be above the tables. Insert tables after they are cited in the text. Use 9-point Calibri for Table labels as shown in Table 1.

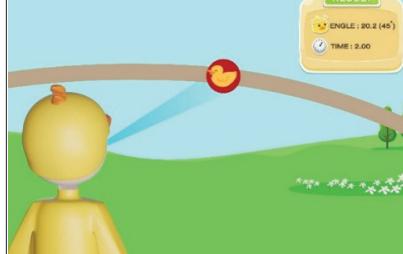
Table 1. Storyboard for VR application

1. Introduction	
Physical therapist	VR Application
Explain details about the process of assessing neck pain levels.	
	Introducing the Application Functionality: Upon clicking "Enter," a video showcasing the entire operational process, including equipment usage and necessary user actions, will be displayed on the introduction page. Additionally, users have the option to pause and repeat the video for enhanced comprehension and convenience.

Table 1. Storyboard for VR application (cont.)

2. Visual Analog Scale questionnaire (VAS)	
VAS	VR Application
<p>In the process of utilizing VAS measurement, users are instructed to mark symbols on a 10-centimeter straight line on paper. The positioning of the mark corresponds to the intensity of pain experienced by the user at the specific moment of assessment.</p>	
3. Measure the angle of neck movement in the directions of extension and flexion	
CROM	VR Application
<p>During the measurement process in this particular direction, the assessor is seated and wearing the CROM device. They are instructed to elevate and lower their head while the physical therapist orchestrates the movement to gauge the angle. It is imperative for the physical therapist to initially set the starting angle and posture to 0 degrees, ensuring consistency across all measured directions. This meticulous approach is essential to prevent inaccuracies in the subsequent measurements.</p>	
<p>The design for measuring pain levels involves a horizontal straight line similar to VAS. Users can use the controller to mark their pain level, following the same conditions as VAS. After the user makes their selection, an auditory signal will notify them of the chosen pain level.</p>	

Table 1. Storyboard for VR application (cont.)


4. Measure the angle of neck movement in the directions of right lateral flexion and left lateral flexion

CROM	VR Application

To measure lateral flexion, the assessor is instructed to tilt their neck to the left and then to the right. Before commencing the measurement, the physical therapist must ensure that all measured directions are set to 0 degrees to ensure accuracy. Once the lateral flexion movements are complete, the physical therapist should verify that the readings for all other directions remain at 0 degrees to prevent any errors in the assessment.

The measurement in this section is designed with a single central red point and no pipes, allowing users to tilt their necks left and right. The duck must not exceed the designated red point to ensure accurate angle measurement.

5. Measure the angle of neck movement in the directions of right rotation and left rotation

CROM	Application

This phase of angle measurement involves instructing the assessor to turn the neck both left and right. It is essential to ensure that all directional measurements are initially set to 0 degrees before initiating the movement. Following the completion of the neck movement, the physical therapist must verify that the measurements for other directions remain at 0 degrees to avoid potential errors.

The measurement of this angle will be designed similarly to the measurement steps for Flexion and Extension but with a change in the orientation of the tube from vertical to horizontal for guiding left and right neck rotations.

2.3. Satisfaction Assessment

Utilizing the precise head movement tracking features of VR devices, this research focuses on designing and developing user-friendly VR applications. To assess the user-friendliness of the developed VR application, a questionnaire will be employed in this study. The questionnaire aims to evaluate user satisfaction and collect feedback on various aspects of the application's usability.

This study examined the satisfaction levels of VR application usage among voluntarily participating health-conscious individuals, encompassing both females and males aged between 20 and 59 years. The sample size consisted of 50 participants, excluding individuals experiencing neck pain, those with recent neck or back surgeries, or any other discomfort related to the neck. The selection of the sample was based on the COSMIN methodology for evaluating the content validity of Patient-Reported Outcome Measures (PROMs) User Manual version 1.0. (Terwee *et al.*, 2018).

Satisfaction Assessment Form: The questionnaire will be organized into four sections for a comprehensive evaluation. These 4 sections include sections 1 VR design 4 questions: 1) Patterns of using the application with realistic technology devices that are easy to use. 2) The design of the application is beautiful and interesting. 3) The colors in the application design. 4) The font style and size are appropriate., sections 2 application usability 2 questions: 1) The speed of using the

application with realistic technology devices.

2) The arrangement of menus or categories is appropriate., sections 3 model and animation design 3 questions: 1) 3D modeling and animation styles suitable for the content. 2) The 3D model and animation are interesting and beautiful. 3) 3D modeling and animation convey accurate meaning and are easy to understand., and sections 4 The effectiveness of utilizing applications with VR devices 5 questions: 1) VR device are user-friendly and convenient. 2) The sound of the subtitles is clear. 3) The content is well-organized. 4) The content is explained clearly. 5) The content is easy to understand. Participants will rate their satisfaction levels on a rating scale from 1 to 5, where 1 denotes very unsatisfied, 2 denotes unsatisfied, 3 denotes moderate satisfied, 4 denotes satisfied, and 5 denotes very satisfied. The evaluation of satisfaction with VR applications will entail computing both the mean and standard deviation of satisfaction scores. This approach aims to offer a concise overview of the average satisfaction level among participants while also providing insights into the range of variability in the satisfaction scores.

The analysis will employ the mean and standard deviation (SD) to assess the level of satisfaction among the participants. The results will be compared against predefined criteria for interpretation: a score range of 4.51-5.00 indicates very satisfied, 3.51-4.50 indicates satisfied, 2.51-3.50 represents moderate satisfaction, 1.51-2.50 implies unsatisfied, and 1.00-1.50 represents very

unsatisfied. Specifically, in the context of user application satisfaction assessment, it is essential to ensure that the mean score is at least 3.51, and the standard deviation is not less than 1.00 (Collado-Mateo *et al.*, 2020).

3. Results and Discussion

3.1 VR Application

VR application development, the BLENDER program is utilized to craft models in alignment with the intended application format. These model files are then imported into the Unity Engine for further development, given its widespread usage as a game development platform, commonly employed for VR games and applications. Integration of sensors into Unity for VR games allows for the incorporation of various sensor types. To enhance user interaction, motion tracking features such as head tracking are implemented within the Unity engine. This enables users to explore virtual environments by tracking head movements effectively, thereby facilitating the creation of three-dimensional games in

diverse formats. In the VR application, an initial video will serve as an introduction, providing users with step-by-step guidance on the measurement procedures for values such as the Visual Analog Scale (VAS) and various angular metrics. The primary objective is to acquaint users with the assessment process and anticipate the forthcoming steps, encompassing detailed instructions on utilizing the controller in conjunction with the interactive elements of the game, as shown in Figure 5. After the introductory video, users will proceed to measure their pain levels using the Visual Analog Scale (VAS). On the user interface (UI) page, a horizontal straight line, similar to the CROM measurement, will be displayed. Figure 6 illustrates the VAS measurement process. Users will be prompted to select the point on the line that corresponds to the severity of pain they are experiencing at that moment.

The next step involves measuring head movement in all six directions. A red circular spot, denoting 0 degrees in the x, y, and z axes, serves as the focal point for each

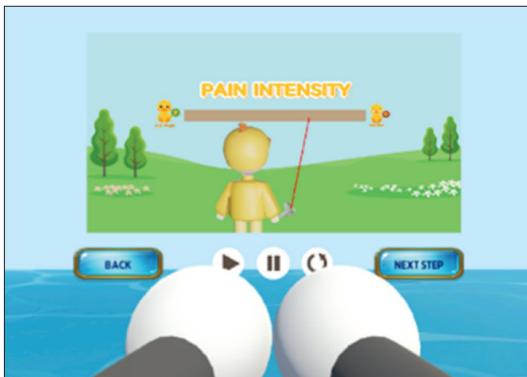


Figure 5. Video screen for introducing the usage of the VR application

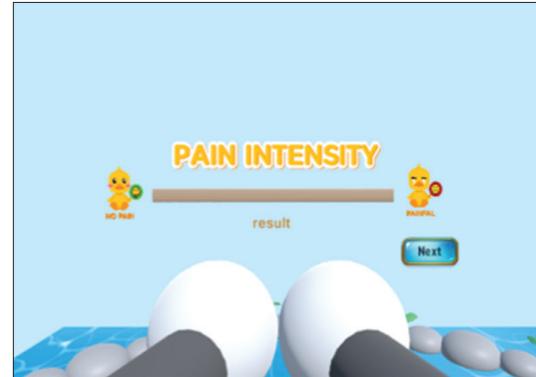


Figure 6. VAS measurement in the VR application

direction. A duck model is used to simulate user head movements. The user is prompted to perform the motion to evaluate neck pain. The VR application will provide audio cues indicating the direction before each the measurement. Additionally, the user is instructed to align their head with the line of sight or guide tube to maintain proper posture in each direction, as shown in Figure 7.

The VR application is designed to utilize the left controller for start and stop the measurement of the range of head movement. Simultaneously, it captures the time taken for each movement. The outcomes, comprising the measurable degrees of motion, along with the corresponding durations, are then displayed on the screen. Users can subsequently press the button on the right controller to enter the angle measurement in other directions. This process is repeated

until users have measured the range of head movement in all six directions, including Flexion (Figure 7(a)), Extension (Figure 7(b)), Right Lateral Flexion (Figure 7(c)), Left Lateral Flexion (Figure 7(d)), Right Rotation (Figure 7(e)), and Left Rotation (Figure 7(f)).

3.2 Satisfaction Assessment Results

The effectiveness of the VR application was evaluated through user testing, as shown in Figure 8. During user testing, participants were provided with VR headsets and instructed to interact with the application. Their feedback was collected to assess the usability, effectiveness, and overall experience of the VR application. From the user satisfaction assessment of the application, the mean and SD values were presented and separated into 4 categories, as shown in Tables 2-5.

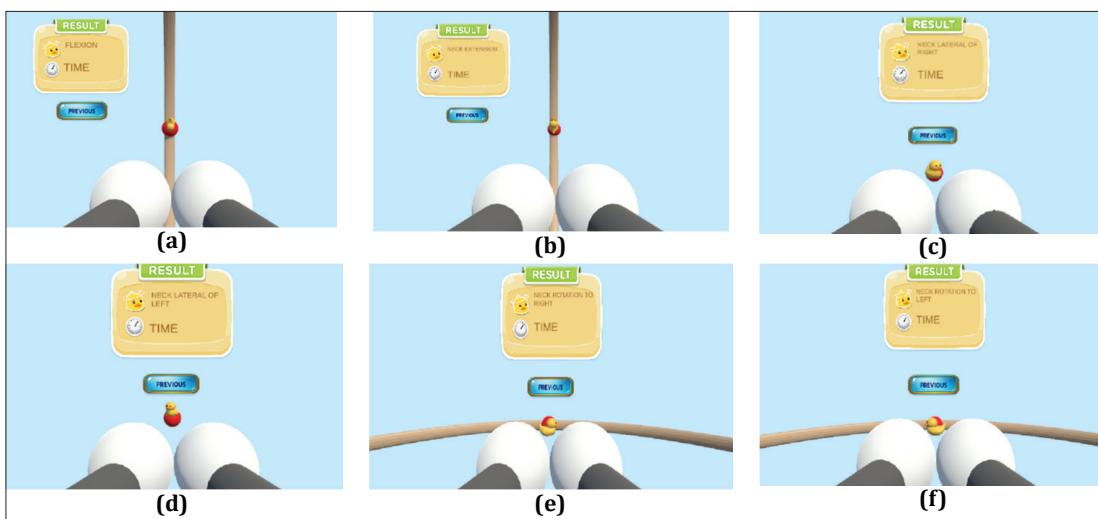


Figure 7. Measurement of head movement in all 6 directions

Figure 8. User testing with VR application

Table 2. VR Design satisfaction

Question	Mean \pm SD	Level
1. Patterns of using the application with realistic technology devices that are easy to use.	4.28 ± 0.76	Satisfied
2. The design of the application is beautiful and interesting.	4.34 ± 0.82	Satisfied
3. The colors in the application design.	4.44 ± 0.70	Satisfied
4. The font style and size are appropriate.	4.24 ± 0.82	Satisfied
Average	4.33 ± 0.66	Satisfied

Table 3. Application usability satisfaction

Question	Mean \pm SD	Level
1. The speed of using the application with realistic technology devices.	4.32 ± 0.74	Satisfied
2. The arrangement of menus or categories is appropriate.	4.38 ± 0.75	Satisfied
Average	4.35 ± 0.68	Satisfied

Table 4. Model design and animation satisfaction

Question	Mean \pm SD	Level
1. 3D modeling and animation styles suitable for the content.	4.4 \pm 0.70	Satisfied
2. The 3D model and animation are interesting and beautiful.	4.36 \pm 0.88	Satisfied
3. 3D modeling and animation convey accurate meaning and are easy to understand.	4.36 \pm 0.66	Satisfied
Average	4.37 \pm 0.63	Satisfied

Table 5. The effectiveness of utilizing applications with VR devices

Question	Mean \pm SD	Level
1. VR device are user-friendly and convenient.	4.06 \pm 0.77	Satisfied
2. The sound of the subtitles is clear.	4.26 \pm 0.85	Satisfied
3. The content is well-organized.	4.52 \pm 0.61	Very satisfied
4. The content is explained clearly.	4.54 \pm 0.61	Very satisfied
5. The content is easy to understand.	4.56 \pm 0.67	Very satisfied
Average	4.39 \pm 0.57	Satisfied

3.3 Discussion

In the usability testing of the application, it was observed that users have the ability to watch an instructional video explaining how the application operates and can follow the steps autonomously. Those who participated in the testing phase conveyed a notable satisfaction level in all aspects, reflected by an average score of 4.36 ± 0.52 . Throughout this study, careful attention was given to crafting character and scene designs, aiming to elicit excitement and interest, thereby fostering a heightened sense of immersion into the virtual world. Furthermore, users exhibited focused attention during the measurement process, undisturbed by external factors.

However, the researchers have received user suggestions regarding the design of the VR application. It is recommended to adjust the size of the animation to be larger. In terms of application usability, it should be designed to be user-friendly. Additionally, regarding the efficiency of using applications with virtual reality technology, feedback suggests that controlling the controller remains difficult to use.

3.4 Limitations and Future Works

Although user satisfaction with the use of the application is at a high level, there are still limitations to the VR application. These include the necessity of calibrating the VR equipment accurately before proceeding

with various measurements to minimize angle measurement errors. It is also crucial to align the gaze with the application. This research employed measurements and satisfaction evaluations for participants with good health. Consequently, the derived satisfaction level can only be extrapolated to this specific demographic and cannot be directly compared with the satisfaction levels of individuals experiencing genuine neck injuries. Despite the VR application demonstrating reliable accuracy in angle measurements, there exists a slight deviation when compared to CROM device.

Based on the above limitations, we will focus on developing VR applications that can measure degrees more accurately and reliably compared to standard tools in the medical field and test them with a sample group of people with real neck pain.

4. Conclusion

Neck pain, arising from issues in cervical spine joints, neck muscles, and shoulder blade muscles, often results from prolonged incorrect postures in daily life. The traditional method of measuring neck deformities and assessing treatment levels involves expensive and limited cervical range of motion (CROM) device, primarily available in large hospitals and it is necessary to have experts in using the equipment. Therefore, this study has developed Measuring Neck Abnormalities for Preliminary assessment of neck pain disease using virtual reality (VR). VR technology, known for its sensors

and tested accuracy, is reliable in measuring neck angles. The primary focus of this study is on the design of the application, aiming to ensure user satisfaction and usability. Users should be able to operate it independently, with efforts made to minimize any potential impact on their health. User satisfaction, based on a sample of 50 users without neck pain, indicated satisfied (average score of 4.36 ± 0.52). However, this study necessitates a comparative analysis of precision measurement and device reliability between VR and CROM to validate accuracy. This verification is crucial for determining the potential future usability of the VR application.

Acknowledgments

This research received support from the Faculty of Science, Naresuan University, in the form of scholarships and the provision of facilities and equipment for the current study. Additionally, the Department of Physical Therapy, Faculty of Allied Health Sciences, Naresuan University, contributed by providing resources for the experimental phase and data collection.

References

Ahmadmusa, A. (2020). Prevalence and related factors of neck shoulder and back pain among dental professional officers in government healthcare unit, Yala Province. *Thai Dental Nurse Journal*, 31(2), 16–26.

Alshagga, M. A., Nimer, A. R., Yan, L. P., Ibrahim, I. A. A., Al-Ghamdi, S. S., & Al-Dubai, S. A. R. (2013). Prevalence and factors associated with neck, shoulder and low back pains among medical students in a Malaysian Medical College. *BMC Research Notes*, 6, 244. <https://doi.org/10.1186/1756-0500-6-244>

Chang, K. V., Wu, W. T., Chen, M. C., Chiu, Y. C., Han, D. S., & Chen, C. C. (2019). Smartphone application with virtual reality Goggles for the reliable and valid measurement of active craniocervical range of motion. *Diagnostics*, 9(3), 71. <https://doi.org/10.3390/diagnostics9030071>

Collado-Mateo, D., Lavín-Pérez, A. M., Fuentes García, J. P., García-Gordillo, M. Á., & Villafaina, S. (2020). Effects of equine-assisted therapies or horse-riding simulators on chronic pain: A systematic review and meta-analysis. *Medicina (Kaunas, Lithuania)*, 56(9), 444. <https://doi.org/10.3390/medicina56090444>

Freeman, D. et al. (2017). Virtual reality in the assessment, understanding, and treatment of mental health disorders. *Psychological Medicine*, 47(14), 2393–2400. <https://doi.org/10.1017/S003329171700040X>

Guo, Q. et al. (2023). Virtual reality intervention for patients with neck pain: Systematic review and meta-analysis of randomized controlled trials. *Journal of Medical Internet Research*, 25, e38256. <https://doi.org/10.2196/38256>

Heizenrader. (2023). *The 3 Types of Virtual Reality*. Retrieved 15 September 2023. Retrieved from <https://heizenrader.com/the-3-types-of-virtual-reality/>

Kanchanomai, S., Janwantanakul, P., Pensri, P., & Jiamjarasrangsi, W. (2011). Risk factors for the onset and persistence of neck pain in undergraduate students: 1-year prospective cohort study. *BMC Public Health*, 11, 566. <https://doi.org/10.1186/1471-2458-11-566>

Kazeminasab, S. et al. (2022). Neck pain: Global epidemiology, trends and risk factors. *BMC Musculoskeletal Disorders*, 23, 26. <https://doi.org/10.1186/s12891-021-04957-4>

Lertsinthai, P., Nontakoot, J., Toudkavinkul, N., Weerachai, A., & Weeraphan, O. (2020). The prevalence of neck pain and the relationship between neck pain and computer vision syndrome in Faculty of Allied Health Sciences students at Naresuan University. *Thai Journal of Physical Therapy*, 42(2), 101–117. [In Thai]

Nainate, A. (2020). Factors influencing neck and shoulder pain syndrome in computer users in Charoenkrung Pracharak Hospital. *Journal of Charoenkrung Pracharak Hospital*, 16(2), 61-74. [In Thai]

Parasate, K., Suwannakoot, N., Meenakate, P., & Nakrukamphonphatn, S. (2022). Community management for caring people with COVID-19 infections. *Regional Health Promotion Center 9 Journal*, 16(3), 908-923. [In Thai]

Park, J. H., Lee, S. H., & Ko, D. S. (2013). The effects of the Nintendo Wii exercise program on chronic work-related low back pain in industrial workers. *Journal of Physical Therapy Science*, 25(8), 985–988. <https://doi.org/10.1589/jpts.25.985>

PICO. (2023). *Pico 4*. Retrieved 15 September 2023. Retrieved from <https://www.picoxr.com/th/products/pico4>.

Punwaree, J., Klaphajone, J., & Kovindha, A. (2009). Neck pain in computer users: A study of ergonomic factors. *ASEAN Journal of Rehabilitation Medicine*, 19(1), 30-35. [In Thai]

Santos-Paz, J. A., Sánchez-Picot, Á., Rojo, A., Martín-Pintado-Zugasti, A., Otero, A., & García-Carmona, R. (2022). A novel virtual reality application for autonomous assessment of cervical range of motion: Development and reliability study. *PeerJ*, 10, e14031. <https://doi.org/10.7717/peerj.14031>

Sarig Bahat, H., Croft, K., Carter, C., Hoddinott, A., Sprecher, E., & Treleaven, J. (2018). Remote kinematic training for patients with chronic neck pain: A randomised controlled trial. *European Spine Journal: Official Publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society*, 27(6), 1309-1323. <https://doi.org/10.1007/s00586-017-5323-0>

Strategy and Planning Division. Ministry of Public Health. (2019). *Summary of illness reports 2019*. Retrieved 15 September 2023. Retrieved from https://spd.moph.go.th/wp-content/uploads/2023/04/ill_2562_full_20200921.pdf. [In Thai]

Tao, G., Garrett, B., Taverner, T., Cordingley, E., & Sun, C. (2021). Immersive virtual reality health games: A narrative review of game design. *Journal of NeuroEngineering and Rehabilitation*, 18, 31. <https://doi.org/10.1186/s12984-020-00801-3>

Terwee, C. et al. (2018). COSMIN methodology for evaluating the content validity of patient-reported outcome measures: A Delphi study. *Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation*, 27(5), 1159–1170. <https://doi.org/10.1007/s11136-018-1829-0>

Trinidad-Fernández, M., Bossavit, B., Salgado-Fernández, J., Abbate-Chica, S., Fernández-Leiva, A. J., & Cuesta-Vargas, A. I. (2023). Head-mounted display for clinical evaluation of neck movement validation with Meta Quest 2. *Sensors*, 23(6), 3077. <https://doi.org/10.3390/s23063077>

Xu, X., Chen, K. B., Lin, J.-H., & Radwin, R. G. (2015). The accuracy of the Oculus Rift virtual reality head-mounted display during cervical spine mobility measurement. *Journal of Biomechanics*, 48(4), 721–724. <https://doi.org/10.1016/j.jbiomech.2015.01.005>

Yan, C., Wang, H., Wu, T., Gong, X., Jin, Y., Liu, H., & Wang, B. (2021). The validity and reliability of immersive VR device in measuring craniocervical range of motion. *Research Square*. <https://doi.org/10.21203/rs.3.rs-958939/v1>

An In-House Time Tracking Application Development with a Low-To-No-Code Platform

Sorn Tanharaphan¹, Thanabadee Rodvanich¹, Yatawee Aupasao¹, Natsuda Kaothanthong^{1,*}

¹ School of Management Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12000, Thailand

* Corresponding author: Natsuda Kaothathong, natsuda@siit.tu.ac.th

Received:
20 November 2023
Revised:
22 January 2024
Accepted:
2 April 2024

Keywords:

AppSheet, Human Resources Management, Human Resources Management Software, Low-Code/No-Code Platforms, SMEs

Abstract: We demonstrate a procedure exhaustively to develop an in-house application without requiring database establishment and technician using a low-to-no-code (LCNC) platform that aligns with the organization's business case for tracking working time and leave request of employees. We developed the application using Google AppSheet and Google Sheets for data storage. The proposed application has three main functions to accurately collect a daily clock-in, clock-out, retrieve the total number of working hours in the current month, and deal with leave requests that align with the organization's regulations. Furthermore, there are three functions for an administrative employee manage the staff's information, generate a monthly work report, and perform leave request approval. The application has been tested at the Artificial Intelligence Association Thailand (AIAT), where time tracking and leave request were previously managed with paper-based. The usability test shows that the staff takes on average less than 1 minute to perform a daily clock-in and clock-out, less than 2 minutes to complete a leave request as well as cancel the submitted request. The learnability test shows that the users take less than 1 minute to complete the daily working timestamp and send leave requests.

1. Introduction

Human Resource Management (HRM) is an essential part of businesses, regardless of their size. HRM focuses on activities like recruiting, hiring, deploying and managing an organization's employees. To help simplify the HRM processes, companies can utilize the Human Resource Information System (HRIS) to assist in the storing and processing of employees' data without needing to spend too many resources. Available software in the market costs ranging from \$20-\$40 per user per month for a basic plan to \$80-\$100 per user per month for a pro plan (Empeo, 2024; Gusto, 2024). Plus, the adoption of new technologies comes with switching costs, which include not just the software but also associated expenditures like learning and training (Avlonitis & Panagopoulos, 2005). Due to these costs of information system acquisition, some organizations still apply a traditional method with paper-based, which is resource-intensive. In this work, we focus on time recording and leaves submission functions in HRM.

Many low-to-no code platforms have been introduced to facilitate non-technical users. Data analysis software such as Power BI, Tableau, and RapidMiner were introduced to allow an end-user to complete the task by drag and drop procedures without requiring any complicated coding. With user interfaces and understanding of data, the users are able to produce a dashboard for a descriptive analysis and perform a simple predictive

analysis. In addition, software for simple data management from data entry, data storage, and data retrieval was proposed. Application development software like Power Apps and Google AppSheet were proposed for building cross-platform applications. With a connection to the available database or spreadsheet, the users can create their own application that can be executed on mobile devices and web sites. One advantage of low-to-no code platforms is that the end users are able to create their own applications and the cost of software or applications acquisition is lower than a software development or installation.

This work demonstrates how a low-to-no code application is applied to implement simple function of HRM without establishing a company database. The developed application can facilitate employees recording working hours, and submission of absence requests, which is one of the functions in HRM. The proposed application is built using the Google AppSheet which is a no-code platform. The development of the application requires low technical knowledge in programming and can be integrated well with widely used tools such as spreadsheets. The completed application has been implemented and tested with a small business. The result shows that the learnability and the usability of the proposed is satisfactory.

2. Previous Work

Human Resource Management (HRM) is the strategic strategy which firms employ to manage their employees efficiently. HRM

includes the policies, processes, and systems that are set up to recruit, instruct, and manage company personnel. To perform HRM, a human resource information system (HRIS) performs an essential part in facilitating the effective integration of technology solutions (Thite, Kavanagh, & Johnson, 2012). The main purpose of HRIS is to ensure data integrity, provide up-to-date information, and keep track of the employees that the company can use to support daily operations such as monitoring personnel work time and leave requests. Applications of HRM have been incorporated through HRIS to assist HRM at different levels within an organization. While HRIS primarily focuses on the technological aspects of managing HR information, a human resource management system (HRMS) takes a step further by integrating these technologies into a more comprehensive framework. HRMS not only ensures data integrity and real-time information but also actively contributes to the strategic management of human resources.

Low-code and no-code (LCNC) data analysis platforms offer advanced analytical capabilities, seamless data integration, and interactive visualization tools. These platforms can help users make the data analysis processes more efficient since manual efforts are less required to complete each task, making it easy for data-driven businesses seeking for insights without relying only on IT expertise. For example, Power BI, as a LCNC platform, is available for users to perform data analysis without extensive knowledge in programming. However, the limitations of

the LCNC platforms include vendor lock-in concerns, complex use cases handling, and a lack of on-premises support (Sufi, 2023).

Low-to-no-code platform expedites the development of applications by reducing the amount of coding and resources associated with building an application from scratch. For businesses, this technology helps in terms of speed to market and little cost of creating software (Sattar, 2018). One of the low-code platforms is Microsoft Power Apps. Power Apps combines the positives of low-code development with the capacity of integration with Microsoft products such as Excel. Despite that, one of its setbacks comes in the form of subscription cost; since to use Power Apps, the user needs a Microsoft Dynamic subscription with the add-on of Power Apps billing. On the contrary, Google AppSheet offers similar services at a lower subscription fee. Platform called OutSystems is a user-friendly interface that can be developed using pre-built templates. The platform enables across devices accessibility which helps developers with streamline delivery of mobile and application (Martins et al., 2020). The developed applications using a low-code platform has advantages of minimal coding and short time to market. However, the vendor-lock effects lead to challenges of governance plan and design limitations. Though the low-code development platform possesses limitations, it is applicable for the secondary business activities (Ledl, 2022).

3. Material and Method

In this work, we adopt the business rules of one small association in Thailand to develop the application accordingly. We employ cloud software called AppSheet to develop a mobile application. There are 3 main functions that allow a small business owner to perform an employee management: 1) working hours record, 2) leave request, and 3) a monthly report. The application applies spreadsheets to read and record the data.

To implement the HRM management software with AppSheet, spreadsheet files for recording employees' profiles, working hour reports, leave availability and transactional

data are required. The entity relationship diagram of the organization is depicted in Figure 1.

3.1 Data

The HRM of organization relates to 6 entities that are 'Staff', 'Time_record', 'Leave_request', 'Leave_available', 'Working_hour_report', and 'Generate_work_hour' as shown in Figure 1. The record of each entity is stored in a spreadsheet file. The 'Staff' file stores the record of each employee that are an employee ID, name-surname, phone number, and start working date. The employee ID is used as a key.

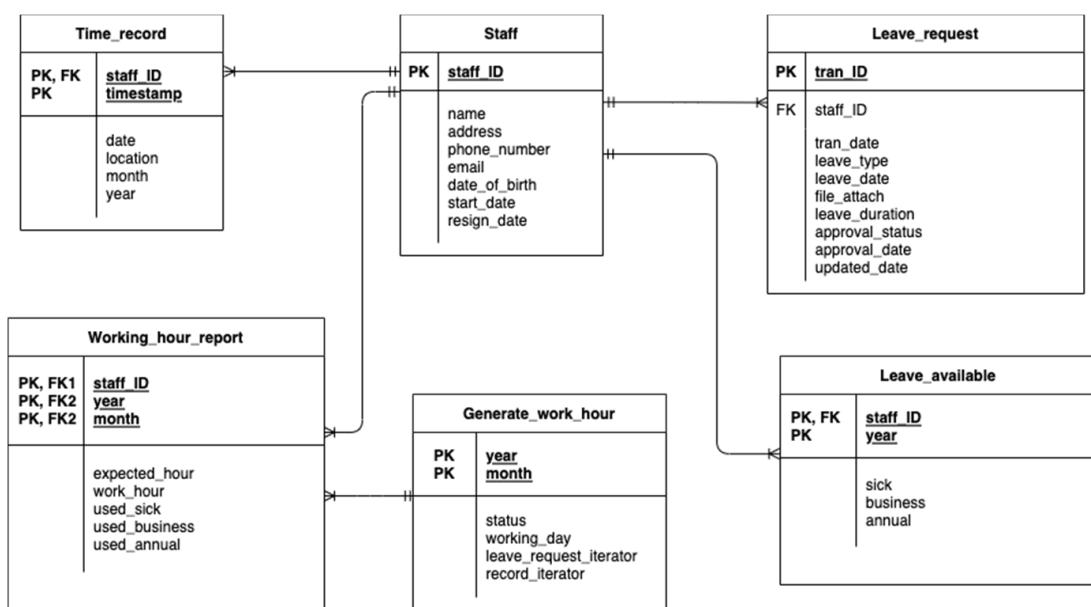


Figure 1. Entity relationship diagram

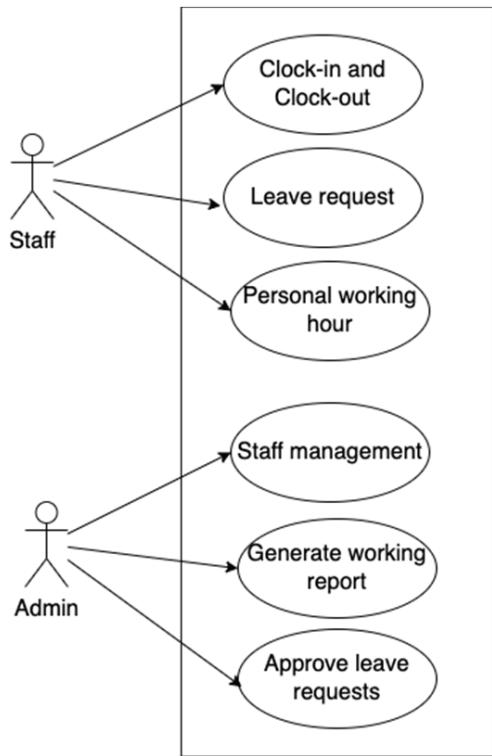
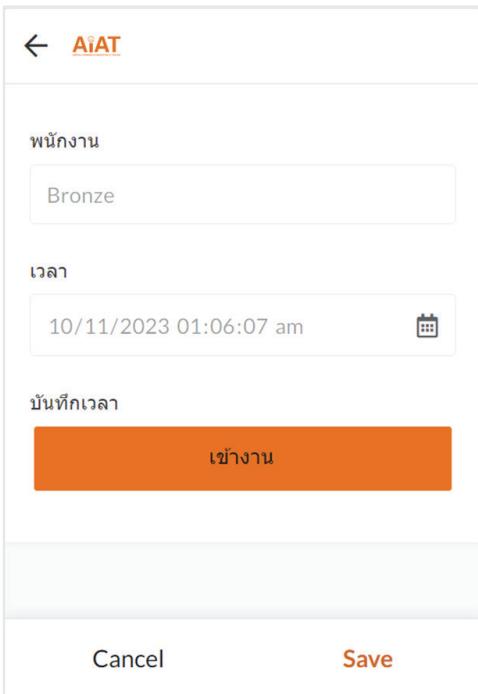


Figure 2. Application's use case diagram

For each working day; date, clock-in time, clock-out time, and location entered by each employee are recorded in the daily working hour file called 'Time_record'. This file is a transactional data that collects timestamp records when staff clock in and clock out. The organization's employees have 3 types of leave: 1) annual leave, 2) sick leave, and 3) business leave. The file 'Leave_request' collects transaction of requests submitted that record the data of transaction ID, employee ID, leave duration, leave type, and approved status. The number of leave days available for each employee can be retrieved from the file 'Leave_available'. The records in the spreadsheet files 'Time_record' and 'Leave_request'

are used to calculate the total working hours of each employee at the end of the month and stored in the file 'Working_hour_report'. The file 'Generate_working_report' is a master file for generating the working hour report since it stores the required number of working days of each month.


3.2 Application Development

3.2.1 Users

For data access control, the application manages data access by enabling users to both retrieve and update specific data according to their assigned roles. The application has 2 roles of users: staff and admin. Staff is a normal user as depicted in Figure 2. Admin is a super user, who can approve the leave request, generate a monthly report, and edit some data files that store the records. Staff is a user who can access the working time stamp, submitting leave requests, and retrieve his working hours.

3.2.2 Function

Our designed application has six functions in total as shown in Figure 2. Three functions are used by a normal user: 1) clock-in and clock-out, 2) leave request, and 3) personal working hours. The other three functions are used by a super user: 1) staff management, 2) generate working reports, and 3) approve leave requests. The detail of each function is described below.

UI for Clock-in function:

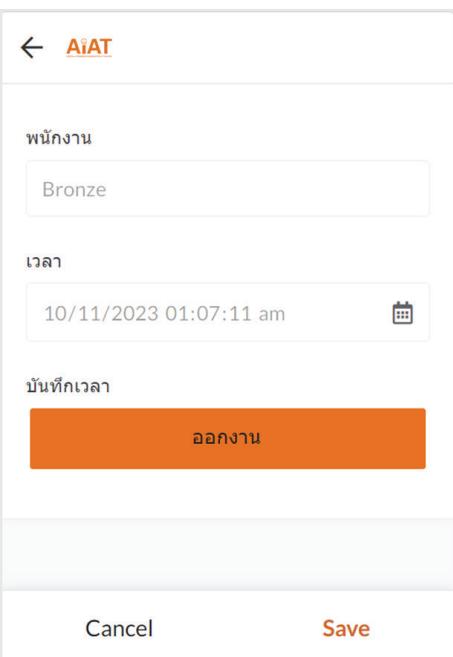
Staff Selection: ผู้พนักงาน (Bronze)

Date Selection: 10/11/2023 01:06:07 am

Action Buttons: เข้า้งาน (Orange)

Buttons at the bottom: Cancel, Save

(a) Clock-in function



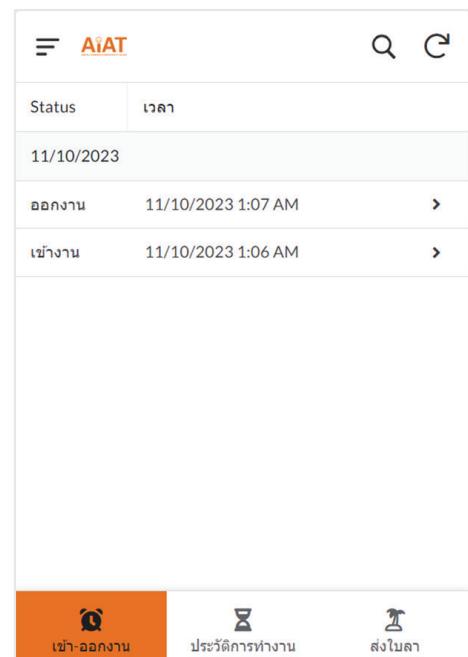
UI for Clock-in history:

Status	เวลา
11/10/2023	เข้า้งาน 11/10/2023 1:06 AM

Action Buttons: + (Orange), เข้า-ออกงาน, ประวัติการทำงาน, ส่งใบคลา

(b) Clock-in history

UI for Clock-out function:


Staff Selection: ผู้พนักงาน (Bronze)

Date Selection: 10/11/2023 01:07:11 am

Action Buttons: ออกงาน (Orange)

Buttons at the bottom: Cancel, Save

(c) Clock-out function

UI for Clock-out history:

Status	เวลา
11/10/2023	ออกงาน 11/10/2023 1:07 AM
	เข้า้งาน 11/10/2023 1:06 AM

Action Buttons: + (Orange), เข้า-ออกงาน, ประวัติการทำงาน, ส่งใบคลา

(d) Clock-out history

Figure 3. User interface of (a-b) clock-in function and (c-d) clock-out function of each staff

3.2.3 Clock-In and Clock-Out

The aim of this function is to ensure that the date and time entered at the time of the clock in, clock out, and location of each member of staff. The values of every employee are recorded in the same file named ‘Time_record’.

To ensure the integrity of working hours such as the time entered the system, a staff press a button labeled as ‘clock-in’ when arrived the company and ‘clock-out’ before leaving then the timestamp and location are automatically inserted into the record. The user interface of the function is shown in Figures 3(a) and 3(c). The values of current date, clock-in time, clock-out time are automatically retrieved from the system and saved into the file with the employee

ID. To ensure that the employee is in the office premises, the value of location is also recorded in the file ‘Time_record’ but it will not be seen by the staff. The clock-in and clock-out time of each day? can be checked by the staff on the application as depicted in Figures 3(b) and 3(d).

3.2.4 Leave Request

The leave request feature is available for users to submit leave requests to the system. Then the leave requests will be proceeded further by the admin. Figure 4 shows an interaction diagram for managing leave requests (Adamu, 2020). When the request was submitted by the staff, it can be canceled if it has not been approved by the admin. If the request has been approved, only an admin can cancel the approved request.

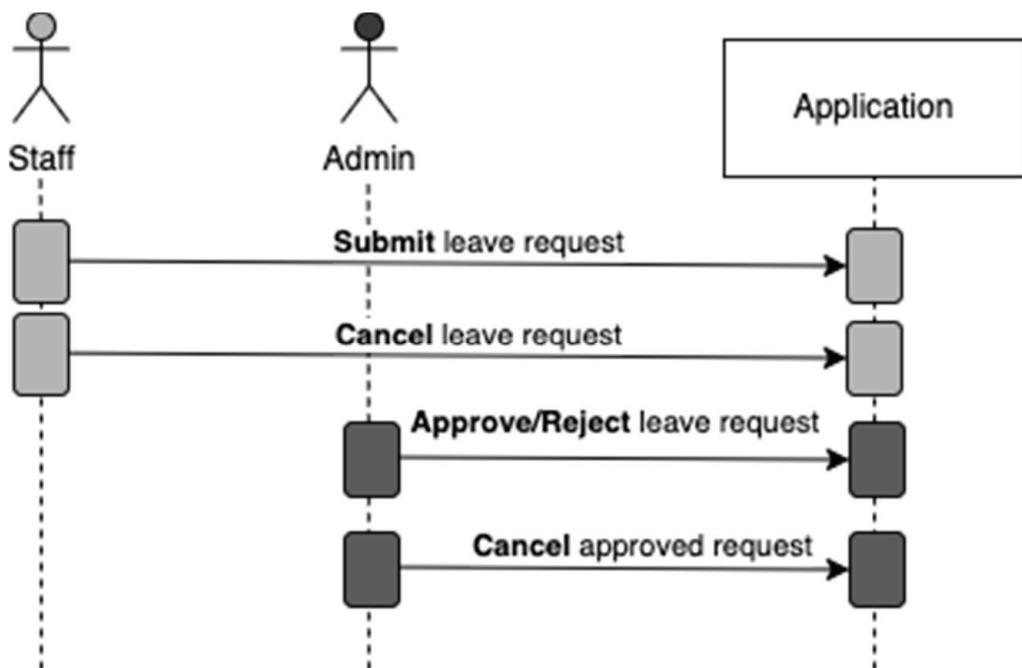


Figure 4. An interaction diagram for managing leave requests

To submit a leave request with the developed application (Fortich & Marcial, 2014), the users will begin with the “+” button and it will lead the users to the request form. This form requires users to provide specific details, including the type of leave (e.g., sick, annual, or business), the start date of the leave, and the leave duration. The users will be informed of their leave availability, ensuring it remains within the available leave balance. If the leave duration exceeds the leave balance, the warning message will be shown, and the user cannot submit the leave request until the error is fixed. The conditions for each leave type are as follows:

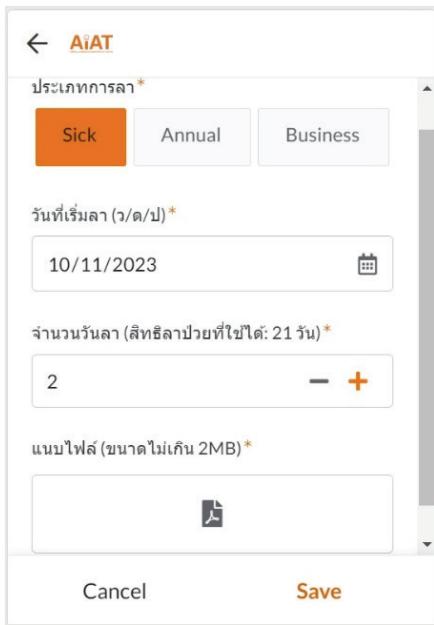
- For sick leave, the leave date should be either the current date, yesterday, or before yesterday. Requests must be submitted within two days after the sick leave date. If the sick leave is two days or longer, the users will be required to attach medical evidence as shown in Figure 5(a).

- For annual leave, the users must submit requests at least two days in advance without attaching any files as depicted in Figure 5(b).

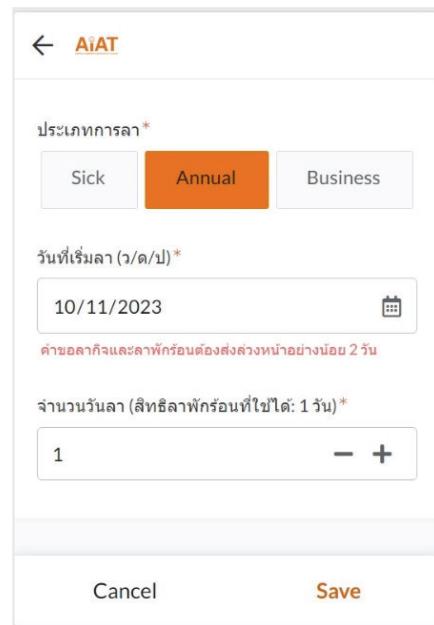
- For business leave, the users are required to submit requests at least two days in advance and must attach a business leave document before submission in any case as represented in Figure 5(c).

When a leave request is submitted, it will initially display a “Pending” status. According to the approval status, there are four types of results that will be shown on

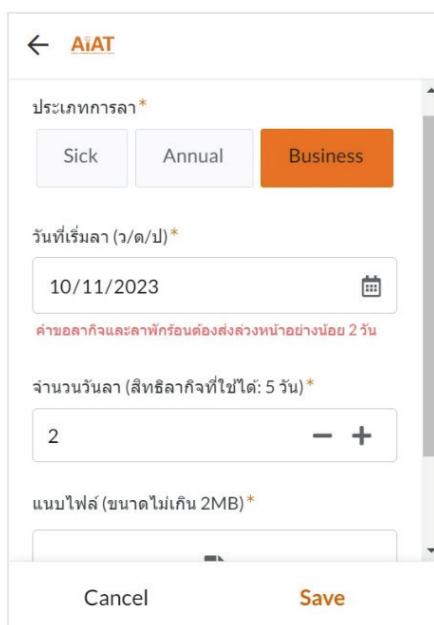
the “Send Leave Request” page including “Rejected”, “Canceled”, and “Approved” status. While a request is in the “Pending” status, users have the option to cancel it before the admin decides. If a user cancels their request, the status changes to “Canceled.”

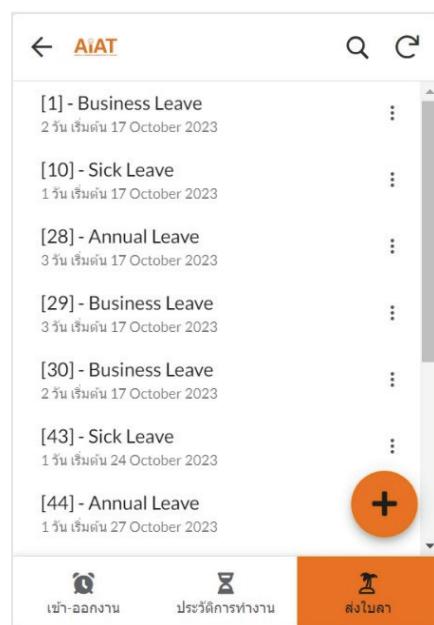

3.2.5 Personal Working Hours

This feature allows staff members to access their individual work record report in a particular month and year. After the admin generates the monthly work report at the end of each month, the new monthly report of each employee will show up on the personal work report page. In this page, the data is retrieved from the ‘Working_hour_report’ sheet, showing the expected and actual working hours of each month. Also, the users can review the number of leave days used in each month as shown in Figure 6.


3.2.6 Staff Management

These functions are restricted to the admin and revolve around supervising staff’s information. Staff records are stored in the ‘Staff’ file. Actions to manage information of staff include adding, viewing, and editing. Figure 6(a) shows the list of existing staff. On each row, there are shortcut buttons for editing, looking for staff’s address using Google Maps, e-mailing, making a phone call, and sending a text message.


To add a new staff, tap the plus icon. It will bring up the form in Figure 7(b). Information required to create a new staff record comprises of ID, name, address, phone


(a) Sick leave request

(b) Annual leave request

(c) Business leave request

(d) Leave request history page

Figure 5. User interface of submitting leave request of each type. (a) Sick leave, (b) Annual leave, (c) Business leave, and (d) request history

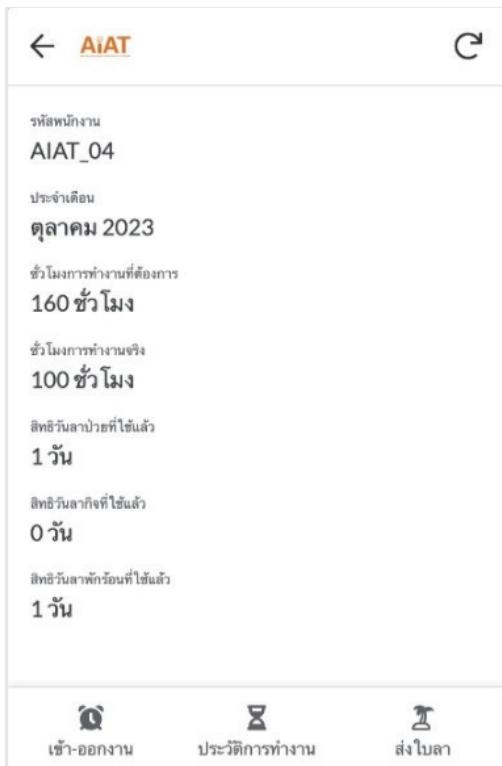
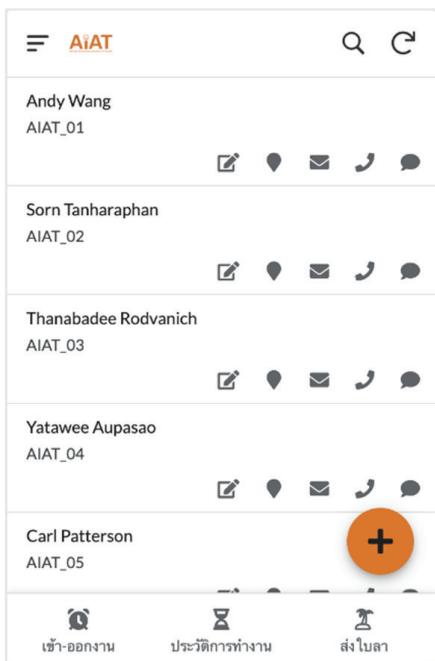


Figure 6. Personal work record

number, email, date of birth, and date of start work. The staff ID is automatically populated by incrementing the last staff's ID by one. For staff to be able to use this application, the inputted email must match the email the staff uses to log in. When a new staff is added to the 'Staff' file, an automated script will be called to generate a record in the 'Leave_available' data file telling how many days that staff has for sick, business, and annual leave. To view information about the staff, tapping the record of the staff in Figure 7(a) navigates you to the detail screen shown in Figure 7(c). For editing, the admin can either tap on the first shortcut icon on the staff record in Figure 7(a) or enter the


Figure 7(c) detail screen and tap the floating edit button. Both will bring up the edit screen depicted in Figure 7(d).

3.2.7 Generate Working Report

This function generates monthly working reports for all staff. The related data files are 'Generate_work_hour' and the 'Working_hour_report'. The purpose of 'Generate_work_hour' is to manage the creation of working reports of staff in specific months and years with the status of either Generated or To Generate. The 'Working_hour_report' is used to hold the generated reports.

This function executed JavaScript code in the Google Apps Script. To generate the staff's working report for the previous month, the admin clicks the add button on the bottom-right corner in Figure 8(a) which brings up the form shown in Figure 8(b). Inside the form, there are 3 input fields: month, year, and number of working days. Despite that, the admin is required to fill in only the number of working days. After the number-of-working-day field is entered, and the Save button is clicked, it triggers the JavaScript written in the Google Apps Script. However, if there is not report generated in last two months which has the status of 'To Generate' in the record, the application does not allow the admin to proceed.

The Apps Script's function iterates over 'Leave_request', 'Staff', and 'Time_record'. The 'Staff' is used as the dimension table with staff ID as the primary key. Firstly, the function

(a) Staff management page

The screenshot shows a form for adding a new staff member. It includes fields for 'รหัสพนักงาน*' (AIAT_12), 'ชื่อ-สกุล*' (ชื่อ-สกุล), 'ที่อยู่' (ที่อยู่), and 'เบอร์โทรศัพท์' (เบอร์โทรศัพท์). At the bottom are 'Cancel' and 'Save' buttons.

(b) Add new staff page

The screenshot shows a detailed view of a staff member: Andy Wang (AIAT_01). It includes fields for 'ชื่อ-สกุล' (Andy Wang), 'ที่อยู่' (131 Moo5 Tiawanont Rd. Muang Pathumthani), 'เบอร์โทรศัพท์' (0918172481), 'Email' (andy@gmail.com), 'วันเกิด (ต/ว/ป)' (2/11/2000), and 'วันที่รับที่ทำงาน (ต/ว/ป)' (8/1/2021). An orange circular edit icon is in the bottom right corner.

(c) Staff detail page

The screenshot shows a form for editing a staff member. It includes fields for 'รหัสพนักงาน*' (AIAT_01), 'ชื่อ-สกุล*' (Andy Wang), 'ที่อยู่' (131 Moo5 Tiawanont Rd. Muang Pathum), and 'เบอร์โทรศัพท์' (เบอร์โทรศัพท์). At the bottom are 'Cancel' and 'Save' buttons.

(d) Staff edit page

Figure 7. Example of user interface of functions that can be accessed by admin of the organization. (a) Viewing every staff detail, (b) Adding a new staff, (c) Detail of each staff, and (d) Editing information of each staff

goes over ‘Leave_request’ to sum up the approved leave date based on leave types by all staff. If there is a record of the month the admin is generating the report having the status of Pending, the process ends and notifies the admin through email to approve or reject that request. Otherwise, the process continues to iterate over the ‘Time_record’ to calculate the working time of staff. After finishing the process, the function now has the number of leave days of each leave type and the working time of all staff. It then inserts these records into ‘Working_hour_report’. After new records generated from the Apps Script function were appended, the admin can view all staff’s working hour reports shown in Figure 8(c).

3.2.8 Approve Leave Requests

This enables admins with the ability to accept, reject, and cancel leave requests

made by normal users. The function will be available only for super users’ applications.

As depicted in Figure 9(a), it will display the following features: Pending, Approved, Rejected, and Canceled. Admin clicks the ‘Pending’ option to view leave requests made by normal users following to Figure 9(b). Next, choose the user’s request to modify the requested status by clicking on it. It will lead admin to the page as seen in Figure 9(c). By selecting the “edit” button in the bottom right, the admin can modify the desired status and also update the desired status. The status will indicate ‘Pending’ as a default value. Only super user may modify a status to ‘Approved’ or ‘Rejected.’ The status cannot be changed from “Pending” to “Canceled”. The program will show a mistake as anything that appears in Figure 9(e). The status will change when the admin clicks the

The figure displays three screenshots of a user interface for generating monthly working reports:

- (a) Generate working report page:** Shows a list of months (กุมภาพันธ์ 2023, มีนาคม 2023, เมษายน 2023) and a large orange '+' button.
- (b) Generate new working report page:** A form for generating a new report. It includes fields for 'เดือน*' (Month*) with value '10', 'ปี*' (Year*) with value '2023', and 'จำนวนวันทำงาน*' (Number of working days*) with value '20'. It also includes 'Cancel' and 'Save' buttons.
- (c) Working hour report page:** A list of staff members (AIAT_01 to AIAT_07) with their names and the date 'กุมภาพันธ์ 2023'. Each staff entry has a three-dot menu icon on the right.

Figure 8. User interface of monthly working report generation

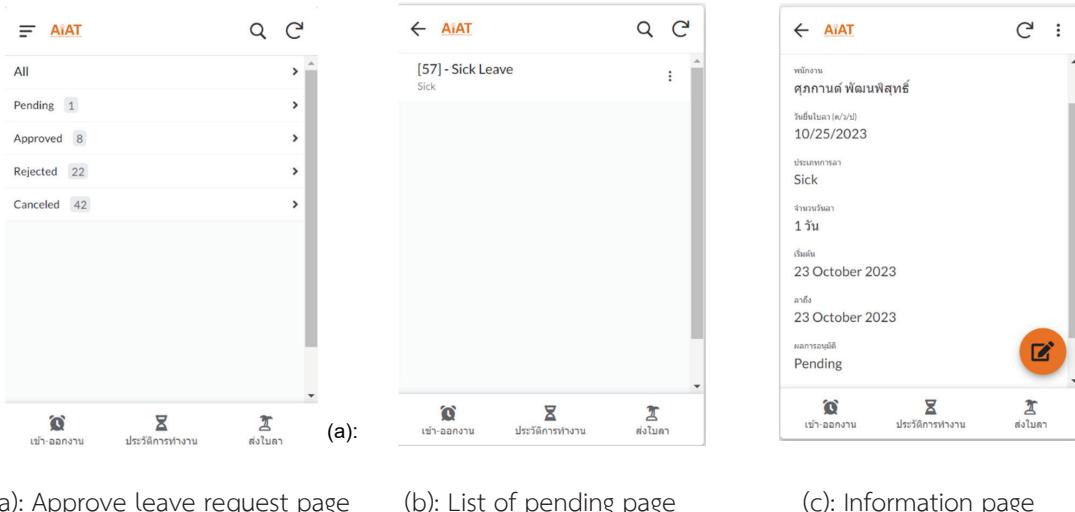


Figure 9: User interface of approve leave request method

‘save’ button. The date of the leave will be deducted from ‘Leave_Available’ sheet. For the ‘canceled’ status, it can be available only when normal user wants to cancel the leave request with ‘approve’ status only. To cancel a request, the administrator will select the ‘Approve’ option in Figure 9(a), click on the request, select “Edit”, change the status to ‘Canceled’, and then click “Save”. The leave date will be restored to the ‘Leave_Available’ sheet and the status will change to the ‘Canceled’.

4. Results and Discussion

4.1 Results

The result of the application is assessed by its usability. After the development phase, the application went through testing by the business staff members. We evaluate

three firm customers in varying age ranges (21–30, 31–40, and 41–50), in sequence, based on Table 1. Before the actual testing, staff members had around 15 minutes to experience and navigate functions inside the application. The main test cases are clocking in and out; sending and canceling leave requests; and viewing the details of work reports. The clock-in-clock-out function was fulfilled by all test pilots easily. The staff were also asked to carry out the task of sending three types of leave requests. These actions were done in under 2 minutes. The last test case is to view the individual working report where testers navigate effortlessly. However, the AppSheet limitation of no background refresh put a hindrance for test persons in using the application by leaving the status unchanged after the action was completed.

Table 1. Usability test and learnability test with 3 users in the company

Case No.	Task	Test Result	User 1 (Sec)	User 2 (Sec)	User 3 (Sec)	Average (sec)
Usability Test						
1	Click Clock-in	PASS	5	6.2	5.2	5.8
2	Look at the clock-in history from Case No. 1	PASS	4.6	15	8.9	9.5
3	Click to see working report	PASS	2.8	6.7	5.5	5
4	Users ask for sick leave for 2 days, counting as the testing day is first day of leave, and attached file which is not more than 2mb	PASS	51.6	136.	82.2	90
5	Users ask for annual leave for 2 days in the next week	PASS	31.7	80	68.3	60
6	Users ask for business leave for 3 days in 2 days advance with attached file (file size must less than 2mb)	PASS	21	44.3	24.7	30
7	Users cancel their own leave requests which are still on pending status.	PASS	42	75.2	56.8	58
Learnability Test						
8	Click Clock-out	PASS	3.2	5.4	4.1	4.2
9	Look at the clock-out history from Case No. 8	PASS	1.3	3	1.7	2
10	Users ask for sick leave 2 days, 2 days before the testing day	PASS	3.3	11.7	9	8

4.2 Discussion

The results of this paper indicate that, for small businesses: (1) the development of an HRM application for in-house use using the LCNC platform is simple and does not demand high technical skills; (2) the application built with this technology is cost-effective in both development and maintenance; and (3) the finished application imposes a very low learning curve for new users. The application is able

to perform essential functions of clocking, calculating working hours, staff management, and submitting leave requests. With Google Sheet as the database, it simplifies the process for small businesses in terms of database maintenance. Although this study presents the feasibility of utilizing the LCNC platform for the implementation of HRM applications, there are some limitations to the platform. Some of them are the trade-off between

streamlining the development process and the level of customizability; and concerns about the scalability of using Google Sheet as the database.

For future research, it could explore the use of alternative LCNC platforms that offer similar benefits plus additional customizability and scalability. The results section presents the raw data, the experimental data, and the results after applying the techniques outlined in the methods section.

5. Conclusion

In summary, the HRIS implementation through Google AppSheet offers a cost-effective and efficient solution for small businesses. According to usability and learnability testing, its results confirm the user-friendliness and effectiveness of this application, proven by users performing the key tasks with ease, including clocking in and out, managing leave requests, and accessing working reports. The feedback from real users also emphasizes the application's efficiency in streamlining HR management. The integration of AppSheet with spreadsheets, along with its automated features, ensures data accuracy and reduces manual tasks. Despite its minor limitations, AppSheet, as a no-code platform, demonstrates its potential to enhance HR management and productivity. This work highlights the importance of low-code and no-code platforms in facilitating HR management to be accessible and practical for businesses of all sizes.

Acknowledgments

We would like to thank the Artificial Intelligence Association of Thailand (AIAT) for their supports and cooperations. This project is funded by School of Management Technology, Sirindhorn International Institute of Technology, Thammasat University.

Reference

Adamu, A. (2020). Employee Leave Management System. *Fudma Journal of Sciences*, 4(2), 86 - 91. <https://doi.org/10.33003/fjs-2020-0402-162>

Avlonitis, G. J. & Panagopoulos, N. (2005). Antecedents and consequences of CRM technology acceptance in the sales force. *Industrial Marketing Management*, 34(4), 355–368.

Fortich, M. S., & Marcial, D. E. (2014). Human resource e-leave management: A decision support system. *Informatika: Jurnal Teknologi Komputer dan Informatika*, 10(2). <https://doi.org/10.21460/inf.2014.102.329>

Empeo (2024). *Pricing*. Retrieved 10 October 2023, Retrieved from <https://www.empeo.com/en/pricing/>

Gusto. (2024). Simple, transparent pricing. Retrieved 10 October 2023, Retrieved from <https://gusto.com/product/pricing>

Ledl, P. (2022). *Analyzing the potential of low-code platforms in digital transformation and implementing a project management application* [Master's thesis]. Technische Hochschule Ingolstadt. <https://opus4.kobv.de/opus4-haw/frontdoor/index/index/docId/3495>

Martins, R., Caldeira, F., Sá, F., Abbasi, M., & Martins, P. (2020). An overview on how to develop a low-code application using OutSystems. In *Proceedings of the 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE)* (pp. 395–401). IEEE. <https://doi.org/10.1109/ICSTCEE49637.2020.9277404>

Sattar, N. A. (2018). *Selection of low-code platforms based on organization and application type* [Master's thesis]. LUTPub. <https://urn.fi/URN:NBN:fi-fe2018080233306>

Sufi, F. (2023). Algorithms in Low-Code-No-Code for Research Applications: A Practical Review. *Algorithms*, 16(2), 108. <https://doi.org/10.3390/a16020108>

Thite, M., Kavanagh, M. J., & Johnson, R. D. (2012). Evolution of human resource management & human resource information systems: The role of information technology. In M. J. Kavanagh, M. Thite, & R. D. Johnson (Eds.), *Human resource information systems: Basics, applications, and future directions* (pp. 2–34). Thousand Oaks, CA: Sage Publications.

Leveraging PyThaiNLP for Sentiment Analysis of Thai Online Text: A Comparative Study of Logistic Regression and Support Vector Machine

Sunisa Duangtham¹, Setthaphong Lertrirtrungrot¹,
Nattavadee Hongboonmee¹, Wansuree Massagram^{1,*}

¹ Department of Computer Science and Information Technology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
* Corresponding author: Wansuree Massagram, wansureem@nu.ac.th

Received:

3 May 2024

Revised:

28 June 2024

Accepted:

19 September 2024

Keywords:

PyThaiNLP, Sentiment Analysis,
Thai Online Text.

Abstract: The objective of this study is to compare the performance of sentiment analysis models for Thai online text using the existing PyThaiNLP libraries. For extracting text from online sources to create a dataset, the text was manually categorized into positive, neutral, and negative sentiments. Data preprocessing involved removing punctuation marks, tokenizing, removing non-Thai characters, and bag of words creation. The data was then divided into training and testing sets to build models using three algorithms: logistic regression, logistic regression with stochastic gradient descent (SGD), and support vector machine (SVM). Upon comparison, the logistic regression model was found to perform the best – achieving accuracy of 80.73% with a 90:10 train-test split using the newmm word tokenization tool and the augmented dictionary. The accuracy for analyzing positive sentiment was 81.10%, for neutral sentiment, 80.16%, and for negative sentiment, 80.97%.

1. Introduction

The popularity of social media and online platforms in Thailand has fueled a vast amount of user-generated data expressed in Thai. Analyzing the sentiment within this data offers valuable insights into public opinion, brand perception, and social trends. However, sentiment analysis for online Thai

text presents unique challenges due to the dissimilarity from the formal written Thai. Thai language used in online media mostly does not adhere to the correct principles of the Royal Institute Dictionary. Instead, it often consists of intentional misspellings, newly coined words, and phonetic alterations to convey emotions (Noro-a *et al.*, 2018). Previous sentiment analysis models may not fully support the analysis of sentiment from Thai text in online media.

Furthermore, Thai relies on diacritics for tone differentiation, which can be easily omitted in an informal online setting. Additionally, Thai sentiment often incorporates cultural nuances and sarcasm, making automated analysis even more intricate.

The unique challenges in sentiment analysis for online Thai text stem from its informal nature, including intentional misspellings and phonetic alterations, complicating accurate interpretation. Omission of diacritics, crucial for tone differentiation, and the integration of cultural nuances and sarcasm further hinder automated systems from effectively analyzing sentiment.

This research aims to leverage the existing PyThaiNLP library of Python, which already includes functions for text preparation, such as word tokenization, Thai character checking, a Thai dictionary, and stopword removal. The study will explore the effectiveness of the following sentiment analysis techniques: logistic regression, stochastic gradient descent, and support vector machine on online Thai

text, in order to create a modern sentiment analysis model for Thai language used on the internet, addressing the challenges of informal text, omitted diacritics, cultural nuances and sarcasm.

2. Related Work

This section provides an overview of the background for this study which includes challenges of online sentiment analysis, PyThaiNLP, literature review and the three chosen sentiment analysis models.

2.1 Online Sentiment Analysis

Online sentiment analysis is challenging for several reasons. Online text often utilizes informal language, slang, abbreviations, and emoticons that can be difficult for traditional sentiment analysis models to interpret accurately. These elements don't always adhere to formal grammar rules, making it harder for machines to understand the true sentiment.

Sarcasm and irony in online communication can also be hard for sentiment analysis tools to detect. Sarcastic statements might use positive words to express negative sentiment, confusing the model. Similarly, online communication can be ambiguous. Some words or phrases can have multiple meanings depending on the context. For example, "that's cool" could be positive or negative depending on the situation, posing a challenge for sentiment analysis models.

Understanding the sentiment of online text often requires considering the broader context of the conversation or post. Sentiment can be influenced by humor, cultural references, or the relationship between the participants. Moreover, online discussions within specific communities (e.g., gamers, K-Pop, financial forums, etc.) might have their own jargon and slang, requiring domain-specific knowledge for accurate sentiment analysis. Pang, Lee, & Vaithyanathan (2002) explored the difficulties of sentiment analysis for online movie reviews, highlighting the impact of informal language, subjectivity, and domain-specific vocabulary – laying the groundwork for further research on sentiment analysis techniques that can handle the complexities of online communication.

Online Thai writing style vastly differs from formal Thai writing style. Noro-a *et al* (2018) discussed that formal Thai writing uses more complex vocabulary and adheres to stricter grammatical rules. Online Thai often incorporates slang, abbreviations, and emoticons for a more casual tone. It also uses shorter sentences, fragments, and informal sentence structures for quicker communication. Formal

Thai writing employs a system of honorifics to show respect to the recipient. This involves using specific pronouns and sentence starters depending on the social hierarchy between the writer and reader. Online Thai tends to be less strict with honorifics, especially in casual conversations with less frequent courtesy markers. The majority of negative comments online tends to be very impolite. Table 1 summarizes the key differences between formal and online Thai writing styles.

2.2 PyThaiNLP

PyThaiNLP (2024) is an open-source Python library specifically designed for processing and analyzing Thai text. Its tool set consists of word tokenization, part-of-speech tagging, named entity recognition, text normalization, stemming and lemmatization, machine translation, and sentiment analysis. While PyThaiNLP offers sentiment analysis functionalities, online Thai text presents its own challenges mentioned previously. This study uses PyThaiNLP word tokenization during the data preparation process to break down text into individual words or meaningful units.

Table 1. Summary of key differences in formal vs online Thai

Feature	Formal Thai Writing	Online Thai Writing
Vocabulary	Complex, formal, correctly spelled.	Slang, abbreviations, emoticons, newly coined, intentionally misspelled
Sentence Structure	Complete, proper grammar	Shorter, informal structures
Honorifics	Used extensively	Less strict, more casual
Courtesy Language	Frequent politeness markers	Less frequent, less polite, more direct

2.3 Literature Review

Bowornlertsutee & Paireekreng (2022) proposed a study titled “ The Model of Sentiment Analysis for Classifying the Online Shopping Reviews” utilizing techniques such as word tokenization, bag of words, and Stop-word Removal with the PyThaiNLP library in Python. They employed machine learning techniques including LSTM, SGD, logistic regression, and SVM for text analysis. The variables considered were positive sentiment, neutral sentiment, and negative sentiment. The accuracy of the analysis results was as follows: LSTM 81.27%, logistic regression 69%, SGD 66%, and SVM 65%. However, the model had limitations in analyzing ambiguous words.

Lisirikul & Numpradit (2018) proposed a study titled “ Opinion Analysis System to Business by Text Mining On Twitter” utilizing techniques such as word tokenization and stop-word removal with the THSplitlib library in PHP. They employed naïve Bayes and SVM techniques for text analysis using the RapidMiner program. The variables considered were positive sentiment and negative sentiment. The accuracy of the analysis results was as follows: naïve Bayes 56.66% and SVM 76.47%. However, the model had limitations in analyzing neutral sentiment.

Chaisanguan & Romsaiyud (2018) proposed a study titled “ Development of a Real-time Sentiment Analysis System of Students on Facebook Using Naive Bayes Classifier in Thai Language” They utilized

the longest matching and maximal matching techniques for data preparation, and naïve Bayes classification for sentiment analysis with the RapidMiner program. Variables included positive sentiment, neutral sentiment, and negative sentiment. Data were collected using the Facebook Graph API. The analysis yielded the following accuracy metrics: Accuracy 97.60%, Precision 96.61%, Recall 96.50%, and F-measure 96.55%. However, the system had limitations: 1. It couldn't analyze conflicting sentences, and 2. It couldn't analyze incorrect text, leading to potential misinterpretations.

Aliman *et al* (2022) proposed a study titled “Sentiment Analysis using Logistic Regression,” analyzing potential mental health crisis tweets using data preprocessing techniques based on Singh & Kumari (2016), including removing URLs, slang words, misspelled words, and “@” mentions. They employed support vector classifier, SGD, naïve bayes, and logistic regression models for text analysis, The variables considered were positive sentiment and negative sentiment. The accuracy of the analysis results was as follows: logistic regression 81%, naïve Bayes 77%, SGD 71%, and support vector classifier 69%. However, a limitation of this model is that it was developed for English, Filipino, and Taglish, not for Thai language.

2.4 Sentiment Analysis Model

Sentiment analysis models are algorithms that automatically identify the emotional tone (positive, negative, or neutral) within a piece of text. Learning from labeled

data, the models can be more adaptable to different types of text and can improve over time with more data. Common machine learning models used for sentiment analysis (Wankhade, Rao, & Kulkarni, 2022; Scikit-learn, 2024) are logistic regression, support vector machine (SVM), naïve Bayes, and neural networks. The latter two models can be effective for sentiment analysis; however, they require significant amount of data. Logistic regression estimates the probability of a text belonging to a specific sentiment class and can be effective for smaller datasets. SVM excels at finding clear boundaries between different sentiment classes, even for non-linear data – making it suitable for complex online text analysis.

1) Logistic Regression

Logistic regression is a statistical method commonly used in machine learning for classification tasks, especially when dealing with binary outcomes and interpretability is a concern. The core of logistic regression lies in finding the optimal coefficients for the linear equation that best separates the classes. This is achieved through an iterative process called gradient descent, where the model continuously adjusts the coefficients to minimize the error between predicted probabilities and actual class labels even in the small training data set – making it suitable to estimate the probability of an online text belonging to a specific sentiment class (positive, negative, neutral).

One approach to enhance logistic regression models is to use an optimization algorithm such as stochastic gradient descent (SGD) to train various models. SGD iteratively adjusts the model's internal parameters to minimize the error between predicted sentiment and actual labels in the training data. However, it can be slow to converge and often requires careful tuning of learning rate parameter to avoid overfitting.

2) SVM

SVM is another statistical method commonly used for classification tasks in machine learning. Unlike logistic regression, which excels with linearly separable data, SVMs can effectively handle both linearly separable and non-linearly separable data. An SVM aims to find a clear hyperplane that separates these positive, negative, and neutral classes with the maximum margin. A larger margin indicates a clearer separation between the classes – making it easier to classify new data points accurately and is better for generalization on unseen data.

Moreover, when dealing with non-linearly separable data, SVMs employ a kernel trick that involves transforming the data into a higher-dimensional space where it becomes linearly separable. The SVM then operates in this higher dimension to create the optimal separation hyperplane. Common kernels used include linear, polynomial, and radial basis function (RBF).

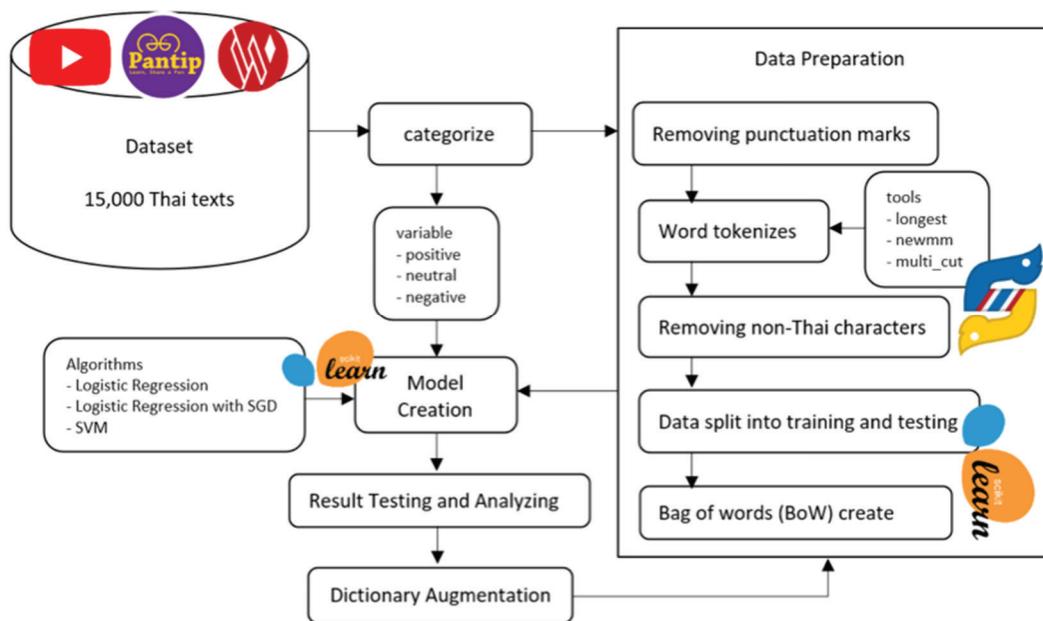


Figure 1. Illustration of system overview diagram

In sentiment analysis of online Thai text, both logistic regression and SVM models have their merits. If the dataset is small with potentially linear relationships, logistic regression might be effective enough. However, for complex, non-linear language nuances often present in online text, SVMs could be a more robust choice, especially with larger datasets. Hence, this study experiments with both models and compares their performance on our data to determine the best approach for this sentiment analysis task for online Thai text.

3. Materials and Methods

This section details the approach employed to analyze sentiment within the chosen dataset. The steps taken to prepare the text for analysis are described. Following

this, the specific sentiment analysis techniques utilized are explained, along with the evaluation metrics chosen to assess the model's performance, as summarized in the system overview diagram in Figure 1 and elaborated further in sections 3.1 to 3.5.

3.1 Dataset

The data collection process involved amassing a corpus of 15,000 Thai-language texts. These texts were sourced from comments on YouTube, Pantip, and a subset from the Wiseshot Sentiment dataset (Suriyawongkul *et al.*, 2019). The collected texts were free topics to ensure that the sentiment analysis model created could comprehensively predict online texts. The collection period spanned from March 2023 to September 2023. These texts were manually edited to correct the wrong typing, except for those intentionally

wrong typing to convey emotions. They were manually categorized into three sentiment categories: positive, neutral, and negative, with each category comprising 5,000 records. The text that expresses admiration, care, interests, and likes were classified as positive. Questions, commands, and ordinary narratives were classified as neutral. Texts containing insults or provocations were classified as negative. These texts were then recorded into a .csv file in their corresponding category. Examples of each text category can be seen in Figure 2. for positive, neutral, and negative respectively.

3.2 Data Preparation

1) Removing punctuation marks such as ?, . ; : ! “ ” “ ” > < / - . These punctuation marks were omitted in this study to simplify the model; however, they will be taken into consideration in our future works.

2) Tokenization using the word tokenize function from the PyThaiNLP library (Kanoktipsatharporn, 2020). The words were tokenized according to the existing PyThaiNLP dictionary with three word-tokenization tools, which are already available in PyThaiNLP and are low computational resource: longest matching, newmm (maximal matching with Thai Character Cluster), and multi_cut (maximal matching). The accuracies of each tokenization method were then compared.

3) Parsing only Thai characters by removing non-Thai characters was achieved using the Thai character checking function from PyThaiNLP library. This step also involved

removing emojis since they are not considered Thai characters.

The example results from the first three steps of data preparation are compared with their original text in Table 2.

4) Data splitting by dividing the dataset into training and testing sets using three different ratios: 80% training and 20% testing, 85% training and 15% testing, and 90% training and 10% testing, to compare their accuracy.

5) Bag of words (BoW) creation by constructing a vocabulary from the words in the training data. The BoW was achieved by converting the words into numerical

ของตีมากครับร้านเจ้า	pos
ของแหนมอวี้อย่างนี้คือตรงที่ช่วยให้อาหารนุ่มเดือดหรือแม่ละ ผสมคิดมาจะ 3 ปี และแบบนี้ใช้อ้วน	pos
ขอโปรด อวยอุทกอู่่างงๆ. หิวที่ไรรึนักลิ่งทุกที่เลย	pos
ขอชื่นชม คร. ลิ่งค่า	pos
ขอชื่นชมเพนักงานส่งพัสดุที่เชี่ยวและพนักงานรับยอดเดือนได้มากค่ะ ส่งที่อยุธยา เก่งมากที่ทำบ้านเราเจ	pos

(a)

ชุดความพิรุปสมานจากอกไม้ได้ถูกบันทัต์ลงมาสำหรับชื่อสีที่ตีดิน ผื้นอีก	neu
ชุดคัลส์สูร. ราคาน่าให้รัก	neu
ชุดตอกผ้าผั้งเมืองใหม่	neu
ชุดเท่ไว้ใจแบบนี้	neu
ชุดกัน 3 คนจะอิ่มป้า	neu

(b)

กรรมการเลือกตั้งไม่ใช่กรรมการวิจารณ์ที่จะมาโงกันคับ	neg
กรรมฯสั่งข้าราชการปิดโอกาสประชาชนและประชาชน	neg
กรรมได้โครงกรรมมันย้อมตามสนอง	neg
กรรมดอนแท้	neg
กรรมย้อนหลังของมีผ้ามาจากศิลธรรมมาน้าดอนของตอนนี้	neg

(c)

Figure 2. Example of (a) positive, (b) neutral, and (c) negative text

representations. Then, using this vocabulary as features to count the occurrences of each word in the text, resulting in a sparse matrix representation.

3.3 Model Creation

To conduct a comparative analysis, three sentiment analysis models for Thai text were constructed utilizing the existing PyThaiNLP libraries for the algorithms mentioned in section 2.4: logistic regression, logistic regression with SGD, and SVM. The selection of these three algorithms is based on their low computational resource requirements for training, their ability to handle high-dimensional datasets, and the ease of using their functions from scikit-learn. Their parameter settings with the following details.

Table 2. Example results from first three steps of data preparation

Data preparation step	Example 1	Example 2	Example 3
Original text	ชื่อของจากออนไลน์ร้านค้า น่ารักส์ๆ ไม่แพง:D	พวกรุณเป็นความหวัง ของพวกรานะคะ <3	ไป่กเลตีนเลยย 😞
1) Removing punctuation	ชื่อของจากออนไลน์ร้านค้า น่ารักส์ๆไม่แพงD	พวกรุณเป็นความหวัง ของพวกรานะคะ 3	ไป่กเลตีนเลยย 😞
	[ชื่อ, 'ของ', 'จาก', 'ออนไลน์', 'ร้านค้า', 'น่า', 'รัก', 'ส์', 'ไม่', 'แพง', 'D']	[พวกรุณ, 'เป็น', 'ความ', 'หวัง', 'ของ', 'พวกรา', 'นะคะ', ' ', '3']	[ไป, 'กเล', 'ตีน', 'เลย', 'ย', ' ', ' ']
2) Tokenization	[ชื่อ, 'ของ', 'จาก', 'ออนไลน์', 'ร้านค้า', 'น่า', 'รักส์', 'ไม่', 'แพง', 'D']	[พวกรุณ, 'เป็น', 'ความ', 'หวัง', 'ของ', 'พวกรา', 'นะคะ', ' ', '3']	[ไป, 'กเล', 'ตีน', 'เลย', 'ย', ' ', ' ']
	[ชื่อ, 'ของ', 'จาก', 'ออนไลน์', 'ร้านค่า', 'น่า', 'รัก', 'ส์', 'ไม่', 'แพง', 'D']	[พวกรุณ, 'เป็น', 'ความ', 'หวัง', 'ของ', 'พวกรา', 'นะคะ', ' ', '3']	[ไป, 'กเล', 'ตีน', 'เลย', 'ย', ' ', ' ']
3) Parsing only Thai characters	ชื่อ ของ จาก ออนไลน์ ร้านค้า น่า รักส์ ไม่ แพง เลย	พวกรุณ เป็น ความหวัง ของ พวกรา นะคะ	ไป กเล ตีน เลย

= 0.15, fit_intercept = True, max_iter = 10,000, tol = 0.001, shuffle = True, verbose = 0, epsilon = 0.1, n_jobs = None, random_state = None, learning_rate = ‘optimal’, eta0 = 0.0, power_t = 0.5, early_stopping = False, validation_fraction = 0.1, n_iter_no_change = 5, class_weight = None, warm_start = False, average = False. These parameters are all default values from scikit-learn, except for max_iter, which was set to 10,000 to increase the iterations and ensure the solutions converge with the scale of the dataset.

3) SVM

The models were created with C = 1.0, kernel = ‘rbf’, degree=3, gamma=‘scale’, coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape=‘ovr’, break_ties=False, random_

state=None. These parameters are all default values from scikit-learn.

3.4 Dictionary Augmentation for Word Tokenization

After the models were built, it was observed that words prefixed with “ไม่” (meaning “not”), e.g. “ไม่ชอบ» (not like), “ไม่หล่อ» (not handsome), “ไม่แพง» (not expensive), and “ไม่รัก» (not love) were incorrectly segmented. Additionally, some words, such as abbreviations, slang, proper nouns, and commonly misspelled words, e.g. “อิดอก» (bitch), “ทปอ» (CUPT), “กกต» (ECT), “ลาชาดีๆ» (Lazada), and “แปลงสีฟัน» (toothbrush) were also incorrectly segmented. Forty of these words, comprising 14 words prefixed with “not”, 2 abbreviations, 2 slangs, 5 loanwords, 11 proper nouns, and 6 commonly misspelled words, were augmented into the

Table 3. Accuracy and precision results before dictionary augmentation

Precision (%)	Trian (%)	Logistic Regression			Logistic Regression with SGD			Support Vector Machine (SVM)		
		Accu- racy (%)	Precision (%)		Accu- racy (%)	Precision (%)		Ac- curacy (%)	Precision (%)	
			pos	neu		pos	neu		pos	neu
longest	80	78.80	80.10	77.16	79.15	77.80	80.20	76.27	76.92	74.13
	85	79.47	80.96	78.84	78.54	78.93	80.96	79.51	76.25	74.62
	90	80.33	81.30	79.38	80.36	79.53	80.49	79.38	78.74	75.47
newmm	80	78.00	79.40	76.46	78.14	78.37	79.70	76.46	78.95	74.30
	85	79.11	80.83	78.44	78.00	78.62	80.44	77.49	77.87	74.67
	90	80.33	81.30	79.18	80.57	80.33	80.08	80.35	80.57	75.47
multi_cut	80	76.07	77.01	74.18	77.02	76.07	77.01	75.17	76.01	72.37
	85	77.11	78.36	75.61	77.33	77.07	79.66	75.61	75.84	73.07
	90	77.87	78.66	76.65	78.34	77.33	77.85	76.26	77.94	73.80

Table 4. Accuracy and precision results after dictionary augmentation

Tokeniza- tion	Trian (%)	Logistic Regression			Logistic Regression with SGD			Support Vector Machine (SVM)		
		Accu- racy (%)	Precision (%)		Accu- racy (%)	Precision (%)		Accu- racy (%)	Precision (%)	
			pos	neu		pos	neu		pos	neu
longest	80	78.77	80.10	77.36	78.85	78.10	80.70	75.77	77.83	74.80
	85	80.36	81.49	79.38	80.16	80.09	81.49	80.19	78.54	74.98
	90	80.40	81.10	79.38	80.77	80.47	81.30	79.18	80.97	75.87
newmm	80	78.40	79.70	76.96	78.54	78.40	80.20	76.96	78.04	74.60
	85	79.51	80.70	78.44	79.35	79.42	81.62	78.03	78.54	74.89
	90	80.73	81.10	80.16	80.97	80.67	80.69	79.96	81.38	76.00
multi_cut	80	76.67	77.31	75.17	77.53	76.57	78.21	75.27	76.21	72.83
	85	78.00	78.10	77.49	78.41	77.56	78.62	75.88	78.14	73.56
	90	78.27	78.86	76.26	79.76	78.00	78.05	76.07	79.96	74.07

original tokenization dictionary. These forty words were identified by examining the test data to see whether the model's predictions were correct. All models were then recreated using this enhanced dictionary. The analysis results were compared with those obtained from the original dictionary to assess the accuracy improvement.

3.5 Result Testing and Analyzing

Accuracy and precision are commonly used matrices for sentiment analysis. Their mathematical representations are shown in equations (1) and (2), respectively. Accuracy measures the overall correctness of the model by indicating what percentage of sentiment classifications the model is correct. Precision focuses on the positive predictive value, i.e. out of the instances the model classified as

positive sentiment, what percentage were, indeed, positive. Thus, while accuracy is desirable, precision is also needed to analyze the performance of the models.

For example, in sentiment analysis for social media, a model with high accuracy might classify most tweets correctly, but also label many neutral tweets as positive. This inflates its accuracy but misses the mark. A lower accuracy model with high precision might miss some relevant tweets, but excels at identifying true positive sentiment, which might be more valuable for the company.

$$Accuracy = \frac{\text{Number of Correct Prediction}}{\text{Total Number of Predictions}} \quad (1)$$

$$Precision = \frac{\text{True Positives}}{\text{True Positives} + \text{False Positives}} \quad (2)$$

4. Experimental Results

As explained in the previous section, three different algorithms were used to create the sentiment analysis models. The tokenization dictionary was also enhanced to improve the model performance. The accuracy and precision performance of each model is reported here.

4.1 Model Comparison

Upon building sentiment analysis models for Thai text from the existing PyThaiNLP libraries to perform word tokenization, various train-test splits, algorithm selections, and dictionary augmentations, the comparison yields the following accuracy percentages (%). The results of comparison can be seen in Tables 3 and 4 for the before and after dictionary augmentations. From Tables 3 and 4, it can be observed that the model providing the highest accuracy is generated from the logistic regression algorithm after dictionary augmentation, using the newmm tokenization tool with a 90:10 split for training and testing data. Additionally, the model yielding the highest precision for predicting positive and negative texts is generated from the logistic regression with SGD algorithm after dictionary augmentation, using the newmm tokenization tool with 85:15 and 90:10 splits for training and testing data, respectively. Moreover, the model providing the highest precision for neutral texts is generated from the logistic regression algorithm before dictionary augmentation, using the newmm tokenization tool with a 90:10 split for training and testing data.

4.2 Results of Sentiment Analysis Precision Selected Model

Based on the comparison of models, it was found that the Logistic Regression model with a 90:10 train-test split using the newmm word tokenization tool and an augmented dictionary consistently exhibits the highest accuracy for both before and after dictionary augmentation. Therefore, this model was selected to evaluate precision, recall, and f-measure using equations (2), (3), and (4) to determine if the values were sufficiently high for practical use. The model's computational time per text was also assessed using equation (5) to measure the speed of text prediction.

$$Recall = \frac{TruePositives}{TruePositives+FalseNegative} \quad (3)$$

$$F - measure = 2 \frac{Precision \times Recall}{Precision + Recall} \quad (4)$$

$$time = \frac{total computational time for the test set}{number of texts in the test set} \quad (5)$$

The confusion matrix of the best model is shown in Figure 3. From the 1,500 test samples, this model correctly predicted 399 positive texts, misclassifying 66 as neutral and 27 as negative. It correctly predicted 412 neutral texts, misclassifying 53 as positive and 49 as negative. It correctly predicted 400 negative texts, misclassifying 27 as positive and 67 as neutral. The precision of predicting positive, neutral, and negative texts, calculated

using equation (2), was 81.10%, 80.16%, and 80.97%, respectively. The recall for positive, neutral, and negative texts, calculated using equation (3), was 83.30%, 75.60%, and 84.30%, respectively. The f-measure for positive, neutral, and negative texts, calculated using equation (4), was 82.18%, 77.81%, and 82.47%, respectively.

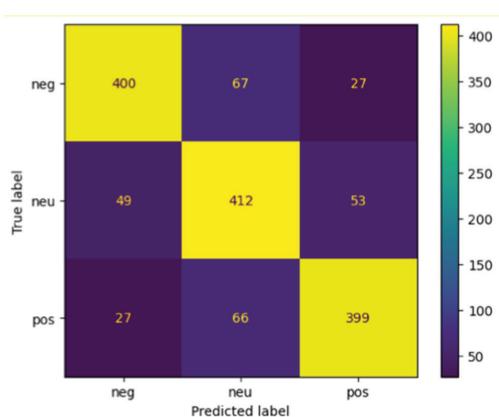
The model calculated the total computational time for the test set as 0.0010001659393310547 seconds with 1,500 texts in the test set. Therefore, using equation (5), the computational time per text was 0.0000006668 seconds.

The model's performance before and after dictionary augmentation were improved throughout the board as a result of only additional forty new words in the existing data. Furthermore, the accuracy, precision, recall, and f-measure are high for the best performance model indicating that the model performs well across different sentiment

categories. Additionally, the computational time per text is very low, making this model suitable for practical use.

5. Discussion

5.1 Comparison of Data Splitting


From the comparison of accuracy values of sentiment analysis models for online Thai text, it was found that the amount of data used for training has an impact on accuracy. The more data used for training, the higher the accuracy of the model. As seen from Tables 3 and 4, models trained with 90% of the data have higher accuracy than those trained with 85%, and models trained with 85% of the data have higher accuracy than those trained with 80%.

5.2 Comparison of Word Tokenization

In comparing the accuracy values of sentiment analysis models for online Thai text, it was found that the `multi_cut` tokenization tool, which employs maximal matching, resulted in the lowest accuracy. This was observed when compared with models using longest matching and `newmm` tokenization tools, which provided similar accuracy values. The models using the `newmm` tokenization tool consistently showed the highest accuracy, as seen in Table 4.

5.3 Comparison of Dictionaries

The addition of vocabulary words to the existing dictionary from the PyThaiNLP

Figure 3. Confusion Matrix: Results of the analysis of texts by the best performance model.

library resulted in an increase in the accuracy of the model. This can be seen from the results in Table 3 (before dictionary augmentation) and Table 4 (after dictionary augmentation). The same algorithm, tokenization tool, and train-test split were used, but the accuracy in Table 4 is higher because the model in Table 4 had an augmented dictionary before tokenization. This allowed the model to recognize more words, leading to more accurate tokenization and predictions. For example, before the dictionary augmentation, the text “ไม่หล่อเลย” (“not handsome at all”) was tokenized as “[ไม่, หล่อ, เลย]” (“[not, handsome, at all]”), leading to an incorrect prediction of positive sentiment because the word “หล่อ” (handsome) was present in the text. However, the true sentiment of this text is negative as it conveys an insult. With the augmented dictionary, the text was tokenized as “[ไม่หล่อ, เลย]” (“[not handsome, at all]”) and correctly predicted as negative sentiment. This illustrates why models with an augmented dictionary before tokenization predict texts more accurately and have higher accuracy compared to models without dictionary augmentation.

5.4 Comparison of Algorithms

In comparing the accuracy values of sentiment analysis models for Thai text, it was found that the SVM algorithm yielded the lowest accuracy. This was observed that the models using logistic regression (with or without SGD) provided similar accuracy values. Logistic regression without SGD yielded

the highest accuracy, while logistic regression with SGD achieved the highest precision for each text category.

Algorithms used in the model comparisons utilized default parameters from scikit-learn. This resulted in the SVM algorithm having the lowest accuracy, followed by logistic regression with SGD and then without SGD. Adjusting the parameters in future research might yield different results.

6. Conclusion

The comparison of models revealed that the model generated from the logistic regression algorithm, with a 90:10 split for training and testing data, using the newmm tokenization tool with an augmented dictionary, achieved the highest accuracy of 80.73%. Additionally, it exhibited a precision of 81.10% for analyzing text with positive sentiment, 80.16% for text with neutral sentiment, and 80.97% for text with negative sentiment. The dictionary augmentation shows a clear improvement for all the models despite adding only a few words. The future direction of this work will be improving the dictionary for better performance of the online Thai text sentiment analysis.

This model is suitable for predicting sentiment in Thai texts on online media. However, it may not be appropriate for predicting sentiment in academic articles or articles requiring deep understanding. This is because the dataset consists of Thai language texts from online media with free topics, and

the data preparation was specifically tailored for such texts.

Acknowledgments

I would like to express my gratitude to the PyThaiNLP development team for their providing a convenient platform for processing Thai language text. I am also thankful to the owners of online content whose texts served as dataset for this research project.

References

Aliman, G. B., et al. (2022). Sentiment analysis using logistic regression. *Journal of Computational Innovations and Engineering Applications*, 11(7), 36–40. <https://doi.org/10.9790/9622-1107023640>

Bowornlertsuttee, P., & Paireekreng, W. (2022). The model of sentiment analysis for classifying the online shopping reviews. *Journal of Engineering and Digital Technology (JEDT)*, 10(1), 71-79. <https://ph01.tci-thaijo.org/index.php/TNIJournal/article/view/246375> [In Thai].

Chaisanguan, S., & Romsaiyud, W. (2018). Development of a real-time sentiment analysis system of students on Facebook using Naive Bayes classifier in Thai language. *Proceedings of the 8th STOU National Research Conference* (pp. 521–535). Sukhothai, Thailand, November 23, 2018 [In Thai].

Kanoktipsatharporn, S. (2020). Python ตัดคำภาษาไทย ด้วย PyThaiNLP API ตัดคำ Word Tokenize ภาษาไทย ตัวอย่าง การตัดคำภาษาไทย อัลกอริทึม deepcut, newmm, longest, pyicu, attacut – PyThaiNLP ep.2. Retrieved 12 October 2023, from <https://www.bualabs.com/archives/3740/python-word-tokenize-pythainlp-example-algorithm-deepcut-newmm-longest-python-pythainlp-ep-2/> [In Thai]

Lisirikul, C., & Numpradit, J. (2018). Opinion analysis system to business by text mining on Twitter. *Proceedings of the 14th National Conference on Computing and Information Technology* (pp. 408–413). Chiang Mai, Thailand, July 5–6, 2018.

Noro-a, S., Charong, N., Musigcharoen, N., & Yossiri, V. (2018). Features of language used of Thai teenagers on social media. *Proceedings of the 9th Hatyai National and International Conference* (pp. 940–952). Songkhla, Thailand, July 20, 2018. [In Thai]

Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment classification using machine learning techniques. *Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP 2002)* (pp. 79–86). Association for Computational Linguistics. <https://aclanthology.org/W02-1011/>

PyThaiNLP. (2024). PyThaiNLP: Thai natural language processing in python. Retrieved 31 March 2024, from <https://github.com/PyThaiNLP/pythainlp>

Scikit-learn. (2024). 1. Supervised learning. Retrieved 14 March 2024, from https://scikit-learn.org/stable/supervised_learning.html#supervised-learning

Singh, T., & Kumari, M. (2016). Role of text pre-processing in Twitter sentiment analysis. *Procedia Computer Science*, 89, 549–254. <https://doi.org/10.1016/j.procs.2016.06.095>

Suriyawongkul, A., Chuangsawanich, E., Chormai, P., & Polpanumas, C. (2019). Wisesight sentiment corpus. Retrieved 11 October 2023, from <https://github.com/PyThaiNLP/wisesight-sentiment>

Wankhade, M., Rao, A. C., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. *Artificial Intelligence Review*, 55(7), 5731-5780. <https://link.springer.com/article/10.1007/s10462-022-10144-1>

The Flood Simulation System as a New Process for Public Participation of Local Administrative Organizations in Tha Wang Pha District, Nan Province

Chamnan Kumsap¹, Vissanu Mungkung¹, Lanyanat Patanan¹, Phimraphas Ngamsantivongsa^{1,*}, Arisara Charoenpanyanet², Phonpat Hemwan²

¹ Defence Technology Institute, Nonthaburi 11120, Thailand

² Department of Geography, Faculty of Social Sciences, Chiang Mai University, Chiang Mai 50200, Thailand

* Corresponding author: Phimraphas Ngamsantivongsa, phimraphas.n@dti.or.th

Received:

21 November 2023

Revised:

19 January 2024

Accepted:

2 April 2024

Keywords:

Disaster Management, Flood Simulation System, Knowledge Sharing, Public Participation.

Abstract: This research paper discusses the new process for public participation of 7 local administrative organizations in Tha Wang Pha District, Nan Province in preparedness for flooding situation. Activities for the knowledge and technology transfer of a flood simulation system were conducted and attended by 50 invited representatives, who were presented with 5 questionnaires to test their acquired knowledge and skills. The willingness to apply the knowledge and skills to flood situation preparedness of their workplace or missions was analyzed through sub-questions and illustrated in a series of tables. The results showed that the contents of the knowledge sharing were comprehended between 82-90%. Following the technological workshop, the participants planned to use the knowledge to flood preparedness at 100% with measured skills at 100%. The paper concluded that 100% of the respondents agreed with the use of the flood simulation system in terms of building cooperation upon the knowledge and technology exposure, collaboration with relevant agencies, and support for the implementation of the flood simulation system. The official coordination of agencies and institutes was the key for the successfully organized activities, thus be it the new process for the focus-group public participation of local administrative organizations.

1. Introduction

Situated between mountains running North-South, the area of Tha Wang Pha District, Nan Province, is a basin (Figure 1 left) in the north of Nan Province that supports the whole Nan River flowing downwards and into the Chao Phraya River. Therefore, the study area about 60.83 sq.km. of Tha Wang Pha District (Figure 1 right) is the first lowland area, painted in blue representing frequent flooding risk. Recurring flooding problems in Tha Wang Pha District directly and indirectly affect 50,519 people, for example, the Kon Son Tropical Storm in 2010 affecting 2,437 people in 5 villages, from heavy rains on 7 August 2011. Soil and mud flood kept villagers stranded and unable to lift electrical appliances, vehicles and agricultural equipment to higher ground. There were also landslides and fallen trees blocking the road in Ban Sop Khun - Doi Tiw and Ban San Charoen, making villagers of more than 6 villages unable to pass through.

Government officials in Tha Wang Pha District recognize the importance of encouraging people and localities to take care of themselves. However, as far as the discussion with authorities in the district was concerned, access to the technology that helps local communities to prepare for and deal with the flood situation has never been provided. This paper gives the aspect of the people willingness to adopt the flood simulation system already delivered to a military unit in the area rather than tries to deliberately explain the creation of the system itself. The flood simulation system was used as a medium for activities of transferring the knowledge and technology and technical workshop in order to study a new process for the invited and focus-group participation of 7 local administrative organizations in Tha Wang Pha District, Nan Province.

Banks (1998) defined simulation as the imitation of the operating of a real-world process or system over time to describe

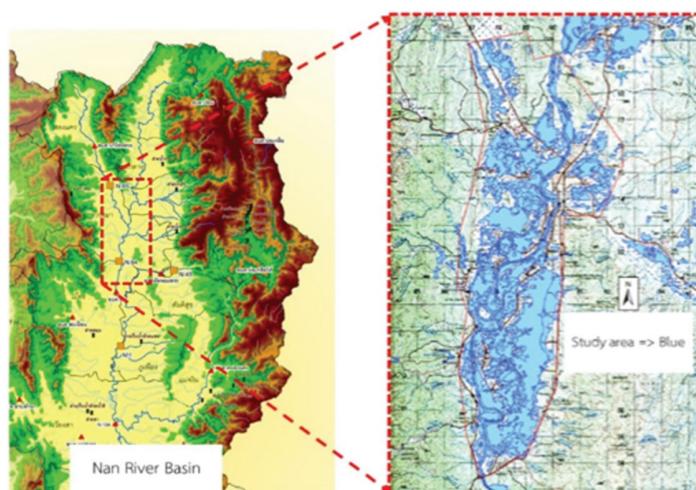


Figure 1. Nan River Basin (left) and study area (right)

and analyze the behavior of the system, ask what-if questions about a real system, and aid in the design of real systems. The flood simulation system in this study was developed to imitate real flooding situations in which its users can simulate a what-if-the-flood-level-was-x.xx-meters-from-a-reference-station question and realize the damage the people might anticipate, that is, simulating to achieve subjective goals. Balcı (1998) stated that the reason for subjectivity was twofold: modelling was an art and credibility assessment was situation dependent, and further required that a unifying approach to measure qualitative as well as quantitative aspects of a simulation be studied. Since the public participation in this study was to include various decision making groups, the results needed to constitute a form of supporting their decision making. Following the work of Musselman (1998) closely, the activities detailed in this paper were to reflect how comprehensive the decision makers were towards their results when the welfare of the people of Tha Wang Pha District was at stake amidst flooding situations.

This research paper described the knowledge and technology transfer of the flood simulation system which was the product of the cooperation between Defence Technology Institute and Chiang Mai University, previously delivered to Mobile Development Unit 31 in Nan Province. Literature review on public participation and significant leadership coordination during emerging incidents was emphasized and on remote sensing and GIS

for a reliable simulation system was sampled. The activities to transfer knowledge and technology on the flood simulation system to 7 local administrative organizations in Tha Wang Pha District and Nan Provincial Office of Disaster Prevention and Mitigation, Chiang Klang Branch was presented by the proposed methodology. The flood simulation system was demonstrated with its founding knowledge bodies, being both creditable advocacy and delivered knowledge contents. Processes to arrive at the dashboard was presented in a cartographic modelling diagram. The activities and their results were summarized and discussed towards the end of the paper. Conclusion and recommendations were provided at the end.

2. Related Work

Disasters have an impact on the life of communities. Negative effects lead many communities to engage in disaster mitigation, for example Cambria, Ca. The study of Lucett (2002) revealed the treatments (chipping, limbing, invasive species removal, and prescribed fire) that were accepted in the community of Cambria as well as identifying common areas of management priorities among Cambrians. Yeo & Comfort (2017) examined the structural characteristics of large-scale, inter-sector and multi-jurisdictional flood response coordination during the 2011 Thailand floods and identified three major gaps including the highly fragmented coordination structure, the poorly leveraged inter-sector relationships, and the weak liaison of provincial organizations to

serve upper and lower actors. As the literature suggested, the flood simulation system was, then, used as the medium of coordination in this research paper.

Duan *et al.* (2020) employed a structural equation model to study the influencing factors of public participation in the meteorological disaster prevention and mitigation. They found that the behavior of the government had a significant positive influence on the public's participative willingness. When it came to individual response to disaster prevention and mitigation, Abdulkasan *et al.* (2021) determined the extent of participation among citizens of Cotabato City, Philippines in five participation goals: inform, consult, involve, collaborate, and empower. Conclusively, government, community and down to individual participation played an important role in disaster management. Thus, there was the need to study for the process that every engaging party would participate to anticipate successful disaster prevention and mitigation, and this paper tried to respond to that need.

To meet the complex needs of vulnerable populations, Adams *et al.* (2022) developed a free online course to draw on decades of research to examine the factors that influenced social vulnerability to disasters. Back in 2007, Bryman stated that the widely held principle of social research was questionable as a representation of social research practice. Ismail & Zubairi (2022) examined the content validity evidence of

an instrument to measure the reading ability of university students using Item Objective Congruence (IOC) analysis. Therefore, this current research for public participation included formulating questionnaires that underwent the IOC analysis for questionnaire liability.

Gultom (2016) investigated how the culture and network ties of an affected community encouraged trust and participation in disaster communication. Kamarudin *et al.* (2018) explained one of 5 strategic results for disaster risk reduction from focus group discussion was to improve the level of cooperation and risk communication between agencies to identify victims' status, facilities/ property affected or damaged during the disaster. Hsu (2017) examined village heads' information seeking and decision making in 2014 Kaohsiung Blast and found that they received regular disaster trainings but acted like lay people during the incident. To sum up, with the increasingly common occurrence of unprecedented disasters, researchers and practitioners need to study how community leaders reacted differently to different disasters and how their authority, knowledge, and social capital interacted.

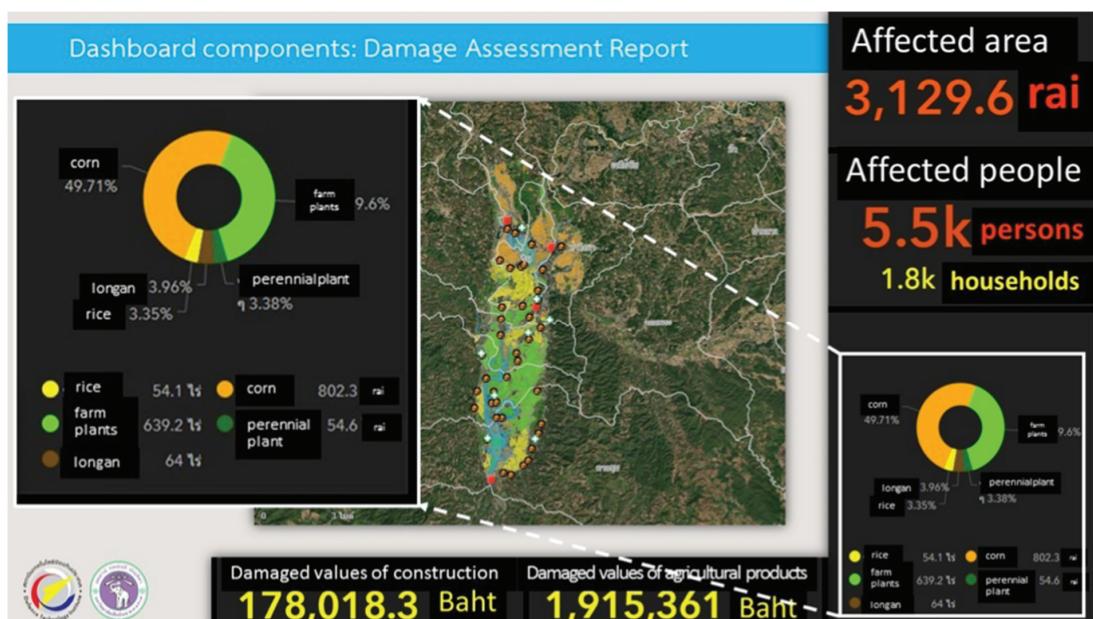
Recently, Marchezini *et al.* (2022) aimed to identify gaps and the potentialities of citizen-generated data in an international virtual dialogue that engaged 40 public servants, practitioners, academics and policymakers from Brazilian and British hazard and risk monitoring agencies during the Covid-19 pandemic. The common

challenges identified were lack of local data, data integration systems, data visualization tools and lack of communication between flood agencies. Tamang *et al.* (2014) introduced a method to predict the area vulnerable to flood and integrated MIKE 11 GIS to provide surface geometry modeling. Bibi, Nawaz, & Abdul (2018) reported that the Union Council Agra in Pakistan vulnerability to flood hazard was due mainly to its geographical location and the lack of pre-disaster preparedness activities. There was an immense need of prevention and mitigation measure as floods were frequently occurring disaster in the area.

Khamutova *et al.* (2021) presented main components, models and methods of forecasting and the structure of a typical flood monitoring and forecasting system. The simulation results provided a more complete picture of the flood development in the dynamics and allowed decision makers to plan actions aimed at preventing and eliminating the effects of floods made effectively. Samdaengchai *et al.* (2022) analyzed disasters caused by flood via data from Sentinel-1 Satellite in Sukhothai Province, Thailand. At this provincial level, data on flood analyzed from optical data was at flood areas of 106.632 sq.km. and at 96.751 sq.km. from radar Sentinel-1 Satellite at around 9.593% difference. More criteria on sensors, acquisition time, to name a few, needed intensive consideration if accurate flooded area results were anticipated.

van den Bout *et al.* (2023) explained FastFlood model with the potential to alter the field of flood modelling. It showed two orders of magnitude of increase in simulation speed, while obtaining highly similar accuracy as full dynamic models in presented case studies. With the reported increase in simulation speed, many avenues of research and application might be unlocked, from ensemble modelling for uncertainty, user-interactivity in web interfaces, or real-time modelling of large areas in early warning systems. However, the report reminded research communities to note that the aim of the FastFlood method was not to provide the most accurate flood hazard prediction and not with fine resolution. Therefore, the validity of the underlying assumptions were more focused to risk reduction planning or early warning at a large flooded area extent.

3. Method and Materials


3.1 Method

The flood simulation system was the product of the agreement between Defence Technology Institute and Chiang Mai University institutionalized cooperation already delivered to Mobile Development Unit 3 and was affirmative upon military acceptance for use. In 2021, data collection included UAV terrain modelling, ground survey for construction, buildings and seasonal agricultural products, making the data for damage assessment dashboard with GIS analysis an obvious and temporal drawback.

The understanding of the system provided by bodies of knowledge and technology underlying the system was seen as the key to open the door to local administrative acceptance. Therefore, it is hypothetical that knowledge and technology transfer activities of the flooding simulation system will gain acceptance from representatives of invited local administrative organizations to embrace the system as the tool for flood situation preparedness and risk reduction and also bring a new process for focus-group public participation of the invited local administrative organizations.

The research methodology for the knowledge and technology transfer of flood simulation system is illustrated in Figure 2. It is a target group-participatory approach. There were two frameworks in the activities. Framework 1: knowledge sharing among researchers from DTI, Chiang Mai University

and officials of Chiang Klang Branch for a common understanding of the flood simulation system. The bodies of knowledge to share included field survey, terrain modelling with unmanned aerial vehicle, creation of a geo-spatial database, creation of 3D common operating picture, damage assessment from flood situations, and creation of a dashboard to support damage assessment from flood situations. Framework 2: technological workshop to transfer technology from the researchers to the officials of Chiang Klang Branch and representatives of the 7 local government organizations. Questionnaires were used to assess skills of the target groups capable of, for example, locating each flooded house in the system, and checking how the house/property is damaged when simulating the flood level x meters high from the reference station.

Figure 2. The research methodology flow chart

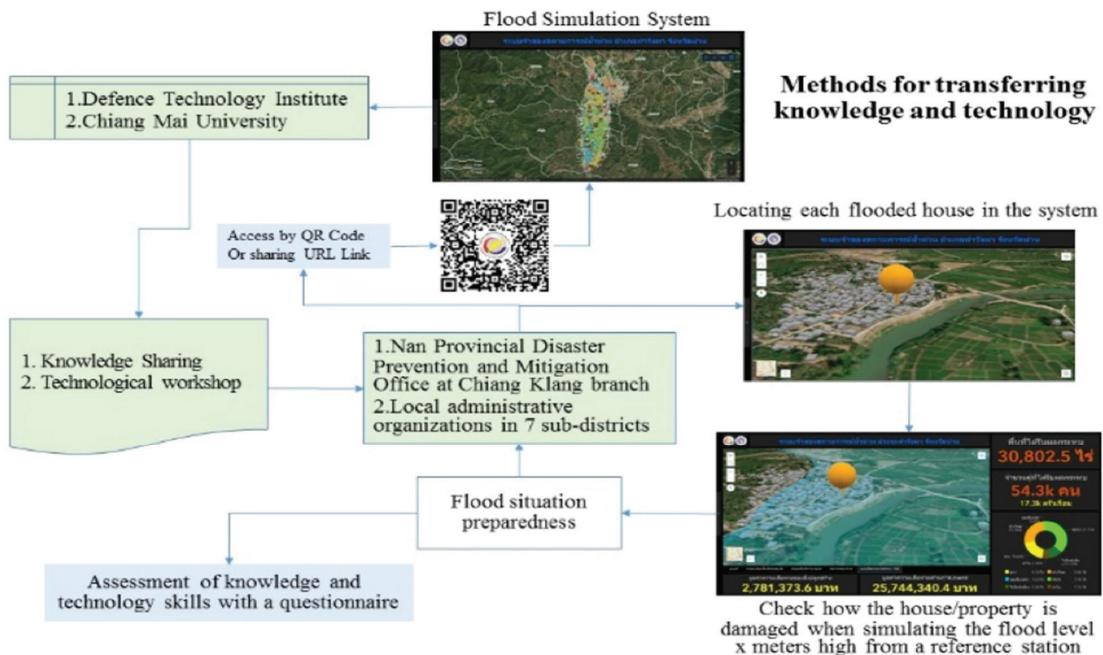


Figure 3. The flood simulation system dashboard

3.2 Materials

3.2.1 The Flood Simulation System

The flood simulation system for Tha Wang Pha District, Nan Province, was the product from the application of the knowledge shared in Framework 1 to the local officials of Chiang Klang Branch and the 7 sub-district administrative organizations of Tha Wang Pha District, Nan Province consisting of 10 villages of Tan Chum, 9 villages of Rim, 8 villages of Si Phum, 7 villages of Tha Wang Pha, 5 villages of Pa Kha, 2 villages of Pha Tor, and 2 villages of Saen Thong.

The flood simulation system made available by ArcGIS online as shown in Figure 3 consists of three main components: 1) toolbar shown as the left dotted box of Figure 3

working in conjunction with map display and links commands to display flood level simulation, agricultural activity data, water level reference stations, village locations, and administrative data; 2) map component shown as the middle dotted box of Figure 3 for controlling the display of 2D/3D maps, details of affected villagers, agricultural data, and weather forecast; and 3) damage assessment providing the analysis of the area and the simulation of flood level by determining the water level in the situation at every input 20 cm. interval from reference stations of the Nan River. This information was used to analyze the flood situation effecting buildings and agricultural areas. The value of the building and its assets, and the crop yield per rai and the value were calculated for damage assessment, as shown in the enlarged inset on the left of Figure 3.

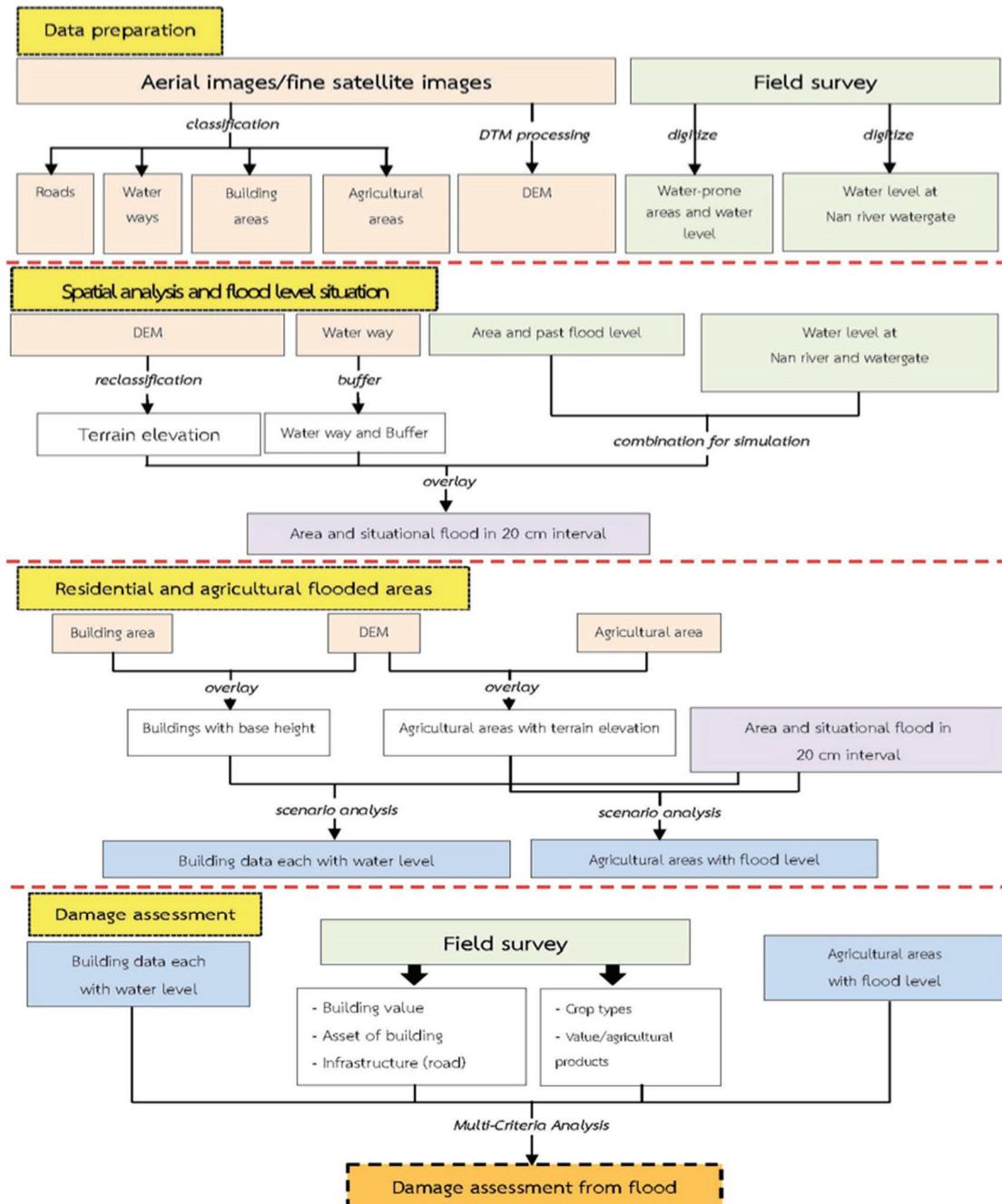


Figure 4. Cartographic modelling for the dashboard

3.2.2 Cartographic Modelling for Damage Assessment Dashboard

The dashboard creation illustrated in Figure 4 was a novel cartographic modelling

diagram that consisted of 4 main steps towards the damage assessment tool. In data preparation, the study area was first acquired by UAV at 10 m. resolution with equal positional accuracy to ASPRS standard 1:500 map of no

less than 0.125 m. This UAV terrain modelling yielded 10 cm ortho-imagery with horizontal and vertical accuracy of no less than 8 cm. and 15 cm. respectively, allowing the spatial analysis for contour intervals of 20 cm. as incremental flood simulation levels. Residential and agricultural areas were thoroughly surveyed to accommodate accurate and real values in 2021 and to attain reliable and verifiable flooding scenario analysis. Damage assessment values, for example, rice at 1,113 baht/rai and house each at 49,500 baht, followed guidelines for the damage assessment of Ministry of Agriculture and Cooperatives regarding flood-caused damages.

3.2.3 Questionnaire

Questionnaires were to respond to the designed frameworks where questionnaire no.1 tried to create the common understanding towards the system and questionnaire no. 2 tried to assess skills of the target groups in linking the acquired knowledge to utilization of the system for trial use. Ratings were set from the most (5), much (4), moderate (3), little (2), and the least (1). Purposely, the questionnaire no.1 was to assess the anticipation of the knowledge sharing that included the knowledge and skills of each training topic both before and after the training and most importantly on applying the knowledge to prepare for flood situations, the questionnaire no. 2 was to collect technological details of the flood simulation system that the target group received before and after the workshop.

3.2.4 Index of Item Objective Congruence (IOC)

The questionnaires were presented to 5 experts to determine content validity, the index of consistency between questions and the objectives or IOC; being 1 interpreted as consistent with the objectives, 0 as uncertain and -1 as inconsistent with the objectives. The IOC was calculated by:

$$\text{IOC} = \frac{\sum_{i=1}^n R}{N} \quad (1)$$

where IOC = Index of Item-Objective Congruence, $\sum_{i=1}^n R$ = sum of the scores for question 1 to question n, and N = the number of experts.

The IOC calculation gave all questions to each arrive at greater than 0.5, whereby the IOC for each questionnaire must be ≥ 0.5 to ensure the questionnaire meet the desired content and fit for use in the questionnaire.

3.2.5 Manual of the Flood Simulation System

The manual was provided in form of a tab on the ArcGIS online map engine with sections of introducing the toolbar section within the dashboard, flood elevation simulation, detailed display of agricultural data, water level station location information, village location information, jurisdiction information, weather information, using toolbars within the map, and dashboard map section. It also included data needed to answer the

questions indicated in the questionnaires. Copies of the manual were also distributed at the activities of knowledge sharing, technological workshop, and focus group apart from the QR code or URL.

4. Experimental Results

4.1 Knowledge Sharing

The activity was held on 13 – 14 June 2023 at Si Phum sub-district conference center for 50 experts and authorities from the 7 invited sub-districts. The results of before and after knowledge sharing was summarized in Table 1. The result on field survey showed the knowledge of the respondents on the subject. Before the event participation, there was no respondent with the most, 5 respondents with much, 32 respondents with moderate, and 13 respondents with little and least knowledge and skills. After participating the activity, 5 respondents had the most level of knowledge and skill, respondents with increased knowledge and skills rising up to 40, and 5 respondents had the moderate level

of knowledge and skills. Therefore, it can be seen that 45 out of 50 of the respondents had knowledge and skill on the field survey at the most and much levels or at 90%.

On UAV based terrain modeling, Table 1 shows 1 respondent with much knowledge and skill, 29 respondents with moderate knowledge and skill, and 20 respondents with little and least knowledge and skill. Upon the activity participation, the Table shows 1 respondent with the most knowledge and skill, 40 respondents at the much, and 9 respondents on the moderate level. Totally, 82% of the respondents had the knowledge and skill at most and much levels.

For geo-spatial database creation, Table 1 shows no respondents were with the most level, only 2 persons with much level, 33 persons with moderate level, and 15 respondents with little and least level. After the activity ended, the Table shows 2 persons were at the most level, 42 persons at the much level, and 6 persons at the moderate level. Therefore, 88% of the respondents

Table 1. Summary of before and after knowledge sharing

Shared knowledge bodies	Knowledge on the topic before the knowledge sharing					Knowledge on the topic after the knowledge sharing				
	Most	Much	Moderate	Little	least	Most	Much	Moderate	Little	least
	-	5	32	12	1	5	40	5	-	-
Field survey	-	5	32	12	1	5	40	5	-	-
UAV based terrain modeling	-	1	29	12	8	1	40	9	-	-
Geo-spatial database creation	-	2	33	12	3	2	42	6	-	-
Flood damage assessment and dashboard creation	-	1	39	9	1	2	41	7	-	-

had the knowledge and skill at the most and much levels.

Table 1 shows the results on flood damage assessment and dashboard creation. Before participating in the event, there was no person with the most knowledge and skill, only 1 person with the much level, 39 persons with the moderate level, and 10 persons with the little and least levels. After the activity ended, the Table shows that 2 persons were with the most level, 41 persons with the much level, and 7 persons with the moderate level, making 86 percent with the much and most levels.

4.2 Plan to Apply the Knowledge and Skills to Flood Situation Preparedness

On questionnaire questions of how the participants planned to apply the gained knowledge and skills, Table 2 shows that 13 persons were ready at the most level, 31 persons at the much level and 6 persons at the moderate level. Therefore, the participants were able to apply the gained knowledge and skills at 88 percent. For their own use, the Table says that 14 persons were able to at

the most level, 29 at the much level, and 7 persons at the moderate level, meaning that the participants were able to use the received knowledge and skills at 86 percent. Finally, Table 2 says that 14 persons were able to disseminate the acquired knowledge and skills to their agencies with 29 and 7 persons at the much level and moderate level, respectively. Therefore, 86 percent of the participants were able to disseminate knowledge/transfer to their agencies at the most and much levels.

4.3 Technological Workshop

Four questions on the use of the dashboard were as follows: 1) determining reference station to increment the flood level; 2) inputting house or building coordinates in the study area on the system; 3) investigating the value of damaged buildings and agricultural areas; and 4) checking the number of affected people in the area. The measured numbers are summarized in Table 3.

With the measured skill to determine reference station to increment the flood level, Table 3 shows one respondent with the most, 7 with the much, 17 with the moderate, 21 with the little, and 4 with the least level,

Table 2. Summary of plan to use the knowledge to flood preparedness

Knowledge application	Knowledge on the topic before the knowledge sharing				
	Most	Much	Moderate	Little	least
Work back in office	13	31	6	-	-
Apply for own use	14	29	7	-	-
Disseminate/transfer further	14	29	7	-	-

Table 3. Summary of measured skills

Activities	Levels of measured skill				
	Most	Much	Moderate	Little	least
Determining reference station					
Before workshop	1	7	17	21	4
After workshop	13	29	8	-	-
Inputting coordinates					
Before workshop	-	8	17	21	4
After workshop	12	32	6	-	-
Investigating values					
Before workshop	-	9	14	24	3
After workshop	14	30	6	-	-
Checking the number of affected people					
Before workshop	-	7	17	23	3
After workshop	15	30	5	-	-

meaning that 50 percent of the respondents having the little or least levels.

However, the Table shows 13 respondents having the most level with 29 having the much level, 8 having the moderate level, and no respondents with the little or least level after the workshop. Therefore, the respondents, at least, were able to set a reference station at the moderate level after the activity.

For the skill to input house or building coordinates of the study area on the system, the Table reveals 8 respondents with the much, 17 with the moderate, 21 with the little, and 4 with the least level, meaning that 50 percent of the respondents having the little or least levels. But after the workshop, the

Table says 12 respondents having the most level, 32 having the much level, 6 having the moderate level, and none having the little or least level, meaning that the respondents, at least, were able to input house or building coordinates of the study area on the system at the moderate level.

With the skill to investigate the value of damaged buildings and agricultural areas, the Table shows none with the most knowledge and skills, 9 with the much level, 14 with the moderate level, 24 with the little, and 3 with the least level, meaning that 54 percent of the respondents having little or least knowledge and skills. But after the workshop, the Table says 14 respondents having the most level, 30 having the much level, 6 having the moderate

level, and none having little or least level, meaning that the technical training allowed the respondents to, at least, detect the damage to buildings and agricultural areas at the moderate level.

For the skill to check the number of affected people in the area, Table 3 has no respondents with the most knowledge and skills, 7 with the much level, 17 with the moderate level, 23 with the little level, and 3 with the least level, meaning that more than 50 percent of the respondents having little but no least knowledge and skills. But after the workshop, the Table shows 15 respondents having the most level, 30 having the much level, 5 having the moderate level, and none having the little nor least level, meaning that the flood simulation system enabled the respondents to monitor the number of affected people in the area, at least, at the moderate level.

4.4 Collaborative Workshop

To assess the attitude of the respondents to embrace the flood simulation system in their work routine for collaboration among local administrative organizations, the questionnaire was designed to evaluate the results in terms of building cooperation on the acquired knowledge and technology, the collaboration of engaged agencies, and the support for implementation of the system.

4.4.1 To Embrace the System for Building Cooperation on the Acquired Knowledge and Technology

Table 4 shows the prospect of how cooperatively the respondents reacted when exposed to the knowledge and technology. There were sub-questions to extract on the point of the respondents using the internet to find information about floods and other disasters. Ten respondents rated most to

Table 4. Summary of cooperating the acquired knowledge and technology

Cooperative activities	Levels of agreement				
	Most	Much	Moderate	Little	least
Using the internet for information about floods and other disasters	10	33	6	1	-
Information obtained from internet to help make decisions	12	27	11	-	-
Technology and information used in dealing with flood situations/other disasters	2	26	21	1	-
Technology to deal with the flood situation and reduce the damage to the people	22	22	6	-	-

the question, 33 gave much for an answer, 6 gave moderate for an answer, and 1 gave least for an answer. The result shows that 98 percent of the respondents used the internet to search for information about flood situation and other disasters. Therefore, the internet played a key role on reaching out to an outside source.

The second cooperative activity was measured on how useful the respondents viewed on the information obtained from internet searches that would help make decisions. Twelve respondents gave most for an answer, 27 gave much for an answer, and 11 responded moderately. The Table shows that 100 percent of the respondents used the information obtained from internet searches to make decisions with the plan to deal with various flood/disaster situations.

For the question of technology and information from the internet being used in dealing with flood situations/other disasters, two respondents gave most for an answer, 26 respondents gave much for an answer, 21 persons gave moderate for an answer, and only 1 person gave the least for an answer. The Table shows that 98 percent of the respondents in use of the technology and information from the internet were able to say useful in dealing with flood situations/other disasters.

For the question of whether the technology could help the respondents plan to deal with the flood situation to help reduce

the damage to the people, 22 respondents gave most for an answer, 22 persons gave much for an answer, and 6 respondents gave moderate to the answer. The Table also shows that 100 percent of the respondents believed technology could help the respondents plan to deal with the flood situation to help reduce the damage to the people.

4.4.2 To Build Cooperation on the Acquired Knowledge and Technology

Table 5 shows the prospect of how the respondents build cooperation on the acquired knowledge and technology. There were sub-questions to show how they built such cooperation.

To cherish network and cooperation with stakeholders or other relevant agencies, the respondents would request assistance from relevant agencies when a flood situation took place. Twelve respondents gave most for an answer, 32 gave much for an answer, and 6 gave moderate for an answer. The Table shows that no respondents or responsible agencies worked alone during the flood situation.

The Table shows a strong tie of the respondents with other local government agencies. Nineteen respondents gave most for an answer, 28 gave much for an answer, and 3 gave moderate for an answer. It reveals that 100 percent of the respondents agreed that their agencies had good relationships with other government agencies.

Table 5. Summary of building cooperation on the acquired knowledge and technology

Building cooperation activities	Levels of agreement				
	Most	Much	Moderate	Little	least
Requesting assistance from relevant agencies	12	32	6	-	-
Strong tie of the respondents with other local government agencies	19	28	3	-	-
Having a network of cooperation to provide help for each other	9	36	5	-	-
Dealing with flood situation demanding the cooperation of many agencies	17	31	2	-	-

From Table 5, it shows whether the agencies of respondents had a network of cooperation to provide help for each other when flooding occurs. Nine respondents gave most for an answer, 36 persons gave much for an answer, and 5 persons gave moderate for an answer. They all agreed that the agencies had a network of cooperation to help each other when flooding occurred.

Finally, the Table shows whether the agencies of respondents dealt with the flood situation by demanding the cooperation of many agencies. Seventeen respondents gave most for an answer, 31 gave much for an answer, and 2 gave moderate for an answer. They all agreed that coping with the flood situation required the cooperation of many agencies.

4.4.3 To Support the Implementation of the Flood Simulation System

Table 6 summarizes the encouragement of the respondents to use the system to cope

with flooding or other disasters. It shows good encouragement of the respondent agencies to use modern technology to cope with flooding or other disasters. Ten respondents gave most for an answer, 18 respondents gave much for an answer, and 22 respondents gave moderate for an answer. Most of them agreed that the activities encouraged them to use the technology in dealing with flood situations or other disasters.

The Table reveals the respondents' support of having devices or technologies and in support of the use of technology. Only 1 respondent gave most for an answer, 20 gave much for an answer, 20 gave moderate for an answer and 9 gave little for an answer. Thus, the respondents believed that there were devices and technology for disaster management and supported the use of technology.

The Table shows the ability of the respondents to share the flood simulation technology with others. Two respondents gave most for an answer, 37 respondents gave a much for an answer, and 11 respondents

gave a moderate for an answer. Assumedly, the respondents were certain to distribute the flood simulation system to others.

The Table shows respondents' willingness to recommend/transfer the flood simulation system to others. Five respondents gave most for an answer, 39 respondents gave much for an answer, and 6 respondents gave moderate for an answer. It can be anticipated that the flood simulation system will be recommended/transferred to others.

Table 6 also shows the respondents' view of whether the flood simulation system could help to reduce the loss/damage from the flood situation. Seventeen respondents gave most for an answer, 33 gave much for an answer. Therefore, 100 percent of the respondents agreed that the flood simulation system could reduce the loss/damage of flooding situations.

Table 6. Summary of the support for use of the system to cope with flooding or other disasters

Activities of supporting the use of the system	Levels of support				
	Most	Much	Moderate	Little	least
Encouragement to use modern technology to cope with flooding or other disasters	10	18	22	-	-
Having devices or technologies and supporting the use of technology	1	20	20	9	-
Ability to share the flood simulation technology with others	2	37	11	-	-
Recommending/transferring the flood simulation system to others	5	39	6	-	-
The system helped to reduce the loss/damage from the flood situation	17	33	-	-	-
The system was useful for planning for flooding	17	27	6	-	-

Finally, Table 6 shows if the respondents thought that the simulation system was useful for planning for flooding. Seventeen respondents gave most for an answer, 27 respondents gave much for an answer, and 6 respondents gave moderate for an answer. Therefore, 100% of the respondents agreed that when the flood situation occurred, the flood simulation system was useful for planning for flooding situations.

Therefore, it can be concluded from the summary of Table 6 that 100% of the respondents agreed with the use of the flood simulation system in terms of building cooperation through knowledge and technology exposure, collaboration with relevant agencies, and support for the implementation of the system.

5. Discussion

Table 7 gives the results in percentage of after knowledge and technology transfer activities for focus-group public participation. Where the acquired knowledge was concerned, only much and most levels were cited as significant for the following activities and deemed crucial to the decisiveness to embrace the technology for later routine use. Where technological and technical skills were involved, the moderate up to most level were summed up in the Table, given just a few day activities but that much picked up technical skill. Answers for sub-questions as seen in the last three rows of the Table were in an overall.

From Table 7, the knowledge sharing was considered a success. The knowledge of the respondents after attending the activity on field survey was rated 90% at most and much

levels, on UAV based terrain modelling rated 82% at most and much levels, on geo-spatial data creation rated 88% at most and much levels, and on flooding damage assessment and dashboard creation rated 86% at most and much levels. Therefore, the knowledge sharing delivered the good understanding of the representatives of the local organizations towards the flood simulation system. That was the crucial key for them to embrace the system for their flood situation preparedness.

As the activity was conducted to assess whether the respondents were certain to apply the knowledge and skills to flood situation preparedness, 100 percent of the participants were able to apply the gained knowledge and skills to work in their units, 100 percent confident and able to apply the received knowledge and skills, and 100 percent able to disseminate knowledge/transfer to their agencies. Therefore, it was

Table 7. Results in percentage of after knowledge and technology transfer activities for focus-group public participation

Activities of knowledge and technology transfer	Levels of knowledge and technology comprehension				
	Most	Much	Moderate	Little	least
Knowledge sharing	82-90%	-	-	-	-
Plan to use the knowledge to flood preparedness	100%	-	-	-	-
Measured skills after the technological workshop	100%	-	-	-	-
Willingness to cooperate the acquired knowledge and technology	98-100%	-	-	-	-
Building cooperation on the acquired knowledge and technology	100%	-	-	-	-
Support for use of the system to cope with flooding or other disasters	82-100%	-	-	-	-

increasingly convincing that the participants were certain to apply the knowledge and skills to the flood situation preparedness.

For the technological workshop, the results showed that they managed to determine the reference station, to increment the flood level, to set the reference station, and to increment the height of the flood level at least at the moderate level and showed none at little or least levels. That may have led to the assumption that they could use the system at ease and could have had positive implication where the building cooperation was concerned. Indeed, that linked to the fact that 100% of the respondents agreed with the use of the flood simulation system in terms of building cooperation through knowledge

and technology exposure, collaboration with relevant agencies, and support for the implementation of the flood simulation system.

It was gathered from the literature review that the weak liaison to serve upper and lower actors indicated the lack of coordination to the need for the process in that every engaging party could participate to achieve successful disaster prevention and mitigation. When the activity was successfully organized, the questionnaire commonly used to extract the required essence should undergo the IOC analysis for questionnaire liability. The contents should not discard the point where community leaders would react differently to different disasters and how their authority, knowledge, and social capital would interact.

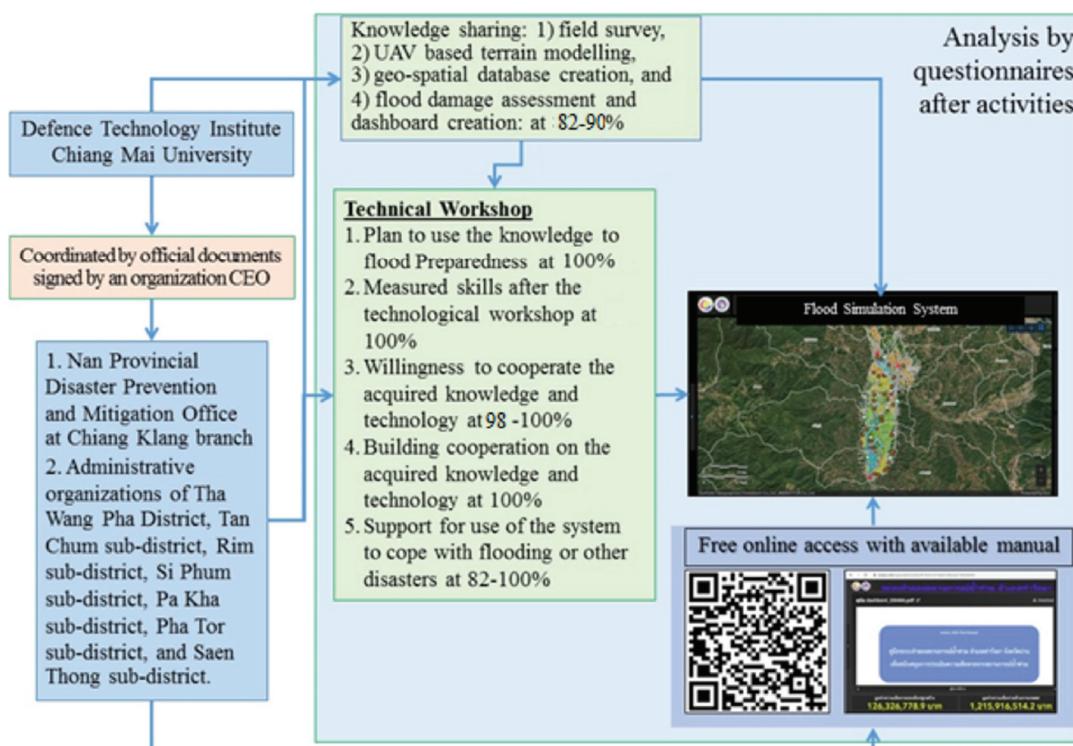


Figure 5. The new process for public participation of local administrative organizations

Thus, all the results summarized above were affirmative that the flood simulation system could be used as the tool among decision makers such as the officials of Chiang Klang Branch and the local authorities in flood situation preparedness and risk reduction. The activities also hugely contributed to the creation of the new process for invited and focus-group public participation of local administrative organizations such as those in Tha Wang Pha District, Nan Province as illustrated in Figure 5. The system was the product previously delivered to the military unit for test and evaluation and used in this current study as the tool for formally coordinated public participation.

The official coordination among relevant agencies and institutes was the key for the successfully organized activities. Official documents signed by organization CEOs often viewed as the enormous document workload but strictly exercised in this study acted as the evidence that all involved parties were formally committed and to act accordingly to arrive at the same goal of public services for flooding situations. The analysis conducted on the questionnaires after the activities played the major role in accomplishing the success of the knowledge and technology transfer activities of the flood simulation system.

A few drawbacks of the flood simulation system were realized and periodically conveyed to the participants while the activities being run. The 2021 data collection especially for the field survey of the

construction, buildings and seasonal agricultural products may have carried temporal errors to yield current damage assessment at time of using the simulation system, making the seasonal updates of land use map containing agricultural products necessary and the topic worthy of further investigation. In addition, the water level was mandatory to input each incremental 20 cm interval from the reference station to avoid clumsy online processing of the simulation, making the damage assessment to yield average values at that specific input water level not anywhere in between. The principles of modelling to simulating that involve sampling to projecting may be excusable in this study. In this regard, the participants were aware and reminded early in the knowledge sharing activity.

6. Conclusion and Recommendations

The knowledge and technology transfer was the process adopted to bring the flood simulation system to the door steps of the 7 local administrative organizations in Tha Wang Pha District, Nan Province. The district is the first floodplain with repeated flooding problems to have either directly or indirectly effected 50,519 people. The knowledge sharing and technology transfer via technical workshop were introduced to create the new way for 7 local administrative organizations to represent as focus-group public participation in the flooding situation preparedness. Official documents were central to all the necessary coordination and to have all

involved parties committed to the same goal of the local administrative preparedness for flooding situation.

Having the respondents hugely valued good relationships with other government agencies, worked with and through the network of cooperation to cope with the flooding situation, and required the cooperation of many agencies, other local administrative organizations of Nan Province especially those located along both sides of Nan river banks should have the similar and extended simulation system to push the results to a larger extent. Where the respondents vastly agreed with the use of the system for building cooperation through knowledge and technology exposure, required the collaboration with relevant agencies, and encouraged the support for the implementation of the flood simulation system, the extension and suggestion of this best practice should be recommended to other local administrative organizations.

From an insight into the flood simulation system, the UAV based terrain modeling and geo-spatial database creation were technology dependent, and the focus was prompted to the need of the field survey, and flood damage assessment and dashboard creation. The latter two processes had to be equipped with seasonal changes as a result of agricultural and manmade activities. Frequent field survey is suggested in order for the flood damage assessment and dashboard creation

to yield accurate and up-to-date results. A complete circle of public participation throughout the simulation process is seen to reflect resilience and sustainability in disaster preparedness and risk reduction. The damage assessment and dashboard creation need to really enjoy high performance computation in order to make the utmost use of ultra-fine resolution of the UAV terrain modelling. The water level being allowed for users to input incrementally much less than 20 cm interval from the reference station will arguably yield even more accurately averaged values, that is, applying finer modelling to achieve more realistically simulating results.

Acknowledgments

The research for this article was funded by National Research Council of Thailand (NRCT) (grant no. N71A660323). The authors acknowledge the enormous support of Defence Technology Institute (DTI), Chiang Mai University and 7 local administrative organizations in Tha Wang Pha District, and Nan Provincial Disaster Prevention and Mitigation Office at Chiang Klang branch, and, last but not least, gratefully admire the respondents of 7 local administrative organizations of Tha Wang Pha District for their time and effort to attend the activities. Hopefully, their data and information provided on the questionnaires were a source of invaluable contribution to next R&D projects of disaster management.

References

Abdulkasan, A., Arguillas, D., Espinosa, F., & Pardillo, J. (2021). The extent of public participation in disaster risk reduction and management of Cotabato City, Mindanao, Philippines. *International Journal of Humanities Social Sciences and Education (IJHSSE)*, 8(12), 8–22. <https://doi.org/10.20431/2349-0381.0812002>

Adams, R. M., Evans, C., Wolkin, A., Thomas, T., & Peek, L. (2022). Social vulnerability and disasters: Development and evaluation of a CONVERGE training module for researchers and practitioners. *Disaster Prevention and Management: An International Journal*, 31(6), 13–29. <https://doi.org/10.1108/DPM-04-2021-0131>

Balci, O. (1998). Verification, validation, and testing (Chapter 10, pp. 335–393). In J. Banks (Ed.), *Handbook of simulation: Principles, methodology, advances, applications, and practice* (pp. 335–393). New York: John Wiley & Sons, Inc.

Banks, J. (1998). Principles of simulation (Chapter 1, pp. 1–30). In J. Banks (Ed.), *Handbook of simulation: Principles, methodology, advances, applications, and practice* (pp. 1–30). New York: John Wiley & Sons, Inc.

Bibi, T., Nawaz, F., & Abdul, A. (2018). Flood risk assessment of River Kabul and Swat catchment area, District Charsadda, Pakistan. In A. A. Rahman & H. Karim (Eds.), *Proceedings of the International Conference Geomatics & Geospatial Technology (GGT 2018)*, 4–5 September 2018, ParkRoyal Hotel, Kuala Lumpur, Malaysia (pp. 17–25).

Bryman, A. (2007). The research question in social research: What is its role?. *International Journal of Social Research Methodology*, 10(1), 5–20. <https://doi.org/10.1080/13645570600655282>

Duan, R., Liu, J., Wang, C., & Wei, G. (2020). Influencing factors of public participation in meteorological disaster prevention and mitigation. *Sustainability*, 12(8), 3108. <https://doi.org/10.3390/su1203108>

Gultom, D. I. (2016). Community-based disaster communication: How does it become trustworthy?. *Disaster Prevention and Management*, 25(4), 478–491. <https://doi.org/10.1108/DPM-02-2016-0026>

Hsu, C.-W. (2017). What should we do? The after-action review of village heads' information seeking and decision making during the unprecedented Kaohsiung blast. *Disaster Prevention and Management*, 26(5), 582–596. <https://doi.org/10.1108/DPM-03-2017-0059>

Ismail, F. K. M., & Zubairi, A. M. B. (2022). Item objective congruence analysis for multidimensional items: Content validation of a reading test in Sri Lankan University. *English Language Teaching*, 15(1), 106–117. <https://doi.org/10.5539/elt.v15n1p106>

Kamarudin, K. H., Razak, K. A., Hasan, R. C., Wan Mohd Rani, W. N. M., Kamal, F., Omar Chong, N., & Sardi, F. (2018). Disaster risk reduction at community level: Action planning approach. In A. A. Rahman & H. Karim (Eds.), *Proceedings of the International Conference Geomatics & Geospatial Technology (GGT 2018)*, September 4–5, 2018, ParkRoyal Hotel, Kuala Lumpur, Malaysia (pp. 259–263).

Khamutova, M. V., Rezchikov, A. F., Kushnikov, V. A., & Ivashchenko, V. A. (2021). Simulation model for determining the flood effects characteristics. *IFAC-PapersOnLine*, 54(13), 103–106. <https://doi.org/10.1016/j.ifacol.2021.10.427>

Lucett, E. (2002). *Public participation in disaster mitigation in Cambria, CA* (Master's thesis). California Polytechnic State University. https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1011&context=nres_rpt

Marchezini, V., Porto De Albuquerque, J., Pitidis, V., Rudorff, C., Lima-Silva, F., Klonner, C., & Martins, M. (2022). Flood risk governance in Brazil and the UK: Facilitating knowledge exchange through research gaps and the potential of citizen-generated data. *Disaster Prevention and Management: An International Journal*, 31(6), 30–44. <https://doi.org/10.1108/DPM-01-2022-0016>

Musselman, K. J. (1998). Guidelines for success (Chapter 22, pp. 721–740). In J. Banks (Ed.), *Handbook of simulation: Principles, methodology, advances, applications, and practice* (pp. 721–740). New York: John Wiley & Sons, Inc.

Samdaengchai, B., Sinnung, S., Meena, P., & Laos, T. (2022). An analysis on disasters caused by flood via data from SENTINEL-1 satellite. *International Journal on Technical and Physical Problems of Engineering (IJTPE)*, 14(2), 22–26.

Tamang, S. L., Saikhom, V., Singh, N. R., & Bhutia, Z. T. (2014). 3D flood simulation system using RS & GIS. *International Journal of Engineering Research & Technology (IJERT)*, 3(5), 2218–2222.

van den Bout, B., Jetten, V. G., van Westen, C. J., & Lombardo, L. (2023). A breakthrough in fast flood simulation. *Environmental Modelling & Software*, 168, 105787. <https://doi.org/10.1016/j.envsoft.2023.105787>

Yeo, J., & Comfort, L. K. (2017). An expected event, but unprecedented damage: Structure and gaps of large-scale response coordination of the 2011 Thailand floods. *Disaster Prevention and Management: An International Journal*, 26(4), 458–470. <https://doi.org/10.1108/DPM-02-2017-0048>

Classification of Guanxi Mandarin Orange Grades using Machine Vision Algorithms

Fulian Huang¹, Jialin Xie², Shijun Jie³, Nattawoot Suwannata^{1,*}

¹ Faculty of Engineering, Mahasarakham University, Mahasarakham 44150, Thailand

² Faculty of Electrical and Electronic Engineering, Guilin University of Technology, Guilin, Guangxi 541000, China

³ Faculty of Mechanical and Control Engineering, Guilin University of Technology, Guilin, Guangxi 541000, China

* Corresponding author: Nattawoot Suwannata, nattawoot.s@msu.ac.th

Received:

12 September 2024

Revised:

25 December 2024

Accepted:

26 March 2025

Keywords:

Classification, Defect, Detection, Flaw, Machine Vision System, Mandarin Orange, Skin

Abstract: This article proposes a method for categorizing Mandarin orange grades based on Chinese standards using a computer vision system that integrates both hardware and software components. A mechanical roller-flipping device adjusts the Mandarin orange's position in various orientations. Subsequently, a machine vision system acquires thirty photographs of mandarin orange skin from various viewpoints and employs many processing approaches, such as image acquisition, blob analysis, preprocessing, segmentation, and feature extraction. The process of classifying oranges involves applying techniques such as morphology, median filtering, and the Fourier transform to identify and analyze pixels that represent imperfections on the surface of the orange. Then the faulty pixels are transformed into the diameter and the area of the faults in order to classify them for grading. The experiment demonstrates that the diameter and rectangular regions can be utilized to categorize Mandarin oranges into three grades: Special Grade, Grade 1, and Grade 2. Grade 3 can be determined by measurement of the diameter and calculation of the percentage of the faulty region in the orange peel. The overall recognition accuracy by the system is 87.5%. This experimental method can accurately identify defects in the skin of oranges, reducing labor costs and the error rate of manual identification for enterprises.

1. Introduction

Citrus cultivation covers an area of 1.85 million mu (123,333 hectares) in Guangxi, China, yielding an output of 4.7 million tons. China is the foremost global producer of citrus fruits and maintains a substantial role as an exporter of oranges (Spreen *et al.*, 2020). Nevertheless, the primary challenge is devising a method to differentiate ill or contaminated oranges from high-quality oranges, with the aim of maintaining quality control over mandarins throughout the whole process. The key types of diseases that impact citrus include oil spot disease, penicillium, scab disease, Mal secco disease, anthrax, melanin diseases, brown spot disease, phytophthora, and citrus ulcers (Garg *et al.*, 2023; Batuman *et al.*, 2020). This article primarily concentrates on the visual categorization and arrangement of orange skin resulting from melanosis and melanin synthesis.

Machine vision is currently a key technology in the field of intelligent devices and automation (Kamalakannan & Rajamanickam, 2012; Dey, Biswas, & Le, 2023; Sangkatip, 2024). In order to improve the efficiency of orange defect detection and to avoid the following shortcomings of manual inspection: 1) Inefficiency. 2) High error rate. 3) Impact on the well-being of inspectors. 4) Citrus is easily damaged (Huang *et al.*, 2021). In this study, taking the skin characteristics of citrus as the research object, a hardware system consisting of an industrial camera (Hikvision Industrial Camera MV-CU013-21UM), a conveyor belt,

and a computer was constructed, and the photographs captured by the industrial camera were transmitted to the computation, and the Halcon software was used to process the images for image processing, and according to the Chinese orange epidermal defects evaluation criteria, and finally output the grade of the detected oranges. Compared with the existing thesis design, the main innovation of this thesis is the use of hardware with rollers that can automatically flip Mandarin orange, and the camera automatically captures 30 photos of Mandarin orange with different sides for analysis. Through this method of detection, it can greatly save the labor cost and improve the detection efficiency.

2. Literature Review

In recent years, the advancement of machine vision research has led to a significant increase in its potential uses in agriculture. Chen, Wu, & Cui (2018) first applied preprocessing and segmentation on the orange photographs to extract their relevant features. Subsequently, they utilized neural networks to automatically classify orange grades. The classification strategy achieves an accuracy of 94.38%. Dharmasiri & Jayalal (2019) successfully detected passion fruit illness with an accuracy rate of 79% using the Support Vector Machine (SVM) algorithm. They also classified the disease environment into three categories: mild, moderate, or severe. Prabhu, Likhitha, & Sangeetha (2021) suggested a classification model that was 97% accurate after looking at how well KNN, SVM, and DT classifiers did

at putting oranges into groups. Dheeraj *et al.* (2023) utilized convolutional neural networks to analyze the imperfections in okra. They achieved an impressive accuracy of 98.63% for VGG-16. Hafiz & Fatema (2023) achieved a final accuracy of 96.17% in identifying wax apple disease by utilizing machine learning approaches to forecast preprocessed pictures. In the study, Mojumdar & Chakraborty (2021) got an overall classification accuracy of up to 82.3% by taking 13 features from segmented photos and using the gray scale co-occurrence matrix in image processing. Behera, Jena, Rath & Sethy (2018) utilized multi-class SVM and K-means clustering to classify citrus illnesses with 90% accuracy. These techniques, basically, require preprocessing the image before adding the algorithm for training. This design is analyzed based on the captured images and combines the image processing methods from the above literature to finalize the defect detection.

Until recently, machine vision technology has not employed many photographs of each fruit to identify defects in citrus or other crops. Hence, the analytical results do not cover the complete surface of the fruit. This article presents a technique for taking

comprehensive photographs of whole oranges utilizing an automated rolling apparatus. Afterward, all pictures underwent image processing procedures to detect imperfections in the texture of the orange peel. The least desirable results from each shot were then compared to categorize the quality of the oranges based on Chinese criteria.

3. Methodology

3.1 Orange Grade Classification Standard

Currently, the orange industry and the Chinese government have established guidelines for the Mandarin orange classification. The national standard, GB/T 40752-2021 (2021), holds significant importance in this classification. Table 1 shows the spot diameter of the Mandarin orange according to the Chinese standard.

3.1 Machine Vision Inspection Systems

The techniques for detecting a flaw in Mandarin oranges are based on machine vision technology. Specific image processing algorithms are used to detect the size of the

Table 1. Defected spot diameter of Mandarin orange

Grade	Spot diameter
Special grade	No flower skin, no festering, no scars.
Grade 1	D > 0 - 1.6 mm
Grade 2	D > 1.6 – 7 mm.
Grade 3	D > 7 mm. Defect area > 10%

defect diameter from the industrial camera-captured pictures and then determine the grade of mandarin oranges according to Chinese standards. Figure 1 shows the Mandarin orange machine vision detection system's hardware. The process of automatic defect detection is as follows:

1) The conveyor system loads the Mandarin oranges onto the rollers upon activation. The light source automatically turns on. While the roller is rolling, the industrial

camera captures pictures of each Mandarin orange from various angles, as shown in Figure 2.

2) The computer processes the images of 30 pictures from various angles for defect detection using image processing algorithms written by Halcon software.

3) The classification of orange grades is determined by comparing the diameter size of defects in pixels with the actual diameter in millimeters, as indicated in Table 1.

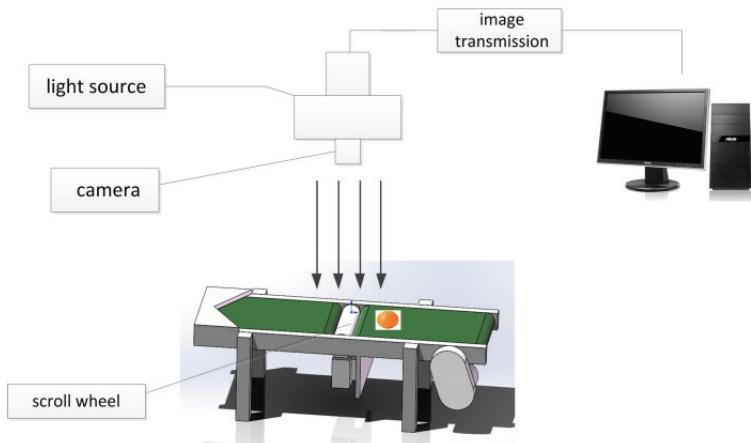


Figure 1. System for classifying orange grades

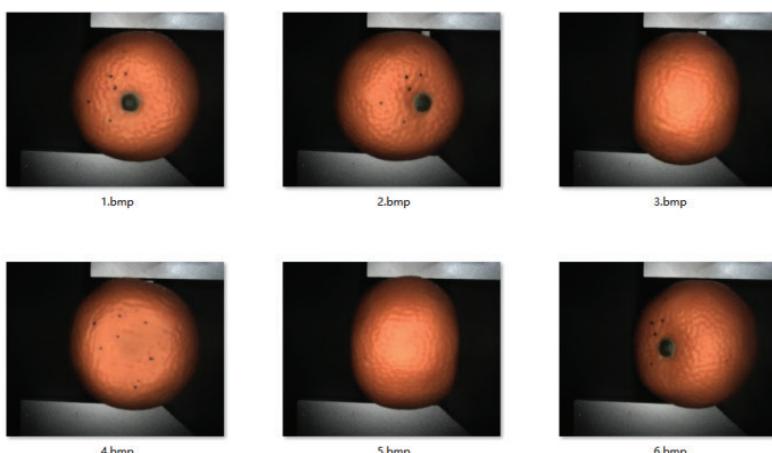


Figure 2. Photos taken by mandarin Orange under industrial cameras
(6 representative images from the 30 orientations)

3.3 Hardware Selection

The selection of hardware for detecting defects in Mandarin Oranges, such as lenses, cameras, and industrial grade light sources, is determined by specific needs (Li *et al.*, 2013).

1) The Mandarin Orange defect detection system benefits from the use of LED ball ring lights because of their high light intensity and compact size, making them the preferred lighting system and illumination approach. Position the industrial camera in the exact same spot as the light source and examine the vertical illumination of the light source from top to bottom. Simultaneously, change the aperture to the appropriate setting and secure it in place (Xu, Sun, & Ye, 2020).

2) In the machine vision system, the camera plays a crucial role in capturing and interpreting the reflected light from the object. The device turns light into analog signals and subsequently changes the analog signals into digital signals for transmission to other devices Manish, Venkatesh, & Ashok, 2018). The Hikvision industrial camera model MV-CU013-21UM is chosen due to its ability to satisfy the demands of visual analysis with its high speed and precision. The selected lens is the MVL-HF0828M-6MPE model, which features a focus mechanism. The image exhibits high clarity and excellent contrast, designed for a field of view measuring 203mm × 170mm. The lens's lower end has a minimum object

distance of 200 mm, as determined by the chosen industrial camera. A resolution of 1.3 megapixels (1248 × 1024, with a pixel size of 4.8 µm × 4.8 µm) may attain an accuracy of 0.038 mm per pixel.

3.4 Software Selection

Image Advances in computer vision technology constantly upgrade and enhance image processing techniques and tools. The Halcon development environment provides a comprehensive visual processing library that includes a wide range of both basic and advanced image processing techniques. These techniques include everything from capturing pictures from different hardware devices to implementing complex pattern-matching algorithms. In addition, it provides several tools often utilized in machine vision applications, including tools for file processing, data analysis, algorithm operations, and classification (Luo *et al.*, 2011). This study developed an image processing method utilizing the Halcon development environment to accurately detecting the size, color, and imperfections of oranges.

4. Orange grade classification Algorithms

This study uses image processing algorithms to identify the defect areas on Mandarin orange skin in the original image, as shown in Figure 3.

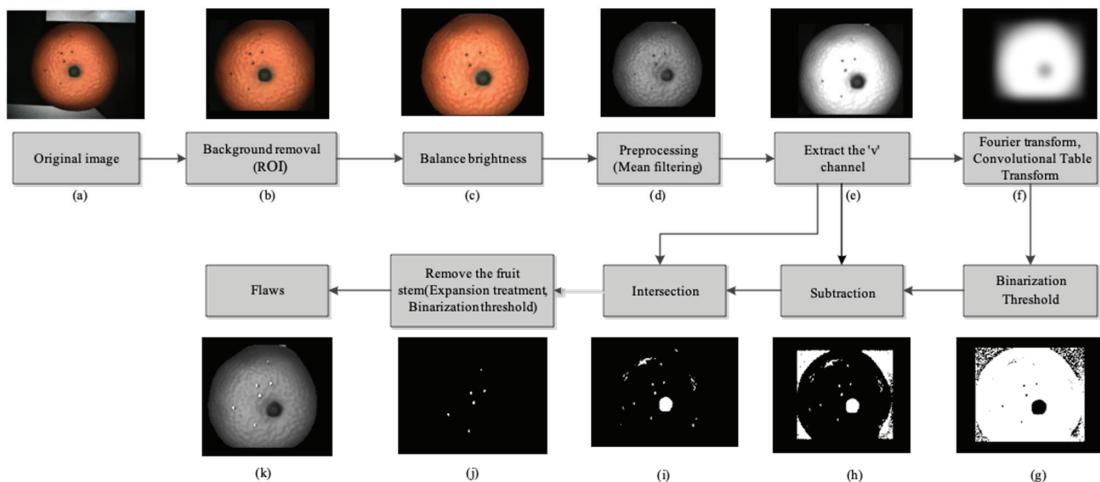


Figure 3. Procedure for identifying areas of defects on orange skin

4.1 Background Removal

Computer vision utilizes blob detection algorithms to locate sections in a digital image that display noticeable characteristics, such as differences in brightness or color, compared to the surrounding areas. Essentially, a blob refers to a distinct portion of an image that exhibits uniform or almost uniform attributes, resulting in all the pixels within it being similar to one another, as shown in Figure 3 (a).

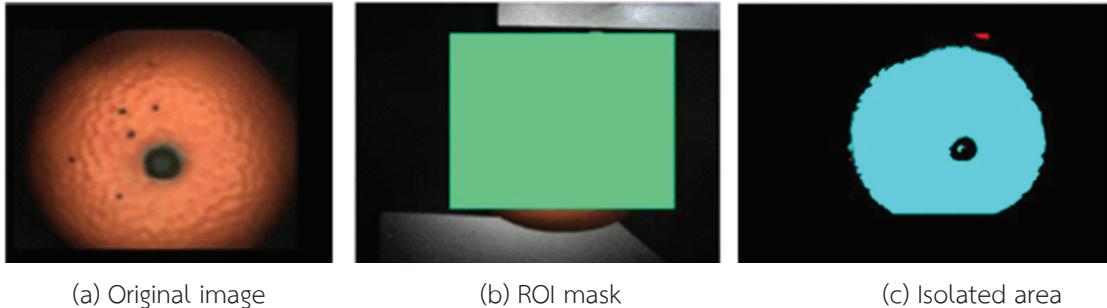
There are three sequential steps in the Halcon to separate the Mandarin orange from the background:

1) Determine the appropriate threshold for selecting the region of interest, which involves converting the image to binary format. Examine the gray-scale histogram and adjust the threshold value within the 0 to 255 range (Bin & Lei, 2022). The equation (1) can be used to determine the gray-scale value of the color image. This calculation uses the thresholds T_1 and T_2 , along with the

coordinates $I(x, y)$ (Li & Du, 2023). The empirical threshold value for an orange picture falls between the range of 60 to 255.

$$g(x, y) = \begin{cases} 1, & T_1 \leq I(x, y) \leq T_2 \\ 0, & \text{others} \end{cases} \quad (1)$$

where:


$I(x, y)$ is Intensity of the pixel at (x, y) .

T_1, T_2 is Minimum and maximum threshold values.

$g(x, y)$ is Binary output (1 for blob, 0 otherwise).

2) The area of interest (ROI) is chosen and the algorithm uses connected component labeling with either 4-connectivity or 8-connectivity.

4-connectivity: A pixel is connected if it shares a side with another pixel.

(a) Original image

(b) ROI mask

(c) Isolated area

Figure 4. Blob analysis rendering

The labeled regions are the blobs, which are mathematically defined as sets of connected pixels, as depicted in Figure 4(b).

3) The varying colors on the edges indicate distinct areas of noise. Open the feature histogram and select “area” in the feature selection and code generation tab to filter out isolated areas (Ji *et al.*, 2018), as shown in Figure 4 (c).

Determining the ratio of defects present on the entire surface is crucial for categorizing defects on the fruit’s skin. When blobs are detected, various features is computed using geometric and statistical equations:

3.1) Area: The area of a blob is the number of pixels in the region as shown by Equation (2).

$$\text{Area} = \sum_{(x,y) \in R} 1 \quad (2)$$

where R is the region corresponding to the blob.

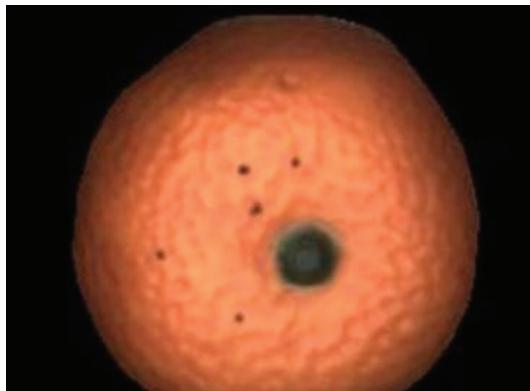
3.2) Centroid: The centroid (x_c, y_c) of a blob is calculated as:

$$x_c = \frac{\sum_{(x,y) \in R} x}{\text{Area}}, \quad y_c = \frac{\sum_{(x,y) \in R} y}{\text{Area}} \quad (3)$$

where

x_c, y_c are centroid coordinates of the blob.

x, y are coordinates of each pixel in the blob.


R is the set of pixels belonging to the blob region.

Area is the total number of pixels in the blob, given by Equation (2).

The varying colors on the edges indicate distinct areas of noise (Ji *et al.*, 2018), as shown in Figure 4(c).

4.2 Balance Brightness

In many cases, brightness adjustments are needed the brightness of the acquired images due to environmental factors. The division technique is employed in this design (Dworkin & Nye, 2006). If $I(x,y)$ is the input image and $B(x,y)$ is the estimated background brightness. The balanced image $I'(x,y)$ can be calculated by using Equation (4), and the result is shown in Figure 5.

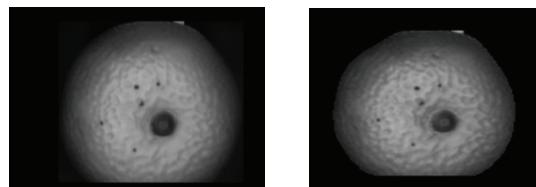


Figure 5. Illustrates the use of division to balance

$$I'_{(x,y)} = \frac{I_{(x,y)}}{B_{(x,y)}} \quad (4)$$

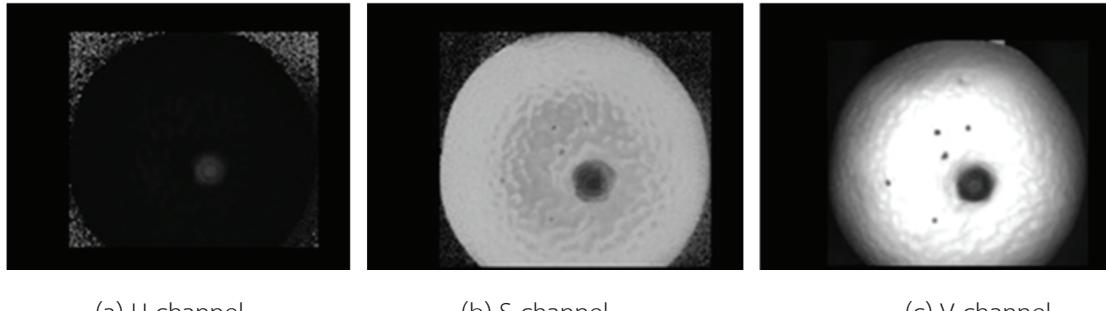
4.3 Preprocessing (Mean Filtering)

Image preprocessing is a fundamental step in image segmentation and feature extraction (Heena *et al.*, 2020). The collected images are often affected by noise, so they must be pre-processed. An industrial camera captures a moment's worth of citrus photos on a roller. The usual filtering methods include Gaussian filtering, mean filtering, median filtering, and other methods (Lu & Li, 2024). This article adopts mean filtering. Mean filtering also belongs to a type of linear smoothing filtering, which is suitable for images that emphasize the overall pixel structure while ignoring detailed information (Othman *et al.*, 2020). The principle of mean filtering is to use a scanning window to scan an image. When the window size is determined, the mean gray value of all pixels in the neighborhood of the pixel that coincides with the center of the window is taken as the gray value

(a) Before filtering

(b) After filtering

Figure 6. Compares the results before and after applying a filtering process


of that point (Zhao *et al.*, 2016). Assuming $f(x,y)$ is a noisy picture and $g(x,y)$ is the filtered picture, the mathematical expression for the filtering result is Equation (5).

$$g(x,y) = \frac{1}{N} \sum_{(x,y) \in M} f(x,y) \quad (5)$$

This design utilizes a mean filter, and the Figure 6 displays a visual comparison of the average filtering effect.

4.4 Identifying Defects (Extract the “V” Channel)

After dividing the brightness balanced image into three channels, “R,” “G,” and “B,” we observed that the red channel exhibited more prominent image defect characteristics. Consequently, we divided the image containing the red channel characteristics into “HSV,” where “H” stands for hue, “S” for saturation, and “V” for brightness. The study observed that the “V” channel displayed flaws more clearly than the other two channels (Jolly & Raman, 2016), as illustrated in Figure 7.

(a) H channel

(b) S channel

(c) V channel

Figure 7. "HSV" rendering

While the decomposition of the image itself does not directly involve complex mathematical equations, it can be described using the basic concept of how each color channel in an RGB image is extracted.

Each pixel point of the color image is decomposed into a red channel $I_R(x, y)$, a green channel $I_G(x, y)$, and a blue channel $I_B(x, y)$. The Equation (6) displays the specific formula.

$$Balance(x, y) = ((I_R(x, y), I_G(x, y), I_B(x, y))) \quad (6)$$

The equation of this operation can be expressed as the conversion of RGB to HSV color space. the Equations (7-9) of RGB to HSV conversion are:

Hue, $H(x, y)$:

$$H(x, y) = \begin{cases} 0 & (Condition 1) \\ 60^\circ \times \frac{G(x, y) - B(x, y)}{\Delta} \bmod 360 & (Condition 2) \\ 60^\circ \times \left(2 + \frac{B(x, y) - R(x, y)}{\Delta} \right) & (Condition 3) \\ 60^\circ \times \left(4 + \frac{R(x, y) - G(x, y)}{\Delta} \right) & (Condition 4) \end{cases} \quad (7)$$

where

Condition 1: $\Delta = 0$;
Condition 2: $I_R(x, y) = \max(I_R(x, y), I_G(x, y), I_B(x, y))$,
Condition 3: $I_G(x, y) = \max(I_R(x, y), I_G(x, y), I_B(x, y))$,
Condition 4: $I_B(x, y) = \max(I_R(x, y), I_G(x, y), I_B(x, y))$,
 $\Delta = \max(I_R, I_G, I_B) - \min(I_R, I_G, I_B)$.

Saturation, $S(x, y)$:

$$S(x, y) = \begin{cases} \frac{0}{\Delta} & Condition 1 \\ \frac{\max(I_R(x, y), I_G(x, y), I_B(x, y))}{\Delta} & Condition 2 \end{cases} \quad (8)$$

where

condition 1: $\max(I_R(x, y), I_G(x, y), I_B(x, y)) = 0$,
condition 2: $\max(I_R(x, y), I_G(x, y), I_B(x, y)) > 0$.

Value, $V(x, y)$:

$$V(x, y) = \max(I_R(x, y), I_G(x, y), I_B(x, y)) \quad (9)$$

The specialized formula for image subtraction utilized in the research encompasses the application of the "V" channel for definitive defect detection, subtraction for defect extraction, and the subtraction of three images corresponding to "R", "G", and "B".

Equation (10) delineates the operation that executes a pixel-by-pixel subtraction of the Blue (B) and Green (G) components.

$$Sub_{G(x,y)} = 20(B(x,y) - G(x,y)) - 200 \quad (10)$$

The equation yields an image difference. The obtained results can be employed to identify features in the image to generate an approximate defect map of Mandarin oranges, as illustrated in Figure 8.

4.5 Fourier Transform

Through Fourier transform, noise components in images, especially periodic noise, can be identified. Then, remove these noise components in the frequency domain to restore the image clearly. Fourier transform-based image denoising focuses on the separate frequency band information of the picture and noise to achieve image denoising (Ali & Pervaz, 2013). Typically, the

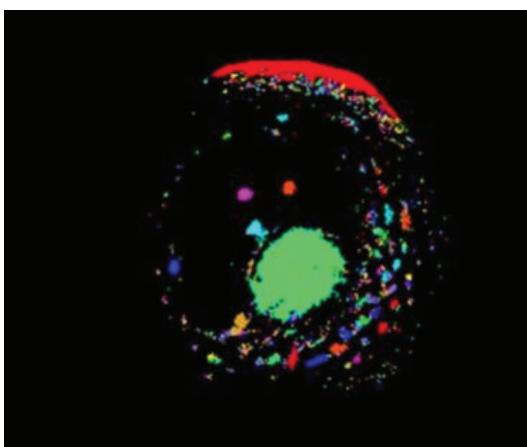


Figure 8. Rough defect effect

high frequency spectrum distributes noise and edge information, while the low frequency range splits picture information.

The equation of Fourier transform is shown in Equation (11).

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(\frac{ux}{M} + \frac{vy}{N})} \quad (11)$$

where

x, y are time domain variables.

u, v are variables in the frequency domain.

M and N are the image's length and width.

$f(x,y)$ represents the two-dimensional plane image of row N and column M .

$F(u, v)$ is a Fourier transform.

Figure 9 shows Fourier transform effect after convolution.

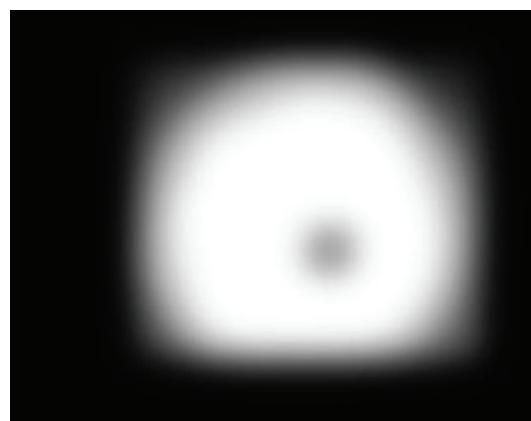


Figure 9. Convolutional effect of Fourier transform

4.6 Binarization Threshold

Binary thresholding is an image processing technique that converts grayscale images into images containing only two pixel values, typically black (0) and white (255), or other specified values. This process relies on selecting an appropriate threshold to classify pixel values into two categories.

The equation of Binary thresholding is

$$B(x,y) = \begin{cases} 255, & I(x,y) \geq T \\ 0, & I(x,y) < T \end{cases} \quad (11)$$

where

$I(x,y)$ is Intensity of the pixel at (x,y) .

T is the threshold value.

$B(x,y)$ is Binary output (1 for blob, 0 otherwise).

Figure 10 displays the histogram of the binarization threshold obtained from an orange image.

4.7 Subtraction

The Subtraction is utilized to perform the subtraction of two images. The gray values of the removed image and the input image are denoted as g_1 and g_2 , respectively, and will be transformed accordingly.

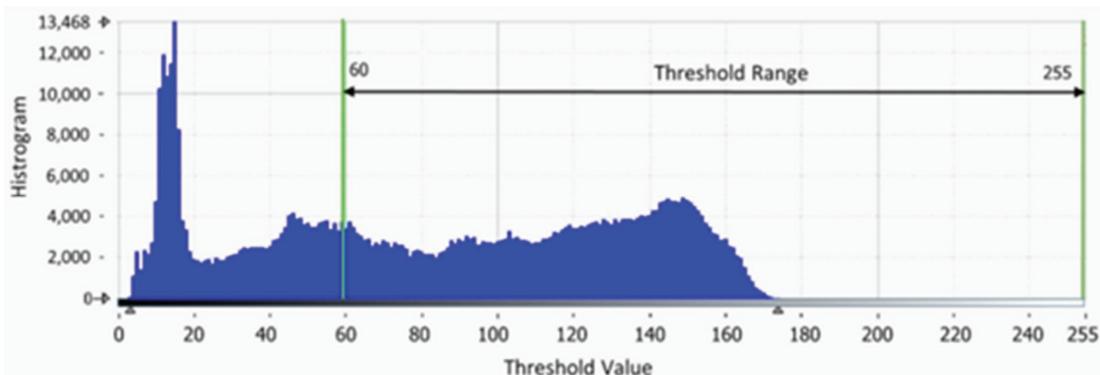


Figure 10. Binarization threshold histogram

Figure 11. Image after subtraction

$$g' = (g_1 - g_2) * \text{Mult} + \text{Add} \quad (12)$$

The image obtained after the subtraction process is shown in Figure 11.

4.8 Image Intersection

Image intersection refers to the set of pixel points or regions that are common to two image sets A and B, denoted as $A \cap B$. In the field of image processing, this usually means comparing the pixel data of two images on a point-by-point basis, to find the points or regions that are the same in terms of location and whose pixel values satisfy a specific condition (e.g., are equal or satisfy a certain relationship).

4.9 Removing Fruit Stems

Inflation, commonly referred to as the dilation of an image, is a mathematical procedure used to identify the local maximum value. Mathematically speaking, dilation or erosion can be defined as the convolution

of picture A with kernel B. Determine the highest pixel value inside the coverage area of kernel B and apply this value to the pixel indicated by the reference point, thereby incrementally expanding the highlighted area in the image (Rahman *et al.*, 2017).

Dilation in morphological operations can be represented mathematically as:

$$R'(x,y) = \max_{(u,v) \in S} R(x-u, y-v) \quad (13)$$

where

$R(x,y)$ is the input binary region (the set of pixels defining the region).

S is the structuring element, which is a circle in this case.

(u,v) is pixels in the structuring element.

$R'(x,y)$ is the output region after dilation.

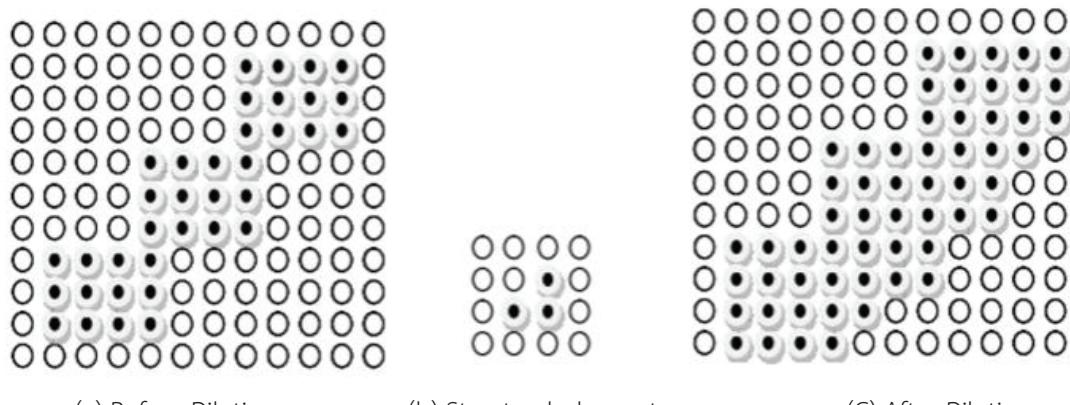
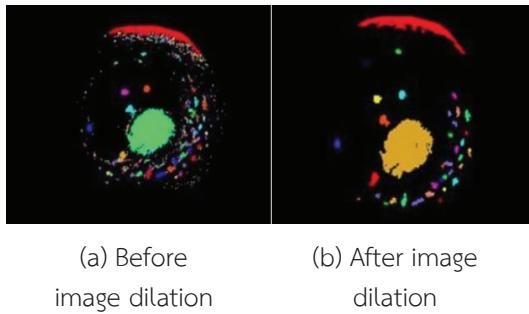



Figure 12. Dilation schematic diagram (Chen, 2019)

Figure 13. Comparison before and after dilation

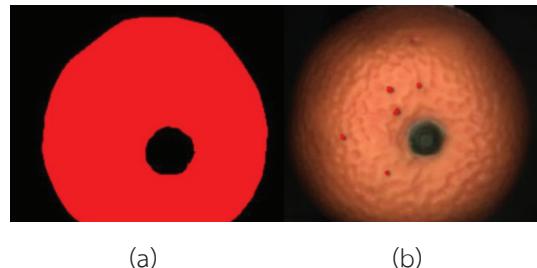
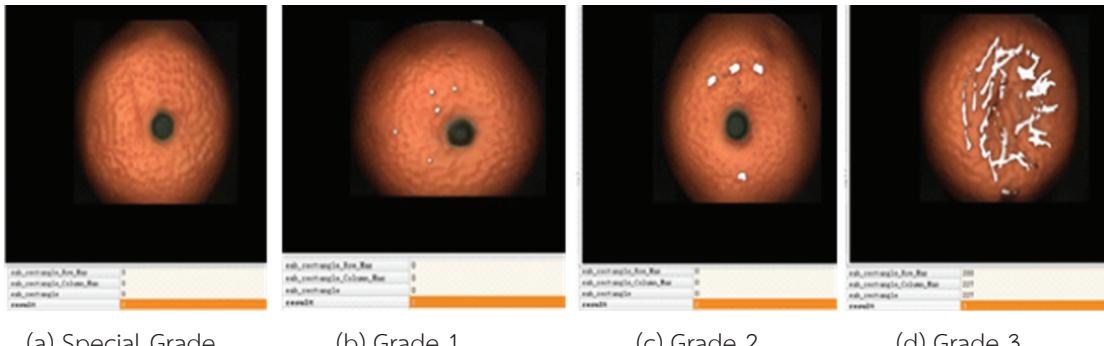

Figure 12 shows the schematic diagram illustrating the process of dilatation, comparing the before and after states.

Figure 13 illustrates the contrast between the orange image's original and post-dilation version.

Finally, in order to generate an accurate map of fault locations, the process involves selecting relevant features, reducing the number of pictures, and removing fruit stems (Rong, Rao, & Ying, 2017), as shown in Figure 14 (a) and (b).

5. Results and Discussions

The primary aim of this article is to compare 30 photographs of each fruit using advanced image analysis techniques such as blob analysis, frequency domain analysis, image enhancement, and morphology. These techniques involve processes such as image noise reduction, image filtering, image


Figure 14. Defect identification

segmentation, ROI extraction, Fourier transform, and a combination of subtraction and addition.

The main goal is to extract any defects present in the fruit. The Mandarin orange's quality level is calculated by selecting the highest value from an array that includes the defect results obtained from examining 30 photographs of each Mandarin orange.

Figure 15 displays the “values” which indicate the outcomes of defect identification for each of the 30 images obtained from a Mandarin Orange fruit. The “Max” represents the final result, which is the worst-quality image among the identified Mandarin Orange photos. Figure 16 shows the results of 4 types of orange classification that were captured from developed software. The designation ‘0’ is used to denote fruits of special grade, whereas the designation “1” is used for first-level fruits, “2” for secondary fruits, and “3” for third-level fruits. Figure 16 also depicts the distinct flaws observed in various orange grades.

Figure 15. Output results

Figure 16. Defect identification grade results from software

Defects on mandarin oranges is quite intricate, as indicated by the test results. However, the algorithm is able to accurately detect and categorize mandarin oranges with blemishes into four categories according to the specified requirements, as long as they fall within the algorithm's acceptable range. Table 2 shows the four varieties of mandarin oranges available on the market that meet the testing criteria. Using the calibrated scale of the camera, it has been determined that the length of 1 pixel is 0.038 mm. To clarify, a measurement of 1 mm. is approximately equivalent to 26 pixels.

This experimental method will greatly improve the efficiency compared to manual detection, but although it can accurately detect the size of defects, the long time

required for the roller to flip and collect 30 photos will reduce work efficiency. The actual production process can reduce the number of photos collected. And in complex and highly variable datasets, this method is not particularly effective. It can be combined with deep learning algorithms for analysis, which can quickly improve detection efficiency and accuracy of defect levels.

6. Conclusion

This article outlines the process for categorizing the quality of Mandarin oranges using a machine vision system. The system consists of a hardware and software component. The gear was specifically engineered to snap thirty images of the orange peel from various perspectives,

Table 2. Comparative analysis of experimental and validation results

No	Grade	Variable	Standard size of defect		Measured defect size	
			pixel	mm.	pixel	mm.
1	Special grade	Circular_diameter_max	0	0	0.00	0.00
		Rectangle_max	0	0	0.00	0.00
2	Grade 1	Circular_diameter_max	> 0 to 40	> 0 to 1.52	30.08	1.14
		Rectangle_max	> 0 to 40	> 0 to 1.52	53.16	2.02
		Circular_diameter_max	> 40 to 180	> 1.52 to 6.84	60.14	2.29
		Rectangle_max	≤ 40	≤ 1.52	39.00	1.48
3	Grade 2 or	Circular_diameter_max	≤ 40	≤ 1.52	19.20	0.73
		Rectangle_max	> 40 to 180	> 1.52 to 6.84	176.6	6.71
		Circular_diameter_max	> 180	> 6.84	140.30	5.33
		Defect area/ The total area	> 10%	> 10%	31,268.10	12.68%
4	Grade 3 or				246,527.38	
		Rectangle_max	>180	> 6.84	242.00	9.19
		Defect area/ The total area	> 10%	> 10%	33,619.00	10.08%
					333,223.00	

while the software was specifically programmed to categorize different classes of oranges based on the sizes of imperfections on the peel. The fault can be identified by employing diverse image processing methods, such as picture capture, blob analysis, pre-processing, segmentation, feature extraction, morphology, median filtering, and the Fourier transformed. The faulty pixels were measured for their diameter and area in order to classify them for grading, as presented in Table 2.

Through the preliminary experiments and the results shown in Table 2 above, it can be learned that the image processing

system in the Vaughan sorting system can operate normally and can meet the basic sorting requirements.

After the initial experiment in Table 2, it can be found that this system has a certain degree of accuracy for the recognition of mandarin oranges, but the recognition of the number of experiments need to be many times in order to obtain more accurate results, the next in a batch of mandarin oranges in the selection of 40, 10 mandarin oranges of each grade, after repeated experiments can be obtained after the experimental results of the following Table 3.

Table 3. Statistics of the results of multiple experiments on the same batch

	Special grade	Grade 1	Grade 2	Grade 3
Number of experiments (number)	10	10	10	10
Number of correct discriminations (number)	9	8	9	9
Number of misjudgments (number)	1	2	1	1
Accuracy rate	90%	80%	90%	90%

Through the experiment, we can find that the recognition accuracy of this system because we do not do deep machine learning at the same time for the characteristics of image processing, the judgment does not contain a variety of fruits on the market, so after a number of experiments with the same batch of mandarin oranges, this system for the experimental batch of mandarin oranges for the recognition of 90% accuracy of the special fruit, for the recognition of the first-class fruits of the accuracy of 80%, for the recognition of the second class of fruits of the accuracy of 90%, three class of fruits of the recognition accuracy of 90%, the overall actual recognition accuracy of 87.5%. The overall recognition accuracy of the system is 87.5%, which is 90% for first-grade fruits, 90% for second-grade fruits, and 90% for third-grade fruits.

The system has a certain number of misjudgments for the analysis of the fruit, and the system can be improved from the following two aspects in response to the situation:

1) Optimization of the visual algorithm part as well as deep learning, with different batches of different origins of mandarin

oranges for experiments, and more epidermal disease eigenvalue judgments, at the same time, according to the different special circumstances of the miscarriage of justice so that the visual system for deep learning, reduce the miscarriage of justice rate.

2) This system sorts the knowledge of mandarin oranges purely through the epidermis of mandarin oranges for sorting, but in practice, part of the mandarin oranges are good or bad also need to be analyzed from the inside of the mandarin oranges, so in the practical application, only for the epidermis of the sorting of the precise may have errors, so it is necessary to combine with the corresponding technology to identify the inside of the comprehensive analysis so as to go to the precise sorting

Acknowledgments

The authors express their gratitude to Guilin University of Technology, China, for the financial support granted, including project numbers 2023B52 and 2022530A. We would like to express our gratitude to the Faculty of Engineering, Mahasarakham University, Thailand, for their support of facilities.

References

Ali, S. R., & Pervaz, S. (2013). Use of Fourier transformations and wavelets for satellite image processing. *2013 International Conference on Aerospace Science & Engineering (ICASE)*, 1–6. <https://doi.org/10.1109/icase.2013.6785559>

Batuman, O., Ritenour, M., Vicent, A., Li, H., Hyun, J.-W., Catara, V., Ma, H., & Cano, L. M. (2020). Diseases caused by fungi and oomycetes. *The Genus Citrus*, 349–369. <https://doi.org/10.1016/b978-0-12-812163-4.00017-6>

Behera, S. K., Jena, L., Rath, A. K., & Sethy, P. K. (2018). Disease classification and grading of orange using machine learning and fuzzy logic. *2018 International Conference on Communication and Signal Processing (ICCP)*, 0678–0682. <https://doi.org/10.1109/iccsp.2018.8524415>

Bin, Z., & Lei, H. (2022). research on the drum brake surface defect detection based on HALCON. *2022 IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)*, 1452–1456. <https://doi.org/10.1109/imcec55388.2022.10019807>

Chen, S. (2019). *Design and implementation of surface defect detection algorithm for unfixed shading sanitary product* [Master's thesis]. Chinese Master's Theses Full-text Database. <https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201901&filename=1019013553.nh>

Chen, Y., Wu, J., & Cui, M. (2018). Automatic classification and detection of oranges based on computer vision. *2018 IEEE 4th International Conference on Computer and Communications (ICCC)*, 1551–1556. <https://doi.org/10.1109/compcomm.2018.8780680>

Dey, A., Biswas, S., & Le, D.-N. (2023). Recognition of human interactions in still images using AdaptiveDRNet with multi-level attention. *International Journal of Advanced Computer Science and Applications*, 14(10). <https://doi.org/10.14569/ijacsa.2023.01410103>

Dharmasiri, S. B. D. H., & Jayalal, S. (2019). Passion fruit disease detection using image processing. *2019 International Research Conference on Smart Computing and Systems Engineering (SCSE)*, 126–133. <https://doi.org/10.23919/scse.2019.8842799>

Dheeraj, H. P., Prabhu, A., Rani, N. S., & Jeevan, B. (2023). Deep learning models for classification of okra fruit diseases. *2023 3rd Asian Conference on Innovation in Technology (ASIANCON)*, 1–6. <https://doi.org/10.1109/asiancon58793.2023.10270241>

Dworkin, S. B., & Nye, T. J. (2006). Image processing for machine vision measurement of hot formed parts. *Journal of Materials Processing Technology*, 174(1-3), 1-6. <https://doi.org/10.1016/j.jmatprotec.2004.10.019>

Garg, N., Gupta, R., Kaur, M., Ahmed, S., & Shankar, H. (2023). Efficient Detection and Classification of Orange Diseases using Hybrid CNN-SVM Model. *2023 International Conference on Disruptive Technologies (ICDT)*, 721-726. <https://doi.org/10.1109/icdt57929.2023.10150721>

GB/T 40752-2021. (2021). *Specifications for operation management of orah poverty alleviation project(s)*. Retrieved November 25, 2021, from <http://my678.cn/download-p254314.html>

Hafiz, R., & Fatema, K. (2023). Wax apple disease detection and curative solution recommendation system using machine learning. *2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT)*, 1-6. <https://doi.org/10.1109/icccnt56998.2023.10307412>

Heena, A., Biradar, N., Maroof, N. M., & P, V. (2022). Processing of echocardiographic images using segmentation, feature extraction and classification for detection of heart abnormality. *Global Transitions Proceedings*, 3(1), 13-19. <https://doi.org/10.1016/j.gltlp.2022.04.003>

Huang, T., Zheng, B., Zhang, J., Yi, C., Jiang, Y., Shui, Q., & Jian, H. (2021). Mango surface defect detection based on HALCON. *2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)*, 2627-2631. <https://doi.org/10.1109/iaeac50856.2021.9390783>

Ji, Y., Zhao, Q., Bi, S., & Shen, T. (2018). Apple color automatic grading method based on machine vision. *2018 Chinese Control and Decision Conference (CCDC)*, 5671-5675. <https://doi.org/10.1109/ccdc.2018.8408121>

Jolly, P., & Raman, S. (2016). analyzing surface defects in apples using Gabor features. *2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)*, 178-185. <https://doi.org/10.1109/sitis.2016.36>

Kamalakannan, A., & Rajamanickam, G. (2012). Surface defect detection and classification in mandarin fruits using fuzzy image thresholding, binary wavelet transform and linear classifier model. *2012 Fourth International Conference on Advanced Computing (ICoAC)*, 1-6. <https://doi.org/10.1109/icoac.2012.6416829>

Li, D., & Du, F. (2023). Design of circulating commodity garbage classification system based on machine vision. *2023 IEEE 6th International Conference on Information Systems and Computer Aided Education (ICISCAE)*, 123–127. <https://doi.org/10.1109/iciscae59047.2023.10393127>

Li, J., Rao, X., Wang, F., Wu, W., & Ying, Y. (2013). Automatic detection of common surface defects on oranges using combined lighting transform and image ratio methods. *Postharvest Biology and Technology*, 82, 59–69. <https://doi.org/10.1016/j.postharvbio.2013.02.016>

Lu, G., & Li, K. (2024). Smoothing denoising method of spatial filtering image based on Contourlet transform. *Journal of Radiation Research and Applied Sciences*, 17(1), 100803. <https://doi.org/10.1016/j.jrras.2023.100803>

Luo, H., Long, Y., Xie, X.-B., & Huang, J.-C. (2011). Realization of vehicle license plate character recognition based on HALCON. *2011 4th International Congress on Image and Signal Processing*, 936–939. <https://doi.org/10.1109/cisp.2011.6100314>

Manish, R., Venkatesh, A., & Ashok, S. D. (2018). Machine vision based image processing techniques for surface finish and defect inspection in a grinding process. *Materials Today: Proceedings*, 5(5), 12792–12802. <https://doi.org/10.1016/j.matpr.2018.02.263>

Mojumdar, M. U., & Chakraborty, N. R. (2021). Orange & orange leaves diseases detection using computerized techniques. *2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT)*, 1–4. <https://doi.org/10.1109/icccnt51525.2021.9579964>

Othman, P. Sh., Marqas, R. B., Abdulqader, D. N., & Almufti, S. M. (2020). Effect of mean filter on face image from video frames. *2020 8th International Symposium on Digital Forensics and Security (ISDFS)*, 1–7. <https://doi.org/10.1109/isdfs49300.2020.9116277>

Prabhu, A., Likhitha, S., & Sangeetha, K. V. (2021). Identification of citrus fruit defect using computer vision system. *2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC)*, 1264–1270. <https://doi.org/10.1109/icesc51422.2021.9532834>

Rahman, A. N., Heriana, O., Putranto, P., Darwis, F., Pristianto, E. J., & Wijayanto, Y. N. (2017). Morphological dilation for radar image enhancement. *2017 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)*, 68–71. <https://doi.org/10.1109/icramet.2017.8253147>

Rong, D., Rao, X., & Ying, Y. (2017). Computer vision detection of surface defect on oranges by means of a sliding comparison window local segmentation algorithm. *Computers and Electronics in Agriculture*, 137, 59–68. <https://doi.org/10.1016/j.compag.2017.02.027>

Sangkatip, W., Chomphuwise, P., Bunluewong, K., Mekruksavanich, S., Okafor, E., & Surinta, O. (2024). Improving neural network-based multi-label classification with pattern loss penalties. *IEEE Access*, 12, 52237–52248. <https://doi.org/10.1109/access.2024.3386841>

Spreen, T. H., Gao, Z., Fernandes, W., & Zansler, M. L. (2020). Global economics and marketing of citrus products. *The Genus Citrus*, 471–493. <https://doi.org/10.1016/b978-0-12-812163-4.00023-1>

Xu, L., Sun, H., & Ye, X. (2020). Nondestructive testing method for surface defects of mechanical parts based on machine vision. *2020 International Conference on Robots & Intelligent System (ICRIS)*, 92–95. <https://doi.org/10.1109/icris52159.2020.00031>

Zhao, J., Xia, X., Wang, H., & Kong, S. (2016). Design of real-time steel bars recognition system based on machine vision. *2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)*, 505–509. <https://doi.org/10.1109/ihmsc.2016.75>

Development and Cost-Effectiveness Analysis of a Fogging Pump Control System Commercial Prototype for Oyster Mushroom Cultivation based on Open-System Greenhouse

Non Pinngern¹, Bhannawat Wanganusorn^{2,*}

¹ Department of Digital Business Innovation, Faculty of Business Administration, Maejo University, Chiang Mai 50290, Thailand

² Department of Finance, Faculty of Business Administration, Maejo University, Chiang Mai 50290, Thailand

* Corresponding author: Bhannawat Wanganusorn, payothust56@gmail.com

Received:

25 December 2023

Revised:

15 February 2024

Accepted:

13 April 2024

Keywords:

Cost-Effective Analysis, Fogging Pump Control System, Open-System Greenhouses, Oyster Mushroom, Smart Farming

Abstract: This study proposes a commercial development model for a fogging pump control system (FPCS) for oyster mushroom cultivation in open-system greenhouses, which are the most common type of greenhouses used for mushroom cultivation in Thailand. A prototype system was developed using a commercially available controller that was modified to make it easier to produce in large quantities. The system was designed with two separate components: The first component controlled the operation of the fog pump by alternating between spraying and pausing to maintain the desired humidity. It also acted as an access point to release a Wi-Fi signal that allowed users to access the system settings via a website. The second component was installed in the mushroom greenhouse and sent weather data from sensors to the first component via Wi-Fi. The whole system does not require internet usage. The prototype system was tested in an oyster mushroom greenhouse for 60 days. The results showed that the system was easy to install and operate in commercial mushroom farms. It was also effective in controlling humidity for oyster mushroom cultivation. An economic analysis of the system showed that it could help farmers to reduce unit costs by up to 72.30%. The system also had a positive net present value (NPV) of +332,600, an internal rate of return (IRR) of 281%, and a payback period of one production cycle (2 months). These results suggest

that the proposed FPCS is suitable for commercial production for controlling humidity in oyster mushroom cultivation in open-system greenhouses.

1. Introduction

Oyster mushrooms are an economically important mushroom species in Thailand, with two popular varieties among farmers: Hungarian oyster mushrooms and Bhutan oyster mushrooms. These mushrooms are typically cultivated by allowing the mycelium to consume nutrients from sterilized substrate materials inside plastic bags. Once the mycelium has fully colonized the bags, the bags have been opened to allow the mushrooms to grow in a suitable environment. Oyster mushrooms thrive in relatively cool temperatures, ideally between 20 to 30 degrees Celsius, and require humidity levels ranging from 55 to 70 percent (Laeaddon, 2021). They can grow well in Thailand throughout most seasons, except during the summer (Isaranontakul & Rukphong, 2019). Creating a suitable environment for mushroom growth is crucial, considering factors such as temperature, humidity, carbon dioxide levels, and air circulation (Vengsungnle *et al.*, 2019).

Currently, there are two types of mushroom cultivation houses: open-system greenhouses and close-system greenhouses. The advantage of the open-system is that it requires lower investment compared to the close-system. On the other hand, the close-system greenhouses allow farmers to have better control over the internal

conditions of the greenhouses, such as temperature, humidity, light exposure, and carbon dioxide levels (Jongpluempi *et al.*, 2020). Although the close-system offers better controllability, many Thai farmers still prefer the open-system greenhouses due to their lower cost. The open-system greenhouses can be constructed using locally available and low-cost materials such as bamboo, eucalyptus wood, vetiver grass, plastic, and sun shade net. Proper design of the open-system greenhouses could also help reduce external heat, effectively retain moisture, and facilitate air circulation (Arreerard, T., Arreerard, W, & Ruangsan, 2021).

Once the mushroom bags are placed in a suitable cultivation house, a crucial subsequent process is providing moisture to the mushrooms. Traditionally, farmers use a hose to water the entire floor of the house, avoiding direct contact with the mushroom bags and preventing waterlogging at the surface of the bag. This practice aims to prevent direct exposure of water to the mushroom caps, as well as to avoid excessive moisture, which can lead to unwanted characteristics in the mushrooms that are undesirable in the market. The frequency of watering depends on the humidity level inside the cultivation house. If the humidity is high, watering may occur just twice a day, in the morning and afternoon. However, in low humidity conditions, farmers may need to water more frequently, possibly 3-5 times a day. Farmers typically observe the drying edges of the mushroom caps as an indicator to start watering (Lorprasert, 2010).

Due to the traditional method of providing moisture relying heavily on their experience, time, and labor of farmers, there had been a development to modernize moisture provision in mushroom greenhouses. It was found that using very fine water mist in greenhouses shaded from direct sunlight with good air circulation not only increased relative humidity but also effectively reduced greenhouse temperature (Saowarat, 2017). Consequently, fogging systems had been combined with automated control systems for moisture provision in mushroom greenhouses. Jongpluemiti *et al.* (2020) recommended using humidity and temperature as conditions for controlling fogging and ventilation fan equipment in the greenhouse, as it promoted optimal mushroom growth. Precise environmental control led to significantly higher mushroom yields, up to 30% more than conventional cultivation, with minimal contamination rates (Arreerard, T., Arreerard, W., & Ruangsan, 2021; Marzuki & Ying, 2017; Ten *et al.*, 2021). Hendrawan *et al.* (2019) applied fuzzy logic to control equipment sets, achieving quick entry into steady-state operation, and thereby enhancing system efficiency. In addition to automated control, users could monitor and adjust settings remotely via various mobile devices, using Internet of Things (IoT) technology. This diverse functionality allowed for remote operation of equipment in mushroom greenhouses, such as remoted pump fogging on/off control and automated scheduling (Isaranontakul & Rukphong, 2019). Processing and controlling were carried out

by microcontrollers equipped with ESP8266 chips, connected to sensors for environmental data collection within the greenhouse (Fongngen *et al.*, 2018). These microcontrollers were cost-effective and feature wireless data transmission compliant with IEEE 802.11 b/g/n standards or Wi-Fi (Patnaikuni, 2017). Furthermore, there is currently development of robots for detecting fungal diseases and sending alerts via Internet signals. These robots can operate with precision by utilizing deep learning (Jareanpon *et al.*, 2023; Patcharee & Suchart, 2022), leading to efficient reduction of production losses.

However, the researchers believe that the systems mentioned above still have three limitations for practical use for farmers. These are:

- 1) Sensor cable length and range limitations: In most farmers' farms, there is a considerable distance between the greenhouse and the water pumps. Therefore, using digital data transmission cables from sensors to controllers regulating the pumps can be challenging because long cables are required. These cables are often hard to find and come at a high cost. Generally, the data transmission cables used with sensors that are readily available have a length of no more than 1 meter (Adafruit Industries, n.d.; ET TEAM, n.d.). This limitation makes it inconvenient to install in actual mushroom farms, especially in greenhouses with long distances between the sensors and the water pump installation points.

2) Uncertainty in investment: Most farmers lack high-speed internet access in their farms. Using IoT technology would require additional expenses for internet installation and services, increasing the overall production costs. Moreover, in preceding research on the cost-effectiveness of mushroom cultivation, the predominant focus has been on the comprehensive expenses linked to mushroom farming (Duangta, 2016; Ruamatum & Tulasombat, 2019; Thaneerananon & Vilalai, 2019; Hongyon, 2019). These studies traditionally delve into the costs associated with constructing mushroom houses, production expenses, total expenditures, and unit costs to evaluate profitability. However, they may lack of undertaking a comparative analysis of costs and benefits when transitioning to a new process, where automatic system is employed as opposed to the traditional method. This lack of comparison between the cost and benefits of the two methods introduces uncertainty regarding the return on investment. This uncertainty raises apprehensions among farmers, as they are uncertain whether the investment in the new method would prove cost-effective in comparison to traditional mushroom cultivation practices.

3) Complexity in device assembly: Developing a control system involves purchasing and assembling multiple electronic components. This complexity makes it challenging to create a ready-made device, resulting in higher costs and difficulty in large-scale production.

Further research has found that the basic features of Wi-Fi connectivity for ESP8266 microcontrollers can be developed to allow data transfer between microcontrollers in a Wireless Local Area Network (WLAN). This can be achieved by using the first microcontroller as an access point (AP) and the second microcontroller as a wireless station (STA) (Zhou, 2017). The standard Wi-Fi range of 40 meters can be achieved with efficient data transfer. Installing additional antennas can extend the data transfer range up to 140 meters in open areas (Yoppy *et al.*, 2018). Moreover, the Access Point microcontroller can function as a web server, enabling users to access and adjust system settings through various devices using a web browser interface. This capability enhances the flexibility and accessibility of the control system, allowing users to manage settings remotely via web browsers on different devices.

Currently, there is a development of control devices in the form of ready-made kits for convenient use. One such device is called Sonoff, which includes a microcontroller with the ESP8266 chip, a relay, and a 220-volt power converter. This product is manufactured by Itead Intelligent Systems Co. LTD, Shenzhen, China, and is compatible with the eWeLink application. However, developers have the flexibility to modify and customize the firmware themselves based on ESP8266 programming (Froiz-Míguez *et al.*, 2018). Gutiérrez-Peña *et al.* (2020) proposed the use of Sonoff to connect with electrical devices for the development of an energy management system

in smart homes. Sonoff is preferred due to its convenience and cost-effectiveness, and it can be easily interfaced with sensors, allowing for firmware customization. Subsequently, García-Vázquez *et al.* (2021) modified the Sonoff kit to control electrical devices within their software platform, named e-Switch.

2. Research Objective

The purpose of this research was to develop the commercial prototype for an automated fogging pump control system (FPCS) and cost-effectiveness analysis of using this equipment for humidity control in commercial mushroom open-system greenhouses. The main focus was on addressing three key issues:

- 1) Convenience of installation in mushroom farms.
- 2) Operation without an internet connection.
- 3) Low cost and easy production for commercial use.

3. Materials and Methods

This research is an experimental research aimed at developing a prototype and analyzing the cost-effectiveness of a fogging pump control system installed separately for providing moisture to oyster mushroom cultivation in open-system greenhouses. The population and sample group used in the research consist of commercial mushroom farmers who cultivate oyster mushrooms

in plastic bags. The research employed a specifically targeted sampling method to select farmers who were ready to adopt the technology and had similar open-system greenhouse structures, using two identical greenhouses for comparing different moisture provisions. Specifically, greenhouse 1 provided moisture to the mushrooms using the traditional method of manually watering with a hose in an open-system greenhouse. On the other hand, greenhouse 2 provided moisture to the mushrooms using an FPCS prototype developed to regulate moisture automatically. The oyster mushroom usually grow well throughout most seasons, except during the summer in Thailand due to the high temperatures, which are challenging for oyster mushroom cultivation (Isaranontakul & Rukphong, 2019). In this experiment, testing was conducted during the summer in Thailand because it is considered the most challenging period for controlling the environment in open-system greenhouses. The research process involved six stages: 1) designing the architecture of the system, 2) designing the system's workflow, 3) selecting suitable materials and equipment, 4) software development, 5) installation in mushroom farms for testing, and 6) data collection and analysis. The details are as follows:

3.1 Designing the Architecture of the System

In each mushroom farm, there are varying sizes of open-system greenhouses and different water system arrangements.

Therefore, the equipment set should possess the flexibility to be adequately adaptable for installation in each farm. The researchers aimed to design a system that could be conveniently installed without reliance on the internet network for operation. They divided the equipment into 2 sets:

Set 1 comprises devices to be installed with the fogging pump, consisting of a microcontroller that serves 3 main functions:

1) Acting as an access point to release Wi-Fi signals and support wireless network connections.

2) Serving as a web server to allow users to access the system's operational settings. Users can access this website via web browser programs through various mobile devices like personal computers, laptops, smartphones, or tablets connected to the access point.

3) Control the electrical current to enable the fogging pump to operate according to conditions.

Set 2 comprises devices to be installed within the mushroom greenhouse, including

a microcontroller acting as a wireless station to transmit data read from sensors to Set 1 via Wi-Fi signals, as depicted in the system architecture shown in Figure 1.

3.2 Designing workflow of the system

Due to the requirement of mushrooms for suitable moisture without an excess amount of water trapped around the mycelium, which could lead to waterlogged mushrooms and deteriorated mycelium, the researchers devised a fogging control method alternating between spraying and intervals. This approach aimed to prevent an excess of water within the greenhouse that could damage the produce.

The workflow of Set 1 initiates by activating the access point to distribute Wi-Fi signals and await connections. It then reads operational data used for controlling the fogging pump stored in the memory unit, including the minimum relative humidity to initiate pump operation, pump on-time (seconds), and pump off-time (seconds). Subsequently, it enters a repetitive cycle, awaiting sensor data transmitted from Set 2. Upon receiving data, it checks the operating conditions, primarily utilizing air relative humidity as the sole factor for control conditions due to this research's focus on misting solely to provide humidity in open-style mushroom greenhouses. When the sensed humidity falls below the set threshold, the control unit commands the pump to alternate between on and off states based on the predetermined operation

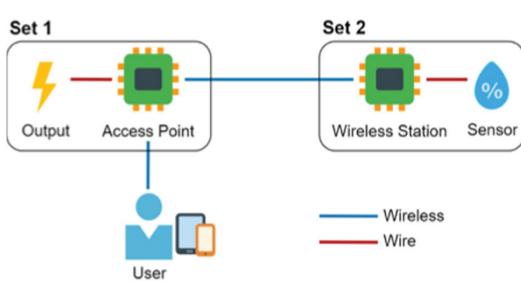


Figure 1. System Architecture

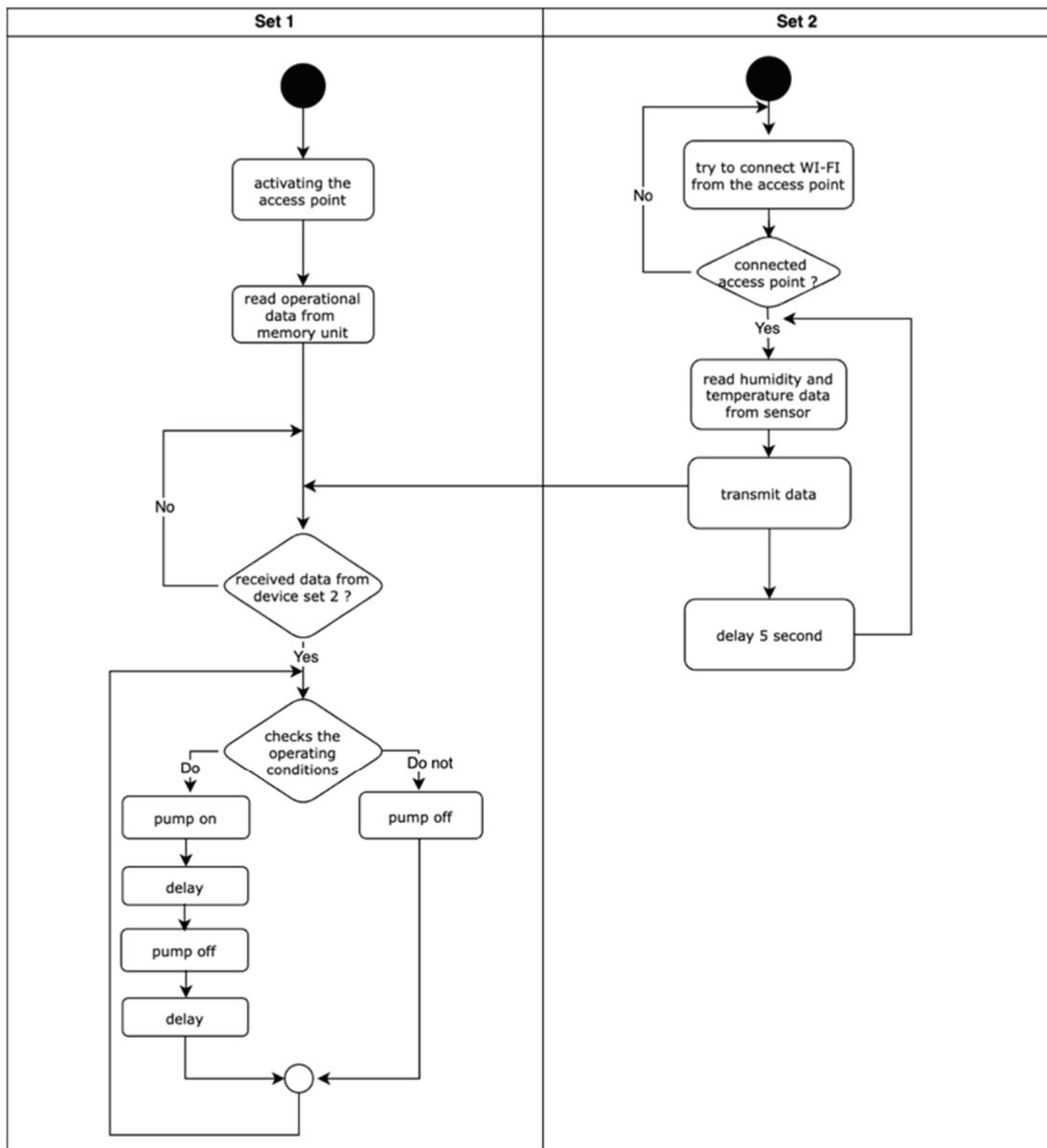
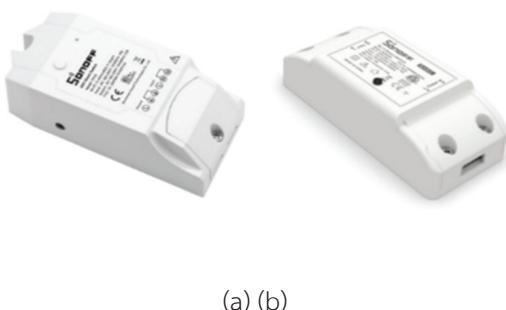


Figure 2. Workflow of the system

parameters. Conversely, if the sensed humidity equals or exceeds the set value, indicating sufficient moisture in the greenhouse, the system directs the pump to stop.


The sequence of operations for Set 2 starts with connecting to the Wi-Fi signal

emitted by the access point of Set 1. It then enters a loop, reading humidity and temperature data from sensors to transmit this data to Set 1. After a 5-second interval, it proceeds to read the next set of data, as illustrated in the workflow of the system in Figure 2.

3.3 Selecting suitable materials and equipment

From the aforementioned design, the pivotal component in each equipment set was the micro-controller. Its functioned encompass data processing, communication via Wi-Fi signals, sensor data retrieval, and electrical device control. To meet these requirements, the preferred microcontroller for cost-effective control applications was the ESP8266 chip-based microcontroller. However, this control unit required to be supplemented with various other devices to operate comprehensively.

Following an examination of commercially available equipment that met the desired specifications, the researchers opted for the pre-assembled electrical control equipment, Sonoff. This set included fundamental components essential for complete control systems. These components consist of the ESP8266 chip-based micro-controller, a 3.3-volt power supply for board operation, a 220-volt relay, a push button, and status indicator lights. Specifically, the researchers chose the

Sonoff Basic R2 model for Equipment Set 1 and the TH10 model for Equipment Set 2 due to the presence of a 3.5-millimeter jack (ITEAD Studio, n.d.).

These selections were made to collaborate with the SHT15 sensor, capable of measuring temperature and humidity within a single unit. This sensor can operate within a temperature range of -40 to 123.8 degrees Celsius, providing data accuracy to two decimal places with a precision of 0.3 degrees Celsius (Liu, Zhang, & Zhu, 2011).

3.4 Software Development

This study has developed the program based on the designed architecture. The processing part of the program was written in the C++ language, while the user interface was developed using HTML and JavaScript to display and function on web browsers. Afterward, the source code was installed on the microcontroller, and the equipment set

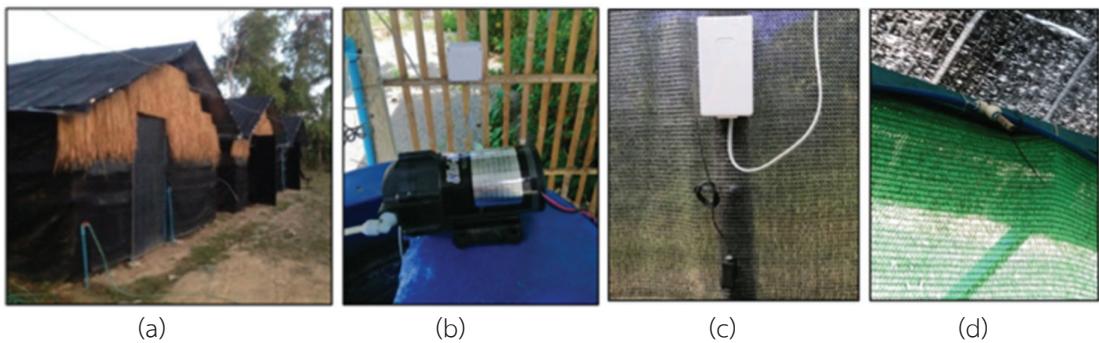
Figure 5. Connecting to Wi-Fi from the set 1 of devices using a smartphone and the user interface displayed on the web browser

was assembled to completion, and ready for use, as shown in Figure 4.

The researchers conducted preliminary system functionality tests in a laboratory setting. They utilized a smartphone connected to the Wi-Fi emitted by the access point of Equipment Set 1. Accessing the web browser program and entering the designated IP address, 192.168.4.1, displayed the user interface web page. The initial page exhibited air temperature and humidity obtained from the SHT15 sensor installed within Equipment Set 2. Users could adjust control conditions for the fogging pump, with settings available for:

1) minimum air relative humidity to initiate

pump operation, 2) pump operational duration, and 3) pump resting duration, as shown in Figure 5.


The researchers set initial parameters for testing purposes and observed the sequential operational process for a total of 5 days, each day running for 12 hours. The findings indicated that the equipment functioned as anticipated, as shown in the preliminary system functionality test results in Table 1.

3.5 Installation in the Mushroom Greenhouse for Testing

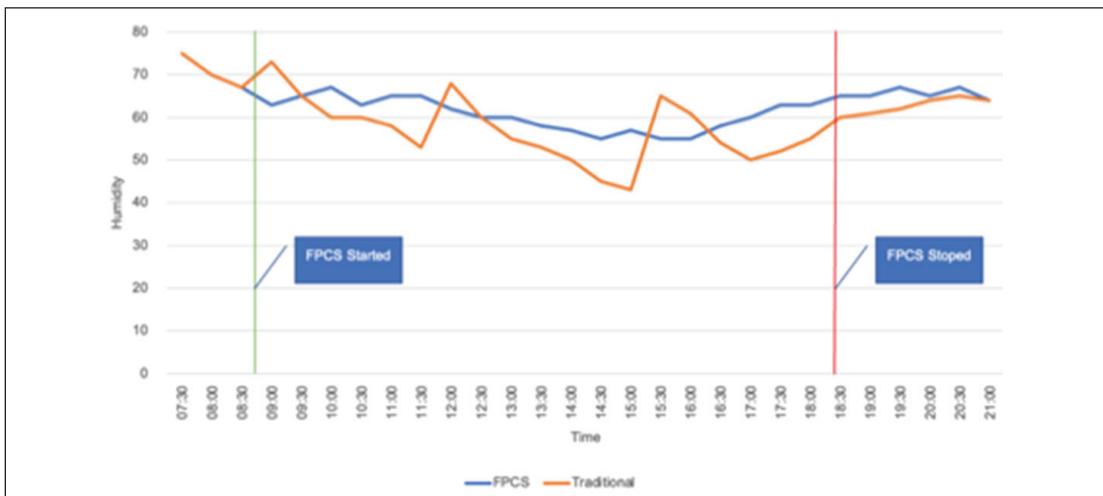

After conducting preliminary system operation tests in the laboratory, the researchers developed a prototype system for installation and testing in the mushroom cultivation farm of a targeted group of farmers. The testing took place with farmers cultivating Bhutan oyster mushrooms in the Sansai district of Chiang Mai province, using an open-system greenhouse measuring 8x10 meters. The greenhouse was constructed with a plastic roof, and plastic and mesh walls, as shown in Figure 6.

Table 1. Preliminary system operation test results

Test Number	Test Item	Test Result
1	Equipment set connection	Functioning correctly
2	Operation based on humidity conditions	Functioning correctly
3	Pump operating time according to set value	Functioning correctly
4	Pump resting time according to set value	Functioning correctly

Figure 6. (a) The greenhouse, (b) Installation of the set 1 of equipment to control the fogging pump, (c) the set 2 of sensors, (d) the mist spray head

Figure 7. Comparison of the 2 moisture-providing methods

In the actual installation on the farm, the researchers installed the humidity control equipment developed along with a fogging pump with a pressure of 15 bars, low-pressure hoses, and misting nozzles with a size of 0.2 millimeters. They also set up a 200-liter plastic water tank, a floating ball valve for automatic water filling, and pressure reduction devices to suit the number of misting nozzles installed in each greenhouse. The misting nozzles were installed at a distance of 1 meter apart, and the equipment sets were spaced 25 meters apart from each other in each greenhouse.

Afterwards the researchers recorded the humidity data of both of the 2 test houses and observed the traditional watering method of farmers by using hoses, which relied on observation and experience. The researcher found that farmers would start watering for the first time in the late morning when the humidity in the air decreased to a level that began to cause the mushroom flowers to dry out. From the recorded data, it was found that the average humidity at that time was 65%. Subsequently, the researcher adjusted the equipment's working conditions to match

those of the farmers, working when the humidity was less than 65% and spraying mist for 20 seconds alternated with a 40-second pause. When left to work continuously automatically throughout the day, it was found that providing moisture was as effective as watering by farmers. The system would stop automatically in the evening when natural humidity began to increase. This demonstrates a performance comparison of the 2 moisture-providing methods as shown in Figure 7.

3.6 Data Collection and Analysis

This research involves data collection for analysis in two aspects: collecting information on system testing and data accumulation for cost-effectiveness analysis. The data was collected from March to April which is the summer of Thailand. The details are as follows:

3.6.1 Data Collection for System Testing

The researchers designed the system operation tests to cover 3 areas: 1) Usability Testing, 2) Performance Testing, and 3) Reliability Testing (Murad *et al.*, 2018). The recording procedures for device operations were designed in accordance with the test objectives. After installing the equipment, farmers were requested to observe the equipment's performance while working in the greenhouse and to record data daily. The recorded observations centered around four aspects: 1) equipment connectivity, visible through the device's indicator lights; 2) operation concerning predefined humidity

conditions; 3) operational duration aligned with preset values; and 4) pump stoppage time according to set criteria.

3.6.2 Data Collection for Cost-Effectiveness Analysis

This research gathered production cost and yield data by conducting interviews with target farmers using open-ended questions. The cost-benefit analysis included: 1) Analyzing manufacturing costs per unit, 2) Assessing production efficiency using T-test statistics for comparison (Tiparat *et al.*, 2018), and 3) Evaluating investment returns, considering Payback Period (PB), Net Present Value (NPV), and Internal Rate of Return (IRR).

4. Results and Discussion

The study was divided into 2 parts: Part 1 focused on system testing results, while Part 2 delved into the cost-effectiveness analysis findings.

4.1 System Testing Results

The results of the system testing include the analysis of usability testing, system efficiency testing, and system reliability testing. The details are as follows:

4.1.1 Usability Testing

The prototype and developed system were user-friendly, allowing farmers to install it in mushroom farms easily. The wireless data transmission between devices worked efficiently in the actual farm environment. Farmers quickly grasped the user interface,

demonstrating the accuracy and suitability of the developed system.

4.1.2 System Efficiency Testing

Over a period of 60 days, the yield of mushroom in the greenhouse equipped with the developed system was significantly higher compared to the yield from the greenhouse using the traditional humidity provision system. This indicates that the developed system could effectively substitute the traditional watering system used by farmers. It autonomously controlled the fogging pump operation based on the air's humidity, which would be highly beneficial for farmers in coping with the current weather variability. Previously being reliant on manual labor and experience, this developed system can significantly reduce labor costs for humidity provision and enhance mushroom production.

4.1.3 System Reliability Testing

Throughout the actual operation over a period of 60 days, the equipment might have encountered unsuitable conditions for operation, such as high humidity and temperature within the greenhouse. Continuous usage may lead to malfunctions. However, the developed prototype set could still perform accurately and precisely as anticipated. This demonstrates that the selected equipment set was durable and suitable for practical use in mushroom farming. In the case of the test farm, over a period of 60 days, there were a few instances of power outages, and each outage was of short duration.

Additionally, the greenhouse utilized effective moisture-retaining materials, resulting in minimal impact on humidity levels inside the mushroom house and no significant damage to mushroom production.

The test results indicated that the equipment could effectively regulate the operation of the low-pressure fogging pump to provide moisture to the mushrooms in the greenhouse. It performed comparably to the original system that relied on manual labor, operating accurately and reliably.

4.2 Results of Cost-Benefit Analysis

The results of the cost-benefit analysis included the analysis of manufacturing costs, production efficiency, and return on investment. The details are as follows:

4.2.1 Manufacturing Costs

Based on the cost calculations for the manufacturing components of the product at a production level of 1,000 mushroom bags, categorized by the production system, the traditional system incurred direct material costs of 7,000 Baht, labor costs of 20,250 Baht, and overhead expenses of 307.82 Baht, totaling 27,557.82 Baht. This resulted in a cost per mushroom bag of 27.55 Baht.

In contrast, the automated mushroom cultivation system incurred equipment investment costs of 7,260 Baht, as shown in Table 2. The depreciation expenses for production, amounted to 403.33 Baht. This brings the total cost to 7,636.24 Baht and a cost per mushroom bag of 7.63 Baht.

A comparison of the two systems revealed that the use of the automated system enhances production efficiency, leading to a reduction in manufacturing costs per unit of

up to 72.30% $[(7.63 - 27.55)/27.55*100]$.

Table 3 presents details of manufacturing cost calculation.

Table 2. Investment in the control system for the fogging pump kit prototype

Item	Price (Baht)	Quantity	Unit	Total (Baht)
Sonoff TH16 Model 1 Set	115	1	Set	115
Sonoff Basic R2 Model 1 Set	200	1	Set	200
SHT15 Sensor 1 Set	750	1	Set	750
Electrical Wires	10	2	Meter	20
Water Pump 15 Bar	1,700	1	Set	1,700
Low-Pressure Water Hose	15	40	Meter	600
0.2mm Nozzle	78	20	Set	1,600
200-Liter Plastic Tank	500	1	Tank	500
Automatic Float	100	1	Set	100
Assembly Labor Cost	-	-	-	1,675
Total Equipment Investment				7,260

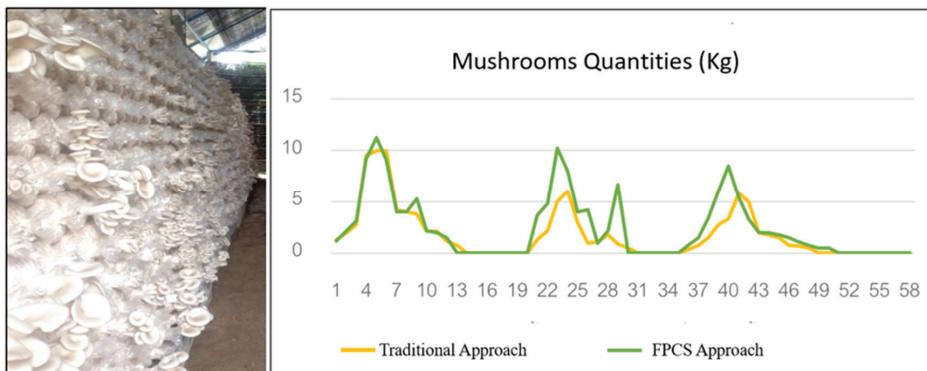

Note: Retrieved September 19, 2023 from <https://www.shopee.co.th>

Table 3. Details of manufacturing cost calculation

Item	Cost Calculation Method and Cost Value (in Baht)
Raw Materials: Mushroom Spawn	= Quantity of spawn at production level x Cost per spawn (in case of purchasing each spawn at 7 Baht) At the production level of 1,000 spawns: $1,000 \times 7$ = 7,000 Baht. At the production level of 5,000 spawns: $5,000 \times 7$ = 35,000 Baht
Direct Labor Cost: Irrigation	= Daily labor cost of 300 Baht, calculated per hour of work (8 hours), multiplied by the number of hours worked in one production cycle = $HW \times NW \times NDP$ = $37.50 \times 9 \times 60$ = 20,250 Baht HW; Hourly wage, NW; Number of working hours per day, NDP; Number of days in one production cycle. Not applicable as an FPCS is used.

Table 3. Details of manufacturing cost calculation (cont.)

Item	Cost Calculation Method and Cost Value (in Baht)
Overhead Expenses	<p>1) Depreciation Cost of FPCS – Traditional watering is not applicable as no FPCS is installed. For the FPCS, calculated linear depreciation, with a service life of 3 years and no salvage value. Depreciation cost $= \text{FPCS's cost} / \text{Number of years of use}$ $= 7,260 / 3$ $= 2,420 \text{ per year which 1 year contain 6 crops so the depreciation cost per crop}$ $= 2,420 / 6$ $= 403.33 \text{ Baht}$</p> <p>2) Water Cost Water cost = [Water flow rate (liters/minute) x Irrigation time (minutes) x Number of irrigation cycles x Water rate (Baht)] For 1,000 spawns: $[34.23 \times 3 \times 3 / 1,000] \times 60 \times \text{Regional water service rate}$ = 307.82 For 5,000 spawns: $[34.23 \times 10 \times 3 / 1,000] \times 60 \times \text{Regional water service rate} = 1,259.24 \text{ Baht}$</p> <p>3) Electricity Cost - No electricity cost for watering. Calculated electricity cost for the FPCS using a water pump and Sonoff devices. Pump electricity cost $= \text{Electrical power (watts)} / 1000 \times \text{Number of hours used per production cycle (60 days)} \times \text{Electricity rate}$ $= [220 / 1,000] \times [(20 / 60) \times (18.30-9.30) \times 60$ $= 2,376 \times \text{Electricity rate}$ $= 136.98 \text{ Sonoff electricity cost}$ $= [1 / 1,000] \times (18.30-9.30) \times 60$ $= 0.54 \times \text{Electricity rate}$ $= 136.98 \text{ Baht}$</p>
Total Manufacturing Cost	At the production level of 1,000 spawns: $7,000 + 20,250 + 307.82 = 27,557.82 \text{ Baht}$ At the production level of 5,000 spawns: $35,000 + 20,250 + 1,259.24 = 56,509.24 \text{ Baht}$
Manufacturing Cost per Unit	At the production level of 1,000 spawns: 27.55 Baht At the production level of 5,000 spawns: 11.30 Baht At the production level of 1,000 spawns with FPCS: 7.63 Baht At the production level of 5,000 spawns with FPCS: 7.15 Baht

Figure 8. Daily mushroom production volume of Hungarian oyster mushrooms

4.2.2 Production Efficiency

Based on the collected data, the daily mushroom yield for each day of a production cycle (60 days) is shown in Figure 8. An analysis was conducted by comparing the average yields of mushrooms between the traditional system and the FPCS.

The traditional system showed an average yield of 2.55 kg with a standard deviation of 2.93 kg, while the FPCS showed an average yield of 3.41 kg with a standard deviation of 3.37 kg. When comparing them using an independent sample t-test, it was found that, on average, the yield from the traditional system did not significantly differ from the yield of the FPCS (P -value > 0.05), as shown in Table 4.

The traditional and FPCS, along with the t -value and significance level (Sig.) from the independent t-test. The results indicate that there is no significant difference in the average mushroom yield between the traditional and FPCS, as the p -value (Sig.) is greater than 0.05.

Table 4. The results of the production efficiency analysis, specifically the weight of mushrooms harvested in one production cycle, measured in kilograms (kg)

Mushroom Variety	Traditional System (N=30)		Automatic Control System (N=30)		t	Sig.
	\bar{X}	S.D.	\bar{X}	S.D.		
	2.55	2.93	3.41	3.37	-1.058	0.295

4.3.3 Return on Investment

This study involved the comparison of two distinct production systems, specifically the modification of the temperature and humidity control process between the conventional watering system and the FPCS. The FPCS entailed the utilization of human labor for watering. However, it is crucial to note that the implementation of the FPCS necessitates an additional investment, estimated at 7,260 Baht. Users are required to make this investment. The Return on Investment (ROI), derived from key financial metrics such as Net Present Value (NPV), Internal Rate of Return (IRR), and Payback Period (PB), indicated a positive NPV of +332,600 Baht, an IRR of 281% (exceeding the 5% Weighted Average Cost of Capital), and a payback period within a one production cycle, as shown in Table 5. These findings suggested that transitioning from the traditional watering system to the FPCS was deemed viable and suitable for implementation.

Table 5. The results of the present value analysis by comparing the efficiency of replacing human labor

Item	Accounting profit (Baht)	Cash flow (Baht)
Cost Savings or Additional Income		
- Reduced Labor Costs	20,250	20,250
- Reduced Water Costs	211	211
Marginal Costs		
- Increased Depreciation (7,260-0/18)	-403	
- Maintenance Costs	- 50	- 50
Net Profit (Cash Flow)	20,008	20,411
Net Cash Flow for 1 Production Cycle		20,411
NPV & IRR Computing		
- Initial Outlay = 7,260 Baht		
- Cash flow from operation (per 1 production cycle) 6 times per year for 3 years total of 18 times with 20,411 Baht per time		
- The discount rate is 5% PA In this research Assume that farmers use 100% of the loan from BAAC. Therefore, WACC = 5% based on the interest rate on farmers' loans. of the Bank of Agriculture and Agricultural Cooperatives (BAAC), information as of 20 September 2018		
$NPV = \sum_{t=1}^n \frac{CF_t}{(1 + r)^t} - IO$	= (20,411*16.65083) - 7,260 = +332,600	
$NPV = \sum_{t=1}^n \frac{CF_t}{(1 + IRR)^t} - IO = 0$	= 281%	

5. Conclusions

The objective of this research was to propose a suitable model for developing a separate installation control system for fogging pumps to provide humidity for oyster mushroom cultivation, which was suitable for Thai farmers who primarily use open-system greenhouses and lack internet signal readiness on their farms. The researcher had presented a development approach using Sonoff devices, which were commercially available and cost-effective. The system was divided into 2

sets, utilizing Wi-Fi signals for communication within the wireless network. Set 1 served as an access point to emit Wi-Fi signals and support connections, functioning as a web server for user access to system settings. It controlled the release of electricity to manage fogging pump operations. Set 2 was connected to the sensor inside the mushroom house, sending readable data to Set 1. Farmers can access the system settings using smartphones via Wi-Fi signals, eliminating the need for internet connectivity for operation.

The developed system could be easily assembled and practically installed in mushroom farms. It efficiently controlled the humidity for oyster mushrooms in the summer of Thailand, which has been considered unsuitable for the growth of oyster mushrooms, replacing the manual labor required for watering. The system was suitable for large-scale production and was cost-effective.

The cost-benefit analysis revealed that the FPCS could reduce costs per unit by up to 72.30%. In terms of production efficiency, there was no significant difference between using the FPCS and the traditional one. Regarding investment returns, adopting the FPCS system has resulted in a Net Present Value (NPV) of +332,600 Baht, an Internal Rate of Return (IRR) of 281%, and a Payback Period (PB) within one production cycle, approximately 2 months. This demonstrated the economic viability of the FPCS for commercial mushroom cultivation in open-system greenhouses.

In conclusion, the research suggested that the FPCS should be suitable for the commercial production of oyster mushrooms. The findings indicated cost-effectiveness, operational efficiency, and ease of installation, making it viable for controlling humidity in the oyster mushroom cultivation in the open-system greenhouses.

6. Recommendations

In practical application, farmers can use a single control unit to manage large quantities of mushroom in a greenhouse by adjusting pressure or the number of pumps to cover the entire facility. Additionally, various equipment is easily available for purchase. In case of any component damage, farmers can procure and perform repairs by themselves. Moreover, humidifying mushroom cultivation houses through misting can significantly reduce water usage, making it suitable for current agricultural scenarios facing water scarcity. The experimental farm in this research is located in an area without power outage issues. However, for areas prone to frequent power outages, the researchers recommend using an uninterrupted power supply to prevent any damage to mushroom production.

Currently, Thai farmers have relatively limited use of technological equipment, despite facing severe labor shortages. The primary reasons are the high cost of equipment and uncertainty about making investments. This research demonstrates that in developing farm control equipment, developers should focus only on essential features necessary for practical use. Utilizing pre-existing equipment for improvement could significantly reduce the overall equipment cost. This approach could lead to a quick return on investment in agricultural operations. The recommended approach in this research could be implemented by entrepreneurs for commercial production to cater to the needs of Thai farmers.

Acknowledgments

The researcher would like to express gratitude to Digital Economy Promotion Agency (depa) Upper Northern Provincial Cluster Office for facilitating the coordination of the agricultural network under The Digital Economy Development Project in the Chiang Mai province. Their support for testing the prototype equipment in this research was highly appreciated.

References

Adafruit Industries. (n.d.). *Adafruit SHT15 Temperature & Humidity Sensor*. Retrieved January 31, 2024, from <https://www.adafruit.com/product/4099>

Yoppy, Arjadi, R. H., Candra, H., Prananto, H. D., & Wijanarko, T. A. W. (2018). RSSI Comparison of ESP8266 Modules. *2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS)*, 150–153. <https://doi.org/10.1109/eeccis.2018.8692892>

Arreerard, T., Arreerard, W., & Ruangsar, N. (2021). IoT System for Mushroom Cultivation in Greenhouse of Mahasarakham Communities. *Journal of Green Engineering*, 11(2), 1680-1695.

Duangta, S. (2016). Cost and return: A case study of mushroom cultivation in Bandu Sub-District Muang District Chiang Rai Province. *The Journal of Accounting Review Chiang Rai Rajabhat University*, 1(2), 71-80. [In Thai]

ET TEAM. (n.d.). *ET-SENSOR SHT15*. Retrieved January 31, 2024, from <https://www.eteam.com/productSensor/ET-SENSOR%20SHT15/ET-SENSOR-SHT15.html>

Fongngen, W., Petharn, S., & Yajoo, R. (2018). Application with the internet of things technology control in smart farms mushroom. *Journal of Technology Management Rajabhat Maha Sarakham University*, 5(1), 172–182. <https://ph02.tci-thaijo.org/index.php/itm-journal/article/view/140258> [in Thai]

Froiz-Míguez, I., Fernández-Caramés, T. M., Fraga-Lamas, P., & Castedo, L. (2018). Design, implementation and practical evaluation of an IoT home automation system for fog computing applications based on MQTT and ZigBee-WiFi sensor nodes. *Sensors*, 18(8), 2660. <https://doi.org/10.3390/s18082660>

García-Vázquez, F., Guerrero-Osuna, H. A., Ornelas-Vargas, G., Carrasco-Navarro, R., Luque-Vega, L. F., & Lopez-Neri, E. (2021). Design and implementation of the E-switch for a smart home. *Sensors*, 21(11), 3811. <https://doi.org/10.3390/s21113811>

Gutiérrez-Peña, J. A., Flores-Arias, J. M., Bel-lido-Outeirino, F. J., Lopez, M. A. O., & Quiles Latorre, F. J. (2020). Smart home energy management system and how to make it cost affordable. *2020 IEEE 10th International Conference on Consumer Electronics (ICCE-Berlin)*, 1–6. <https://doi.org/10.1109/icce-berlin50680.2020.9352162>

Hendrawan, Y., Anta, D. K., Ahmad, A. M., & Sutan, S. M. (2019). Development of fuzzy control systems in portable cultivation chambers to improve the quality of oyster mushrooms. *IOP Conference Series: Materials Science and Engineering*, 546(3), 032013. <https://doi.org/10.1088/1757-899x/546/3/032013>

Hongyon, S. (2019). Cost analysis and finance return of oyster mushroom farm in Ubon Ratchathani. *Journal of Graduate School, Pitchayatat*, 14(2), 189-196. <https://so02.tci-thaijo.org/index.php/Pitchayatat/article/view/221446> [In Thai]

Isaranontakul, P., & Rukphong, C. (2019). The Android application of control fog watering Indian oyster mushroom. *Journal of Information Science and Technology*, 9(1), 1-8. <https://doi.org/10.14456/jist.2019.1> [In Thai]

ITEAD Studio. (n.d.). *Sonoff Smart Home*. Retrieved August 5, 2023, from <https://itead.cc/smart-home>

Jareanpon, C., Khummanee, S., Sriputta, P., & Scully, P. (2023). Developing an intelligent farm system to automate real-time detection of fungal diseases in mushrooms. *Current Applied Science and Technology*, 24(1), e0255708. <https://doi.org/10.55003/cast.2023.255708>

Jongpluempiti, J., Vengsungnle, P., Prapakarn, S., Pannucharoenwong, N., & Punnok, P. (2020). Supervisory control for wireless automatic environment control in oyster mushroom house. *Farm Engineering and Automation Technology Journal*, 6(1), 40-49. <https://ph02.tci-thaijo.org/index.php/featku/article/view/227325> [in Thai]

Laead-on, K. (2021). Utilization of rice straw for mushroom cultivated and supplemented materials on growth and yield of grey oyster mushroom in cylinder plastic. *Rajamangala University of Technology Tawan-ok Research Journal*, 14(1), 32-41. <https://li01.tci-thaijo.org/index.php/researchjournal2rmutt/article/view/247082> [in Thai]

Liu, Y., Zhang, C., & Zhu, P. (2011). The temperature humidity monitoring system of soil based on wireless sensor networks. *2011 International Conference on Electric Information and Control Engineering*, 1850-1853. <https://doi.org/10.1109/iceice.2011.5777805>

Lorprasert, B. (2010). *Mushroom Cultivation Farm*. (1st ed.). Bangkok: Kasetkarnpim Part., Ltd. [In Thai]

Marzuki, A., & Ying, S. Y. (2017). Environmental monitoring and controlling system for mushroom farm with online interface. *International Journal of Computer Science & Information Technology (IJCSIT)*, 9(4), 17-28. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3898986

Murad, G., Badarneh, A., Qusef, A., & Almasalha, F. (2018). Software testing techniques in IoT. *2018 8th International Conference on Computer Science and Information Technology (CSIT)*, 17–21. <https://doi.org/10.1109/csit.2018.8486149>

Patcharee, S., & Suchart, K. (2022). Fungal disease detection system for fairy mushrooms using deep learning, robotics and IoT for real smart farming. *ICIC Express Letters, Part B: Applications*, 13(12), 1301–1312. <https://doi.org/10.24507/icicelb.13.12.1301>

Patnaikuni, D. R. P. (2017). A comparative study of Arduino, Raspberry Pi and ESP8266 as IoT development board. *International Journal of Advanced Research in Computer Science*, 8(5), 2350–2352. <https://doi.org/10.26483/ijarcs.v8i5.3959>

Ruamatum, P., & Tulasombat, S. (2019). Cost and return of banbonkhoy Sarjou-caju mushroom farm Khirimat District Sukhothai Province. *2019 6th National Sustainability in Business Conference & Journal*, 206–220. [In Thai]

Saowarat, C. (2017). *Automatic climate control in greenhouse by fogging system* (Master's thesis, Suranaree University of Technology, Engineering in Mechanical and Process System Engineering). Nakhon Ratchasima.

Ten, S. T., Krishnen, G., Khulidin, K. A., Tahir, M. A. M., Hashim, M. H., & Khairudin, S. (2021). Automated controlled environment mushroom house. *Advances in Agricultural and Food Research Journal*, 2(2), a0000230. <https://doi.org/10.36877/aafrj.a0000230>

Thaneerananon, A., & Vilalai, P. (2019). Cost and return analysis of investment on oyster mushroom farming in Nakhon Pathom: Case study learning resources. *Journal of Management Science Nakhon Pathom Rajabhat University*, 6(1), 91–108. <https://doi.org/10.14456/jmsnpru.2019.30> [in Thai]

Tiparat, W., Suwanweala, S., Singhasek, P., & Mengaied, S. (2018). The effects of a self-management supporting program on management of blood pressure among patients at-risk for stroke in Muang District Trang Province. *The Southern College Network Journal of Nursing and Public Health*, 5(2) 70–85. <https://he01.tci-thaijo.org/index.php/scnet/article/view/130692> [In Thai]

Vengsungnle, P., Nuboon, T., Jongpluempiti, J., Janprom, S., & Pannucharoenwong, N. (2019). Influence of greenhouse roof type affecting the air ventilation in Lingzhi mushroom house by CFD. *Farm Engineering and Automation Technology Journal*, 5(2), 1–14. <https://ph02.tci-thaijo.org/index.php/featku/article/view/188560> [In Thai]

Zhou, X. (2017). Research on Wi-Fi probe technology based on ESP8266. 2017 *5th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering (ICMMCCE)*. 163–167. <https://doi.org/10.2991/icmmcce-17.2017.34>

Web Scraping-based System for E-commerce Price Comparison and Similar Product Segmentation

Pongsin Jankaew¹, Wachirawut Thamviset^{1,*}

¹ Department of Computer Science and Information Technology, College of Computing, Khon Kaen University, Khon Kaen 40002, Thailand

* Corresponding author: Wachirawut Thamviset, twachi@kku.ac.th

Received:
4 November 2023
Revised:
6 April 2024
Accepted:
13 April 2024

Keywords:
Agglomerative Clustering,
E-commerce, Product Identification, Web Scraping

Abstract: With the booming growth of e-commerce, finding the best deals amid a multitude of online shopping websites has become a challenge. Consumers often spend a considerable amount of time manually sifting and comparing data, leading to uncertainty in decision-making. To address this issue, our research proposes a system that utilizes web scraping techniques to identify top deals from multiple e-commerce sites. We have developed Python-based web scraping scripts and incorporated a configuration file for customization, enabling users to extract product data from diverse websites. The system scrapes data and displays result each time the user enters a query, ensuring that the scraped data is up to date. Furthermore, our system enhances the user experience by incorporating product model datasets for product identification, enabling specific searches based on product specifications, and offering recommendations for similar product models. Finally, in cases where products remain unidentified, we introduce a feature for grouping similar products through an agglomerative clustering method. This method utilizes product name and image features extracted by TF-IDF and Convolutional Neural Networks (CNN), allowing for price comparisons among similar products and enhancing the overall shopping experience. Preliminary evaluations show that our system successfully extracts data from target websites with proper customizations. The evaluations of similar

product clustering demonstrate that using a combined feature of product names and images significantly improves clustering performance, surpassing the use of product names or images alone, with a 9 percent increase and 18 percent increase, respectively.

1. Introduction

In the current digital era, the internet has become an integral part of our daily lives. Its widespread accessibility has enabled businesses and organizations worldwide to leverage its power to improve work efficiency and achieve better results. E-commerce, one of the most significant benefits of the internet, has witnessed exponential growth in recent years. Online shopping platforms have become increasingly popular, providing people with a convenient and easy way to access goods and services from the comfort of their homes (Kemp, 2022). Despite the convenience offered by online shopping, finding the best deals can be a time-consuming and frustrating process. Consumers often have to navigate multiple websites to compare prices, which can be inconvenient and inefficient (Asawa *et al.*, 2022; Mehak *et al.*, 2019). To address this issue, price comparison websites have emerged, allowing users to compare prices across various e-commerce platforms. In Thailand, there are existing websites perform price comparisons, including iPrice and Priceza. iPrice compares products within leading e-commerce websites like Lazada, Shopee, and Central Online, whereas Priceza stores product data in its database and compares

categories like mobiles, computers, electric appliances, household goods, and fashion items. However, these websites sometimes encounter problems such as mismatched product prices on the price comparison website and the original website, or missing product information that appears on the price comparison website but not on the original website. The primary reason for these discrepancies may be the lack of regular updates on the product data in these websites, leading to inaccurate product comparisons.

In this paper, we propose a web scraping-based system designed for comparing products across multiple e-commerce websites. Our system offers configurability, allowing users to specify extraction rules for each selected target website. It operates by extracting data from the target website in real-time as the user enters a search query, ensuring that the displayed product information is up to date. This design addresses issues present in prior price comparison websites, particularly those related to mismatched or missing product data. To enhance the user experience, we are developing a feature that recommends similar products within search results. This system utilizes product names and images as features and employs an Agglomerative Clustering method for grouping similar products. Moreover, our system incorporates a product model identification feature, enabling the recognition and grouping of products sharing the same model. This feature can be used with any product dataset as a reference. The goal is to enable consumers to make informed

decisions when shopping online, saving both time and money while elevating their overall online shopping experience.

2. Related Work

2.1 Web Scraping Approaches

Web scraping stands as a prevalent data mining technology employed for extracting unstructured data from diverse online sources. The acquired data can subsequently undergo restructuring and transformation into a structured format. The process of web scraping can be executed through manual techniques or automated programs. Presently, websites are commonly categorized into two principal formats: static and dynamic. Each of these web formats necessitates distinct data extraction methodologies (Lan *et al.*, 2021).

2.1.1 Static Webpages Scraping

Static webpages have a fixed data structure and display the same content stored on the web server side when HTML data is loaded on the client's web browser. Retrieving HTML data from a static page is typically done by sending an HTTP request. Subsequently, an HTML Parser is employed to extract the pertinent information from HTML documents, thereby constructing a hierarchical tree structure known as the Document Object Model (DOM Tree). Within this context, users specify the HTML tags housing the desired information to facilitate the data extraction process (Lan *et al.*, 2021).

2.1.2 Dynamic Webpages Scraping

Web scraping of dynamic webpages poses challenges due to the dynamic loading of data using JavaScript. Dynamic pages cannot be accessed in the requested HTML of the target webpage by simply sending an HTTP request. To overcome this issue, the web driver is used, which is a web automation framework which allows user to execute test across various browsers (Gheorghe *et al.*, 2018). Web scraping methodologies incorporate the use of a web driver, enabling the automation of actions across different web browsers. Employing a web driver to interact with a website enables the system to execute JavaScript on the target webpage, thereby ensuring the retrieval of the necessary information. Subsequently, HTML Parser are employed to transform the HTML documents retrieved from the webpage into a structured tree format, facilitating the extraction of the desired information (Lan *et al.*, 2021).

The researcher conducted a review of pertinent literature concerning data extraction methodologies applied to diverse e-commerce websites. A study by Ambre *et al.* (2019) outlined the development of a web application for comparing product prices across multiple websites, utilizing static web scraping methodologies with the Python package. This involved incorporating the Request library for sending HTTP requests and the BeautifulSoup 4 library for HTML parsing. In a separate study, Alam *et al.* (2020) introduced a price comparison application tailored for

Bangladeshi e-commerce platforms, utilizing static webpage scraping methodologies via the Scrapy framework for website access and automated data extraction. In contrast, Asawa *et al.* (2022) engineered a price comparison web application involved the implementation of dynamic web scraping techniques, utilizing Selenium as a web driver, available in various languages including Python, and Beautiful Soup 4 as an HTML parser. Additionally, Mehak *et al.* (2019) developed a web application for product price comparison, employing a hybrid approach that encompassed both HTTP request transmission using Request library and web driver techniques using Selenium to access various websites, with Beautiful Soup 4 serving as the HTML parser for this application.

The mentioned studies employed diverse methods for data extraction, with some focusing on static web data extraction using tools like the Request library or Scrapy framework, while others utilized the Selenium library for websites with dynamic content. However, the latter approach often incurred longer processing times compared to tools designed for static websites. Notably, all the mentioned research fixed the target websites for their web scraping systems, limiting flexibility when users wished to search for products on different websites. Recognizing this limitation, the researcher identified an opportunity to enhance the efficiency of web data extraction by developing a system capable of customization for scraping any desired target website. This system is designed to select extraction tools

based on the nature of the target website, providing increased flexibility for users.

2.2 Product Matching Approaches

The process of product matching is accomplished through the application of machine learning methodologies. Various studies have addressed the Product Matching process using distinct approaches. Li *et al.* (2020) developed a method for finding products of the same type, employing an artificial neural network model that considers two types of product descriptions: title and attribute. It consists of a model for processing product title data and a model for processing product attributes data together. Addagarla & Amalanathan (2020) have developed an image-based search for similar product recommendation system by processing product image data by performing Principal Component Analysis (PCA) using Singular Value Decomposition (SVD) method. Next, the data will be grouped using the K-means++ method to group similar product data. The input image is then measured for Manhattan distance to the target clusters set, fetching the top-N similar products with low distance measures. Kannan (2021) developed a system to classify whether products are identical, utilizing product name and image information from e-commerce websites. The model is a combination of TF-IDF for product name data and ResNet-18, a Convolutional Neural Networks (CNN) architecture, for product image data.

This research aims to develop an efficient process for grouping similar products

without relying on high processing power, ensuring the prompt presentation of grouping results to users. Despite the effective outcomes produced by the artificial neural network model, its resource-intensive nature led the researchers to explore alternatives. While the K-means++ clustering method is robust, it requires prior determination of the number of clusters, posing a challenge when dealing with products of an unknown grouping structure. Additionally, the algorithm in the last-mentioned research focuses on classifying whether a product is similar to others, whereas our research aims to group similar products. Consequently, the researchers opted for the TF-IDF method to process product names and a pre-trained CNN model for processing product images, extracting features with less processing power. These features are then employed in an Agglomerative Clustering approach, a hierarchical clustering algorithm. Unlike partitioning methods like K-means++, agglomerative clustering builds a hierarchy of clusters without predefining the number of clusters.

3. Materials and Methods

In this research, a web application has been designed as the system's form. The system was developed using the Django framework, implemented in the Python

programming language. Django allows developers to create web applications quickly by providing many pre-built components and templates, thus reducing development time and effort. An overview of the system architecture is presented in Figure 1. The proposed system comprises three main layers:

- **Web Extraction Layer:** This layer focuses on extracting product data from the target websites, initiated by receiving search queries from the user interface.
- **Data Categorization Layer:** Following the extraction of product data in the Web Extraction Layer, this layer categorizes the data. It consists of two modules: one for product type or model identification and another for clustering unidentified products.
- **Application Layer:** This layer provides a user interface, allowing users to enter search queries for their desired products, which are then sent to the Web Extraction Layer. Additionally, it displays the product data generated by the preceding layers.

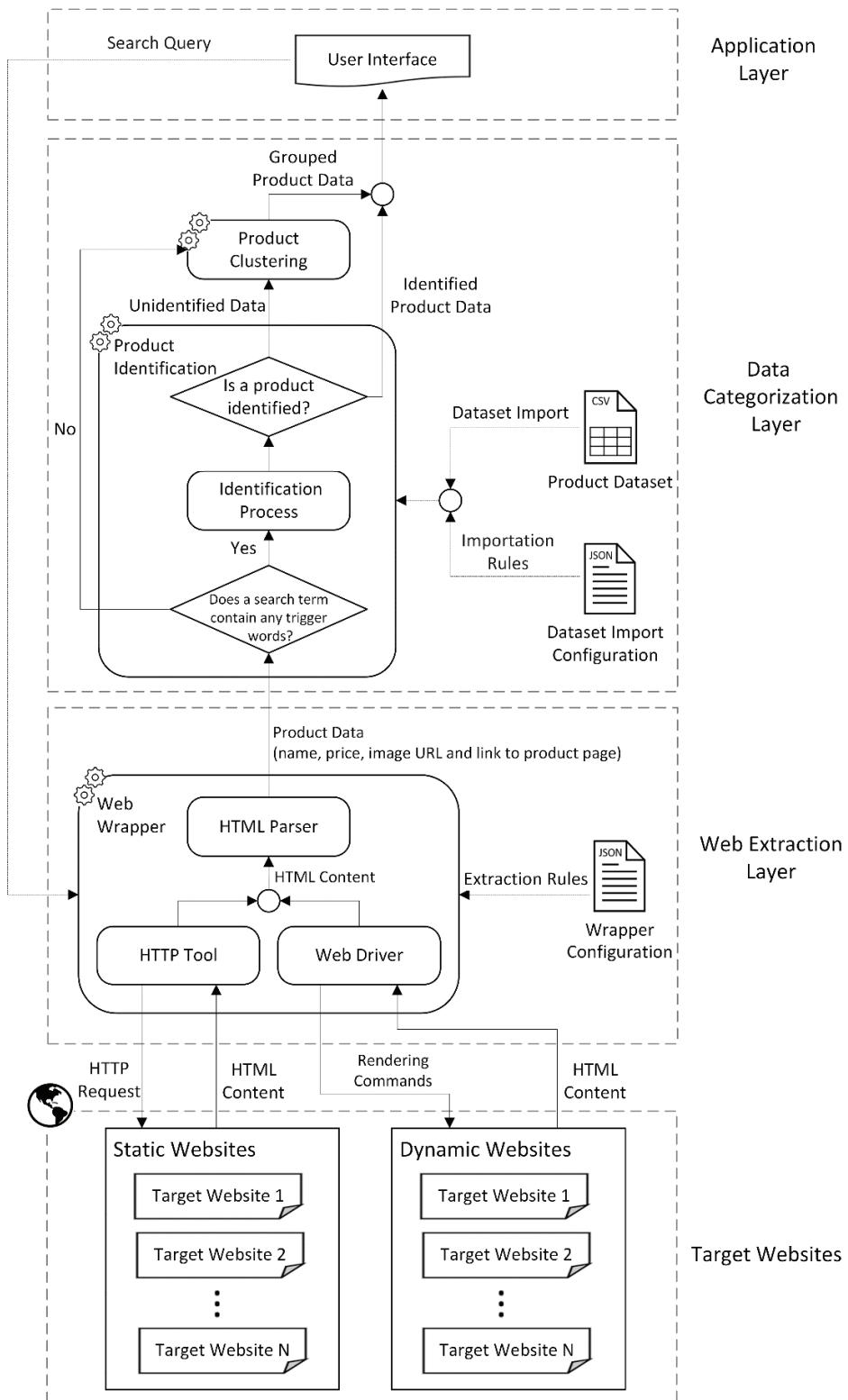


Figure 1. System Architecture

3.1 Implementation of the Web Extraction System

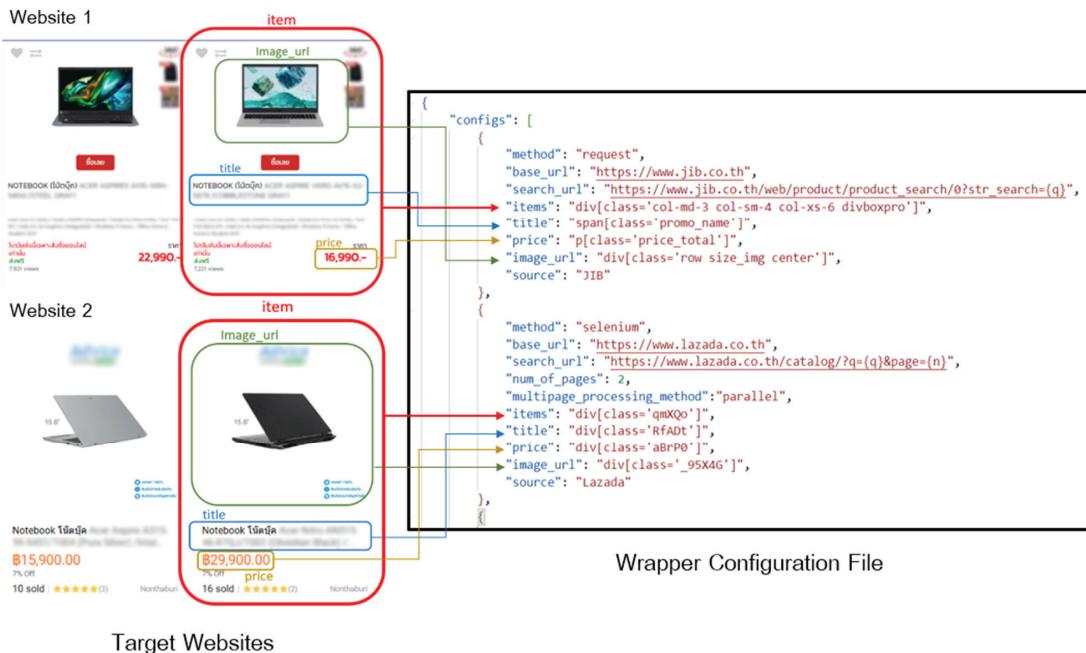
The web extraction process takes place within the Web Extraction Layer of this system. This implementation involves configuring extraction rules in the wrapper configuration, providing directives to the web wrapper for the accurate extraction of product data from designated target websites. When a user enters a search query in the user interface, the web wrapper extracts data from the target website based on the search query and extraction rules. This approach ensures the freshness of the extracted data, addressing issues prevalent in existing price comparison websites, such as missing or mismatched information. Subsequently, the extracted data is sent to the data categorization layer for further processing. The components involved in web extraction are detailed as follows:

3.1.1 Wrapper Configuration

Wrapper configuration allows users to customize the web wrapper in the Web Extraction Layer. It provides rules for web accessibility tools, offering two options: Requests, for making HTTP requests, and Selenium WebDriver, for automating web browsers. In the initial step, users are tasked with determining the dynamism of the target webpage by disabling JavaScript. If the desired data persists, the Requests option is used for its faster processing time; otherwise, Selenium is employed for dynamic pages. Subsequently, users need to inspect the website's HTML

structure to identify the HTML elements containing required product data, such as titles, prices, images, and URLs. This information serves as a prerequisite for the configuration of a dedicated file in subsequent steps.

The wrapper configuration file template, as depicted in Figure 2, is formatted in JSON. It requires users to define values for each key. For elements requiring HTML values, users specify the tag name, class attribute, or ID of the HTML elements identified during the earlier inspection. For instance, if the product name is in “`<div class="product-name">`,” it’s defined in the “title” key as “`div[class='product-name']`”. Users can configure additional settings, such as the number of pages to scrape and the access method (sequential or parallel). An example of the wrapper configuration for each target website is provided in Figure 3. Furthermore, users can customize web access tools, including ‘Requests’ and ‘Selenium.’, with the flexibility to customize HTTP headers for Requests and browser actions, waiting times, and scrolling preferences for Selenium. Users can tailor web accessibility tools for each site, enabling specific actions for different sites, or use default settings if not specified.


3.1.2 Web Wrapper

Web Wrapper is responsible for automatically extract product information from the target website. To achieve successful web data extraction, the system follows a defined process. When a user enters a search term in the user interface, the system reads

```
"configs": [  
    {  
        "method": "[Specify the web access method: 'requests' or 'selenium']",  
        "base_url": "[Enter the domain name of the target website]",  
        "search_url": "[Specify the URL for embedding search queries]",  
        "num_of_pages": "[Number of search results pages on the target website to be scraped.]",  
        "multipage_processing_method": "[Specify method for accessing multiple pages: 'sequential'  
        or 'parallel']",  
        "items": "[Specify the HTML element containing the block of product data]",  
        "title": "[Specify the HTML element containing the product name]",  
        "price": "[Specify the HTML element containing the product price]",  
        "link": "[Specify the HTML element containing the product link; leave blank if not applicable]",  
        "image_url": "[Specify the HTML element containing the product image URL]",  
        "source": "[User-defined name for the target website to be displayed in the application result  
        page]"  
    },  
    {[Configurations of other target websites]}  
],  
"configs_request": {  
    "headers": {"[Specify browser HTTP headers]"}  
},  
"configs_selenium": {  

```

Figure 2. Template of Wrapper Configuration File

Target Websites

Figure 3. Example of Wrapper Configuration

the wrapper configuration file to import the specified data extraction rules. Subsequently, the search term is incorporated into the URL for product searches on the target website, and the system accesses the website using the chosen web access tool (either Requests or Selenium WebDriver). Once access to the target website is established, the Beautiful Soup 4 library is invoked to parse the HTML content, converting it into a structured tree for data extraction. Beautiful Soup 4 then extracts the data based on the rules defined in the wrapper configuration file.

3.2 Product Type Identification Process

Once the Web Wrapper extracts data from target websites, this extracted data is directed into the Product Identification module

within the Data Categorization Layer. The core concept behind this process is to utilize product datasets as metadata, describing the product specifications for each item, to identify the product types or models of the extracted items. These datasets serve as a reference to make such identifications. To achieve this, the system employs TF-IDF (Term Frequency-Inverse Document Frequency) for vectorization of product names from both the extracted products and the product dataset. TF-IDF is a numerical statistic that reflects the importance of a term within a document relative to a collection of documents. The algorithm consists of two components: Term Frequency (TF) and Inverse Document Frequency (IDF). TF measures the frequency of a term within a document, while IDF evaluates the rarity of a term across the entire

corpus. The computations for TF and IDF are expressed in Equations 1 and 2, respectively. The TF-IDF score for a term in a document is then derived by multiplying its TF by its IDF, as depicted in Equation 3.

$$TF(t, d) = \frac{\text{Number of times term } t \text{ appears in document } d}{\text{Total number of terms in document } d} \quad (1)$$

$$IDF(t, D) = \log \left(\frac{\text{Total number of documents in the corpus } D}{\text{Number of documents containing term } t} \right) \quad (2)$$

$$TF - IDF(t, d, D) = TF(t, d) \times IDF(t, D) \quad (3)$$

The vectorization process involves converting textual data, in this case, product names, into numerical vectors. Specifically, TF-IDF assigns weightings to each term based on its frequency within the product name and its rarity across the entire dataset. The system then evaluates which product models in the dataset exhibit the highest cosine similarity values to the extracted products. The cosine similarity is a measure of the cosine of the angle between two vectors. In the context of TF-IDF vectors, it indicates how closely aligned the vectors are in the high-dimensional space defined by the terms. The formula for cosine similarity between two vectors A and B is given by:

$$\cos(A, B) = \frac{A \cdot B}{\|A\| \times \|B\|} \quad (4)$$

where $A \cdot B$ is the dot product of vectors A and B. $\|A\|$ and $\|B\|$ are the magnitude of vectors A and B, respectively. The result is a value between -1 and 1. A value of 1

indicates perfect similarity, 0 indicates no similarity, and -1 indicates perfect dissimilarity. In this scenario, the model in the dataset with the highest similarity to the scraped product under consideration is identified, but if the maximum cosine similarity value does not meet the specified threshold (defaulting to 0.5, adjustable in the dataset configuration file), the system does not identify the model for the scraped product, considering that the model is not in the dataset. Subsequently, the system checks for any extracted products identified as the same model, grouping them into the same product category, and prepares to transmit the results to the user interface. Finally, the unidentified products are forwarded to the Product Clustering module for the grouping of similar products in the subsequent step.

3.2.1 Configuring the Import of Product Datasets

Users have the option to import a product dataset into the system. This dataset can be obtained from various online sources or extracted from specific websites. The imported dataset essentially acts as a guide to assist in the identification of product types or models from the target website's data. Users can configure dataset imports through the system's JSON-formatted configuration file, with a provided template, as shown in Figure 4. In the context of this research, two datasets have been incorporated into the system, one focusing on laptop computers extracted from www.notebookspec.com and

another on mobile phones extracted from www.specphone.com. These datasets were created through web data extraction by the researcher using the Scrapy Framework, which is proficient in swiftly extracting numerous static webpages containing detailed product specifications. An example of a laptop dataset used in this system is shown in Figure 5. A crucial step involves specifying trigger words, which serve as keywords to match against the user's search queries. The system will import and process the dataset if any of these trigger words are found in the user's search term. For example, if the dataset pertains to laptop computers, the user can define trigger words like "Notebook" or "Laptop." If the user's search query includes any of these words, e.g., "Laptop for Students", the system will import the corresponding laptop dataset for further processing.

Additionally, the user must indicate the name of the column in the dataset containing

product titles to ensure correct processing. Other settings allow users to customize the display of product properties on the search results page. For instance, users can choose to display information such as Central Processing Unit (CPU), Graphics Processing Unit (GPU), Random Access Memory (RAM), and Solid State Drive (SSD) storage sizes, enhancing the convenience of product searches. The example result of product type identification is presented in Figure 6.

3.2.2 Filtering Products Using Specification Data

Once the entire process is complete, users can filter products on the web application's results page using product specification data, utilizing the product dataset as metadata for filtering. For instance, when employing a laptop computer dataset, users may search for specific laptop models with particular CPU or GPU types, as illustrated in Figure 7.

```
“dataset_configs”: [  
  {  
    “trigger_words”: [“Specify a set of trigger words for dataset importation”],  
    “file_path”: “Specify the file path of the dataset”,  
    “title_column_name”: “Specify the column name in the dataset containing product model  
    names”,  
    “columns_to_be_shown”: [“Specify names of columns in the dataset with specification data  
    to display in the result page”],  
    “similarity_threshold”: “Specify the minimum cosine similarity threshold to consider a product  
    match (default is 0.5)”  
  },  
  {“Additional configurations for other dataset importations”}  
]
```

Figure 4. Template of Dataset Configuration File

1	A	B	C	D	E	F	G	H	I	J
2	title	cpu: CPU	cpu: Core	cpu: Core	cpu: Thread	cpu: Cache	cpu: TDP	display: Panel	display: Size	display: Refresh
2	Acer Nitro	AMD Ryzen 8 (P-Core)		16	4MB (L2 C 54 W)	IPS	16 inch	16.0 inch	165 Hz	
3	Lenovo V1	Intel Core 10 (P-Core)		12	18.5MB (L2 -)	IPS	15.6 inch	15.6 inch (60 Hz)		
4	MSI Vector	Intel Core 8 (P-Core)		32	32MB (L2 55 W)	IPS	16 inch	16 inch (240 Hz)		
5	MSI Cyborg	Intel Core 4 (P-Core)		12	13MB (L2 45 W)	IPS	15.6 inch	15.6 inch (144 Hz)		
6	Apple Mac	Apple M1	10 (P-Core)	10	24MB (L2 -)	IPS	16.2 inch	16.2 inch (120 Hz)		
7	Lenovo Legion	Intel Core 6 (P-Core)		20	11.5MB (L2 45 W)	IPS	16 inch	16 inch (240 Hz)		
8	Asus ROG	AMD Ryzen 8 (P-Core)		16	8MB (L2 C 9-30 W)	IPS	7 inch	7 inch (19.120 Hz)		
9	DELL Latitude	Intel Core 4 (P-Core)		16	10MB (L2 28 W)	IPS	15.6 inch	15.6 inch (60 Hz)		
10	Asus ROG	Intel Core 8 (P-Core)		32	32MB (L2 55 W)	IPS	16 inch	16.0 inch	165 Hz	
11	HP Pavilion	AMD Ryzen 6 (P-Core)		12	3MB (L2 C 28 W)	OLED	13.3 inch	13.3 inch	90 Hz	
12	HP 15-fc0000	AMD Ryzen 6 (P-Core)		12	3MB (L2 C 15 W)	IPS	15.6 inch	15.6 inch (60 Hz)		
13	Asus Vivo	AMD Ryzen 4 (P-Core)		4	2MB (L2 C 15 W)	IPS	14 inch	14 inch (160 Hz)		
14	MSI Modern	Intel Core 2 (P-Core)		4	2.5MB (L2 -)	IPS	15.6 inch	15.6 inch (60 Hz)		
15	DELL Inspiron	Intel Core 2 (P-Core)		8	9.5MB (L2 12 W)	IPS	14 inch	14 inch (160 Hz)		
16	DELL G15	Intel Core 6 (P-Core)		16	20MB (L2 55 W)	IPS	15.6 inch	15.6 inch (120 Hz)		
17	Asus Vivo	Intel Core 4 (P-Core)		12	13MB (L2 45 W)	IPS	16 inch	16.0 inch (60 Hz)		
18	MSI Modern	Intel Core 2 (P-Core)		4	2.5MB (L2 -)	IPS	15.6 inch	15.6 inch (60 Hz)		
19	DELL G15	Intel Core 6 (P-Core)		20	24MB (L2 55 W)	IPS	15.6 inch	15.6 inch (165 Hz)		
20	DELL Inspiron	Intel Core 4 (P-Core)		16	10MB (L2 28 W)	IPS	16 inch	16 inch (160 Hz)		
21	DELL Inspiron	Intel Core 4 (P-Core)		16	21MB (L2 28 W)	IPS	16 inch	16 inch (160 Hz)		
22	DELL Alien	Intel Core 6 (P-Core)		20	11.5MB (L2 45 W)	IPS	16 inch	16 inch (240 Hz)		

Figure 5. Example of Laptop Dataset

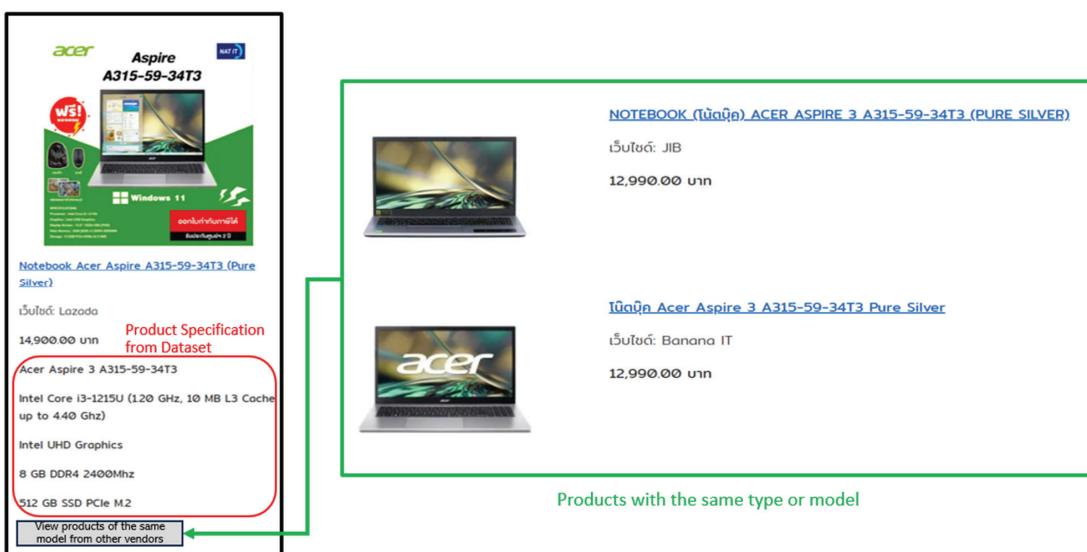


Figure 6. Example of Product Identification Result

Search Result for “laptop”

cpu: CPU

Product	Image	Price
AMD Ryzen 7 7840HS (3.80 GHz up to 5.10 GHz, 16 MB L3 Cache)		
AMD Ryzen 7 7730U (2.00 GHz up to 4.50 GHz, 16MB L3 Cache)		
AMD Ryzen 7 5800H (3.20 GHz up to 4.40 GHz, 16 MB L3 Cache)		
AMD Ryzen 7 5700U (1.80 GHz up to 4.30 GHz, 8 MB L3 Cache)		
AMD Ryzen 7 6800H (3.20 GHz up to 4.70 GHz, 16 MB L3 Cache)		
AMD Ryzen 7 7735HS (3.20 GHz 16MB L3 Cache up to 4.75 GHz)		
AMD Ryzen 7 7840U (3.30 GHz up to 5.10 GHz, 16MB L3 Cache)		
AMD Ryzen 7 6800HS (3.20 GHz up to 4.70 GHz, 16 MB L3 Cache)		
ASUS Gaming Laptop 15.6 Inch Laptop Intel Celeron J4105 RAM 6G DDR4 128GB/256GB SSD Windows 10 เริ่มต้น new laptop computer		
เริ่มต้น: Lazada 6,369.00 บาท	เริ่มต้น: Lazada 15,864.10 บาท	
ASUS Gaming Laptop 15.6 Inch Laptop Factory New AMD Ryzen 5 5500U RAM 12/16GB SSD: 256GB/512GB/1TB Fingerprint Unlock รุ่น: กันน้ำกันกระแทก		
เริ่มต้น: Lazada 15,864.10 บาท	เริ่มต้น: Lazada 15,864.10 บาท	
NOTEBOOK (โน๊ตบุ๊ค) MICROSOFT SURFACE LAPTOP 5 15" i7/8/256 (PLATINUM)		
เริ่มต้น: JIB 45,900.00 บาท	เริ่มต้น: Power Buy 23,000.00 บาท	
SURFACE Laptop Go 2 (12.4" Intel Core i5, RAM 8GB, 128GB)		
เริ่มต้น: Power Buy 23,000.00 บาท		

Figure 7. Search Filtering

3.3 Similar Product Grouping Process

This phase, executed within the Data Categorization Layer similar to the previous process, categorizes unclassified data from either the Product Identification module or directly from the Web Wrapper in instances where dataset importation is not performed. The Agglomerative Clustering method is employed, utilizing product names and images as features for grouping. Agglomerative Clustering is a hierarchical clustering algorithm used for grouping similar data points into clusters. The process starts with each data point considered as an individual cluster and, in each iteration, merges the closest pair of clusters until only one cluster remains. The key idea is to build a hierarchy of clusters, represented as a tree or dendrogram, where the leaves of the tree are the individual data points, and the root is the ultimate single cluster containing all data points.

Initially, product name data undergoes preprocessing, including punctuation removal, tokenization, and stop-word elimination. Then, the data is vectorized using TF-IDF. For the product images, features are extracted using a Convolutional Neural Network (CNN) model. Image features represent patterns, shapes, and structures within images, providing numerical representations of content. The CNN model, pretrained on the ImageNet-1k dataset containing 1,281,167 categorized images (Russakovsky *et al.*, 2015), learns filters and patterns useful for discriminating between objects or features within images. This process is facilitated by the PyTorch library, providing image preprocessing tools such as resizing, central cropping, and normalization. After extracting both product name and image features, the system concatenates these features and employs them for data grouping via Agglomerative Clustering, utilizing the scikit-learn library and the “cosine” metric for grouping. This process requires defining

a Distance Threshold, determining when the system combines groups based on cosine distance, which can be specified in the product grouping configuration file. Subsequently, all grouped product data is collected and transmitted to the frontend system, allowing users to search for similar products, as illustrated in Figure 8. Furthermore, the system stores feature data extracted from product images in its cache to expedite future searches for the same products. Since image feature extraction is computationally intensive and time-consuming, cached feature data enables quicker processing. This optimization reduces overall processing time.

4. Results and Discussion

We conducted a preliminary evaluation of our system in two aspects. Firstly, the web extraction system underwent evaluation through experiments involving the extraction of product data from various e-commerce websites. These experiments aimed to

verify whether the extracted results correctly contained the product data from the target websites. Specifically, we selected Lazada (lazada.co.th), Power Buy (powerbuy.co.th), Banana IT (bnn.in.th), and JIB (jib.co.th) as target websites. The web extraction experiments encompassed ten different search queries. The results presented in Table 1 demonstrate that our system, with a correctly configured Web Wrapper, achieved a 100 percent accuracy rate in extracting product data from target websites. This indicates that our system extracted data without any missing or mismatched information.

The second aspect of our evaluation focused on the performance of our similar products grouping system. Given the availability of numerous CNN models, researchers conducted experiments to determine the most suitable model for extracting features from images and classifying them using Agglomerative Clustering. The experiments utilized product dataset sourced from the Shopee

Figure 8. Example of Similar Product Grouping Result

website, specifically a dataset designed for a similar product classification competition on www.kaggle.com. This dataset encompasses specifications for various types of products, including fashion items, electronics, and consumer goods. The dataset, comprising product name and image information necessary for the product grouping process, was downloaded from www.kaggle.com and imported into the system for experimentation. To assess the efficiency of these models, the researchers calculated the F1 score for each product and subsequently averaged these scores. This process determined the distance threshold value that yielded the highest F1 score, guiding model selection.

Researchers opted for several CNN models that are computationally efficient, pretrained on the ImageNet dataset. To expedite the research, a subset of 1,000 products was employed in the experiments. The results, presented in Table 2, demonstrated that the EfficientNet-B0 model (Tan & Le, 2019) outperformed other models without significantly increasing processing time for feature extraction and product grouping. Consequently, this model was selected as the default for extracting image features within our system. Subsequently, when the features obtained from TF-IDF were combined with features from EfficientNet-B0 for clustering, they exhibited superior performance compared to using TF-IDF features or the EfficientNet-B0 model in isolation.

Table 1. Web extraction experimental result

Target Website	Extracting Method	Total Product Data Appeared on the Website	Total Valid Product Data Extracted
Lazada	Dynamic	487	487
Power Buy	Static	287	287
Banana IT	Static	377	377
JIB	Static	604	604

Table 2. Products grouping experimental result

Method	F1 Score	Processing Time (second)	Best Distance Threshold
MobileNetV3-Small	0.7862	6.046	0.23
MobileNetV3-Large	0.7643	6.512	0.33
Resnet18	0.7503	6.9090	0.18
EfficientNet-B0	0.7990	8.1388	0.48
TF-IDF	0.8631	0.5142	0.82
TF-IDF + EfficientNet-B0	0.9428	8.6026	0.68

5. Conclusion

In this study, we have introduced a Data Scraping-based System designed to extract product data from various E-commerce websites. This system incorporates features for product identification and grouping of similar products, enhancing the browsing experience for users. Users can customize the system by defining extraction rules for web scraping and importing data for product identification. The effectiveness of the system is underlined by its ability to provide updated and tailored search results to users, reducing data mismatch and missing issues and thereby improving their online shopping experience. We anticipate continuous improvements to our system, focusing on optimizing product data feature extraction, enhancing clustering methods, and refining the data scraping process. By continually refining and expanding the system's capabilities, we aim to bridge the gap between consumers and e-commerce platforms, making online shopping a more streamlined and rewarding experience for all parties involved.

Reference

Addagarla, S. K., & Amalanathan, A. (2020). Probabilistic unsupervised machine learning approach for a similar image recommender system for E-commerce. *Symmetry*, 12(11), 1783. <https://doi.org/10.3390/sym12111783>

Alam, A., Anjum, A. A., Tasin, F. S., Reyad, M. R., Sinthee, S. A., & Hossain, N. (2020). Upoma: A dynamic online price comparison tool for Bangladeshi E-commerce websites. *2020 IEEE Region 10 Symposium (TENSYMP)*, 194–197. <https://doi.org/10.1109/tensymp50017.2020.9230862>

Ambre, A., Gaikwad, P., Pawar, K., & Patil, V. (2019). Web and android application for comparison of E-commerce products. *International Journal of Advanced Engineering, Management and Science*, 5(4), 266–268. <https://doi.org/10.22161/ijaems.5.4.5>

Asawa, A., Dabre, S., Rahise, S., Bansode, M., Talele, K. T., & Chimurkar, P. (2022). Co-Mart - A daily necessity price comparison application. *2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC)*, 1076–1080. <https://doi.org/10.1109/icaaic53929.2022.9792935>

Gheorghe, M., Mihai, F.-C., & Dárdală, M. (2018). Modern techniques of web scraping for data scientists. *International Journal of User-System Interaction*, 11(1), 63–75. <https://rochi.utcluj.ro/rioc/articole/RRIOC-11-1-Gheorghe.pdf>

Kannan, H. K. (2021). *E-commerce product similarity match detection using product text and images* [Master's thesis, National College of Ireland]. <https://norma.ncirl.ie/5171/>

Kemp, S. (2022). Digital 2022: Another year of bumper growth. We are social. Retrieved August 24, 2023, from <https://wearesocial.com/us/blog/2022/01/digital-2022-another-year-of-bumper-growth-2/>

Lan, H., Sha, D., Malarvizhi, A. S., Liu, Y., Li, Y., Meister, N., Liu, Q., Wang, Z., Yang, J., & Yang, C. P. (2021). COVID-Scraper: An open-source toolset for automatically scraping and processing global multi-scale spatiotemporal COVID-19 records. *IEEE Access*, 9, 84783–84798. <https://doi.org/10.1109/access.2021.3085682>

Li, J., Dou, Z., Zhu, Y., Zuo, X., & Wen, J.-R. (2019). Deep cross-platform product matching in E-commerce. *Information Retrieval Journal*, 23(2), 136–158. <https://doi.org/10.1007/s10791-019-09360-1>

Mehak, S., Zafar, R., Aslam, S., & Bhatti, S. M. (2019). Exploiting filtering approach with web scrapping for smart online shopping : Penny Wise: A wise tool for online shopping. *2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (ICoMET)*, 1–5. <https://doi.org/10.1109/icomet.2019.8673399>

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet large scale visual recognition challenge. *International Journal of Computer Vision*, 115(3), 211–252. <https://doi.org/10.1007/s11263-015-0816-y>

Tan, M., & Le, Q. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. *Proceedings of the 36th International Conference on Machine Learning* (Vol. 97), 6105–6114. <https://proceedings.mlr.press/v97/tan19a.html>

A Comparative Study of Sea Lettuce Cultivation in Seawater and Scientific Saltwater using IoT Technology

Suttipong Klongdee¹, Sriwaree Sujaritchai², Sommart Promput^{3,*}

^{1,2} Department of Information Technology Faculty of Social Technology, Rajamangala University of Technology Tawan-ok, Chanthaburi Campus, Chanthaburi 22210, Thailand.

³ Department of Mechatronics and Robotics Engineering, School of Engineering and Innovation, Rajamangala University of Technology Tawan-ok, Chonburi 20110, Thailand.

* Corresponding author: Sommart Promput (sommart_pr@rmutt.ac.th)

Received:

2 April 2024

Revised:

17 May 2024

Accepted:

20 June 2024

Keywords:

Cultivation, Internet of Things, Sea Lettuce, Smart Agriculture, Temperature Control

Abstract: *Ulva Rigida*, known as sea lettuce, is a variety of marine algae that exhibits a high degree of cultivation feasibility. Sea lettuce offers numerous health benefits and is increasingly being considered as a future food source that could promote commercial cultivation. However, challenges arise in assessing the feasibility of utilizing seawater appropriately, which could be addressed by incorporating the Internet of Things (IoT) into this study. This research aims to investigate and compare the growth of sea lettuce between seawater and scientific saltwater using IoT based on temperature-controlling systems. The IoT-enabled sea lettuce cultivation system can record and display real-time data using Arduino Nano. The results show that the scientific saltwater closely approximates the properties of seawater during the 21-day cultivation period. Sea lettuce cultivated in seawater exhibited greater growth and weight gain compared to cultivation in scientific saltwater. The average weight gain per day was 3.27 grams for seawater cultivation and 2.83 grams for scientific saltwater cultivation, indicating a difference of 0.44 grams. These experimental results demonstrate the feasibility of using scientific saltwater, which exhibits properties resembling seawater. Cultivating with scientific saltwater facilitates ease of cultivation and eliminates the need for coastal locations. Additionally, it has the potential to reduce pollution in marine environments.

1. Introduction

In today's era, people place great importance on health and wellness, leading to a significant trend toward interest in healthy foods, which has become a prominent phenomenon in the food industry. Modern consumers aspire to maintain their health by consuming foods that offer benefits to their bodies, thereby shaping the future of food trends, also known as future food. Future foods are typically categorized into four main groups: organic foods, medical foods, functional foods, and novel foods (Boonlertvanit, 2020). In the Asia-Pacific region, seaweed is predominantly utilized, and there's a growing consumer awareness and preference for seaweed. The value of growing sea lettuce as a sustainable food supply is significant because of its health benefits and environmental advantages, which has led to a growing interest in commercial farming. Fisheries department policies in Thailand, which promote commercial seaweed cultivation and the production of seaweed for the health food market, partly influence the trend in seaweed consumption. Consequently, there has been a significant increase in seaweed farms, with products widely available on the market. We directly consume sea lettuce as food, and it can also serve as a future food source for various industries (Tanchaiha *et al.*, 2021). A study has found that the nutritional value of sea lettuce becomes a rich source of protein and beneficial nutrients because 100 grams of sea lettuce reveal protein content ranging from 10 to 25 grams and carbohydrate content

between 42 to 47 grams (Somchun, 2023).

Currently, the Khung Kraben Bay Royal Development Study Center, established as a result of royal initiatives in Chanthaburi province, focuses on sea lettuce cultivation, propagation, and promotion of the processing of sea lettuce. The community actively participates in these activities to generate income (Vinil, 2023). Cultivating sea lettuce is a straightforward process that yields successful growth. However, seaweed cultivation requires clean seawater without contamination from pollutants. The seawater must have an appropriate level, be settled, and be filtered before being used for cultivation. This imposes constraints on cultivation experiments that demand close proximity to or direct availability of the sea. Farmers who intend to plant sea lettuce, although situated far from the coast, are forced to deal with extra expenses for preparing and transporting seawater to the production site.

As the promotion of sea lettuce cultivation for commercial purposes increases, studies on seaweed cultivation in environments with varying water qualities become increasingly important, which can be investigated in this study. Cultivating sea lettuce in seawater and scientific saltwater presents challenges in Internet of Things (IoT)-based environmental control, such as maintaining water quality, preparing cultivation areas, and ensuring system cleanliness. Therefore, this study aims to investigate the cultivation of sea lettuce in habitats with different water characteristics

based on temperature-controlling systems. By comparing the growth of sea lettuce cultivated in natural seawater and scientific saltwater and utilizing internet-based technology, researchers have effectively monitored water quality and controlled the environment of sea lettuce cultivation to ensure suitability. Parameters such as temperature, pH, and light intensity are efficiently measured and controlled (Rukhiran *et al.*, 2023; de Camargo *et al.*, 2023; Rukhiran & Netinant, 2020). This study contributes to how cultivators understand and effectively manage the challenges of sea lettuce cultivation, facilitating the sustainable development of the seaweed cultivation industry domestically and globally, and advancing the seaweed cultivation industry through innovative IoT-based environmental control systems. Accurate and reliable commercial studies are critical for driving innovation and advancement in this industry into the future.

2. Literature Review

2.1 Sea Lettuce Definition

Sea lettuce, classified under the green algae family Ulvaceae, is commonly known as Sea Lettuce (*Ulva Rigida*) or green laver in Japan, referred to as Ao-Nori (Mouritsen *et al.*, 2018). Sea lettuce is characterized by thin, flat blades with a holdfast at the base. Newly sprouted plants have cells arranged in a single row before branching out into multiple rows with two layers of cells that remain attached, as shown in Figure. 1. Growth occurs through cell division both horizontally and vertically,

resulting in flat sheets with frills along the edges. Sea lettuce is typically observed in a state of buoyancy close to shorelines or affixed to rocks and other types of sea lettuce. The environmental and nutritional factors suitable for sea lettuce cultivation include as follows:

- Salinity: 25 – 30 parts per thousand (Tolerant within 15 – 40 parts per thousand)
- Light intensity: 5,000 – 10,000 lux.
- Water temperature: 25 – 30 °C
- Total nitrogen content: 0.5 – 1.0 milligrams N/liter and phosphate 0.01 milligrams P/liter
- pH level: between 8 – 9.

2.2 Seaweed Cultivation and Monitoring through IoT

Many studies exploring the potential of IoT in seaweed cultivation and monitoring (Iskandar *et al.*, 2021) focus on a buoy-based system. The IoT-based monitoring system is being developed to measure environmental parameters in a seaweed farm using sensors

Figure 1. Samples of sea lettuce

placed on a buoy. The result of this study is the dynamic parameter values that are continuously showcased on the dashboard, accessible through a web browser. On a low-power underwater sensor device, the unique small low-power NFC-enabled data collection system was created to monitor seaweed growth parameters in an agricultural environment (Peres *et al.*, 2021). The device records temperature, light intensity, depth, and motion, and the information can be messaged or downloaded to facilitate informed decision-making for farmers. These systems can potentially improve productivity and reduce costs in seaweed cultivation. Jahanbakht *et al.* (2021) offered a comprehensive survey of the Internet of Underwater Things (IoUT) and Big Marine Data (BMD) analytics, highlighting the potential for these technologies in seaweed cultivation and monitoring.

Therefore, this study addresses a research gap in seaweed farming by examining the cultivation of sea lettuce in both seawater and scientifically prepared saltwater. The study utilizes IoT technology, which is not commonly used in existing research on this topic. An innovative IoT-based system has been designed to monitor environmental factors in sea lettuce farms in real time.

3. Research Methodology

This practical study aims to compare the growth of sea lettuce in different types of water, namely natural seawater and scientific saltwater. The research methodology consists of:

- Studying the growth characteristics and maintenance of sea lettuce involves joint research with the Ao Kung Kraben Development Study Center, initiated by royal initiatives in Chanthaburi province.
- Designing and developing an architectural system for the IoT-based sea lettuce cultivation system by focusing on temperature control as a primary factor. The system that has been created is capable of receiving data from a range of sensors, including those that measure pH, salinity, light, room temperature, and water temperature. If the water temperature exceeds 30 °C, the system will activate a relay in order to provide electricity to the pump for the purpose of spraying water. Ascend to the water's surface in order to decrease the temperature. In addition, the data is collected using cloud computing using Wi-Fi.
- During the experiment, sea lettuce cultivation is conducted under controlled conditions in natural seawater and scientific saltwater [Please show, in the Table, ingredients of scientific saltwater] without replenishing additional water in the containers. Sea lettuce cultivation examples

are controlled based on the weight of the sea lettuce with very minor differences allowed in the experiments. The water temperature is maintained within the appropriate range of 25-30 °C throughout the 21-day duration to match the growth conditions of the sea lettuce.

- Evaluating the growth performance of sea lettuce under two different water conditions over the specified period.
- Reporting the comparison results of two different water conditions among a salinity level, pH,

temperature, and weight of sea lettuce. To calculate the Average Daily Gain (ADG) of seaweed growth over a period of 21 days using the formula for weight gain per day, in Equation (1)

$$ADG = \frac{FinalWeight - InitialWeight}{NumberofDays} \quad (1)$$

where:

ADG is the weight gained per day.

Final Weight is the total weight of the sea lettuce

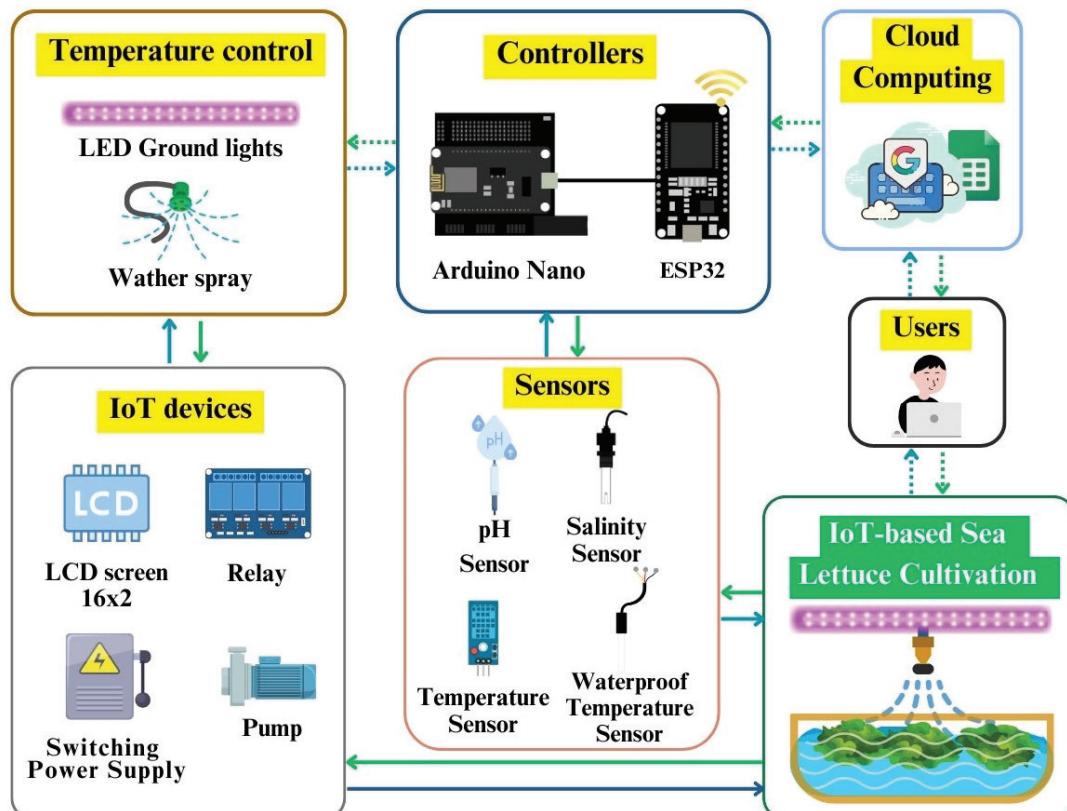


Figure 2. Overview system architecture of IoT-based sea lettuce cultivation system

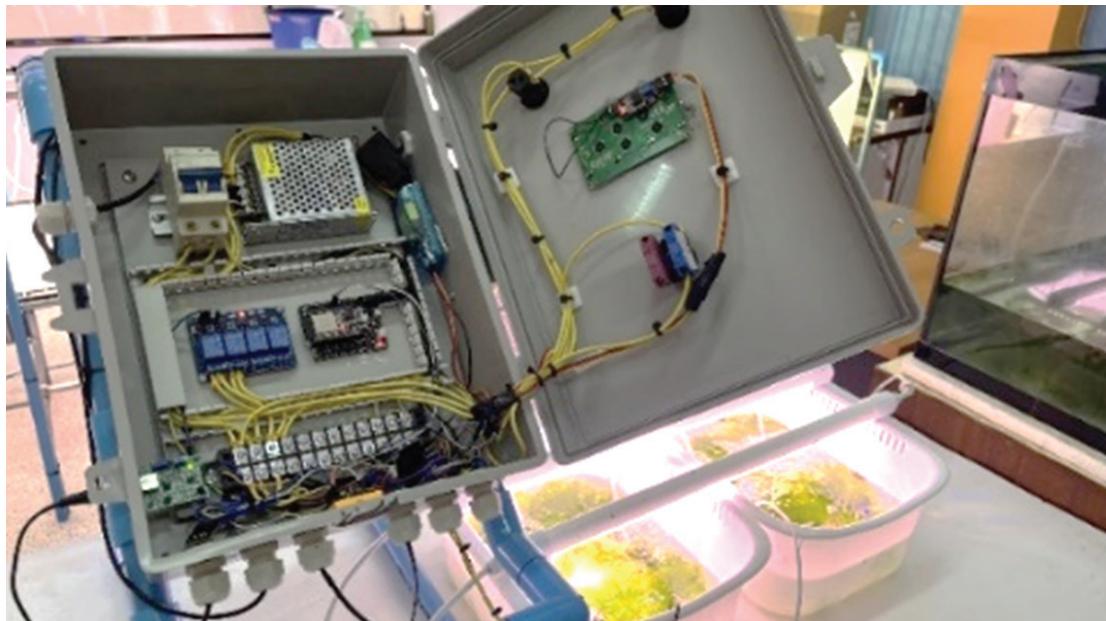
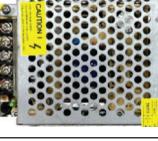


Figure 3. Prototype of IoT-based sea lettuce cultivation system

Initial Weight is the weight of the sea lettuce

Number of Days is the duration of the growth period, which is 21 days in this case.

4. Proposed IoT-Based Sea lettuce Cultivation System


4.1 System Architecture Design

The design and development of an IoT-based sea lettuce cultivation system to support, inspect, and control the environment suitable for sea lettuce seaweed cultivation. The hardware components consist of an Arduino Nano, which is used as a microcontroller for controlling operations. ESP32 receives data through a Wi-Fi connection and sends recorded data to cloud computing. A pH

sensor for measuring acidity. A salinity meter is used for calculating the salinity of water. A temperature regulation system with lighting and irrigation capabilities can effectively maintain water temperatures within 25 to 30 °C. The light-control system is an 18W LED through a relay module with 4 channels (5V 10A). An irrigation system is utilized to automatically manage the water spray to decrease the temperature within the culture tank. This control is achieved by a relay as well. The system architecture overview of the IoT-based sea lettuce cultivation system is illustrated in Figure 2. The final prototype of the proposed system is shown in Figure 3.

Table 1 presents a comprehensive overview of the IoT-enabled hardware used in developing a system-defined criteria.

Table 1. Hardware components of this study

Devices	Images
Arduino Nano 3.0	
Mini USB	
ESP32 NodeMCU ESP-WROOM-32 Wi-Fi and Bluetooth Module	
pH Meter: E-201-C	
Waterproof Temperature Sensor: Sensor DS18B20	
Digital Temperature and Humidity Sensor: DHT11	
Salinity Meter 0-2500ppm: LYg-300	
Relay Module 12V 4 Channel Isolation Low Trigger 250V/10A	
Switching Power Supply 12V 3A	
LCD with Backlight of LCD Screen 24x4	

4.2 Conditions Design of Sea Lettuce Cultivation

In the conditional design for controlling factors in the cultivation process of sea lettuce, the sampling was established for cultivation using seawater: The weight of all sea lettuce specimens was recorded as 10.17 grams, with a total of 13 pieces. The average size was measured to be approximately 7.96 x 8.85 cm. These specimens were then tested for cultivation in a 10-liter cultivation tank filled with seawater, as shown in Figure 4, and Figure 5. shows the cultivation using the scientific saline solution: The weight of all sea lettuce specimens was recorded at 10.16 grams, for a total of 13 pieces. The average size was measured to be approximately 7.27 x 10.05 cm. These samples were then tested for cultivation in a 10-liter cultivation tank filled with scientific saltwater, as illustrated in Figure 6.

Figure 4. Weight collection process of seawater

Figure 5. Weight collection process of scientific saltwater

Figure 6. Inspection during the cultivation of sea lettuce

To install a trial set for sea lettuce, we utilized two LED lights with a power output of 18 watts. These lights had a length of 60 cm. These bulbs have been designed specifically for plant growth. The light will be scheduled to automatically turn on and off every day for a duration of 13 hours (from 5:00 a.m. to 6:00 p.m. on and from 6:01 p.m. to 4:59 a.m. off) at a brightness level of 10,030 Lux. using Internet of Things technology. The experiment consisted of four planting phases on the 4th, 8th, 12th, and 16th days. Each experimental plot received a bio-extract nutrient solution at a ratio of 1 ml per plot during each phase. The harvesting occurred on the 21st day.

5. Results

5.1 Parameters Report

This study involved collecting data on various parameters from different sensors

over a period of 21 days to compare the results between the growth of sea lettuce in seawater and scientific saltwater. The collected data included salinity levels, pH levels, and water temperature both in the water and in the room environment, along with the weight measurements of the seaweed harvest.

The experimental results of the initial salinity level in the test were 29 ppt (parts per thousand), and there was no water exchange during the experiment. It was observed that the salinity level of the seawater increased to 49 ppt after the experiment, while the salinity level of the scientific saltwater was measured at 47 ppt. This indicated a difference of 2 ppt between the salinity levels of the two types of water. Despite this difference, the results demonstrated similar salinity characteristics between seawater and scientific-grade saltwater, as depicted in Figure 7.

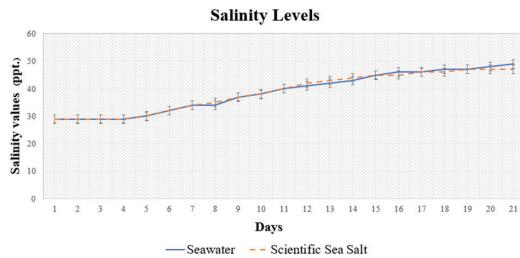


Figure 7. Comparison results of salinity levels between seawater and scientific sea salt

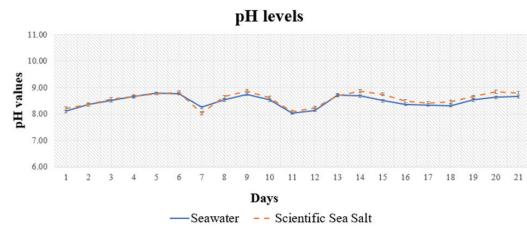


Figure 8 Comparison results of pH levels between seawater and scientific sea salt

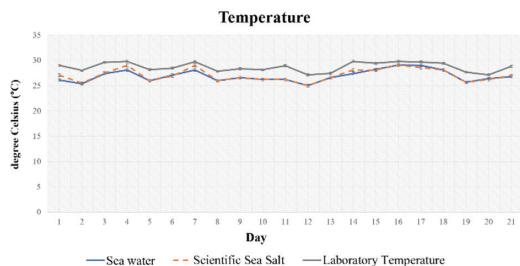
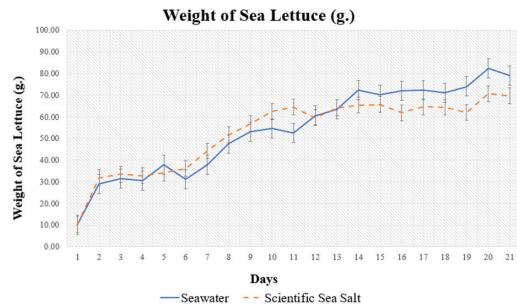
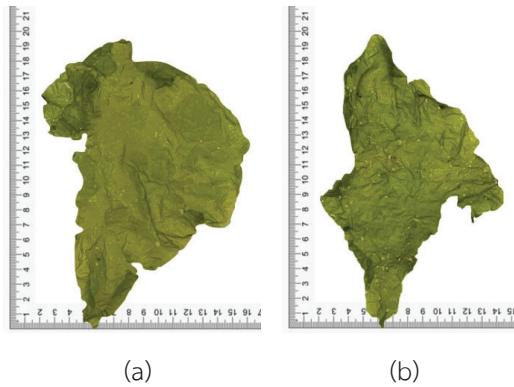


Figure 9 Comparison results of temperature among seawater, scientific sea salt, and laboratory




Figure 10 Comparison results of weight among seawater and scientific sea salt

Acknowledgment

In Figure 8, the comparison of the pH values that controlled pH levels within the range of 8-9 is reported. The average pH of seawater was 8.65, while the average pH of scientific saltwater was 8.79. The difference in pH between the two averaged 0.14. Figure 9. demonstrates the temperature control system successfully maintaining the water temperature within the range of 25 to 30 °C. The average temperature of seawater and scientific saltwater was 24.35 °C and 24.50 °C, respectively., while the room temperature averaged 26.59 °C.

Based on the data recorded after the seaweed cultivation experiment using

seawater and scientific saltwater, it was found that cultivation using seawater resulted in greater growth and weight gain compared to cultivation using scientific saltwater. The weight gain per day from seawater cultivation was 3.27 grams, while from scientific saltwater cultivation, it was 2.83 grams. The difference between them was 0.44 grams, as shown in Figure 10. Additionally, the average size increase per day from seawater cultivation was 0.16×0.37 cm, while from scientific saltwater cultivation, it was 0.19×0.22 cm. The difference between them was 0.04×0.15 cm, as illustrated in Figure 11(a) and (b).

Figure 11 The size of the seaweed after cultivation: (a) In seawater (b) In scientific saltwater

6. Discussion and Conclusion

This study compares sea lettuce cultivation using natural seawater and scientific saltwater. The real-time data and monitoring and recording were accomplished through IoT technology developed from Arduino Nano and ESP32, utilizing Google Sheets. The findings of this study focus on the potential of seaweed cultivation, particularly sea lettuce, in different water environments, namely natural seawater and scientific saltwater. This study offers valuable information on the growth performance of sea lettuce under varying water conditions through various real-time data collection and analysis techniques facilitated by IoT technology. In the context of temperature control in sea lettuce cultivation, thresholds play a crucial role in maintaining optimal growing conditions, similarly to Iskandar *et al.* (2021) and Siddiqui, Zaidi, & Abdullah (2019). Thresholds are predefined limits or boundaries set for certain parameters, such as temperature, that trigger specific actions

or adjustments in the cultivation environment, as found in Rukhiran *et al.* (2023) and Purnamawati (2021). The authors determine the temperature control system using light and watering sprays related to the studies of Bachtiar, Hidayat, & Anantama (2022), and Liang *et al.* (2022).

In addition, the pH levels and water temperatures were effectively controlled within the desired ranges throughout the cultivation period (Liang *et al.*, 2022; Nguyen *et al.*, 2022). The comparison of growth performance over a 21-day period showed that the properties of scientific saltwater resemble those of natural seawater. The pH levels in both seawater and scientific saltwater fell within the optimal range of 8-9, demonstrating the suitability of both water types for sea lettuce cultivation. Moreover, the temperature control system successfully maintained water temperatures within the range of 25 to 30 °C, conducive to sea lettuce growth.

The results indicate that sea lettuce cultivated in seawater exhibited greater growth and weight gain compared to cultivation in scientific saltwater. The average weight gain per day was 3.27 grams for seawater cultivation and 2.83 grams for scientific saltwater cultivation, indicating a difference of 0.44 grams. This study delivers a possible method of seaweed cultivation in environments where access to clean seawater is limited. Moreover, the proposed IoT-based environmental control system provides a valuable tool for monitoring and managing

sea lettuce cultivation, contributing to the sustainable development of the seaweed cultivation industry domestically and globally. By suggesting further research, additional factors can be explored influencing seaweed growth and expanding the application of IoT-based environmental control systems to enhance cultivation efficiency and sustainability.

References

Bachtiar, M. I., Hidayat, R., & Anantama, R. (2022). Internet of things (IoT) based aquaculture monitoring system. *MATEC Web of Conferences*, 372, 04009. <https://doi.org/10.1051/matecconf/202237204009>

Boonlertvanit, T. (2020). *A study to develop a technology roadmap for Thailand's novel food industry based on public policy-making and academics' perspectives* [Master's dissertation, Mahidol University]. <https://archive.cm.mahidol.ac.th/handle/123456789/4243> [In Thai]

de Camargo, E. T., Spanhol, F. A., Slongo, J. S., da Silva, M. V. R., Pazinato, J., de Lima Lobo, A. V., Coutinho, F. R., Pfrimer, F. W. D., Lindino, C. A., Oyamada, M. S., & Martins, L. D. (2023). Low-cost water quality sensors for IoT: A systematic review. *Sensors*, 23(9), 4424. <https://doi.org/10.3390/s23094424>

Iskandar, Samuel, C. I., Favitri, D., Padlan, & Azizi. (2021). IoT-based of seaweed cultivation employing a low-cost autonomous experimental buoy. *2021 15th International Conference on Telecommunication Systems, Services, and Applications (TSSA)*, 1–5. <https://doi.org/10.1109/tssa52866.2021.9768270>

Jahanbakht, M., Xiang, W., Hanzo, L., & Rahimi Azghadi, M. (2021). Internet of underwater things and big marine data analytics—A comprehensive survey. *IEEE Communications Surveys & Tutorials*, 23(2), 904–956. <https://doi.org/10.1109/comst.2021.3053118>

Liang, Z., Wang, W., Liu, L., Li, G., & Xia, B. (2022). Influence of commercial-scale seaweed cultivation on water quality: A case study in a typical laver culture area of the Yellow Sea, North China. *Journal of Marine Science and Engineering*, 10(5), 681. <https://doi.org/10.3390/jmse10050681>

Mouritsen, O. G., Rhatigan, P., & Pérez-Lloréns, J. L. (2018). World cuisine of seaweeds: Science meets gastronomy. *International Journal of Gastronomy and Food Science*, 14, 55–65. <https://doi.org/10.1016/j.ijgfs.2018.09.002>

Nguyen, D. K., Nguyen, H. Q., Dang, H. T. T., Nguyen, V. Q., & Nguyen, L. (2022). A low-cost system for monitoring pH, dissolved oxygen and algal density in continuous culture of microalgae. *HardwareX*, 12, e00353. <https://doi.org/10.1016/j.hx.2022.e00353>

Peres, C., Emam, M., Jafarzadeh, H., Belcastro, M., & O'Flynn, B. (2021). Development of a low-power underwater NFC-enabled sensor device for seaweed monitoring. *Sensors*, 21(14), 4649. <https://doi.org/10.3390/s21144649>

Purnamawati, Yahya, M., Jamaluddin, & Akil, M. (2021). Implementation of temperature monitoring system in seaweed drying room. *International Journal on Advanced Science, Engineering and Information Technology*, 11(5), 1912. <https://doi.org/10.18517/ijaseit.11.5.13834>

Rukhiran, M., & Netinant, P. (2020). Mobile application development of hydroponic smart farm using information flow diagram. *2020 5th International Conference on Information Technology (InCIT)*, 150–155. <https://doi.org/10.1109/inct50588.2020.9310780>

Rukhiran, M., Sutanthavibul, C., Boonsong, S., & Netinant, P. (2023). IoT-based mushroom cultivation system with solar renewable energy integration: Assessing the sustainable impact of the yield and quality. *Sustainability*, 15(18), 13968. <https://doi.org/10.3390/su151813968>

Siddiqui, M., Zaidi, A., & Abdullah, M. (2019). Performance evaluation of newly proposed seaweed enhancing index (SEI). *Remote Sensing*, 11(12), 1434. <https://doi.org/10.3390/rs11121434>

Somchun, C. (2023). *Sea lettuce seaweed eating fresh and processed is very valuable*. Retrieved 17 April 2023. Retrieved from <https://www.thairath.co.th/news/local/2681306>

Tanchaiha, A., Pichitkul, P., Wudtisin, I., & Tamtin, M. (2021). Effects of nitrogen fertilizers on growth and antioxidant activities of sea lettuce (*Ulva rigida*). *Khon Kaen Agriculture Journal*, 50(1), 100-111. <https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/249532> [In Thai]

Vinil, K. (2023). *Upgrading sea lettuce seaweed to food & cosmeceutical products*. Retrieved 7 July 2023. Retrieved from <https://www.thairath.co.th/news/local/east/2707495>

Utilizing Association Rule Mining to Understand Phishing Risk Awareness Levels of Thai University Academic Staff

Pita Jarupunphol¹, Wipawan Buathong^{1,*}

¹ Department of Digital Technology, Faculty of Science and Technology, Phuket Rajabhat University, Phuket 83000, Thailand

* Corresponding author: Wipawan Buathong, w.buathong@pkru.ac.th

Received:

21 January 2024

Revised:

7 April 2024

Accepted:

13 May 2024

Keywords:

Association rule mining, Cybersecurity, Data mining, Phishing awareness, Risk perception

Abstract: This study explores the phishing risk awareness levels among academic staff at Thai universities, employing association rule mining (ARM) to identify critical factors influencing high and low levels of awareness. Targeting a diverse group of 400 academic staff members, the research utilized a structured questionnaire comprising demographic information, direct and indirect experiences with phishing, and perceptions of phishing. In association rules, a lift value of 1 indicates independence between X and Y, while values greater than 1 or less than 1 indicate positive or negative correlation, respectively. The findings revealed several critical findings: despite being able to define phishing, many individuals do not perceive it as a significant threat; moderate internet skills are not necessarily indicative of high phishing awareness; and direct experiences with phishing do not always correlate with an increased awareness of its potential impact. These results highlight a disconnect between knowledge and perceived risk and suggest that existing internet skills and experiences are insufficient for cultivating a robust understanding of phishing risks. The study underscores the necessity for targeted educational interventions specifically designed to address the varied needs of university staff, enhancing their ability to recognize and respond to cybersecurity threats effectively.

1. Introduction

Phishing, a prevalent form of social engineering attack, represents a significant threat to the security of information systems, especially within academic environments (Alabdán, 2020). University academic staff, who have access to sensitive data and play crucial roles in governance, are particularly vulnerable to such attacks. Therefore, assessing their awareness of phishing risks is vital for bolstering institutional cybersecurity measures. Association rule mining, a key data mining technique, is instrumental in extracting meaningful insights from large datasets by revealing interesting relationships between variables (Fister *et al.*, 2023). In this study, association rule mining is employed to analyze patterns and correlations concerning the phishing risk awareness levels among university academic staff. This research aims to identify the factors that influence 'phishing awareness = high' and 'phishing awareness = low' among academic staff in Thai universities. This involves investigating how various attributes, determined through a questionnaire, contribute to a high or low level of awareness regarding phishing risks. The selection of university academic staff as the focus of this study is motivated by their critical role in handling sensitive information and their potential impact on shaping cybersecurity policies and practices within academic institutions.

This article explores an in-depth study conducted in Thailand, engaging 400 participants from the academic staff of Thai universities.

Carried out in 2020, this research period was notable for a significant rise in cyber threats fueled by increased digital communications. The importance of this study is twofold: its contribution to cybersecurity literature and its focus on a critical group within the academic sector – university staff. Understanding the phishing risk awareness among these individuals is crucial for developing effective strategies to enhance their recognition and response capabilities to cyber threats. Central to this research are three key research questions, all related to the application of association rule mining:

- 1) What association rules can be identified that indicate high phishing risk awareness among academic staff in Thai universities?
- 2) What patterns and correlations, as revealed by association rule mining, are associated with low levels of phishing risk awareness in this demographic?
- 3) How do the identified association rules for high and low phishing awareness inform the development of targeted cybersecurity training and preventive measures within academic institutions?

2. Related Work

Phishing is rapidly increasing as fraud cleverly blends social engineering tactics (Alabdán, 2020). This attack typically involves using deceptive emails or websites designed to dupe unsuspecting victims into divulging personal or sensitive information, leading

to identity theft (Aleroud & Zhou, 2017). Such tactics often escalate to other forms of information security threats. For instance, cybercriminals might use stolen details like account names, passwords, or credit card numbers to create fraudulent credit accounts, committing cybercrimes. Additionally, phishing can involve enticing victims to click on malicious links, resulting in the covert installation of malware on their devices (Parsons *et al.*, 2019). The effectiveness of these phishing attacks is often enhanced through sophisticated strategies, including the use of espionage software that aids in gathering critical personal information.

2.1 Phishing Threats and Risk Awareness

Risk perception is central to understanding phishing awareness among academic staff in Thai universities. The APA Dictionary of Psychology (n.d.) defines perception as the awareness of objects, relationships, and events via the senses. In contrast, awareness is the conscious recognition of these elements. Risk involves the likelihood of adverse events and potential loss or harm. Risk perception, or perceived risk, refers to an individual's subjective judgment of the risk associated with a threat (Nam, 2019). These perceptions can be influenced by demographic factors and the sense of control; for example, drivers might perceive lower risk while driving due to their sense of control, as opposed to the high perceived risks of uncontrollable events like earthquakes. Risk perceptions can also be

skewed, often underestimated, or exaggerated based on familiarity or lack thereof and are shaped by an individual's knowledge and emotional response to risks (Chavas, 2004).

This research on phishing risk awareness in academic environments parallels these concepts. Phishing, an often uncontrollable and unpredictable threat, is likely to be perceived as a high risk by university staff. However, as with other risks, the perception of phishing threats can be skewed by a lack of awareness of actual statistical data and a tendency to underestimate familiar risks while overestimating unfamiliar ones (Abroshan *et al.*, 2021). This ties back to the common assumption in risk perception research: people's knowledge and understanding significantly influence how they perceive risks. Thus, our study investigates the cognitive and emotional dimensions of phishing risk perception among academic staff, exploring how their knowledge, experiences, and feelings toward phishing shape their awareness and preparedness.

With its wealth of personal and institutional data, the academic sector has become a prime target for such attacks (Alharbi & Tassaddiq, 2021; Broadhurst *et al.*, 2018; Kenneth *et al.*, 2023). Studies have shown that the success of phishing attempts largely depends on the awareness and preparedness of the potential victims, particularly in environments like universities where information exchange is frequent and varied. Several studies have focused on the

general awareness of phishing threats among university staff and students. For instance, Kenneth *et al.* (2023) investigated phishing, a cyber-attack leveraging social engineering to extract sensitive information or prompt clicks on harmful links, often via emails or texts. They utilize an email phishing technique, asking respondents to change their email account passwords, to assess college students' awareness of phishing attacks. The findings reveal that a notable minority remains vulnerable to these attacks, emphasizing the need for awareness campaigns and education to mitigate social engineering risks through phishing.

Broadhurst *et al.* (2018) evaluated the susceptibility of 138 university students to cybercrime through simulated phishing emails, categorizing them into 'Hunter' and 'Passive' groups. Despite varying scam types, factors like cybercrime awareness and IT competence surprisingly did not correlate with susceptibility. The study found tailored emails more effective and international and first-year students more vulnerable. The findings, supported by Generalized Linear Model analysis, emphasize the influence of student status and study year on scam

vulnerability, offering directions for future research.

In addition, Alharbi & Tassaddiq (2021) examined cybersecurity awareness among undergraduate students at Majmaah University amid rising technological advancements and associated cyber threats. Utilizing a scientific questionnaire and statistical tests like ANOVA, KMO, and Bartlett's test, they assessed students' understanding of cybercrime and protective measures. The study focused on phishing, computer viruses, and other internet threats. The findings highlighted the need for enhanced education and awareness programs for students to prevent data breaches and digital misconduct.

2.2 Association Rule Mining in Cybersecurity

Association Rule Mining (ARM) has emerged as a powerful tool in cybersecurity, particularly in identifying patterns and predicting potential threats (Tripathi, Nigam, & Edla, 2017). This data mining technique uncovers interesting associations and correlation relationships among large sets of data items (Gu, 2023; Silva *et al.*, 2019). In cybersecurity,

Gender	Age	Faculty	Working Period	Hearing of Phishing	Explaining Phishing	Defining Phishing
M	41 to 45	Science and Technology	6 to 10 years	TRUE	FALSE	TRUE
M	Above 50	Science and Technology	1 to 5 years	TRUE	FALSE	TRUE
F	41 to 45	Science and Technology	6 to 10 years	FALSE	TRUE	FALSE
M	41 to 45	Science and Technology	6 to 10 years	FALSE	TRUE	FALSE
F	46 to 50	Science and Technology	6 to 10 years	FALSE	TRUE	FALSE
M	36 to 40	Science and Technology	1 to 5 years	FALSE	FALSE	TRUE
F	36 to 40	Science and Technology	6 to 10 years	TRUE	FALSE	FALSE
F	31 to 35	Science and Technology	1 to 5 years	FALSE	FALSE	TRUE
M	31 to 35	Science and Technology	1 to 5 years	TRUE	FALSE	FALSE
M	36 to 40	Science and Technology	6 to 10 years	TRUE	FALSE	TRUE

1-10 of 400 rows | 1-7 of 17 columns

Previous 1 2 3 4 5 6 ... 40 Next

Figure 1. Sample data structure: 17 columns and 400 records from phishing awareness survey

ARM has been employed to detect unusual patterns that could signify security breaches, including phishing attacks (Jeeva & Rajsingh, 2016). Studies utilizing ARM in cybersecurity have demonstrated its efficacy in discerning patterns that are not immediately obvious. For instance, Lou *et al.* (2020) applied ARM to detect anomalous behavior in network traffic, successfully identifying potential security threats. In addition, ARM is used to detect unusual patterns that may indicate fraudulent activities on websites (Tripathi, Nigam, & Edla, 2017). Furthermore, Dam *et al.* (2022) addressed the challenge of detecting packer programs, crucial for cybersecurity defenses, by employing associative classification (AC) algorithms. This approach helps classify packers without prior knowledge of feature significance. The study explores and adapts various AC algorithms to manage multiple feature types, assessing their effectiveness in evolving scenarios of packers and malware.

3. Materials and Methods

This section provides a comprehensive overview of the approach.

3.1 Research Design

The study employed a quantitative research approach to analyze the phishing risk awareness levels among academic staff at Thai universities. The primary objective was to identify the factors influencing high and low phishing awareness levels using association rule mining. The data underwent

essential design and transformation procedures to ensure its suitability for association rules analysis. These processes involved converting numerical values from rating scales into a categorical format, which resulted in a three-level degree classification: low, moderate, and high. This transformation was instrumental in facilitating the application of association rules analysis, particularly in managing Boolean and categorical data types. The research was structured to collect a wide range of data from participants, encompassing both broad demographic information and specific details regarding their experiences with phishing, their attitudes toward it, and their perceptions of phishing-related risks.

3.2 Data Collection

The study was conducted with a focus on academic personnel from Thai universities, involving a total of 400 participants. The dataset, gathered in 2020, encompasses a diverse group of individuals varying in age, gender, academic discipline, and role within the university. This diversity ensures a comprehensive understanding of the phishing risk awareness levels across different segments of the academic staff. The questionnaire used for data collection comprised 17 questions designed to comprehensively assess various aspects of phishing risk awareness among the academic staff.

These questions can be categorized into three groups based on their nature and the type of responses they elicited:

3.2.1 Demographic Information

Gender, age, faculty, and working period are categorical questions that gather basic demographic information about the participants and provide context for the analysis. It is important to note that the questionnaire did not delve into details specific to university departments. This broad approach allowed for a more general understanding of phishing awareness across various academic roles rather than a detailed analysis of department-specific trends.

3.2.2 Phishing Experience and Attitudes

Hearing of phishing, explaining phishing, defining phishing, being affected by phishing, tackling phishing, experiencing phishing, and observing phishing were structured to elicit 'Yes' or 'No' responses. The focus was on the participants' direct and indirect experiences with phishing and their understanding and response capabilities.

3.2.3 Perceived Phishing Risk

Perceived phishing likelihood, perceived phishing impact, and phishing awareness were designed to assess the participants' perceived likelihood of encountering phishing, the perceived impact of such encounters, and their overall awareness of phishing risks. Responses were classified into three degrees: low, medium, and high. Notably, the phishing awareness degree was derived from a phishing awareness test in the questionnaire, which directly measures the participant's knowledge

and awareness level. Figure 1 depicts a sample of the data collection comprising 17 columns and 400 records. Nevertheless, as indicated in Figure 1, a discrepancy is observed in the participants' responses. Some participants assert familiarity with the term 'phishing' yet cannot define it. Conversely, when presented with multiple-choice options, they can select the correct definition of phishing from among ten possibilities. On the other hand, a subset of participants claims to have never encountered the term 'phishing', yet paradoxically, they express confidence in their ability to explain it. However, their responses are incorrect when choosing the appropriate definition from ten options. This inconsistency highlights a potential gap in the participants' understanding and recognition of phishing.

3.3 Research Tool and Ethics Approval

The primary tool for data collection was a structured questionnaire designed to assess various aspects of phishing risk awareness. Questions ranged from essential recognition of phishing attempts to more complex scenarios requiring the identification of subtle phishing cues. The questionnaire was rigorously vetted to ensure clarity, relevance, and unbiased data collection. Before its deployment, the research tool underwent a comprehensive ethical evaluation by the Human and Animal Research Ethics Committee. This full board review, completed on May 10, 2019, emphasized the ethical considerations crucial in research involving human participants. The approval,

valid through May 9, 2020, ensured that the study adhered to the highest research ethics standards, particularly regarding participant consent, confidentiality, and data security.

3.4 Data Analysis

ARM was the primary data analysis technique used in this study. ARM is a method in data mining that identifies interesting relationships, or associations, between variables in large datasets. In the analysis context of this research, ARM was employed to discover patterns in responses that could indicate varying levels of phishing risk awareness among the academic staff. The process of ARM involves three key steps: 1) data preparation (cleaning and organizing the collected data to ensure accuracy and compatibility with the mining process); 2) rule generation (utilizing algorithms to identify frequent itemsets and generate association rules from the data); and 3) rule evaluation (assessing the generated rules to identify the most significant and relevant ones, based on measures like support, confidence, and lift).

The support for each itemset to determine its frequency in the dataset was calculated to identify meaningful association rules. The formula used for calculating support is $\text{Support}(X) = \text{Number of transactions containing } X / \text{Total number of transactions}$. The support of an itemset X in the transaction dataset T is defined as the proportion of transactions in the dataset that contains the itemset. We then assessed the confidence

of each rule to understand the conditional probability of occurrence. The confidence formula applied was $\text{Confidence}(X \Rightarrow Y) = \text{Support}(X \cup Y) / \text{Support}(X)$. Confidence of a rule $X \Rightarrow Y$ is defined as the likelihood of finding the itemset Y in transactions because these transactions also contain the itemset X.

Finally, the lift of each rule was computed to measure its effectiveness compared to the baseline probability. The lift is calculated using the formula $\text{Lift}(X \Rightarrow Y) = \text{Confidence}(X \Rightarrow Y) / \text{Support}(Y)$. Lift is a measure of the performance of a rule. It compares the rule's confidence with the expected confidence, assuming that the itemsets X and Y are independent. A lift value of 1 indicates the independence of variables X and Y, signifying no association between them. A lift greater than 1 suggests a positive correlation, indicating that the occurrence of X will likely increase the likelihood of Y's occurrence. Conversely, a lift value less than 1 denotes a negative correlation, implying that the presence of X is likely to decrease the likelihood of Y's occurrence. The data analysis was conducted using RStudio, employing essential packages like ggplot2 for visualization, tidyverse for data manipulation, arules for association rule mining, and arulesViz for visualizing the association rules. These tools were instrumental in processing the varied nature of the responses, from categorical and boolean data to the more complex classifications of phishing risk perception.

4. Experimental Results

The application of association rule mining to the dataset revealed several significant patterns and associations related to phishing risk awareness among the academic staff. These findings provide insights into the levels of awareness and the factors influencing them. In applying association rule mining to identify the factors influencing 'phishing awareness = high' and 'phishing awareness = low', a critical adjustment was made in the analysis. For each set of generated association rules targeting either high or low phishing awareness, the rule about the target awareness level itself was excluded. This means that each category's total count of relevant association rules was reduced by one. This adjustment was critical for ensuring that the analysis accurately reflected the actual influences of phishing awareness levels, excluding the target condition itself. The association rule mining procedure was implemented using distinct parameters: a support threshold of 0.033 and a confidence level of 0.85 for high phishing awareness and a support threshold of 0.030 with the same confidence level for low phishing awareness. The rationale for setting higher support for the former was the greater volume of sampling data available for this group. These parameters were selected to guarantee that the derived rules were statistically significant and pertinent to the research objectives.

The analysis was further explored through visualizations created using ggplot 2.

Graphs and charts illustrated the distribution of awareness levels and the correlations found in the ARM analysis. The comparative analysis with existing literature indicated that these patterns are consistent with global trends in phishing risk awareness. They also highlight unique aspects specific to the academic environment in Thailand.

4.1 Association Rules for High Phishing Awareness

Table 1 represents a collection of pivotal association rules extracted through data analysis to explore determinants contributing to high awareness of phishing threats. Each rule within the table is articulated through various attributes and quantified by three metrics: support, confidence, and lift. These rules encapsulate a diverse array of demographic and behavioral factors. For instance, the rule combining a low perceived frequency of observing phishing and a high perceived impact of phishing illustrates a robust correlation with elevated phishing awareness, evidenced by a support of 0.035, confidence of 0.93, and a lift of 2.4. Additionally, the data reveal that males possessing moderate perceived internet skills coupled with a high perceived impact of phishing are more likely to demonstrate high awareness of phishing risks, as indicated by a support of 0.045, confidence of 0.86, and lift of 2.2. Moreover, faculty members in the fields of Science and Technology, who have high perceived internet skills and phishing monitoring abilities, along with a high perceived

impact of phishing, show a strong association with high phishing awareness, reflected by a support of 0.040, confidence of 0.89, and a lift of 2.3. These findings underscore the multifaceted influences on phishing awareness and highlight the importance of considering a range of factors when designing interventions to enhance cybersecurity awareness. Table 1 illustrates the nine critical association rules contributing to high phishing awareness levels.

Additional rules presented in the analysis delve into the impacts of age, gender, working period, and direct experiences with phishing, such as hearing about or being personally affected by phishing incidents. Each rule delineated in the study illustrates

the intricate factors influencing phishing awareness, emphasizing cybersecurity education's complex and layered aspects and the implications for policy within academic environments. These insights are crucial for developing targeted interventions and tailored training programs to enhance phishing awareness among university staff. Furthermore, these strategies could be adapted to benefit other vulnerable groups within the academic community, thereby broadening the scope of impact and reinforcing overall cybersecurity resilience. Figure 2 displays nine association rules specifically formulated to demonstrate their correlations with high phishing awareness.

Table 1. Nine principal association rules contributing to high phishing awareness

Association Rules	Supp	Conf	Lift
Explaining Phishing, Perceived Phishing Observation Frequency=Low, Perceived Phishing Impact=High	0.035	0.93	2.4
Gender=M, Perceived Internet Skills=Moderate, Perceived Phishing Impact=High	0.045	0.86	2.2
Faculty=Science and Technology, Perceived Internet Skills=High, Perceived Phishing Monitoring Ability=High, Perceived Phishing Impact=High	0.040	0.89	2.3
Age=36 to 40, Working Period=6 to 10 years, Hearing of Phishing, Perceived Phishing Monitoring Ability=High	0.035	0.88	2.3
Working Period=6 to 10 years, Hearing of Phishing, Perceived Phishing Monitoring Ability=High, Perceived Phishing Impact=High	0.040	0.89	2.3
Gender=M, Working Period=6 to 10 years, Hearing of Phishing, Perceived Phishing Impact=High	0.035	0.88	2.3
Working Period=6 to 10 years, Hearing of Phishing, Tackling Phishing, Perceived Phishing Impact=High	0.035	0.93	2.3
Gender=M, Affected by Phishing, Perceived Internet Skills=Moderate, Perceived Phishing Impact=High	0.035	0.93	2.4
Gender=M, Observing Phishing, Perceived Internet Skills=Moderate, Perceived Phishing Impact=High	0.040	0.89	2.4

Figure 2. Nine Association Rules Linked to High Phishing Awareness

4.2 Association Rules for Low Phishing Awareness

Table 2 presents a series of association rules to pinpoint determinants associated with low phishing awareness, where lift values significantly exceeding 1 indicate a robust association. The results from the specific rules elucidated in this table reveal intriguing insights. For instance, individuals may be able to define phishing conceptually yet not regard it as a considerable threat, as indicated by a support of 0.030, a confidence of 0.86, and a lift of 7.5. Furthermore, possessing moderate perceived internet skills does not necessarily align with heightened awareness or concern regarding phishing risks, supported by a lift of 7.6. Additionally, the association between

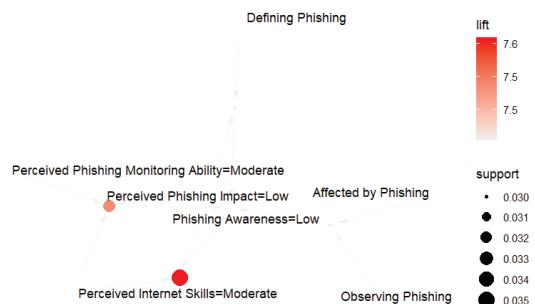


Figure 3. Four Association Rules Correlated with Low Phishing Awareness

moderate perceived phishing monitoring ability and moderate internet skills further substantiates the correlation with low awareness of phishing's impact, demonstrated by a support of 0.032 and a confidence of 0.87. Notably, individuals who have been affected by phishing and who observe phishing activities may still perceive the impact of phishing as low, suggesting a potential disconnection between personal experiences and risk awareness, with a support of 0.030, a confidence of 0.86, and a lift of 7.5. These findings highlight phishing awareness's complexity and the need for targeted educational approaches to bridge the gap between knowledge and perceived threat levels. Table 2 represents the four essential association rules significantly influencing low phishing awareness levels.

Table 2. Four crucial association rules contributing to low phishing awareness levels

Association Rules	Supp	Conf	Lift
Defining Phishing, Perceived Phishing Impact=Low	0.030	0.86	7.5
Perceived Internet Skills=Moderate, Perceived Phishing Impact=Low	0.035	0.88	7.6
Perceived Internet Skills=Moderate, Perceived Phishing Monitoring Ability=Moderate, Perceived Phishing Impact=Low	0.032	0.87	7.5
Affected by Phishing, Observing Phishing, Perceived Phishing Impact=Low	0.030	0.86	7.5

These association rules highlight critical areas of concern in phishing awareness among university staff. Notably, these findings emphasize the complexity of phishing awareness and suggest that mere exposure to or understanding of phishing does not necessarily translate into a heightened perception of its risks. This table highlights the need for more in-depth and perhaps personalized educational strategies to enhance phishing awareness effectively, particularly among those who might underestimate its potential impact despite having some direct or indirect exposure. Figure 3 presents four association rules specifically established to reveal their correlations with low phishing awareness.

5. Discussion

Phishing attacks often target a broad range of individuals, regardless of their specific field of expertise. Awareness and vulnerability to these threats might be similarly universal across different faculties. In this case, if awareness training and cybersecurity policies are uniformly implemented across the university, irrespective of faculty, this could lead to a leveling effect where faculty affiliation becomes less relevant in determining awareness levels. This finding has important implications for developing phishing awareness programs in academic institutions. It suggests that efforts to enhance phishing awareness could be designed and implemented at the university-wide level rather than tailoring them to specific faculties. Several researchers also supported this view (Alabdani, 2020; Hillman,

Harel, & Toch, 2023) and have argued that phishing tests and training can help immunize employees against phishing attacks and reduce undesirable online behaviors. This assertion is substantiated by Kenneth *et al.* (2023), who note that numerous respondents susceptible to social engineering through phishing emails advocate for implementing indoctrination and awareness campaigns targeting students.

5.1 Study Limitations and Future Research

The study focused exclusively on academic staff in Thai universities, which may limit the generalizability of the findings to other demographic groups or geographical locations. Different cultural, educational, or technological environments might yield varying results. In addition, the reliance on self-reported data in the questionnaire raises the possibility of response biases. Participants might have overestimated or underestimated their awareness of phishing risks, impacting the accuracy of the findings.

In addition, the data was collected in a single year (2020), which does not account for potential changes in phishing tactics or awareness over time. Cyber threats evolve rapidly, as do awareness levels and behaviors in response to them. Besides, some questionnaire items, particularly those with boolean (yes/no) responses, may oversimplify the complex nature of phishing awareness. Nuanced understandings or partial awareness might not have been adequately captured.

5.2 Recommendations for Future Research

Future studies could expand the demographic scope to include a broader range of educational institutions, both within and outside Thailand, to test the applicability of these findings in different contexts. Besides, conducting longitudinal studies over several years would provide insights into how phishing awareness evolves and responds to changing cyber threat landscapes and awareness initiatives. Moreover, incorporating qualitative research methods, such as interviews or focus groups, could provide deeper insights into the reasons behind certain awareness levels and the effectiveness of different training approaches. Primarily, investigating the effectiveness of different phishing awareness and training programs would be valuable. This could involve assessing changes in awareness and behavior before and after such interventions.

6. Conclusion

The analysis conducted in this study reveals a nuanced understanding of the factors influencing phishing awareness among Thai university staff. Through the application of association rule mining, several key variables have been identified that significantly affect the levels of phishing awareness. These include demographic characteristics such as age and gender, behavioral factors like perceived internet skills, and direct experiences with phishing activities. The findings indicate

that individuals who can conceptually define phishing may not necessarily perceive it as a significant threat. This suggests a disconnect between theoretical knowledge and perceived risk. Moreover, it was found that individuals with moderate perceived internet skills do not consistently demonstrate a heightened awareness or concern about phishing threats, highlighting a gap in the effectiveness of general internet skill levels to foster an understanding of cybersecurity risks.

Additionally, the study uncovered that direct experiences with phishing, such as being affected by or observing phishing attempts, do not always correlate with a high awareness of the impact of such threats. This counterintuitive result points to the need for more comprehensive education and training that increases awareness and enhances the understanding of the consequences of phishing. These findings have significant implications for cybersecurity policy and education within academic settings. They underscore the necessity for targeted educational interventions tailored to the specific needs and experiences of different groups within the university staff. By addressing the multifaceted nature of phishing awareness through customized training programs, institutions can better prepare their personnel to recognize and respond to phishing threats effectively, thereby enhancing the organization's overall cybersecurity posture.

In conclusion, the study demonstrates the value of ARM in understanding complex

behavioral patterns in cybersecurity contexts. The insights gained are crucial for enhancing phishing awareness among academic staff and as a foundational step toward strengthening educational institutions' cybersecurity posture. As cyber threats evolve, continuous research and adaptive strategies will be key in safeguarding sensitive information and maintaining the integrity of academic environments.

CRediT Authorship Contribution Statement

Pita Jarupunphol: Conceptualization, Methodology, Validation, Resources, Software, Formal analysis, Visualization, Writing – original draft, review & editing.

Wipawan Buathong: Model Validation, Resources, Formal analysis, Visualization.

Declaration of Interests

The authors declare that they have no competing financial interests or personal relationships that could have influenced the work reported in this paper.

References

Abroshan, H., Devos, J., Poels, G., & Laermans, E. (2021). Phishing Happens Beyond Technology: The effects of human behaviors and demographics on each step of a phishing process. *IEEE Access*, 9, 44928–44949. <https://doi.org/10.1109/access.2021.3066383>

Alabdani, R. (2020). Phishing attacks survey: Types, vectors, and technical approaches. *Future Internet*, 12(10), 168. <https://doi.org/10.3390/fi12100168>

Aleroud, A., & Zhou, L. (2017). Phishing environments, techniques, and countermeasures: A survey. *Computers & Security*, 68, 160–196. <https://doi.org/10.1016/j.cose.2017.04.006>

Alharbi, T., & Tassaddiq, A. (2021). Assessment of cybersecurity awareness among students of Majmaah University. *Big Data and Cognitive Computing*, 5(2), 23. <https://doi.org/10.3390/bdcc5020023>

APA Dictionary of Psychology. (n.d.). *APA Dictionary of Psychology*. Retrieved December 17, 2023, from <https://dictionary.apa.org/>

Broadhurst, R., Skinner, K., Sifniotis, N., & Matamoros-Macias, B. (2018). Cybercrime risks in a university student community. *SSRN Electronic Journal*. <https://doi.org/10.2139/ssrn.3176319>

Chavas, J.-P. (2004). The measurement of risk. *Risk Analysis in Theory and Practice*, 5–19. <https://doi.org/10.1016/b978-012170621-0.50001-8>

Dam, K. H. T., Given-Wilson, T., Legay, A., & Veroneze, R. (2022). Packer classification based on association rule mining. *Applied Soft Computing*, 127, 109373. <https://doi.org/10.1016/j.asoc.2022.109373>

Fister, I., Fister, I., Fister, D., Podgorelec, V., & Salcedo-Sanz, S. (2023). A comprehensive review of visualization methods for association rule mining: Taxonomy, challenges, open problems and future ideas. *Expert Systems with Applications*, 233, 120901. <https://doi.org/10.1016/j.eswa.2023.120901>

Gu, Y. (2023). Exploring the application of teaching evaluation models incorporating association rules and weighted naive Bayesian algorithms. *Intelligent Systems with Applications*, 20, 200297. <https://doi.org/10.1016/j.iswa.2023.200297>

Hillman, D., Harel, Y., & Toch, E. (2023). Evaluating organizational phishing awareness training on an enterprise scale. *Computers & Security*, 132, 103364. <https://doi.org/10.1016/j.cose.2023.103364>

Jeeva, S. C., & Rajsingh, E. B. (2016). Intelligent phishing url detection using association rule mining. *Human-Centric Computing and Information Sciences*, 6(1). <https://doi.org/10.1186/s13673-016-0064-3>

Kenneth, A., Hayashi, B. B., Lionardi, J., Richie, S., Achmad, S., Junior, F. A., & Nadia. (2023). Phishing attack awareness among college students. 2023 3rd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 344–348. <https://doi.org/10.1109/ice3is59323.2023.10335412>

Lou, P., Lu, G., Jiang, X., Xiao, Z., Hu, J., & Yan, J. (2020). Cyber intrusion detection through association rule mining on multi-source logs. *Applied Intelligence*, 51(6), 4043–4057. <https://doi.org/10.1007/s10489-020-02007-5>

Nam, T. (2019). Understanding the gap between perceived threats to and preparedness for cybersecurity. *Technology in Society*, 58, 101122. <https://doi.org/10.1016/j.techsoc.2019.03.005>

Parsons, K., Butavicius, M., Delfabbro, P., & Lillie, M. (2019). Predicting susceptibility to social influence in phishing emails. *International Journal of Human-Computer Studies*, 128, 17–26. <https://doi.org/10.1016/j.ijhcs.2019.02.007>

Silva, J., Varela, N., Borrero López, L. A., & Rojas Millán, R. H. (2019). Association rules extraction for customer segmentation in the SMEs sector using the apriori algorithm. *Procedia Computer Science*, 151, 1207–1212. <https://doi.org/10.1016/j.procs.2019.04.173>

Tripathi, D., Nigam, B., & Edla, D. R. (2017). A novel web fraud detection technique using association rule mining. *Procedia Computer Science*, 115, 274–281. <https://doi.org/10.1016/j.procs.2017.09.135>

ขั้นตอนวิธีการเปรียบคู่สายอักขระแบบประมาณโดยอาศัยรายการผกผันแบบเดียว

Approximate String Matching Algorithm using Single Inverted Lists

สุนทรีย์ ธรรมสุวรรณ¹, นวลปราง แสงอุไร^{1,*}, เชาวลิต ขันคำ²

Soontaree Thumsuwan¹, Nuanprang Sangurai^{1,*}, Chouvalit Khancome²

¹ สาขาวิชาเทคโนโลยีสารสนเทศ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏรำไพพรรณี ฉะเชิงเทรา 24000 ประเทศไทย

² ภาควิชาวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์ มหาวิทยาลัยรามคำแหง กรุงเทพมหานคร 10240 ประเทศไทย

1 Major in Information Technology Department, Faculty of Science and Technology, Rajabhat Rajanagarindra University, Chachoengsao 24000, Thailand

2 Computer Science Department, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand

* Corresponding Author: Nuanprang Sangurai, nuanprang.san@csit.rru.ac.th

Received:

29 November 2023

Revised:

31 January 2024

Accepted:

2 May 2024

คำสำคัญ:

การเปรียบคู่สายอักขระแบบประมาณ, รายการผกผัน, ตัวชี้ผกผัน, การเปรียบคู่แบบ, การเปรียบคู่สายอักขระแบบอนุญาตให้มีข้อผิดพลาด

Keywords:

String Matching Algorithm, Multiple Character Inverted Lists, Inverted Index, Pattern Matching, Exact String Matching

บทคัดย่อ: การเปรียบคู่สายอักขระแบบประมาณเป็นหลักการสำคัญในการค้นหาข้อมูลที่อนุญาตให้มีข้อผิดพลาดในการสะกดคำหรือการพิมพ์ผิดได้ ซึ่งถูกนำไปประยุกต์ใช้อย่างแพร่หลายในงานด้านฐานข้อมูล ระบบสืบค้นข้อมูล และแอปพลิเคชันหรือบริการออนไลน์ต่างๆ อย่างต่อเนื่อง เพื่อเพิ่มประสิทธิภาพในการค้นหาให้รวดเร็วและตรงตามวัตถุประสงค์มากยิ่งขึ้น การพัฒนาขั้นตอนวิธีใหม่จึงเป็นความท้าทายที่สำคัญในงานวิจัยด้านวิทยาการคอมพิวเตอร์ บทความวิจัยนี้นำเสนอโครงสร้างข้อมูลชนิดใหม่สำหรับการค้นหาแบบประมาณ เรียกว่า รายการผกผันแบบเดียว ซึ่งออกแบบมาเพื่อรองรับการกำหนดระดับความผิดพลาดที่ยอมรับได้ในการค้นหา พร้อมทั้งพัฒนาขั้นตอนวิธีการเปรียบคู่สายอักขระแบบประมาณที่อิงกับโครงสร้างข้อมูลดังกล่าว ผลการวิเคราะห์เชิงทฤษฎีแสดงให้เห็นว่า โครงสร้างข้อมูลที่นำเสนอสามารถสร้างได้ด้วยความซับซ้อนเชิงเวลาในระดับเดียวกับความยาวของสายอักขระต้นแบบ และใช้พื้นที่จัดเก็บข้อมูลเท่ากับผลรวมของความยาวสายอักขระและจำนวนอักขระที่ปรากฏจริง ขั้นตอนวิธีที่พัฒนาขึ้นสามารถดำเนินการค้นหาได้ด้วยความซับซ้อนเชิงเวลาเท่ากับผลคูณระหว่างความยาวของข้อความกับความยาวของสายอักขระต้นแบบ ทั้งนี้สามารถกำหนดระดับความผิดพลาดที่ยอมรับได้ในการค้นหา ผลการทดลองจากการพัฒนาโปรแกรมคอมพิวเตอร์เพื่อนำไปเปรียบเทียบกับขั้นตอนวิธีที่มีข้อเสียในปัจจุบัน พบว่าโครงสร้างข้อมูลที่พัฒนาขึ้นใช้หน่วยความจำในการประมวลผลน้อยที่สุด และขั้นตอนวิธีที่นำเสนอสามารถดำเนินการค้นหาแบบประมาณได้อย่างมีประสิทธิภาพ รวดเร็ว ใกล้เคียงกับขั้นตอนวิธีที่เร็วที่สุด และยังทำงานแบบเชิงเส้นอีกด้วย

Abstract: Approximate string matching is a fundamental technique in data retrieval that allows for typo errors or misspellings. It is widely applied in databases, search engines, and various applications or online services. To enhance the speed and accuracy of data retrieval, the development of new algorithms remains a significant challenge in computer science research. This paper introduces a novel data structure for approximate search, called the Single Inverted List, which supports a configurable level of error tolerance. Based on this structure, a new approximate string matching algorithm is developed. Theoretical analysis shows that the proposed structure can be constructed with time complexity proportional to the length of the pattern string and requires storage space equal to the sum of the pattern length and the number of distinct characters. The proposed algorithm achieves search performance with time complexity proportional to the product of the text length and the pattern length, while also supporting error-tolerant matching. Experimental results demonstrate that the proposed structure consumes the least memory compared to well-known existing algorithms, and the developed algorithm performs approximate searches efficiently, nearly as fast as the fastest existing methods, while maintaining linear-time performance.

1. บทนำ

หลักการการเปรียบคู่สายอักขระแบบประมาณ (Approximate String Matching) หรือการเปรียบคู่สายอักขระแบบอนุญาตให้มีข้อผิดพลาด (String Matching with Allowed Errors) เป็นกระบวนการหรือการเทคนิคในการค้นหาสตริง (String) ที่ตรงกับรูปแบบ (Pattern) โดยประมาณ ซึ่งขึ้นตอนหรือพิมพ์ตามค้นหาข้อความที่คล้ายคลึงกับข้อความที่กำหนดได้โดยไม่จำเป็นต้องตรงกันทั้งหมด เพียงตรงกับเนื่องในข้อความ (Text) $T = t_1 t_2 t_3 \dots t_n$ ได้ (โดยกำหนดให้ T คือข้อความหรือข้อมูลที่ประกอบด้วยอักขระขนาดยาว n ตัว ที่ต้องการนำอักขระแบบ p ไปค้นหา) โดยวัตถุประสงค์เพื่อพิจารณา p ปรากฏ ณ ตำแหน่งใดบ้างใน T โดยอนุญาตให้มีจำนวนอักขระที่เปรียบคู่ไม่ตรงกันหรืออนุญาตให้ผิดพลาดไม่ตรงกันด้วยค่าตัวเลขจำนวนเต็ม d กลไกการแก้ปัญหาคือนำเอาอักขระ $c_1 c_2 c_3 \dots c_m$ เก็บไว้ในโครงสร้างข้อมูลที่เหมาะสม เรียกว่า ส่วนเตรียมการประมาณผล (Pre-processing) จากนั้นสร้างขั้นตอนวิธีค้นหาเรียกว่า การค้นหาหรือแม่ชิ่ง (Searching or Matching)

เมื่อพิจารณาลักษณะเฉพาะของหลักการเปรียบคู่สายอักขระแบบประมาณ คือ การค้นหาอักขระแบบเดี่ยว (Single Pattern String) $p = c_1 c_2 c_3 \dots c_m$ (โดยกำหนด p แทนอักขระแบบเป้าหมายที่ต้องการค้นหา ที่ $c_1 c_2 c_3 \dots c_m$ คือ สายอักขระที่ต่อเนื่องกันที่ลักษณะมีขนาดความยาว m) ที่ปรากฏในข้อความ (Text) $T = t_1 t_2 t_3 \dots t_n$ ได้ (โดยกำหนดให้ T คือข้อความหรือข้อมูลที่ประกอบด้วยอักขระขนาดยาว n ตัว ที่ต้องการนำอักขระแบบ p ไปค้นหา) โดยวัตถุประสงค์เพื่อพิจารณา p ปรากฏ ณ ตำแหน่งใดบ้างใน T โดยอนุญาตให้มีจำนวนอักขระที่เปรียบคู่ไม่ตรงกันหรืออนุญาตให้ผิดพลาดไม่ตรงกันด้วยค่าตัวเลขจำนวนเต็ม d กลไกการแก้ปัญหาคือนำเอาอักขระ $c_1 c_2 c_3 \dots c_m$ เก็บไว้ในโครงสร้างข้อมูลที่เหมาะสม เรียกว่า ส่วนเตรียมการประมาณผล (Pre-processing) จากนั้นสร้างขั้นตอนวิธีค้นหาเรียกว่า การค้นหาหรือแม่ชิ่ง (Searching or Matching)

ในช่วงเวลาที่ผ่านมา นักวิชาการทางด้านวิทยาการคอมพิวเตอร์พัฒนาโครงสร้างข้อมูลเพื่อรองรับการค้นหาขึ้นมาเป็นจำนวนมาก ดังปรากฏใน

สรุปโครงสร้างข้อมูลในคู่มือการเปรียบคู่ Navarro & Raffinot (2002) เช่น ใช้อโตเมตัน (Automaton) ตารางการแฮช (Hashing Table) และตารางการแมช หรือไม่แมช (Matched or Mismatched Table) เป็นต้น ขั้นตอนวิธีค้นหาที่ใช้แก้ปัญหานี้ที่ได้รับความนิยม ได้แก่

1) Levenshtein Distance (Levenshtein, 1966) เป็นขั้นตอนวิธีที่วัดระยะห่างระหว่างสองสตริง โดยพิจารณาจำนวนการลบ เพิ่ม หรือแทนที่ตัวอักษรที่จำเป็นเพื่อให้สองสตริงตรงกัน

2) Damerau-Levenshtein Distance เป็นขั้นตอนวิธีที่ขยาย Levenshtein Distance โดยพิจารณาการสลับที่ตำแหน่งของตัวอักษรด้วย

3) Needleman-Wunsch Algorithm (Needleman & Wunsch, 1970) เป็นขั้นตอนวิธีที่ค้นหารการจับคู่สตริงโดยประมาณโดยใช้การค้นหาแบบไดนามิก

4) Smith-Waterman Algorithm (Smith & Waterman, 1981) เป็นขั้นตอนวิธีที่คล้ายกับ Needleman-Wunsch Algorithm แต่พิจารณาค่า้น้ำหนักของตัวอักษรแต่ละตัวในการจับคู่สตริง เป็นต้น การศึกษาวิจัยเพื่อพัฒนาขั้นตอนวิธีการเปรียบคู่แบบประมาณ มีการศึกษามาก่อนเป็นเวลานานมาแล้ว ที่น่าสนใจได้แก่ ในงานวิจัยของ Levenshtein (1965), Gusfield (1997), และ Karp & Rabin (1987) ซึ่งมีคำอธิบายโดยละเอียด pragmatically ในหนังสือของ Navarro & Raffinot (2002)

จากนั้นมีการพัฒนาเนื้อหามาโดยตลอด จนกระทั่งถึงปัจจุบันก็ยังมีการศึกษาที่น่าสนใจ เช่น แสดงใน Uhlig *et al.* (2023) Khan, Halim, & Baig (2023), Faro & Scafati (2022) และ Dondi, Mauri, & Zoppis (2022) ซึ่งจะพบว่าโดยส่วนมากแล้ว ขั้นตอนวิธีในปัจจุบันจะนำเทคนิคโครงสร้างข้อมูล และขั้นตอนวิธีที่พัฒนาไว้แล้วมาทำงานร่วมกับร่วมกับ

ปัญญาประดิษฐ์ (Artificial Intelligence) (รายละเอียดแสดงในงานวิจัยของ Uhlig *et al.* (2023)) และเทคนิคต่างๆ เช่น กราฟ (รายละเอียดแสดงในงานวิจัยของ Khan, Halim, & Baig (2023) และ Dondi, Mauri, & Zoppis (2022)) เพื่อเพิ่มประสิทธิภาพการค้นหาให้รวดเร็วมากยิ่งขึ้น โดยงานวิจัยของ Boguszewski, Szymański, & Draszawka, (2016) ใช้จำนวนกรัมพัฒนาต่อยอดวิธี Levenshtein Distance เพิ่มขึ้นในขณะที่งานวิจัยของ Abraham & Raj (2014) พัฒนาวิธี Longest Subsequence (LCS) เพื่อสร้างการตรวจจับข้อความที่หลอกลวงต่างๆ เป็นต้น

จากการศึกษาข้างต้นพบว่า นักวิจัยพัฒนาโครงสร้างข้อมูลรวมถึงขั้นตอนวิธีในการแก้ปัญหาการเปรียบคู่สายอักษรแบบประมาณกันอย่างต่อเนื่อง และแม้ว่าจะเป็นหลักการที่ได้ศึกษาพัฒนากันมาเป็นเวลานานแล้ว แต่ยังไร้กีตามปัญหานี้ก็ยังคงอยู่ในความสนใจของนักวิจัยอยู่ตลอดเวลา ฉะนั้น การพัฒนาโครงสร้างข้อมูลและขั้นตอนวิธีการแก้ปัญหาการเปรียบคู่สายอักษรแบบประมาณแบบใหม่ จึงยังมีความจำเป็นและเป็นที่ต้องการอย่างยิ่ง งานวิจัยนี้ อาศัยแรงบันดาลใจจากการวิจัยของ Khancome & Boonjing (2010) ซึ่งได้ออกแบบรายการผกผัน (Inverted Lists) สำหรับแก้ปัญหาการเปรียบคู่สายอักษรแบบไม่อนุญาตให้ผิดได้ ซึ่งทำให้เกิดโครงสร้างข้อมูลใหม่เพื่อใช้ในการสร้างขั้นตอนวิธีการเปรียบคู่สายอักษรแบบเดี่ยวได้อย่างมีประสิทธิภาพ

ดังนั้น ผู้วิจัยจึงนำแนวคิดโครงสร้างข้อมูลจากการวิจัย Khancome & Boonjing (2010) มาพัฒนาโครงสร้างข้อมูลแบบใหม่ เพื่อใช้สำหรับการค้นหาข้อมูลสายอักษรแบบประมาณ โดยมีรายละเอียดดังนี้

1) กระบวนการพัฒนาโครงสร้างข้อมูลแบบใหม่ เรียกว่า รายการผกผันแบบเดี่ยวเพื่อการเปรียบคู่สายอักษรแบบประมาณ และ

2) การพัฒนาขั้นตอนวิธีการเปรียบคู่สายอักขระแบบประมาณโดยใช้โครงสร้างข้อมูลชนิดใหม่ที่พัฒนาขึ้น

ทั้งนี้ เป็นการพัฒนาโครงสร้างข้อมูลแบบใหม่ภายใต้สมมติฐานที่ว่า โครงสร้างข้อมูลใหม่ที่พัฒนาขึ้น จะมีประสิทธิภาพทั้งความซับซ้อนด้านเวลาและเนื้อที่ สามารถนำไปปรับใช้ในสาขาวิชาการคอมพิวเตอร์ที่เกี่ยวข้องกับการเปรียบคู่โดยประมาณได้ รวมถึงนี่ความยืดหยุ่น รองกับการค้นหาที่รวดเร็วขึ้น ค้นหาข้อมูลทั้งการเปรียบคู่สายอักขระแบบโดยกำหนดค่าความผิดพลาดได้แบบยืดหยุ่น มีประสิทธิภาพ

2. แนวคิดทฤษฎีที่ใช้ในงานวิจัย

สำหรับการอකแบบงานวิจัยใหม่ครั้งนี้ คณบุรีวิจัยได้นำหลักการการสร้างรายการการผกผันพื้นฐานที่เกิดจากการนำโครงสร้างข้อมูลที่ Khancome & Boonjing (2010) ออกรูปแบบไว้ นำมาต่อยอดเพื่อพัฒนาขั้นตอนวิธีใหม่ โดยอาศัยตารางการแข็งเพื่อจัดเก็บและเข้าถึงข้อมูล นำเสนอรายละเอียดดังนี้

2.1 รายการผกผัน (Inverted Lists: IVL)

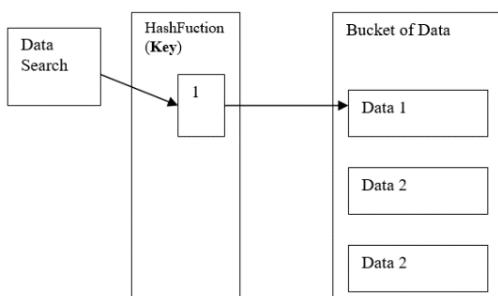
รายการผกผัน คือโครงสร้างข้อมูลที่อกรูปแบบโดย Khancome & Boonjing (2010) ซึ่งอกรูปแบบไว้เพื่อใช้สำหรับเก็บปัญหาทางด้านค้นหาสายอักขระแบบที่ปรากฏในข้อความ (Text) ในขั้นตอนวิธีเปรียบคู่สายอักขระแบบตรงกันทั้งหมด (Exact String Matching Algorithm) ด้วยการนำสายอักขระแบบ (Pattern of String) มาเขียนให้อยู่ในรูปแบบตารางขนาด 2 คอลัมน์ โดยคอลัมน์แรกคือ Σ ใช้บรรจุอักขระเดี่ยว (Single Character) ที่ปรากฏในอักขระแบบที่นำมาพิจารณา ส่วนคอลัมน์ที่สองชื่อ IVL ใช้บรรจุตำแหน่งของอักขระเดี่ยวที่สอดคล้องกับคอลัมน์แรก

กลไกการอกรูปแบบรายการผกผัน เริ่มต้นจากการนำแนวคิดของหลักการดัชนีผกผัน (Inverted

Index) ซึ่งเป็นหลักการที่มีประสิทธิภาพสูงสำหรับการอกรูปแบบการจัดเก็บดัชนีของการจัดเก็บและค้นคืนเอกสาร หลักการของดัชนีผกผันจะให้หมายเลขแก่เอกสาร และระบุตำแหน่งของแต่ละคำหรือข้อความที่ปรากฏในเอกสาร จากนั้นนำหมายคำต่างๆ เหล่านั้นมาสร้างเป็นดัชนีเพื่อให้สามารถถึงเอกสารได้เร็วขึ้น เขียนโครงสร้างในรูปแบบ “ \langle หมายเลขเอกสาร, คำที่ปรากฏ:ตำแหน่งที่ปรากฏ \rangle ” เรียกคำที่ปรากฏว่าคีย์เวิร์ดหรือคำพัทท์ โดยระบุคู่กับตำแหน่งที่ปรากฏในเอกสารที่แสดงแนวคิดการสร้างอักขระแบบให้อยู่ในรูปแบบดังกล่าว โดย Khancome & Boonjing (2010) ได้นำอักขระแบบเป้าหมายมาพิจารณาและเขียนให้อยู่ในรูปแบบรายการผกผันด้วยการระบุอักขระเดี่ยวที่ปรากฏในอักขระ โดยมีรูปแบบ “ \langle ตำแหน่งที่ปรากฏ:สถานะเป็นตัวสุดท้ายของอักขระแบบหรือไม่ ($0 = \text{ไม่ใช่} / 1 = \text{ใช่}$) \rangle ” นำเสนอตัวอย่างรายการผกผันของอักขระแบบพoSangBeP ดังตัวอย่างที่ 1

ตัวอย่างที่ 1 กำหนดให้อักขระแบบ $\rho = \text{CCOMZ}$ สามารถแสดงรายการผกผันของ ρ ได้ดังตาราง 1

ตาราง 1 รายการผกผันของอักขระแบบ $\rho = \text{CCOMZ}$

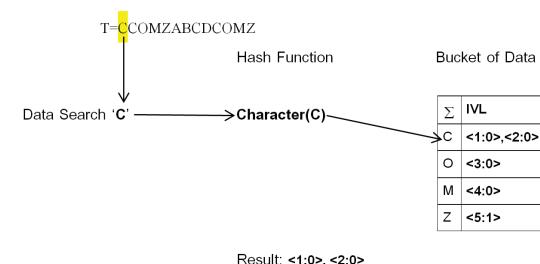

Σ	IVL
C	$\langle 1:0 \rangle, \langle 2:0 \rangle$
O	$\langle 3:0 \rangle$
M	$\langle 4:0 \rangle$
Z	$\langle 5:1 \rangle$

จากตารางที่ 1 อธิบายได้ว่า อักขระแบบ CCOMZ มีอักขระเดี่ยวที่ปรากฏในอักขระแบบคือ C, O, M และ Z ซึ่งถูกนำมาเขียนบรรจุในตารางดังแสดงในคอลัมน์แรก Σ จากนั้นพิจารณาตำแหน่งที่ปรากฏของอักขระแต่ละตัวที่ปรากฏในอักขระแบบ

ดังกล่าว จะพบกว่า อักษร C ปรากฏที่ตำแหน่ง 1 และ O ปรากฏในตำแหน่งที่ 3 อักษร M ปรากฏในตำแหน่งที่ 4 และ Z ปรากฏในตำแหน่งที่ 5 箕ารณาสถานะการเป็นอักษรตัวสุดท้ายของ อักษรแบบหรือไม่จะพบว่า C O และ M ไม่ใช่ อักษรสุดท้ายของอักษรแบบจึงกำหนดสถานะ คือ 0 แต่ Z เป็นอักษรตัวสุดท้ายของอักษรแบบนี้ จึงกำหนดสถานะเป็น 1 อักษรทั้งหมดจึงถูกเขียน ในรูปแบบ อักษรเดียวที่ปรากฏในอักษรแบบ: <ตำแหน่งที่ปรากฏ:สถานะเป็นตัวสุดท้ายของอักษรแบบหรือไม่ (0=ไม่ใช่/1=ใช่)> ดังแสดงในตาราง ดังกล่าวข้างต้น

2.2 ตารางการแฮช (Hashing Table)

หลักการแฮช (Hashing Principle) หรือ ตารางการแฮช คือหลักการสร้างและอุปแบบโครงสร้าง ข้อมูลจัดเก็บในรูปแบบตารางเพื่อสนับสนุนการค้นหา และเข้าถึงข้อมูลในโครงสร้างด้วยค่าความซับซ้อน $O(1)$ องค์ประกอบของหลักการนี้ มี 2 ส่วนคือการสร้าง พังก์ชันคีย์ เรียกว่าแฮชฟังก์ชัน (Hash Function) และตารางเก็บข้อมูล (Bucket of Data) โดยที่ผล การของนำค่าคีย์สำหรับค้นหา (Data Search) นำ มาคำนวณผ่านแฮชฟังก์ชัน จะได้ผลลัพธ์เป็นตำแหน่ง ของการจัดเก็บข้อมูล แสดงแนวคิดของโครงสร้าง ดังกล่าว ดังภาพประกอบ 1



ภาพประกอบ 1 แนวคิดการสร้างตารางการแฮช

จากแนวคิดในภาพประกอบ 1 งานวิจัยนี้ ได้นำเสนอรูปแบบของการแสดงรายการผกผัน (แสดงในหัวข้อ 2.1) โดยใช้ Character (W_i) เป็น พังก์ชันการแฮช เพื่อเข้าถึงตารางการแฮชในส่วนของ Bucket of Data ในภาพประกอบดังกล่าว โดยที่ W_i คืออักษรเดียวที่ปรากฏในอักษรแบบ σ โดย แนวคิด การเข้าถึงข้อมูลและการเปรียบเทียบตัวอักษรเพื่อ จะนำไปวิเคราะห์การค้นพบ แสดงตัวอย่างการสร้าง ตารางการแฮชของรายการผกผัน $p = CCOMZ$ ประกอบการเข้าถึงด้วยข้อความ T ดังภาพประกอบ 2

จากแนวคิดการสร้างตารางการแฮชแบบนี้ กับรายการผกผันที่ได้นำเสนอไปแล้ว ทำให้สามารถ เข้าถึงข้อมูลเพื่อเปรียบเทียบในขั้นตอนวิธีการค้นหา สามารถทำได้ด้วยค่าความซับซ้อน $O(1)$ โดยใช้เนื้อที่ จัดเก็บเป็น $O(n)$ ซึ่งจะได้แสดงการพิสูจน์และนำเสนอด้วยตัวอย่าง

จากแนวคิดดังกล่าว Khancome & Boonjing (2010) ได้นำไปออกแบบขั้นตอนวิธีการ เปรียบคู่แบบตรงกัน (Exact String Matching Algorithms) จำนวน 2 ขั้นตอนวิธี ทำงานด้วยความซับซ้อนขั้นตอนวิธีแบบ Prefix Approach ค้นหาข้อมูล $O(mn)$ กับขั้นตอนวิธี Suffix Approach ค้นหาข้อมูลด้วยความซับซ้อน $O(n/m)$ โดยขั้นตอนวิธีทั้งสองใช้โครงสร้างรายการผกผันที่สร้างขึ้นทำงาน ด้วยค่าความซับซ้อน โดยพัฒนาโปรแกรมเปรียบเทียบ

ภาพประกอบ 2 แนวคิดการสร้างตารางการแฮช สำหรับการเปรียบคู่แบบประมาณ

กับขั้นตอนวิธีการเปรียบค่าแบบตรงกันทั้งหมด เช่น Boyer-Moor(BM), KMP(Knuth-Morris-Pratt) และ BruceForce(BF) ซึ่งไม่สามารถรองรับการค้นหาแบบประมาณดังงานวิจัยใหม่นี้ได้

ดังนั้น งานวิจัยใหม่นี้นำหลักการดังกล่าวสร้างตารางการแข่งกับรายการผกผันดังกล่าว เพื่อรองรับการค้นหาเปรียบเทียบแบบประมาณหรืออนุญาตให้มีค่าความผิดพลาดในการค้นหาได้ ทั้งนี้ เพื่อให้การอภิแบบและเข้าถึงข้อมูลผ่านตารางได้สะดวกรวดเร็วและมีประสิทธิภาพจึงออกแบบตารางดังกล่าวด้วยตารางการแข่ง คล้ายกับงานวิจัย Khancome & Boonjing (2010) เฉพาะบางส่วนของตารางรายการผกผันเท่านั้น แต่หากขั้นตอนวิธีที่นำเสนอเป็นขั้นตอนวิธีใหม่ที่ใช้สำหรับการเปรียบคุ้มค้นหาแบบประมาณที่อนุญาตให้ระบุค่าความผิดพลาดได้ และได้ทดลองเปรียบเทียบกับขั้นตอนวิธีที่มีชื่อเสียงของกลุ่มงานวิจัยที่เกี่ยวข้องด้านนี้เท่านั้น

3. วิธีการดำเนินการวิจัย

3.1 ขั้นตอนการสร้างโครงสร้างข้อมูล

เบื้องต้น กำหนดให้ p คือสายอักขระจาก c_1, c_2, \dots, c_m ที่อยู่ภายใต้ \sum เมื่อ \sum คือเซตของอักขระที่ปรากฏใน p

นิยามที่ 1 ค่าสำคัญของอักขระแบบ คือ p ประกอบด้วยค่าสำคัญ $w_{a_{1,0}}, w_{b_{2,0}}, w_{c_{3,0}}, \dots, w_{\dots_{m,1}}$ เมื่อ $w_{n_{k,0}}$ หรือ $w_{n_{k,1}}$ ใดๆ คือ c_k โดยที่ k คือตำแหน่งที่ปรากฏอยู่ใน p ; 0 หรือ 1 คือสถานะที่ระบุการเป็นอักขระสุดท้ายของ c_k ใน p ถ้าไม่ใช้อักขระสุดท้ายระบุ 0 หรือระบุ 1 หากเป็นอักขระสุดท้าย

$$\omega = w_{a_{1,0}}, w_{b_{2,0}}, w_{c_{3,0}}, \dots, w_{\dots_{m,1}} \quad (1)$$

ตัวอย่างที่ 1 แสดงค่าสำคัญของอักขระแบบ $p=aabcz$ ซึ่งจะได้ $w_{a_{1,0}} = a, w_{b_{2,0}} = a, w_{c_{3,0}} = b, w_{d_{4,0}} = c$ และ $w_{e_{5,1}} = z$ เปลี่ยนเป็นในรูปแบบค่าสำคัญได้ดังนี้

$$\omega = a_{1,0} a_{2,0} b_{3,0} c_{4,0} z_{5,1}$$

นิยามที่ 2 รายการผกผัน L ของ ω เกิดจากนำแต่ละ $w_{\lambda_{\dots,0}}$ หรือ $w_{\lambda_{\dots,1}}$ ใดๆ ที่อยู่ใน ω มาเปลี่ยนในรูปแบบ $w_{\lambda} : <\varepsilon : 0>$ หรือ $<\varepsilon : 1>$ ซึ่ง

$$L_{\omega} = w_a : <1 : 0>, w_b : <2 : 0>, w_c : <3 : 0>, \dots, w_{\dots} : <m : 1> \quad (2)$$

ตัวอย่างที่ 2 แสดงรายการผกผันของอักขระแบบ $p=aabcz$ ได้ดังนี้

$$L_{\omega} = a : <1 : 0>, a : <2 : 0>, b : <3 : 0>, c : <4 : 0>, z : <5 : 1>$$

นิยามที่ 3 จากนิยาม 2 ให้ I_{λ_0} แทน $< i : 0 >$ และ I_{λ_1} แทน $< i : 1 >$ ของ w_{λ} ใดๆ ดังนั้น

$$w_{\lambda} : I_{\lambda_0} \text{ หรือ } w_{\lambda} : I_{\lambda_1} \quad (3)$$

นิยามที่ 4 ตารางรายการผกผัน τ คือตารางการแข่งที่ประกอบด้วย 2 คอลัมน์คือ w_{λ} และ $I_{\lambda_0} / I_{\lambda_1}$ (4)

ตัวอย่างที่ 3 แสดงตารางรายการผกผัน τ ของอักขระแบบ $p=aabcz$

ตาราง 2 ตารางรายผลผันของอักขระแบบ $p = aabcz$

Character (w_λ)	Inverted Lists ($I_{\lambda_0} / I_{\lambda_1}$)
a	<1:0>, <2:0>
b	<3:0>
c	<4:0>
z	<5:1>

Algorithm 1: Inverted-List Table ($p = c_1, c_2, c_3, \dots, c_m$)

```

1: Create table for all alphabet over  $\Sigma$ 
2:  $j = 1$ 
3: While ( $j \leq m$ ) Do
4:   Create inverted list of char ( $C_j$ ) and add to at suitable field  $I_{\lambda_0}$  or  $I_{\lambda_1}$ 
5:    $j \leftarrow j + 1$ 
6: End of While

```

ทฤษฎีบท 1 การเข้าถึงรายการผกผัน I_{λ_0} หรือ I_{λ_1} ใน τ มีความซับซ้อนด้านเวลา $O(1)$

พิสูจน์ กำหนด $f(x)$ เป็นฟังก์ชันการแยก; ให้ w_{λ_0} คือ คีย์เข้าถึง I_{λ_0} และ w_{λ_1} คือ คีย์เข้าถึง I_{λ_1} ดังนั้น การเข้าถึงตารางการแยก τ ตามคุณสมบัติของตารางการแยก ทำให้ การเข้าถึง I_{λ_0} จาก $f(w_{\lambda_0})$ หรือ I_{λ_1} จาก $f(w_{\lambda_1})$ มีความซับซ้อน $O(1) \#$

กลไกการทำงานของขั้นตอนวิธี เริ่มจากสร้างตาราง τ ให้สามารถครอบคลุมการบรรจุอักขระทุกตัวที่จะใช้งาน (Σ) จากอ่านอักขระที่ลงทะเบียนจากอักขระแบบสร้าง รายการผกผัน I_{λ_0} หรือ I_{λ_1} บรรจุลงใน τ จนครบทุกอักขระ ขั้นตอนวิธีแสดงได้ดังนี้

จากขั้นตอนวิธีใน Algorithm 1 พบว่า มีความซับซ้อนด้านเวลาคือ $O(m)$ พิสูจน์ได้ดังทฤษฎีบท 2 ความซับซ้อนด้านเนื้อที่เป็น $O(1)$ เนื่องจากใช้ตารางการแยก ตามนิยาม 4 ที่มีจำนวนແກ່ວທ່ານ Σ เท่านั้น

ทฤษฎีบท 2 ส่วนเตรียมการการประมวลผล เพื่อสร้างตารางรายการผกผันสำหรับการเรียบคูโดย ประมาณใช้เวลา $O(m)$ ด้วยเนื้อที่ $O(|\Sigma| + m)$

พิสูจน์ จาก Algorithm 1 ที่ $p=c_1, c_2, c_3, \dots, c_m$ ซึ่ง มีความยาว m บรรทัดที่ 1 การสร้างตารางเพื่อเก็บรายการผกผันและ บรรทัดที่ 2 กำหนดตัวแปรเริ่มต้น ต่างทำด้วยความซับซ้อนค่าคงที่ $O(1)$ ลูป While จะวนท่ากับจำนวนอักขระแบบ คือ m รอบ ซึ่งความซับซ้อนท่ากับ $O(m)$ บรรทัดที่ 4 เข้าถึงตารางเพื่อการเพิ่มรายการผกผัน ซึ่งเข้าถึงรายการผกผันด้วย $O(1)$ ตามทฤษฎีบท 1 ขณะที่บรรทัดที่ 7 ทำงานที่ $O(1)$ ซึ่งทำท่ากับ m ครั้งภายในลูป While

ดังนั้น ความซับซ้อนด้านเวลาสำหรับสร้างรายการผกผันบรรจุลง I_{λ_0} และ I_{λ_1} จึงเท่ากับ $O(m)$ สำหรับความซับซ้อนด้านเนื้อที่จะต้องมี 2 คอลัมน์ Σ ในขณะที่รายการผกผันที่สร้างขึ้นมีค่าเท่ากับ m รายการ ซึ่งทำให้ความซับซ้อนด้านเนื้อที่คือ $O(|\Sigma| + m) \#$

3.2 ขั้นตอนวิธีการค้นหาแบบประมาณ

เนื้อส่วนนี้นำเสนอส่วนสำคัญก่อนพิจารณาขั้นตอนวิธีการเรียบคู่แบบประมาณที่สร้างขึ้นจำเป็นต้องแสดงการพิสูจน์บทแทรก และกำหนดนิยามที่เกี่ยวข้องเพื่อให้การอธิบายขั้นตอนวิธีและตัวอย่างการค้นหาได้อย่างกระจ่างมากยิ่งขึ้น ดังนี้

บทแทรก 1 กำหนดให้ IVL คือตารางการแยกย่อยที่มี w_{λ_0} และ w_{λ_1} เป็นคีย์เข้าถึง I_{λ_0} และ I_{λ_1} ซึ่งการเข้าถึง I_{λ_0} และ I_{λ_1} ใน IVL ด้วยฟังก์ชัน $f(w_{\lambda_0})$ หรือ $f(w_{\lambda_1})$ มีความซับซ้อน $O(1)$

พิสูจน์ กำหนด IVL เป็นตารางการแยกย่อย ในนิยามที่ 4 และทฤษฎีบท 1 ซึ่งมีคีย์ w_{λ_0} และ w_{λ_1} ดังนั้นจะใช้ $f(w_{\lambda_0})$ และ $f(w_{\lambda_1})$ เพื่อเข้าถึง I_{λ_0} และ I_{λ_1} ด้วยความซับซ้อน $O(1)$ ตามทฤษฎีบท 1 #

บทแทรก 2 การนำรายการผลผันจาก τ ที่ตรงกับรายการผลผัน $text[N]$ ลง IVL ได้ ใช้ความซับซ้อน $O(1)$

พิสูจน์ กำหนดให้ $text[N]$ คือ อักขระจากข้อความ T ที่แปลงเป็นคีย์ได้ $w_{\lambda_{pos,0}}$ และ $w_{\lambda_{pos,1}}$

ดังนั้น เมื่อเข้าถึง $I_{\lambda_{pos,0}}$ และ $I_{\lambda_{pos,1}}$ ในตาราง τ จึงใช้ความซับซ้อน $O(1)$ ตามทฤษฎีบท 1 และนำ $I_{\lambda_{pos,0}}$ และ $I_{\lambda_{pos,1}}$ ลง IVL ด้วย $O(1)$ ตามบทแทรก 1 #

นิยามที่ 5 การดำเนินการ (operate) คือการหาความต่อเนื่องของ $I_{\lambda_{q_{\varepsilon,1,0}}}$ และ/หรือ $I_{\lambda_{q_{\varepsilon,1,1}}}$ ใน $IVL1$ ต่อเนื่องไปยัง $I_{\lambda_{b_{\varepsilon,2,0}}}$ และ/หรือ $I_{\lambda_{b_{\varepsilon,2,1}}}$ ใน $IVL2$ โดยพิจารณาตำแหน่ง $\varepsilon 2$ ที่ต่อเนื่องมาจาก $\varepsilon 1$ ซึ่งจะได้ผลการดำเนินการเป็น $I_{\lambda_{b_{\varepsilon,2,0}}}$ และ/หรือ $I_{\lambda_{b_{\varepsilon,2,1}}}$

Algorithm 2: Inverted-List-Approximate-Search $p = c_1, c_2, c_3, \dots, c_m, T = t_1, t_2, \dots, t_n, d$

Preprocessing:

Create Inverted-List-Table (p)

Searching:

```

1: N=1, SearchWindow=1, pos=1, IVL1=∅, IVL2=∅, f=0
2: While (N<=n-d) Do
3:   Store all member of row(text[N])  $I_{\lambda_{pos,0}} / I_{\lambda_{pos,1}}$  in  $\tau$  to IVL1
4:   While (f<d and pos<=m)
5:     If IVL1 = ∅ and f<=d
6:       IVL1 = <pos:0> if pos<m or IVL1=<pos:1> if pos=m
7:       N=N+1, pos=pos+1
8:     Else
9:       Keep only <pos:0> in IVL1
10:    N=N+1, pos=pos+1
11:    Store all member of row(text[N])  $I_{\lambda_{pos,0}} / I_{\lambda_{pos,1}}$  in  $\tau$  to IVL2
12:    Analyze continuity of IVL1 and IVL2 and keep it into IVL1 set f=f+1 if non-continuity
13:    Report result of matching if IVL1 exist <pos:1> and pos=m
14:  End of If
15:  Report result of matching if IVL1 exist <pos:1> and pos=m or f<=d and pos=m
16: End of While
17:  SearchWindow=SearchWindow+1
18:  N=SearchWindow, pos=1
19: End of While

```

ตาราง 3 รายการผลผัน τ ของอักขระแบบ $p=aabcz$

Character (w_λ)	Inverted Lists ($I_{\lambda_0} / I_{\lambda_1}$)
a	<1:0>,<2:0>
b	<3:0>
c	<4:0>
z	<5:1>

ตัวอย่างที่ 5 ถ้ากำหนดให้ $IVL1=\{<2:0>\}$ และ $IVL2=\{<1:0>,<3:0>\}$ การหาความต่อเนื่องจากตำแหน่งที่ 2 ไป 3 จะได้ว่า $<3:0>$ ต่อเนื่องมาจาก $<2:0>$ และมีรายการผลผันใหม่คือ $<1:0>$ ซึ่งจะได้ $IVL1=\{<1:0>,<3:0>\}$ เป็นต้น

บทที่ 3 การดำเนินการระหว่าง $IVL1$ และ $IVL2$ ใช้ความซับซ้อน $O(1)$

พิสูจน์ กำหนดให้ $IVL1$ และ $IVL2$ คือ IVL ตามบทที่ 1 โดยที่ $IVL1$ บรรจุ $I_{\lambda_{\varepsilon_1,0}}$ และ/หรือ $I_{\lambda_{\varepsilon_1,1}}$, $IVL2$ บรรจุ $I_{\lambda_{\varepsilon_2,0}}$ และ/หรือ $I_{\lambda_{\varepsilon_2,1}}$ การเข้าถึงเพื่อนำ $I_{\lambda_{\varepsilon_1,0}}, I_{\lambda_{\varepsilon_1,1}}, I_{\lambda_{\varepsilon_2,0}}$ และ $I_{\lambda_{\varepsilon_2,1}}$ มาเปรียบเทียบสำหรับการดำเนินการ ตามนิยามที่ 5 จะใช้ $O(1)$ เป็นไปตามบทที่ 1

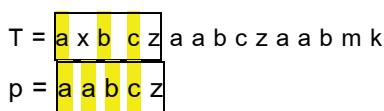
การทำงานของขั้นตอน เริ่มการเปรียบคู่จากตัวแปรของหน้าต่าง (Search Window) เก็บรายการผลผัน I_{λ_0} ไว้ใน $IVL1$ โดยให้ตัวแปร N ไปชี้ยังตำแหน่งที่ต้องการเปรียบเทียบ ขั้นตอนต่อไปอ่านและเปรียบคู่อักขระในข้อความจากซ้ายไปขวา ที่ลักษณะ ซึ่งแต่ละครั้งของการเปรียบคู่ ใช้วิธีเก็บผลลัพธ์ของการผลผันไว้ใน $IVL1$ และ $IVL2$ แล้วนำรายการผลผันดังกล่าวมาหาความต่อเนื่องและผลการเปรียบคู่สำเร็จไปพร้อมๆ กัน และขั้นตอนวิธีดัง Algorithm 2 สำหรับค่าความผิดพลาดที่อนุญาตให้การเปรียบคู่ไม่ตรงกันได้ กำหนดให้เป็นค่า d นอกจากนี้มีตัวแปรพิเศษคือ f คือ ค่าจดจำครั้งของการผิดพลาดเมื่อทำการเปรียบคู่แต่ละหน้าต่าง

ตัวแปร pos คือตำแหน่งรายการผลผันที่ต้องการนำมาเปรียบคู่ ขั้นตอนวิธีการค้นหาเปรียบคู่แบบประมาณที่พัฒนาขึ้น แสดงดัง Algorithm 2

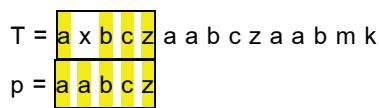
ตัวอย่างที่ 6 แสดงการค้นหาแบบประมาณด้วย Algorithm 2 เมื่อ $T = axbczaabczaabmk$ และ $p=aabcz$ กำหนดค่า $d = 2$

หน้าต่างค้นหาที่ 1 : $SearchWindow = 1$

$T = \boxed{a} x b c z a a b c z a a b m k$
 $p = \boxed{a} a b c z$

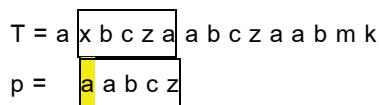

$IVL1 = <1:0>,<2:0>, N=1$, มีข้อมูล $text[N]$ คือ a ใน τ , $N=N+1, f=0, pos=1$

$T = \boxed{a} x b c z a a b c z a a b m k$
 $p = \boxed{a} a b c z$

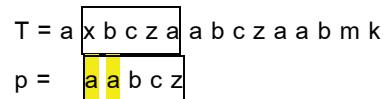

$IVL1 = <1:0>,<2:0>, IVL2=<>, N=2, pos=2$ ไม่พบข้อมูลของ $text[N]$ คือ x กำหนด $f=f+1=1$ ซึ่งแสดงว่าเปรียบคู่อักขระไม่ตรงกัน แต่ค่า $f \leq d$ จึงสามารถเปรียบคู่ต่อไปได้ตามหลักของขั้นตอนวิธี เก็บค่า ความต่อเนื่องของอักขระจาก $IVL1 = <1:0>$, $pos=1$ เปลี่ยนไปเป็น 2 ได้โดยเก็บค่า $IVL1 = <pos:0>=<2:0>$ และค้นหาต่อไป

$T = \boxed{a} x b c z a a b c z a a b m k$
 $p = \boxed{a} a b c z$

$IVL1 = <2:0>$, $IVL2 = <3:0>$ $N=3$, $pos=3$
พบข้อมูลของ $text[N]$ คือ b กำหนด $f=1$ วิเคราะห์
ความต่อเนื่อง $IVL1 = <2:0>$, $IVL2 = <3:0>$ เก็บผล
ไว้ใน $IVL1 = <3:0>$ ซึ่งแสดงว่าเปรียบคู่อักษรตรง
กัน แต่ $pos \leq m$ แล้วค้นหาต่อไป

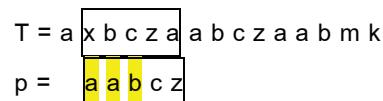


$IVL1 = <3:0>$, $IVL2 = <4:0>$ $N=4$, $pos=4$
พบข้อมูลของ $text[N]$ คือ c กำหนด $f=1$ วิเคราะห์
ความต่อเนื่อง $IVL1 = <3:0>$, $IVL2 = <4:0>$ เก็บผล
ไว้ใน $IVL1 = <4:0>$ ซึ่งแสดงว่าเปรียบคู่อักษร
ตรงกัน แต่ $pos \leq m$ แล้วค้นต่อไป



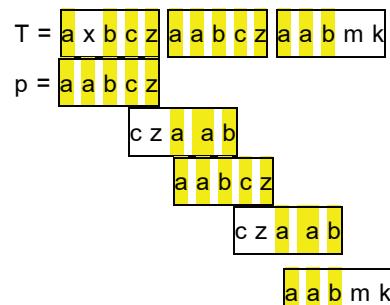
$IVL1 = <4:0>$, $IVL2 = <5:1>$ $N=5$, $pos=5$
พบข้อมูลของ $text[N]$ คือ z กำหนด $f=1$ วิเคราะห์
ความต่อเนื่อง $IVL1 = <4:0>$, $IVL2 = <5:1>$ วิเคราะห์
การเปรียบคู่อักษรแบบสำเร็จที่ ตำแหน่งของ $text[N]$
คือ z ด้วยความพิเศษ คือ 1 ตำแหน่งอักษร
เป็นตัว $pos=5$ ซึ่งเท่ากับ m จบหน้าต่างค้นหาที่ 1
เลื่อนหน้าต่างค้นหา

หน้าต่างค้นหาที่ 2 : $SearchWindow = 2$



$VL1 = <>$, $N=1$, ไม่มีข้อมูล $text[2]$ คือ x
ใน τ , $N=N+1$, $f=1$, $pos=1$ แต่เก็บ $IVL1 = <1:0>$
ตามหน้าตันนวิธี

$VL1 = <1:0>$, $IVL2 = <>$ $N=2$, $pos=2$


ไม่พบข้อมูลของ $text[N]$ คือ b กำหนด $f=f+1=2$
แต่ค่า $f \leq d$ จึงสามารถเปรียบคู่ต่อไปได้ตามหลัก
ของขั้นตอนนวิธี เก็บค่า ความต่อเนื่องของอักษร
จาก $IVL1 = <2:0>$, $pos=1$ เปลี่ยนไปเป็น 2 ได้
โดยเก็บค่า $IVL1 = <pos:0> = <2:0>$ แล้วค้นต่อไป

$IVL1 = <2:0>$, $IVL2 = <4:0>$ $N=3$, $pos=3$

พบข้อมูลต่อเนื่องของ $text[N]$ คือ c กำหนด $f=3$
วิเคราะห์ความต่อเนื่องและการเปรียบคู่ ค่า $f > d$ แสดง
ว่าการเปรียบคู่ไม่สำเร็จ เลื่อนเป็นหน้าต่างการค้นหา
ใหม่ $SearchWindow$ 3 ต่อไป

สำหรับ หน้าต่างค้นหาที่ 3-5 จะเกิดการ
เปรียบคู่ไม่สำเร็จดังหน้าต่างที่ 2 คือ ค่า $f > d$ จะตรง
กันอีกครั้งที่หน้าต่างค้นหาที่ 6 แต่กรณีนี้ค่า $f=0$
ซึ่งเป็นการเปรียบคู่สำเร็จแบบตรงกันทุกตัวอักษร
นอกจ้านั้น ในหน้าต่างค้นหาที่ 11 ในขณะที่หน้าต่าง
ที่ 7-10, 12 จะเปรียบคู่ไม่สำเร็จด้วยค่า $f > d$ แสดง
หน้าต่างที่ค้นพบดังนี้

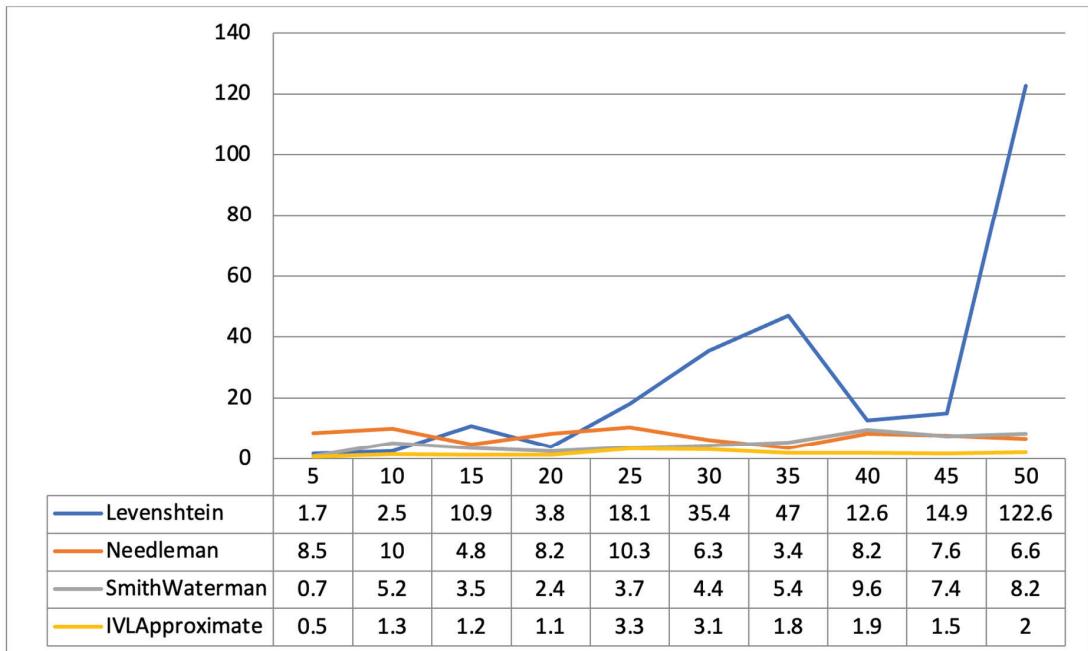
ทฤษฎีบท 3 ขั้นตอนวิธีการเปรียบคู่สายอักขระแบบประมาณ มีความซับซ้อนด้านเวลากรณีเฉลี่ย $O((m-k)n)$ กรณีดีที่สุด $O(kn)$ เมื่อค่า k คือค่าที่กำหนดให้พิเศษในการค้นหาได้ m คือความยาวของอักขระแบบ n คือ ความยาวของข้อความที่นำมาใช้ค้นหา

พิสูจน์ กำหนด n คือความยาวของข้อความ T ซึ่ง $T=t_1 t_2 t_3 \dots t_n$ อักขระแบบยาว m กำหนดค่า k คือค่าที่อนุญาตให้พิเศษได้ (ในนี้นี่คือ d ใน Algorithm 2) พิจารณาความซับซ้อนเริ่มจากอัจฉริยะการวนลูปจากลูปของการเปรียบเทียบแต่ละหน้าต่าง (ลูป While บรรทัดที่ 4-16) จากนั้นอัจฉริยะส่วนลูปภายนอกที่ควบคุมการหาเพื่อเปรียบเทียบไปทีละหน้าต่าง

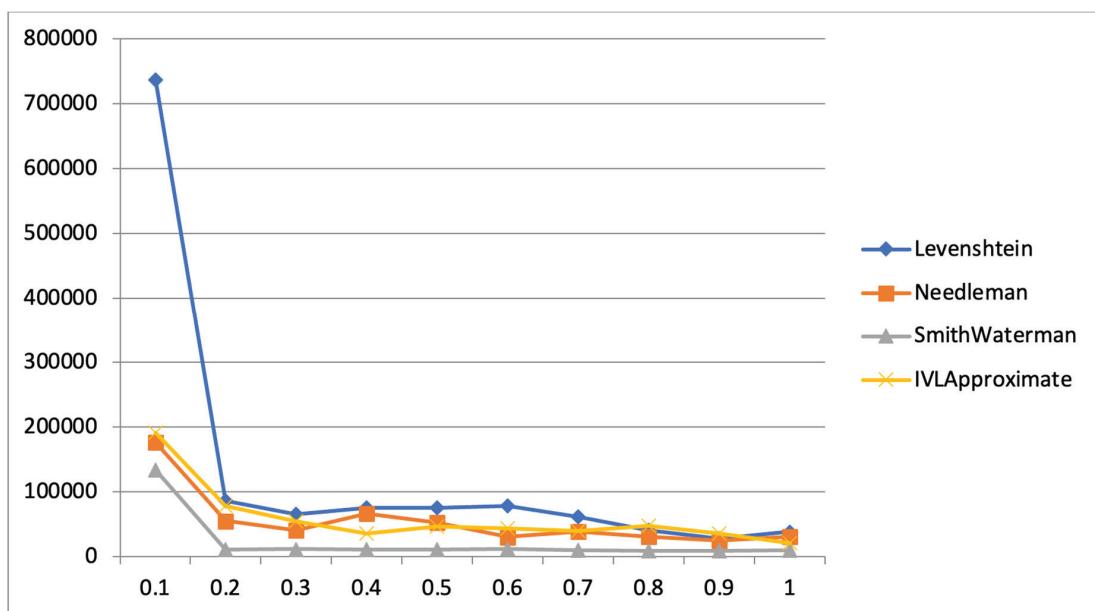
พิจารณาลูป While ภายใน (บรรทัดที่ 4-16) คือลูปของการเปรียบเทียบด้วยความยาวมากที่สุด คือ m ครั้ง เปรียบเทียบน้อยที่สุดเท่ากับ $m-d$ ซึ่งคือ $(m-k)$ นั้นเอง ในขณะที่ในแต่ละบรรทัดของ การดำเนินการทำด้วยความซับซ้อน $O(1)$ ตามบทแทรกรที่ 1, 2 และ 3

สำหรับลูป While นอกสุด วนทำงานมากที่สุด n ครั้ง หรือน้อยที่สุดคือ $n-(d+1)$ ครั้งเท่านั้น ดังนั้นหากพิจารณาลำดับการวนเพื่อเปรียบเทียบทั้งหมด (เฉลี่ย) จะเท่ากับ $(m-d)xn$ หรือกรณีน้อยที่สุดของการหาค่า คือ $(m-d)x n-(d+1)$ ซึ่งไม่ว่าการทำงานจะเป็นกรณีใด ก็จะนำไปสู่ความซับซ้อน $O((m-k)n)$ #

กรณีที่ดีที่สุดของการค้นหาจะเป็นกรณีที่เปรียบเทียบที่ไม่ตรงกันด้วยจำนวนครั้งของการทำงานที่ตรวจไม่พบที่ เปรียบเทียบเท่ากับ d ครั้งในแต่ละหน้าต่าง ซึ่งคือค่า k ทำให้ความซับซ้อนดีที่สุด คือ $O(kn)$ #


4. ผลการทดลอง

การทดลองพัฒนาโปรแกรมการเปรียบคู่แบบประมาณ ด้วยโปรแกรมภาษาจาวา (jdk 21), Netbeans 20 ทดลองด้วยเครื่องคอมพิวเตอร์ Dell Vostro 5400, Windows 10 Pro, Intel(R) Core(TM) i7-7700HQ RAM 16.0 GB โดยพัฒนาโปรแกรมโครงสร้างข้อมูลและขั้นตอนวิธีที่ออกแบบใหม่ กำหนดให้ชื่อ IVLApproximate หลังจากนั้นนำโปรแกรมที่พัฒนาขึ้นทดลองโดยอาศัยข้อมูลทั้งข้อมูลที่โปรแกรมคอมพิวเตอร์สุ่มขึ้นและข้อมูลจริง มาตรฐาน เปรียบกับขั้นตอนวิธีที่มีประสิทธิภาพที่มีมาก่อน ได้แก่ Levenshtein (จาก <https://www.baeldung.com/java-levenshtein-distance>), Neesleman (จาก [https://github.com/Aqcurate/NeedlemanWunsch](https://github.com/Aqcurate/Needleman-Wunsch/blob/master/NeedlemanWunsch)


.java), SmithWaterman (จาก <https://github.com/JayakrishnaThota/Sequence-Alignment/blob/master/SmithWaterman.java>) ทดลองใน 4 ประเด็น ดังนี้

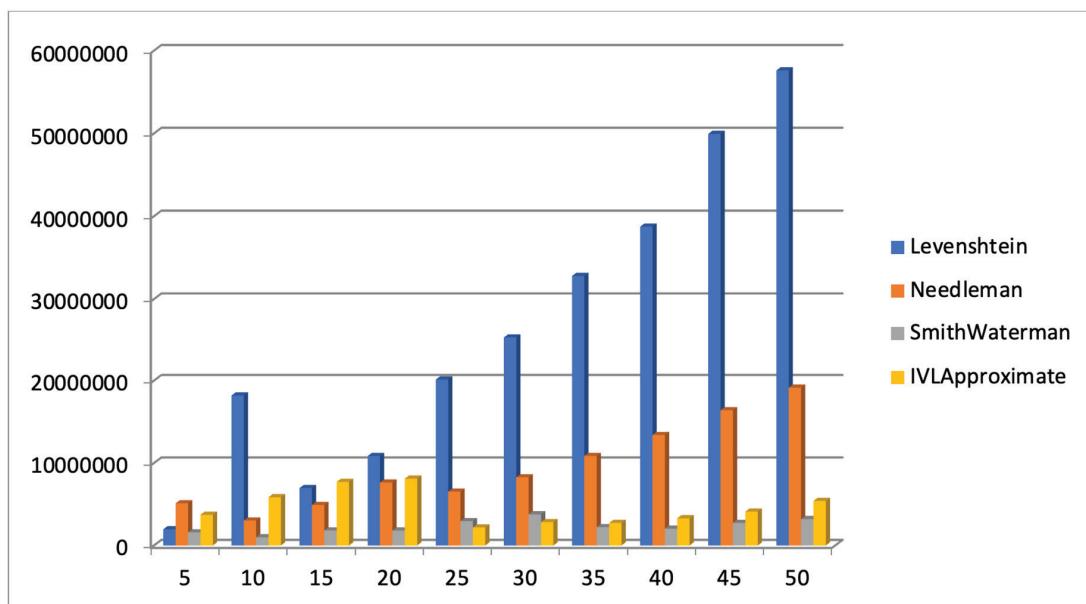
เขียนโปรแกรมสุ่มตัวอักขระแบบด้วยความยาวระหว่าง 5-50 อักขระ และวัดหน่วยความจำที่ใช้ระหว่างประมวลผลเพื่อจัดเตรียมสำหรับการค้นหา แสดงดังภาพประกอบ 3 (วัดในหน่วยเมกะไบต์)

จากการภาพประกอบ 3 แสดงให้เห็นว่า การสร้างโครงสร้างสำหรับจัดการอักขระแบบของ IVLApproximate ซึ่งเป็นโครงสร้างในงานวิจัยนี้ใช้เนื้อที่ในการสร้างต่ำสุด โดยเป็นเชิงเส้นอยู่ไม่เกิน 2 MB ในหน่วยความจำขณะที่ขั้นตอนวิธีที่นำมาเปรียบเทียบจำเป็นต้องใช้เนื้อที่หน่วยความจำมากกว่า ดังแสดงในภาพประกอบ 3 ดังกล่าว

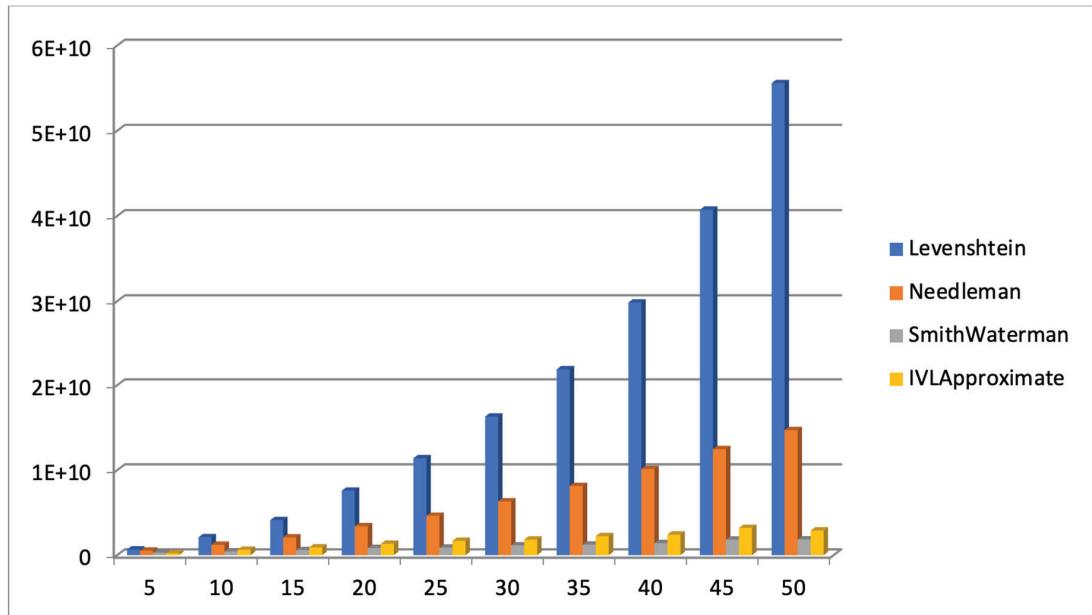
ภาพประกอบ 3 เนื้อที่สำหรับสร้างโครงสร้างข้อมูลสำหรับค้นหา

ภาพประกอบ 4 แสดงอัตราการอนุญาตให้ผิดพลาดได้ (Distance-ratio)

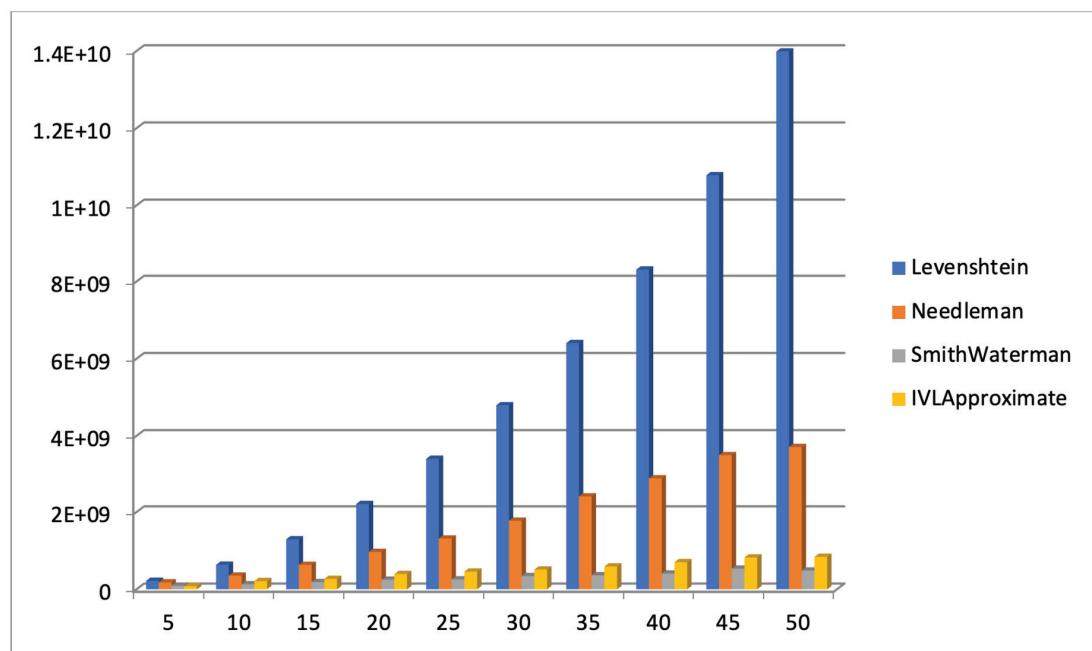
การสุ่มคำอักขระภาษาอังกฤษทั้งตัวพิมพ์เล็กและพิมพ์ใหญ่ และเขียนโปรแกรมเพื่อเปรียบกับขั้นตอนวิธีที่มีประสิทธิภาพได้แก่ Levenshtein, Neesleman และ SmithWaterman โดยสุ่มอักขระที่ความยาว 10 ตัวอักษร และเขียนทดสอบวัดเวลาโดยใช้อัตราการเปรียบคูณต่อรังกัน (Distance Ratio) ระหว่าง 0.1-1.0 ของความยาวอักขระ ทดลองแต่ละรายการจำนวน 10 ครั้งหลังจากนั้นหาค่าเฉลี่ยได้ผลการทดลองดังภาพประกอบ 4 ความเร็วในอัตราการ d (Mismatch) ระหว่าง 0.1 ถึง 1.0 แสดงดังกราฟดังรูปภาพที่ mismatch


เมื่อเปรียบเทียบโดยพิจารณาค่าการอนุญาตให้ผิดพลาดได้ระหว่าง 0.1-1.0 ดังภาพประกอบ 4 แสดงให้เห็นว่าขั้นตอนวิธีใหม่ที่นำเสนอในงานวิจัยนี้ ค้นหาเปรียบเทียบโดยใช้เวลาต่ำกว่าขั้นตอนวิธี Levenshtein และ Neesleman แต่ใช้เวลาค้นหาใกล้เคียงและมากกว่าขั้นตอนวิธี SmithWaterman

การสุ่มคำอักขระภาษาอังกฤษทั้งตัวพิมพ์เล็กและพิมพ์ใหญ่ จำนวน 1 กิโลไบต์ และเขียน


โปรแกรมทดสอบเมื่อกำหนดอักขระแบบที่ได้จาก การสุ่มของโปรแกรมคอมพิวเตอร์ และสุ่มอัตราการประมาณ (Distance Ration) โดยวัดจากความยาวอักขระแบบ 5-50 ตัวอักษร เขียนโปรแกรมเพื่อเปรียบกับขั้นตอนวิธีที่มีประสิทธิภาพได้แก่ Levenshtein, Neesleman และ SmithWaterman การทดลองแต่ละรายการจำนวน 10 ครั้งหลังจากนั้นหาค่าเฉลี่ย นำมาเขียนผลการทดลองดังภาพประกอบ 5

จากภาพประกอบ 5 เมื่อค้นหาด้วยการสุ่มข้อมูลทั้งอักขระแบบและข้อความเพื่อค้นหา ยังได้ผลการทดลองที่ ขั้นตอนวิธีใหม่ที่นำเสนอด้วยวิจัยนี้ ค้นหาเปรียบเทียบโดยใช้เวลาต่ำกว่าขั้นตอนวิธี Levenshtein และ Neesleman แต่ใช้เวลาค้นหาใกล้เคียงและมากกว่าขั้นตอนวิธี SmithWaterman


นำเข้าข้อมูลจริงจาก แฟ้มข้อมูลจริง (anage_data.txt--ขนาด 768 KB) ของ The Human Ageing Genomic Resources (HAGR), จาก <https://genomics.senescence.info/download.html> เขียนโปรแกรมสุ่มอักขระแบบในแฟ้มดังกล่าว

ภาพประกอบ 5 เปรียบความเร็วการค้นหาเมื่อข้อความและอักขระแบบสุ่มจากโปรแกรมคอมพิวเตอร์

ภาพประกอบ 6 เปรียบความเร็วการค้นหาจากข้อมูลจริง
ของ The Human Ageing Genomic Resources (HAGR)

ภาพประกอบ 7 เปรียบความเร็วการค้นหาจากข้อมูลจริงของดีเอ็นเอ

ด้วยความยาวแตกต่างกัน และเปรียบกับขั้นตอนวิธีที่มีประสิทธิภาพได้แก่ Levenshtein, Neesleman และ SmithWaterman การทดลองแต่ละรายการจำนวน 10 ครั้งหลังจากนั้นหาค่าเฉลี่ย นำมาเขียนผลการทดลองดังภาพประกอบ 6

นำเข้าข้อมูล DNA ด้วยแฟ้มข้อมูลจีบีบีซีที 107.seq--ขนาดต้นฉบับ 240,865 KB) ของ GenBank, National Center for Biotechnology Information, National Library of Medicine, จาก <http://biomirror.aarnet.edu.au/biomirror/genbank/GBBCT107.SEQ> เจียนโปรแกรมสุ่มอักขระแบบจำกัดงดักล่าด้วยความยาวแตกต่างกัน และเปรียบกับขั้นตอนวิธีที่มีประสิทธิภาพ ได้แก่ Levenshtein, Neesleman และ SmithWaterman การทดลองแต่ละรายการจำนวน 10 ครั้งหลังจากนั้นหาค่าเฉลี่ย นำมาเขียนผลการทดลองดังภาพประกอบ 7

จากภาพประกอบ 6-7 ยืนยันผลการทดลองค้นหากับข้อมูลจริงที่ได้นำมาเปรียบเทียบ พบว่าแสดงขั้นตอนวิธีใหม่ที่นำเสนอในงานวิจัยนี้ ค้นหาเปรียบเทียบโดยใช้เวลาต่ำกว่าขั้นตอนวิธี Levenshtein และ Neesleman แต่ใช้เวลาค้นหาใกล้เคียงและมากกว่าขั้นตอนวิธี SmithWaterman ซึ่งการทำงานของขั้นตอนวิธีใหม่ ทำงานอยู่ในระดับความเร็วสูง เช่นเดียวกับ ขั้นตอนวิธี SmithWaterman แต่อย่างไรก็ตามหากมีการปรับปรุงให้ดีขึ้น น่าจะทำให้สามารถทำงานได้รวดเร็วกว่าที่แสดงไว้เนื่องจากอาจเป็นได้

5. อภิปรายผลและข้อเสนอแนะ

พิจารณาการทำงานในเชิงทฤษฎีของขั้นตอนวิธีที่มีการสร้างโครงสร้างใช้เวลา $O(m)$ ใช้เนื้อที่ เมื่อ m คือ ความยาวของอักขระแบบ คือ จำนวนอักขระแบบ เมื่อนำมาเขียนโปรแกรมทดลองสร้างโครงสร้างพบที่ใช้เนื้อที่บรรจุโครงสร้างในหน่วยความจำ คอมพิวเตอร์น้อยกว่าขั้นตอนวิธีที่เคยมีมาก่อนอย่างมีนัยสำคัญ

สำหรับขั้นตอนวิธีการเปรียบคู่สายอักขระแบบประมาณที่พัฒนาขึ้น ค้นหาข้อมูลด้วยกรณีความซับซ้อนมากสุด $O((m-k)n)$ กรณีค้นหาดีที่สุด $O(kn)$ เมื่อ n คือ ความยาวของสายสติงที่ก็ที่ต้องการค้นหา k เมื่อนำมาพัฒนาโปรแกรมคอมพิวเตอร์ค้นหาทั้งข้อมูลการสุ่มและข้อมูลจริงทำให้ได้เห็นผลการทดลองที่ดีกว่าขั้นตอนวิธี Levenshtein, Neesleman ในทุกรณี ในขณะที่ทำงานได้ใกล้เคียงกับขั้นตอนวิธี SmithWaterman ในบางกรณี ทั้งนี้เนื่องจากระหว่างการค้นหาขั้นตอนวิธีใหม่จะมีดำเนินการหาความแตกต่างและการเปรียบเทียบข้อมูลเพื่อตรวจสอบผลการค้นหาพบในทุกๆ ครั้งของการวนค้นหาในแต่ละหน้าต่างค้นหา แต่ในขั้นตอนวิธี SmithWaterman ดำเนินการเพียงหาค่าความแตกต่างของอักขระแบบเท่านั้น ดังนั้นในกรณีนี้จึงทำให้ขั้นตอนวิธีดังกล่าวมีความรวดเร็วกว่าในการค้นหา อย่างไรก็ตาม ขั้นตอนวิธีใหม่สามารถพัฒนาต่อยอดเพื่อทำให้มีประสิทธิภาพได้มากยิ่งขึ้นได้ ดังนี้

สามารถพัฒนาขั้นตอนวิธีให้สามารถมีความซับซ้อน $O(k)$ แบบสมบูรณ์ได้โดยการวิเคราะห์รายการผกผันที่เก็บไว้ในแต่ครั้งที่การเข้าถึงตารางผกผัน โดยไม่ต้องมีการภาดซ้ำเหมือนใน Algorithm 2 ได้

สามารถพัฒนาขั้นตอนการค้นหาแบบขานได้ด้วยการเขียนโปรแกรมแบบใช้ทรัคได้อีกด้วย

สามารถพัฒนาการเลื่อนหน้าต่างค้นหาให้มีตารางการเลื่อน (Shift Table) เพื่อใช้เลื่อนหน้าต่างสำหรับการภาดตรวจการค้นพบ เช่น ขั้นตอนของ Boyer-Moor หรือ KMP จะทำให้มีการค้นหาที่รวดเร็วและมีความซับซ้อนน้อยลงกว่าที่นำเสนอในงานวิจัยนี้ได้

สามารถพัฒนาเป็นขั้นตอนการเปรียบคู่สายอักขระพหุแบบแบบประมาณ (Multiple String Pattern Matching with Allow Error) ได้ด้วยการสร้างตารางรายการผกผันแบบพหุแบบ (Multiple String Pattern)

สามารถนำเอาเทคนิคของปัญญาประดิษฐ์มาร่วมสำหรับการวิเคราะห์หรือทำนายคำเมื่อใหม่และแตกต่างได้ในแต่ละพยานค์ของการค้นหาเพื่อเพิ่มประสิทธิภาพให้รวดเร็วขึ้น ในทางตรงกันข้าม หากนำขั้นตอนวิธีที่พัฒนาขึ้นนี้สู่กลไกภายในของปัญญาประดิษฐ์สามารถดำเนินการได้เช่นกัน

6. สรุปผลการวิจัย

บทความงานวิจัยนี้นำเสนอโครงสร้างข้อมูลใหม่เพื่อใช้สำหรับการอกรับแบบขั้นตอนวิธีเปรียบคู่สายอักขระแบบประมาณ โครงสร้างข้อมูลใหม่พัฒนาต่อยอดจากการการผูกผันแบบเดี่ยวของ Khancome & Boonjing (2010) นำมาอกรับแบบให้จัดเก็บอักขระแบบอาศัยตารางการแยกจัดเก็บรายการการผูกผันจากอักขระแบบเดี่ยว เพื่อให้รองรับการวิเคราะห์ผลการเปรียบคู่สำเร็จได้แบบประมาณที่อนุญาตให้มีค่าความผิดพลาดที่ไม่ต่างกันของตัวอักขระในระหว่างการค้นหาได้ จากนั้นพัฒนาขั้นตอนวิธีการเบรียบคู่สายอักขระแบบประมาณใหม่โดยโครงสร้างข้อมูลชนิดใหม่ที่พัฒนาขึ้น ผลการวิจัยทางทฤษฎีพบว่า ขั้นตอนวิธีที่พัฒนาขึ้นใหม่ มีความซับซ้อนต่ำ สามารถทำงานแบบเชิงเส้นอันเป็นลักษณะของการค้นหาที่มีประสิทธิภาพ โดยการสร้างโครงสร้างข้อมูลใช้เวลาเท่ากับจำนวนอักขระแบบที่นำมาใช้เพื่อค้นหา และความซับซ้อนด้านด้านเนื้อที่จัดเก็บเท่ากับจำนวนอักขระแบบที่ใช้ในอักขระแบบรวมกับขนาดอักขระแบบที่ใช้ ขณะที่ความซับซ้อนด้านเวลาในการค้นหามีค่าดีที่สุดเท่ากับความยาวของข้อความที่ค้นคุณกับความยาวของอักขระแบบ ผลการทดลองด้วยการเขียนโปรแกรมคอมพิวเตอร์วัดผลกับขั้นตอนวิธีที่มีชื่อเสียงพบว่า ขั้นตอนวิธีใหม่ใช้เนื้อที่สำหรับสร้างโครงสร้างด้วยหน่วยความจำที่ต่ำกว่าขั้นตอนวิธีที่นำมาเปรียบเทียบ และสามารถค้นหาได้ดีเป็นลักษณะเชิงเส้นที่ใช้เวลาในการค้นหาได้รวดเร็วเท่าๆ กับขั้นตอนวิธีที่ค้นหาได้รวดเร็วที่สุดที่นำมาเปรียบเทียบ

เอกสารอ้างอิง

Abraham, D., & Raj, N. S. (2014). Approximate string matching algorithm for phishing detection. *2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI)*, 2285–2290. <https://doi.org/10.1109/icacci.2014.6968578>

Boguszewski, A., Szymański, J., & Draszawka, K. (2016). Towards increasing F-measure of approximate string matching in O(1) complexity. *Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS)*, 8, 527–532. <https://doi.org/10.15439/2016f311>

Dondi, R., Mauri, G., & Zoppis, I. (2022). On the complexity of approximately matching a string to a directed graph. *Information and Computation*, 288, 104748. <https://doi.org/10.1016/j.ic.2021.104748>

Faro, S., & Scafati, S. (2022). A weak approach to suffix automata simulation for exact and approximate string matching. *Theoretical Computer Science*, 933, 88–103. <https://doi.org/10.1016/j.tcs.2022.08.028>

Gusfield, D. (1997). *Algorithms on strings, trees, and sequences: Computer science and computational biology*. Cambridge University Press.

Karp, R. M., & Rabin, M. O. (1987). Efficient randomized pattern-matching algorithms. *IBM Journal of Research and Development*, 31(2), 249–260. <https://doi.org/10.1147/rd.312.0249>

Khan, M. G., Halim, Z., & Baig, A. R. (2023). An efficient approach for faster matching of approximate patterns in graphs. *Knowledge-Based Systems*, 276, 110770. <https://doi.org/10.1016/j.knosys.2023.110770>

Khancome, C., & Boonjing, V. (2010). Inverted Lists String Matching Algorithms. *International Journal of Computer Theory and Engineering*, 352–357. <https://doi.org/10.7763/ijcte.2010.v2.166>

Levenshtein, V. (1965). Binary codes capable of correcting spurious insertions and deletions of ones. *Problems of Information Transmission*, 1(1), 8-17.

Levenshtein, V. I. (1966) Binary codes of correcting deletions, insertions, and reversals. *Soviet Physics-Doklady*, 10(8), 707-710.

Navarro, G., & Raffinot, M. (2002). *Flexible pattern matching in strings: Practical on-line search algorithms for texts and biological sequences*. Cambridge University Press.

Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. *Journal of Molecular Biology*, 48(3), 443–453. [https://doi.org/10.1016/0022-2836\(70\)90057-4](https://doi.org/10.1016/0022-2836(70)90057-4)

Smith, T. F., & Waterman, M. S. (1981). Identification of common molecular subsequences. *Journal of Molecular Biology*, 147(1), 195–197. [https://doi.org/10.1016/0022-2836\(81\)90087-5](https://doi.org/10.1016/0022-2836(81)90087-5)

Uhlig, F., Struppek, L., Hintersdorf, D., Göbel, T., Baier, H., & Kersting, K. (2023). Combining AI and AM – Improving approximate matching through transformer networks. *Forensic Science International: Digital Investigation*, 45, 301570

การจำแนกโรคปอดบวมจากภาพเอ็กซ์เรย์ทรวงอกโดยใช้โครงข่ายประสาทเทียม แบบค่อนโว้ลูชันและเทคนิคการถ่ายโอนความรู้

Pneumonia Detection from Chest X-ray Images using Convolutional Neural Networks and Transfer Learning Techniques

พงษ์ศรี เชิดสม¹

Pongsathorn Chedsom¹

¹ งานวิชาการและวิจัย คณะสถาปัตยกรรมศาสตร์ มหาวิทยาลัยขอนแก่น ขอนแก่น 40002 ประเทศไทย

¹ Academic Affairs and Research, Faculty of Architecture Khon Kaen University, Khon Kaen, 40002 Thailand

* Corresponding Author: Pongsathorn Chedsom, pongche@kku.ac.th

Received:

14 January 2024

Revised:

21 April 2024

Accepted:

22 May 2024

คำสำคัญ:

โรคปอดบวม, ภาพเอ็กซ์เรย์ทรวงอก,
โครงข่ายประสาทเทียมแบบ
ค่อนโว้ลูชัน, การถ่ายโอนความรู้,
การเสริมข้อมูล

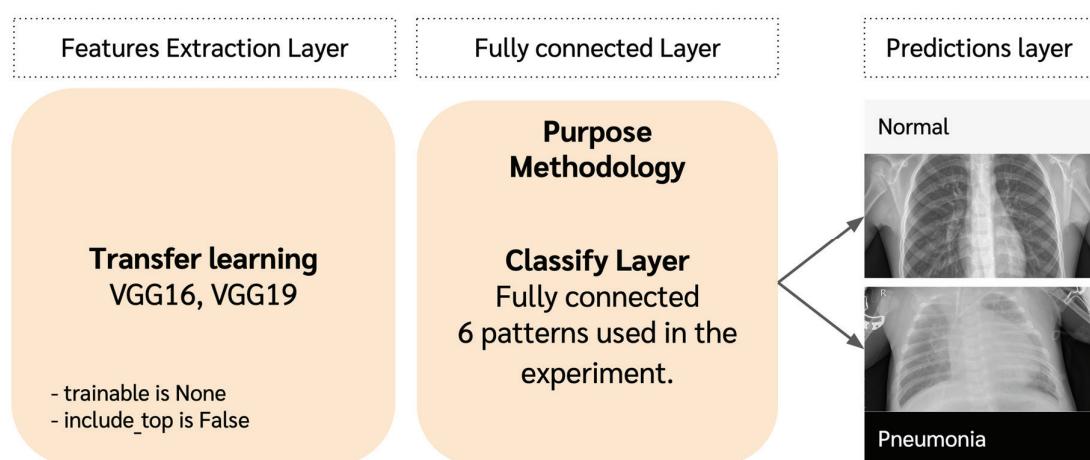
Keywords:

Pneumonia, Chest X-ray,
Convolutional Neural
Networks, Transfer Learning,
Data Augmentation

บทคัดย่อ: จากข้อมูลของกองระบาดวิทยา พบร่วมในช่วงวันที่ 1 มกราคม ถึง 31 ตุลาคม พ.ศ. 2566 มีผู้ป่วยโรคปอดบวมหรือปอดอักเสบจำนวน 239,197 ราย และในช่วง 5 ปีที่ผ่านมา (พ.ศ. 2561–2565) มีจำนวนผู้ป่วยเฉลี่ยเดือนละ 20,000 ราย โดยมีแนวโน้มเพิ่มขึ้นอย่างต่อเนื่อง การวินิจฉัยและรักษาตั้งแต่ระยะเริ่มต้นสามารถช่วยลดอัตราการเสียชีวิตได้อย่างมีนัยสำคัญ งานวิจัยนี้ จึงเสนอแบบจำลองการจำแนกโรคปอดบวมจากภาพเอ็กซ์เรย์ทรวงอกโดยใช้โครงข่ายประสาทเทียมแบบค่อนโว้ลูชัน ได้แก่ VGG16 และ VGG19 ร่วมกับเทคนิคการถ่ายโอนความรู้โดยใช้ชุดข้อมูล Chest X-Ray Images (Pneumonia) จำนวน 5,232 ภาพ ซึ่งประกอบด้วยภาพผู้ป่วย 4,273 ภาพ และภาพไม่เป็นโรค 1,583 ภาพ พร้อมทั้งประยุกต์เทคนิคการเสริมข้อมูล และแบ่งข้อมูลออก เป็นชุดเรียนรู้อย่างละ 70 ชุดตรวจสอบร้อยละ 20 และชุดทดสอบร้อยละ 10 การทดลองแบ่งเป็นสองกลุ่ม ได้แก่ กลุ่มที่ 1 ใช้สถาปัตยกรรม VGG16 และ VGG19 โดยไม่ปรับแต่ง และกลุ่มที่ 2 ปรับแต่งชั้น Fully Connected ของโมเดลร่วมกับการถ่ายโอนความรู้ ผลการทดลองกลุ่มที่ 1 พบร่วม VGG16 ให้ความแม่นยำร้อยละ 95.42 และค่าความสูญเสีย 0.18 ส่วน VGG19 ให้ความแม่นยำร้อยละ 94.89 และค่าความสูญเสีย 0.21 สำหรับกลุ่มที่ 2 พบร่วม VGG16 พร้อมปรับแต่งชั้น Fully Connected จำนวน 9 ชั้น (ประกอบด้วย 2048-1024-512-256-128-64-32-16-8 โนนน) ให้ผลลัพธ์ที่สุด โดยมีความแม่นยำร้อยละ 97.83 และค่าความสูญเสีย 0.11 เมื่อเปรียบเทียบกับ VGG16 และ VGG19 ที่ไม่ปรับแต่ง พบร่วมความแม่นยำเพิ่มขึ้นร้อยละ 2.41 และ 2.94 ตามลำดับ ขณะที่ค่าความสูญเสียลดลง 0.07 และ 0.10 ตามลำดับ

Abstract: According to data from the Bureau of Epidemiology, between January 1 and October 31, 2023, a total of 239,197 cases of pneumonia or lung inflammation were reported. Over the past five years (2018–2022), the average number of cases was approximately 20,000 per month, with a continuously increasing trend. Early detection and treatment of pneumonia can significantly reduce mortality rates. This study proposes a classification model for pneumonia based on chest X-ray images using Convolutional Neural Networks (CNNs), specifically the VGG16 and VGG19 architectures, in conjunction with the transfer learning technique. The Chest X-Ray Images (Pneumonia) dataset, consisting of 5,232 images (4,273 pneumonia cases and 1,583 normal cases), was used. Data augmentation techniques were applied, and the dataset was divided into 70% training, 20% validation, and 10% testing sets. The experiments were divided into two groups: Group 1 employed the VGG16 and VGG19 architectures, while Group 2 utilized these architectures with transfer learning and customized Fully Connected (FC) layers. In Group 1, the VGG16 achieved an accuracy of 95.42% with a loss value of 0.18, while VGG19 achieved an accuracy of 94.89% with a loss of 0.21. In Group 2, the best performance was achieved using the VGG16 architecture with customized fully connected (FC) layers, consisting of nine layers with 2048, 1024, 512, 256, 128, 64, 32, 16, and 8 nodes, respectively. This configuration achieved the highest accuracy of 97.83% and the lowest loss of 0.11. Compared to the VGG16, the model achieved a 2.41% improvement in accuracy and a 0.07 reduction in loss. When compared to the unmodified VGG19, accuracy improved by 2.94% and loss decreased by 0.10.

1. บทนำ (Introduction)


โรคปอดบวมหรือปอดอักเสบ (Pneumonia) เกิดจากการติดเชื้อที่ถุงลมฟอย (Alveoli) เป็นภาวะที่ที่เกิดจากเชื้อไวรัสและแบคทีเรีย เช่น เชื้อไวรัสโคโรนา 2019 (COVID-19) ในท่อลมหายใจและลักษณะการอักเสบของปอดทำให้เกิดการสะสมของน้ำหลอกหลยอย่างในหลอดลมหายใจ อาจทำให้เกิดภาวะระบบหายใจล้มเหลวและเสียชีวิตได้พบร้าเด็กที่ในทุกช่วงอายุ (Department of Disease Control, 2022) และสถานการณ์ในประเทศไทยในปี 2566 ข้อมูลจาก กองระบาดวิทยาพบว่า ระหว่างวันที่ 1 มกราคม - 31 ตุลาคม 2566 มีผู้ป่วยจำนวน 239,197 ราย คิดเป็นอัตราการป่วย 361.48 รายต่อประชากร 100,000 ราย และในช่วง 5 ปีที่ผ่านมา (2561 - 2565) มีผู้ป่วยเฉลี่ยเดือนละ 20,000 ราย มีผู้เสียชีวิต 224 คนและ

มีแนวโน้มสูงขึ้นตลอดเวลา (Department of Disease Control, 2023) การตรวจร่างกายเพื่อวินิจฉัยโรคปอดบวมของแพทย์ด้วยการถ่ายภาพด้วยรังสีเอ็กซ์ (Chest X-Ray) มีประสิทธิภาพมากยิ่งขึ้นและในปัจจุบันการพัฒนาของเทคโนโลยีมีความก้าวหน้าที่สามารถอ่านและคัดแยกโรคเบื้องต้นจากภาพถ่ายเอ็กซ์เรย์โดยใช้การของคอมพิวเตอร์วิทัศน์ (Computer Vision) ซึ่งเป็นแขนงหนึ่งของปัญญาประดิษฐ์ (AI) ที่มีความซับซ้อนและมีความรวดเร็วในการประมวลผล ซึ่งในเทคนิคการทำงานของการเรียนรู้เชิงลึก (Deep Learning) มีเทคนิคหรือแบบจำลองอื่นๆ ที่สามารถนำมาใช้ในการวิเคราะห์และคัดแยกข้อมูลจากรูปภาพ และที่นิยมมากที่สุดในปัจจุบันคือโครงข่ายประสาทเทียบแบบคอนволูชัน (Convolutional Neural Networks: CNNs) เป็นโครงข่ายไดร์บความนิยม

และมีความสามารถในการสักดุณลักษณะเด่นของรูปภาพได้อย่างมีประสิทธิภาพและอีกทั้งการถ่ายโอนความรู้ (Transfer Learning) เป็นเทคนิคหนึ่งที่ได้รับความนิยมเพื่อลดเวลาในการเรียนรู้ของเครื่อง และเหมาะสมสำหรับข้อมูลที่มีขนาดไม่ใหญ่มาก โดยใช้ค่าน้ำหนัก (Weight) ที่ได้รับการเรียนรู้ไว้ล่วงหน้า แล้วมาใช้งาน ซึ่งมีความเหมาะสมกับการนำมาราบบกันในชุดข้อมูลที่มีขนาดไม่ใหญ่มาก เช่น ข้อมูลทางการแพทย์ที่มีปริมาณไม่เยอะมาก (Iman, Arabinia, & Rasheed, 2023) โดยแบบจำลองที่ได้รับความนิยมนำมาใช้ในการถ่ายโอนความรู้ เช่น Xception, VGG16, VGG19, ResNet, ResNetV2 เป็นต้น โครงสร้างของแบบจำลอง VGG16, VGG19 มีลักษณะที่เหมือนกัน และมีความแตกต่างในชั้นของแบบจำลองที่ใช้สำหรับการสักดุณลักษณะเด่นของข้อมูลที่ VGG16 จะมีเพียง 16 ชั้น และ VGG19 จะมีเพียง 19 ชั้น ดังแสดงในภาพที่ 3 โครงสร้างของแบบจำลอง ConvNet หรือ VGG16 และ VGG19 ในข้อ D และ E

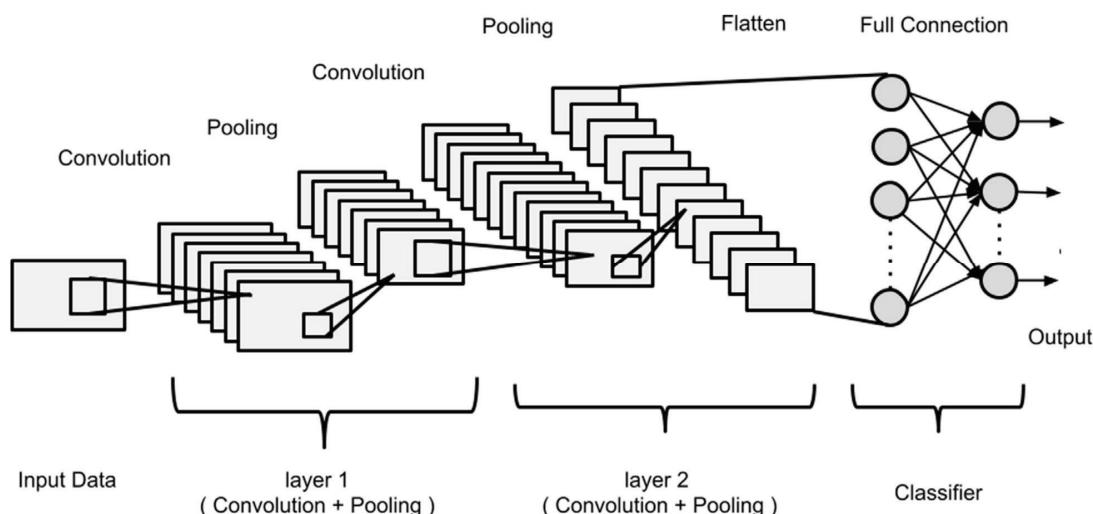
บทความนี้จึงนำเสนอแบบจำลองในการตรวจหาโรคปอดบวมหรือโรคปอดอักเสบจากภาพเอ็กซ์เรย์ทรวงอกจาก Mendeley data (Kermany, Zhang, & Goldbaum, 2018) เป็นชุดข้อมูลที่ได้รับความนิยมในบทความต่างๆ และชุดข้อมูลนี้ได้

เผยแพร่บนเว็บไซต์ kaggle.com ที่มีผู้ดาวน์โหลดนำไปใช้งานโดยเฉลี่ยเดือนละ 200 ครั้ง โดยในชุดข้อมูลประกอบไปด้วยภาพเอ็กซ์เรย์ทรวงอกที่ระบุการเป็นโรคปอดบวม (Pneumonia) ทั้งหมด 5,232 ภาพ แบ่งออกเป็น ไม่เป็นโรค (Normal) จำนวน 1,583 ภาพ และที่บ่งบอกว่าไม่ปกติหรือเป็นโรคปอดบวม จำนวน 4,273 ภาพและใช้เทคนิคการเสริมข้อมูล (Data Augmentation) เฉพาะข้อมูลที่ไม่เป็นโรค เพื่อทำให้ปริมาณข้อมูลที่เท่ากันทั้งสองส่วน โดยใช้โครงข่ายประสาทเทียมแบบคอนволูชันได้แก่ สถาปัตยกรรม VGG16, VGG19 เพื่อนำมาใช้ร่วมกับเทคนิคการถ่ายโอนความรู้ ได้แบ่งการทดลองออกเป็น 2 กลุ่ม กลุ่มที่ 1 การทดลองโดยใช้สถาปัตยกรรม VGG16, VGG19 โดยที่ไม่มีการปรับแต่งใดๆ และกลุ่มการทดลองที่ 2 ที่นำสถาปัตยกรรม VGG16, VGG19 ซึ่งได้รับความนิยมและประสิทธิภาพในระดับต้นๆ มาใช้โดยการถ่ายโอนความรู้และปรับแต่งในชั้น Fully connected (FC) โดยนำรูปแบบพัฒนาการเพิ่ม/ลดจำนวน Node ในการทดลอง 6 รูปแบบ ดังแสดงในภาพประกอบ 1 ได้แก่ 1) การเพิ่มขึ้นของจำนวน Node สาม่เสมอ 2) การเพิ่มขึ้นของจำนวน Node สาม่เสมอและลดลงอย่างสาม่เสมอเท่ากับการเพิ่มขึ้น 3) การลดจำนวนของ

ภาพประกอบ 1 รูปแบบการพัฒนาแบบจำลองของบทความ

Node สมำสົມ 4) จำนวนของ Node ເທົ່າເດີມ 5) จำนวนของ Node ສລັບກັນ (ສອງຄ່າ) 6) จำนวนของ Node ເພີ່ມແລລດໄມ່ເທົ່າກັນຈາກ (CherdSom & Kanarkard, 2023) ດັ່ງແສດງໃນກາພປະກອບ 8

2. ຖຄະກີ ແລະ ຈານວິຈີຍທີ່ເກີ່ວຂ້ອງ (Materials and Methods)


2.1 ໂຄງໝ່າຍປະສາທເຫີມແບບຄອນໄວລູ້ຂັ້ນ (Convolutional Neural Networks: CNNs)

ເປັນໂຄຮ່າຍໝ່າຍໄດ້ຮັບຄວາມນິຍົມແລະມີຄວາມສາມາດໃນກາຮັດຄຸນລັກໝະນະເດັ່ນຂອງຮູ່ປາກໄດ້ວ່າຍ່າງມີປະສິທິປາກ ໂຄງສ້າງປະກອບໄປດ້ວຍ 3 ຊັ້ນ ຊັ້ນທີ່ 1 ຊັ້ນຄອນໄວລູ້ຂັ້ນ (Convolutional Layer) ເປັນຊັ້ນທີ່ໃຊ້ສໍາຫັກກາຮັດຄຸນລັກໝະນະເດັ່ນຂອງຂໍ້ມູນ (Feature Extraction) ຊັ້ນທີ່ 2 ຊັ້ນພູລັບລຶ່ງ (Pooling Layer) ເປັນຊັ້ນສໍາຫັກກາລົດຂາດຂອງຂໍ້ມູນໂດຍໃຊ້ເຕັກນິກຕ່າງໆ ໄດ້ແກ່ ກາຮັດຄ່ານຳມາກຳທີ່ສຸດ (Max pooling) ກາຮັດຄ່ານຳຍື່ງທີ່ສຸດ (Min Pooling) ກາຮັດຄ່າຜລວມ (Sum Pooling) ແລະກາຮັດຄ່າເນື້ອຍ (Average

Pooling) ຊັ້ນທີ່ 3 ຊັ້ນເຂົ້າມໂຍງແນບສມບູຮົນ (Fully Connected Layer) ເປັນຊັ້ນສໍາຫັກກາຮັດຂໍ້ມູນເປັນລັກໝະນະ 1 ມີຕີແລ້ວນຳຂໍ້ມູນທຸກໆ ໂທນດເຂົ້າມເຂົ້າດ້ວຍກັນທັງໝາດຕັ້ງແສດງໃນກາພທີ່ 2 ໂຄງສ້າງປະສາທເຫີມແບບຄອນໄວລູ້ຂັ້ນ (Sengupta *et al.*, 2020)

2.2 VGG-Net Architecture

ສາປັປິກຣມ VGG-Net ອີ້ອ VGG (Visual Geometry Group) ຖຸກພົມນາມາຈາກໂຄຮ່າຍປະສາທເຫີມແບບຄອນໄວລູ້ຂັ້ນ ໂດຍກຸ່ມນັກວິຈີຍ Visual Geometry Group ຈາກມາຮວັດວາວິທາລ້ຽຍ Oxford ຜົ່ງປະຈຸບັນໄດ້ຮັບຄວາມນິຍົມໄດ້ແກ່ VGG16 ແລະ VGG19 ມໍາຍເລີ 16 ແລະ 19 ຄື່ອຈຳນວນຊັ້ນຂອງກາຮັດຄຸນລັກໝະນະຂອງຂໍ້ມູນກ່ອນເຂົ້າສູ້ຂໍ້ກາງຈຳແນກຂໍ້ມູນຕັ້ງແສດງໃນກາພປະກອບທີ່ 3 ມີຈຳນວນພາຣາມີເຕືອຮ່ 138 ລ້ານພາຣາມີເຕືອຮ່ ແລະ 144 ລ້ານພາຣາມີເຕືອຮ່ ຕາມລຳດັບ ອີກທັງຍັງໄດ້ໃຊ້ຊຸດຂໍ້ມູນ ImageNet ມາໃຊ້ໃນກາຮັດຄ່ານຳມາກຳທີ່ສຸດ (Karen & Andrew, 2015)

ກາພປະກອບທີ່ 2 ໂຄງສ້າງປະສາທເຫີມແບບຄອນໄວລູ້ຂັ້ນ (Sengupta *et al.*, 2020)

ConvNet Configuration					
A	A-LRN	B	C	D	E
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
input (224 × 224 RGB image)					
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64
maxpool					
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128
maxpool					
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256 conv3-256
maxpool					
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
maxpool					
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
maxpool					
FC-4096	FC-4096	FC-4096	FC-1000	soft-max	

ภาพประกอบที่ 3 โครงสร้างของแบบจำลอง ConvNet (VGG) (Karen & Andrew, 2015)

2.3 การถ่ายโอนความรู้ (Transfer Learning)

เทคนิคการถ่ายโอนความรู้โดยใช้แบบจำลองที่ได้รับการเรียนรู้ล่วงหน้าไว้ก่อนแล้ว (Pre-trained Model) จากชุดข้อมูลอื่นๆ ที่ได้รับความนิยมเช่น ImageNet ที่มีข้อมูลตัวอย่างจำนวนข้อมูล 1.2 ล้านภาพและมีจำนวน 1000 หมวดหมู่ นอกจากจะลดเวลาในการเรียนรู้ของแบบจำลองแล้ว ยังทำให้แบบจำลองมีประสิทธิภาพมากขึ้น (Singh et al., 2023b) โดยเป็นการนำค่าน้ำหนักมาใช้ในการเรียนรู้ของแต่ละชั้นกับชุดข้อมูลใหม่ๆ

2.4 การแบ่งข้อมูลด้วยวิธี K-Fold Cross Validation

เทคนิคการแบ่งข้อมูลเพื่อใช้สำหรับการทดสอบแบบจำลองเพื่อป้องกันการเกิด Bias ของแบบจำลองที่พัฒนาขึ้นโดยแบ่งข้อมูลที่มีจำนวนเท่ากันออกเป็นจำนวนกลุ่ม (K) ที่ต้องการ เช่น 5, 10 (K=5, K=10)

โดยการสุ่มข้อมูล แบ่งออกเป็นชุดข้อมูลเรียนรู้และชุดข้อมูลทดสอบและในแต่ละกลุ่มข้อมูลจะข้อมูลในชุดข้อมูลเรียนรู้และชุดข้อมูลทดสอบที่มีความแตกต่างกันดังแสดงภาพประกอบที่ 6 กระบวนการ การจัดเตรียมชุดข้อมูล ในหัวข้อการแบ่งข้อมูลสำหรับการทดสอบ (K=5)

2.5 การเสริมข้อมูล (Data Augmentation)

เทคนิคการเสริมข้อมูลหรือการเพิ่มจำนวนข้อมูล กรณีที่มีจำนวนข้อมูลน้อยไม่เพียงพอต่อการนำมาใช้ในการเรียนรู้ของแบบจำลอง ข้อมูลที่ได้มีความหลากหลายมากยิ่งขึ้นเพื่อป้องกันปัญหา Overfit ระหว่างการเรียนรู้ของแบบจำลอง และเพื่อเพิ่มความแม่นยำ ประสิทธิภาพให้แบบจำลองที่พัฒนาขึ้น การเลือกใช้วิธีการเสริมข้อมูล เช่น การหมุนภาพตามองศาที่ต้องการ การเพิ่มการรบกวนของภาพ (Noise) ในลักษณะต่างๆ การลดหรือเพิ่มแสง การตัดครอปภาพ (Crop) เป็นต้น ทั้งนี้การเพิ่มข้อมูลโดยเทคนิคนี้

ต้องเลือกใช้วิธีการที่มีความเหมาะสม วิธีการที่นำมาใช้ต้องมีโอกาสที่จะเกิดขึ้นจริงของข้อมูลนั้นๆ

2.6 งานวิจัยที่เกี่ยวข้อง

ในการค้นหารอคปอดบวมของ Chouhan *et al.* (2020) ได้นำแบบจำลองต่างๆ มาใช้งานร่วมกับเทคนิคการทำ Ensemble model ที่นำแบบจำลองมากกว่าหนึ่งแบบจำลองมาช่วยในการพยากรณ์ ได้แก่ AlexNet, DenseNet121, InceptionV3, ResNet18 และ GoogLeNet และใช้ชุดข้อมูลที่ปริมาณข้อมูลทั้งสองคลาสมีจำนวนที่ไม่เท่ากันคือ 4,273 ภาพที่บ่งบอกว่าเป็นโรคและไม่เป็นโรค 1,583 ภาพ แบบจำลองที่นำเสนอได้รับความแม่นยำร้อยละ 96.40

การวินิจฉัยโรคปอดบวมของ Zhang *et al.* (2021) ได้นำเสนอแบบจำลองจากการปรับแต่งของแบบจำลองจากสถาปัตยกรรม VGG16 มีความแม่นยำร้อยละ 96.06 เมื่อเปรียบเทียบกับแบบจำลองจากสถาปัตยกรรม VGG16 ที่ไม่ได้รับการปรับแต่งมีความแม่นยำร้อยละ 94.35 แบบจำลองจากสถาปัตยกรรม Xception มีความแม่นยำร้อยละ 96.06 แบบจำลองจากสถาปัตยกรรม MobileNet มีความแม่นยำร้อยละ 95.473 แบบจำลองจากสถาปัตยกรรม ResNet121 มีความแม่นยำร้อยละ 87.35

การนำเสนอแบบจำลองของ Racic *et al.* (2021) ที่พัฒนามาจากโครงข่ายประสาทเทียมแบบคอนโวลูชัน โดยใช้ชุดข้อมูลที่ปริมาณข้อมูลทั้งสองคลาสไม่เท่ากันได้แก่ 4,273 ภาพที่เป็นโรคและที่ไม่เป็นโรค 1,583 ภาพ มีความแม่นยำของแบบจำลองร้อยละ 88.90

การวิเคราะห์โรคของ Singh *et al.* (2023b) ได้นำเสนอแบบจำลองจากโครงข่ายประสาทเทียมแบบคอนโวลูชัน และแบบจำลองที่ถ่ายโอนความรู้ได้แก่ VGG16, VGG19, ResNet50, InceptionV3, Xception, InceptionResNetV2, NasNetLarge ได้ผลความแม่นยำร้อยละ 92.14, 89.90, 84.24, 89.42,

86.64, 86.17, 88.14 ตามลำดับ ส่วนแบบจำลองที่นำเสนอคือ CNN มีความแม่นยำร้อยละ 95.47 และใช้ชุดข้อมูลที่ปริมาณข้อมูลทั้งสองคลาสได้แก่ 4,273 ภาพที่เป็นโรคและที่ไม่เป็นโรค 1,583 ภาพ

บทความของ Mabrouk *et al.* (2022) ได้นำเสนอการแบบจำลองการจำแนกประเภทโรคปอดบวมโดยใช้เทคนิค Ensemble Learning เพื่อลดความซ้ำซ้อนของข้อมูลโดยใช้แบบจำลอง MobileNetV2, DenseNet169, Vision Transformer (ViT) ใช้ชุดข้อมูลที่ปริมาณข้อมูลทั้งสองคลาสมีจำนวนที่ไม่เท่ากันคือ 4,273 ภาพที่เป็นโรคและที่ไม่เป็นโรค 1,583 ภาพ ผลการจำแนกพบว่าแบบจำลอง MobileNetV2, DenseNet169 และ Vision Transformer (ViT) ที่ไม่ใช้เทคนิค Ensemble Learning พบว่ามีความแม่นยำร้อยละ 91.35, 90.87, 92.47 และเมื่อนำ 3 แบบจำลองมาใช้ร่วมกับเทคนิค Ensemble Learning พบกว่ามีความแม่นยำร้อยละ 93.91

การตรวจหารอคปอดบวมของ Varshni *et al.* (2019) ได้ใช้โครงข่ายประสาทเทียมแบบคอนโวลูชันในรูปแบบของการทำ pre-trained โดยใช้แบบจำลอง Xception, VGG16, VGG-19, ResNet-50, DenseNet-121 และ DenseNet-169 ในการสกัดข้อมูลและนำไปพยากรณ์โดยใช้ Random Forest, K-nearest Neighbors, Naive Bayes และ Support Vector Machine (SVM) ซึ่งผลพบว่าการใช้งาน ResNet-50 ร่วมกับ SVM (rbf Kernel) ให้ผล AUC เท่ากับ 0.7749 ซึ่งเมื่อเทียบกับแบบจำลอง VGG16 และ VGG19 มีความแตกต่างของค่า AUC ประมาณ 0.0899

ในการศึกษาของ (Shankar *et al.*, 2023) ได้เปรียบเทียบแบบจำลองของ machine learning models ได้แก่ Logistic Regression, KNN, Decision Tree, Random Forest, Naive Bayes, and Support Vector Machines และ deep

learning models ได้แก่ CNN, VGG16, ResNet และ ปริมาณของข้อมูลที่เป็นโรคและไม่เป็นโรคมีจำนวนประมาณ 1,200 ภาพต่อคลาสซึ่งเป็นการลดจำนวนข้อมูลให้ทั้งสองคลาสมีปริมาณที่เท่ากัน พบร่วมระหว่าง machine learning models และ deep learning models ไม่มีความแตกต่างกันมากนักเมื่อนำมาใช้งานจริงแต่เมื่อเปรียบเทียบความแม่นยำพบว่า โครงข่ายประสาทเทียมแบบคอนโวลูชันพื้นฐานให้ผลร้อยละ 89.74 VGG16 ให้ผลร้อยละ 75.80 และ ResNet ให้ผลร้อยละ 88.14 ซึ่งให้ผลที่มากกว่า Machine Learning Models

และการศึกษาของ (Singh *et al.*, 2023a) ได้นำเสนอแบบจำลอง QCSA network (Quaternion Channel-Spatial Attention Network) ปริมาณข้อมูลทั้งสองคลาสมีจำนวนที่ไม่เท่ากันคือ 4,273 ภาพที่เป็นโรคและที่ไม่เป็นโรค 1,583 ภาพ ให้ความแม่นยำร้อยละ 94.53 และนำมาเปรียบเทียบกับแบบจำลองอื่นๆ เช่น VGG16 และ VGG19 ได้ความแม่นยำร้อยละ 92.14 และ 90.22 ตามลำดับ

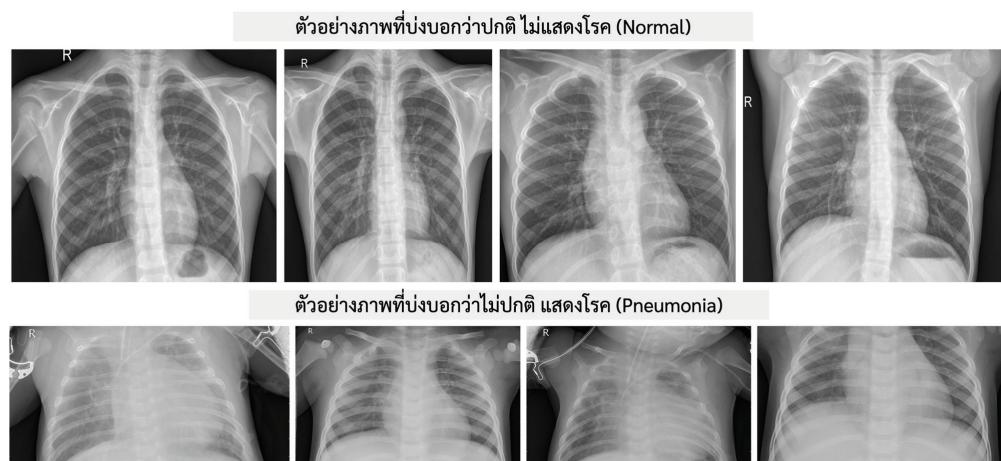
ในการระบุโรคปอดบวมของ (Chiwariro & Wosowi, 2023) ได้นำแบบจำลองจากโครงข่ายประสาทเทียมแบบคอนโวลูชัน (Convolutional Neural Networks : CNN) มาใช้ได้แก่ VGG19, VGG16, ResNet50 และ InceptionNet v3 โดยใช้ YOLO v5 ในการค้นหาตำแหน่งของ การเกิดโรค เท่านั้น พบร่วม VGG16 มีความแม่นยำร้อยละ 88.00 และ VGG19 มีความแม่นยำร้อยละ 80.00 ส่วน ResNet50 และ InceptionNet v3 มีความแม่นยำร้อยละ 73.00 และ 79.00 ตามลำดับ

ในการระบุโรคของ (Papadimitriou, Kanavos, & Maragoudakis, 2023) นำเสนอแบบจำลองจากโครงข่ายประสาทเทียมแบบคอนโวลูชันที่พัฒนาขึ้นเองที่มีโครงสร้าง 3 รูปแบบและพารามิเตอร์ในการทดลองที่แตกต่างกัน ได้แก่ จำนวนรอบของการเรียนรู้ (Epoch) 5, 10, 20, 30, 40, 50 จำนวนของข้อมูล

ที่ใช้ในการเรียนรู้ต่อรอบ (Batch size) 128, 256, 512, 1024 โดยใช้ชุดข้อมูลที่ปริมาณข้อมูลทั้งสองคลาสมีจำนวนที่ไม่เท่ากันคือ 4,273 ภาพที่เป็นโรคและที่ไม่เป็นโรค 1,583 ภาพ พบร่วมแบบจำลองที่ได้ผลดีที่สุดมีความแม่นยำร้อยละ 95.59 โครงสร้างรูปแบบที่ 2 Epoch คือ 50 และ Batch size เท่ากับ 128

3. ชุดข้อมูลและวิธีการ (Materials and Methods)

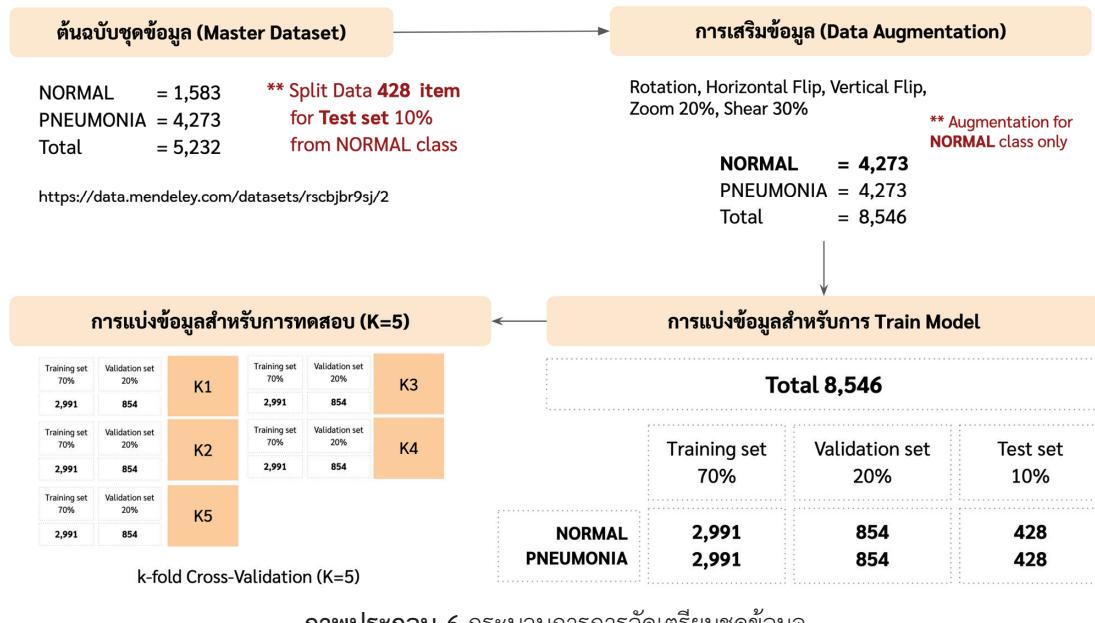
3.1 เครื่องมือ


งานวิจัยนี้ใช้ไลบรารี Keras เวอร์ชัน 2 และ Tensorflow ในการพัฒนาแบบจำลองด้วยภาษา Python ซึ่งคอมพิวเตอร์สเปค CPU Intel Core i5-10400F หน่วยความจำหลัก 32 GB หน่วยประมวลผลกราฟฟิก Nvidia RTX 3060 (12GB) ระบบปฏิบัติการ Ubuntu เวอร์ชัน 20.04 LTS

3.2 ชุดข้อมูลและการเตรียมข้อมูล

การจัดเตรียมชุดข้อมูลเพื่อการพัฒนาแบบจำลองได้นำมาจาก Mendeley data (Kermany, Zhang, & Goldbaum, 2018) เป็นชุดข้อมูลที่ได้รับความนิยมในบทความต่างๆ และชุดข้อมูลนี้ได้เผยแพร่บนเว็บไซต์ kaggle.com ที่มีผู้ดาวน์โหลดนำไปใช้งานโดยเฉลี่ยเดือนละ 200 ครั้ง โดยในชุดข้อมูลประกอบไปด้วยภาพเอ็กซ์เรย์ทรวงอกที่ระบุการเป็นโรคปอดบวม (Pneumonia) ทั้งหมด 5,232 ภาพ ตัวอย่างข้อมูลแสดงในภาพประกอบที่ 4 ด้านบน 4 ภาพคือตัวอย่างของภาพจากภาพเอ็กซ์เรย์ไม่แสดงโรคปอดบวม และ 4 ภาพด้านล่างคือภาพที่แสดงโรคปอดบวม โดยแบ่งออกเป็นภาพเอ็กซ์เรย์ทรวงอกที่บ่งบอกว่าปกติ (Normal) จำนวน 1,583 ภาพ และที่บ่งบอกว่าไม่ปกติหรือเป็นโรคปอดบวม (Pneumonia) จำนวน 4,273 ภาพ ซึ่งทั้งสองกลุ่มมีจำนวนข้อมูลไม่เท่ากัน (Imbalanced)

Data) จึงได้นำเทคนิคการเสริมข้อมูลเฉพาะกลุ่มข้อมูล บ่งบอกว่าปกติจำนวน 1,583 ภาพ ให้มีจำนวนเท่ากัน ทั้งสองประเภท ซึ่งก่อนจะใช้เทคนิคการเสริมข้อมูล ได้แบ่งข้อมูลสำหรับชุดทดสอบการเรียนรู้ 10% เป็นจำนวน 428 ภาพ จากจำนวนภาพที่จะเกิดหลังจากการเสริมข้อมูลจำนวน 4,273 ภาพ เพื่อป้องการกัน Bias จากชุดข้อมูล โดยได้เลือกใช้วิธีการหมุนภาพ 15 องศา (Rotation) การกลับภาพแนวโน้ม (Horizontal Flip) การกลับภาพแนวตั้ง (Vertical Flip) การขยายภาพ 20% (Zoom) การบิดภาพไม่เกิน 30 องศา (Shear) โดยการเลือกใช้วิธีทั้ง 5 รูปแบบนี้ได้คำนึงถึงลักษณะที่จะเกิดขึ้น


ของแผ่นภาพเอ็กซ์เรย์ทั้งหมดที่ใช้งานจริง โดยแสดงตัวอย่างในภาพประกอบที่ 5 มีจำนวนภาพทั้งหมด 8,546 ภาพ ทำการแบ่งจำนวนข้อมูลสำหรับการสร้างการเรียนรู้ของแบบจำลองเป็น Training Set ร้อยละ 70 จำนวน 2,991 ภาพ Validation Set ร้อยละ 20 จำนวน 854 ภาพ Test Set ร้อยละ 10 จำนวน 428 ภาพ ของแต่ละกลุ่มข้อมูลและมีการทำ k-Fold Cross-Validation (K=5) โดยใช้การจัดกลุ่มข้อมูลจากการสุ่มให้เป็นชุดข้อมูลใหม่ทั้ง 5 กลุ่ม เพื่อให้ข้อมูลมีการกระจายตัวอย่างสม่ำเสมอและนำมาตรฐานทดสอบประสิทธิภาพของแบบจำลองที่ได้พัฒนาขึ้น แสดงในภาพประกอบที่ 6

ภาพประกอบ 4 ตัวอย่างภาพเอ็กซ์เรย์ทั้งหมดที่แสดงโรคปอดบวม (ด้านล่าง) และไม่แสดงโรคปอดบวม (ด้านบน) (Kermany, Zhang, & Goldbaum, 2018)

ภาพประกอบ 5 ตัวอย่างภาพเอ็กซ์เรย์ทั้งหมดที่แสดงโรคปอดบวม

ภาพประกอบ 6 กระบวนการการจัดเตรียมชุดข้อมูล

ตาราง 1 การแบ่งข้อมูลสำหรับการเรียนรู้ของแบบจำลอง

ชุดข้อมูล	กลุ่มข้อมูล	ร้อยละ	จำนวนข้อมูล	รวมทั้งหมด
Training set	ปกติ (Normal)	70	2,991	5,982
	โรคปอดบวม (Pneumonia)		2,991	
Validation set	ปกติ (Normal)	20	854	1,704
	โรคปอดบวม (Pneumonia)		854	
Test set	ปกติ (Normal)	10	428	856
	โรคปอดบวม (Pneumonia)		428	

3.3 การวัดประสิทธิภาพ

การวัดประสิทธิภาพของแบบจำลอง ได้นำการวัดค่าความแม่นยำ (Accuracy) มาใช้

$$\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

โดยที่ TP คือ ค่าที่พยากรณ์ถูกต้องเชิงบวก TN คือ ค่าที่พยากรณ์ถูกต้องเชิงลบ FP คือ ค่าที่พยากรณ์ผิดพลาดเชิงบวก FN คือ ค่าที่พยากรณ์ผิดพลาดเชิง และการวัดความสูญเสีย (Loss Function) คือ พังก์ชันที่ใช้วัดระยะห่างระหว่างค่าที่คาดการณ์

ไว้กับค่าที่แท้จริงในแบบจำลองการเรียนรู้ของเครื่อง (Machine Learning) ค่าการสูญเสียจะทำหน้าที่เป็นตัวบ่งชี้ประสิทธิภาพของแบบจำลองโดยค่าการสูญเสียต่ำจะหมายความว่าแบบจำลองทำงานได้แม่นยำมากขึ้น

3.4 กระบวนการฝึกสอนแบบจำลอง

กระบวนการสร้างแบบจำลองโดยแบ่งออกเป็นขั้นตอนดังนี้ ที่แสดงในภาพประกอบ 7

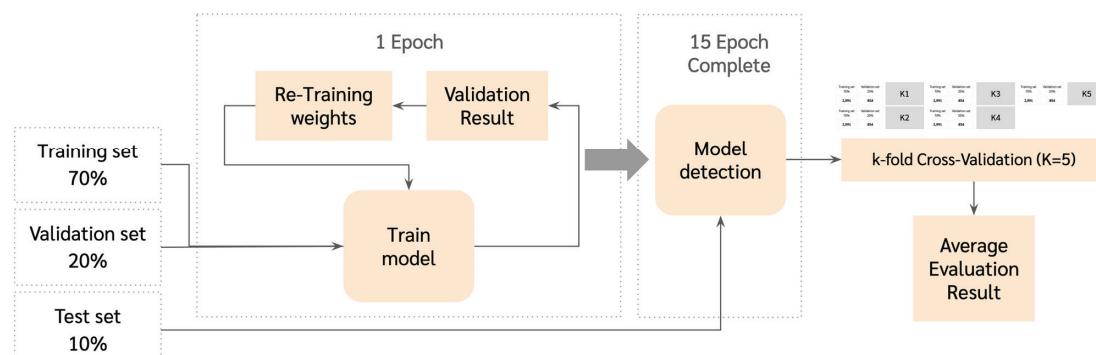
- เมื่อเตรียมข้อมูลและแบ่งข้อมูลเพื่อให้มีความพร้อมสำหรับการสร้างแบบจำลอง

2. เรียกใช้งานฟังก์ชัน `ImageDataGenerator` เพื่อแปลงข้อมูลของรูปภาพให้เป็นแบบ One-hot Encoding ให้พิกเซล (Pixel) ของรูปภาพมีค่าอยู่ระหว่าง 0 และ 1

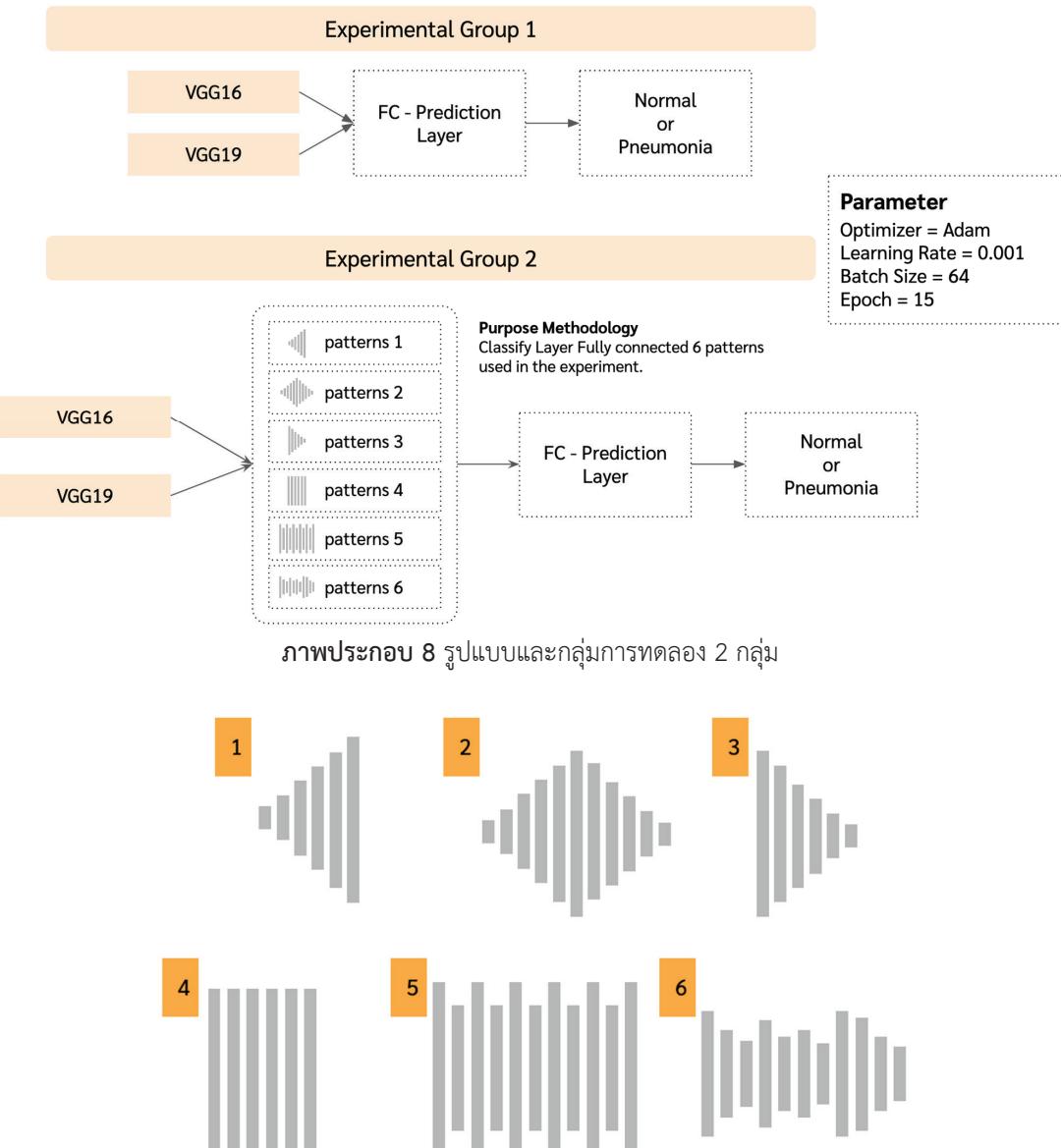
3. เรียกใช้งานฟังก์ชัน `flow_from_directory` เพื่อจัดเตรียมข้อมูลขั้นตอนสุดท้ายก่อนเข้าสู่กระบวนการสร้างแบบจำลองโดยที่กำหนดขนาดของภาพที่ต้องการ (`target_size`) เป็น $224 * 224$ ขนาดของจำนวนข้อมูลที่ใช้ในการเรียนรู้แต่ละรอบ (`batch_size`) และกำหนดรูปแบบของชุดข้อมูล (`class_mode`) เป็นแบบ `binary`

4. เข้าสู่ขั้นตอนการเรียนรู้ของแบบจำลองโดยกำหนดให้ `loss function` เป็นแบบ `binary_crossentropy` และ `optimizer` คือ `Adam` จำนวนรอบการเรียนรู้ (`epoch`) 15 รอบ

5. ในกระบวนการเรียนรู้ในแต่ละรอบ (`Epoch`) จะมีการปรับแต่งค่าต่างๆ ที่ในการเรียนรู้ เช่น `weights`, `loss` และก้าบเข้าสู่รอบการเรียนรู้ถัดไป ซึ่งจะได้ผลการเรียนรู้ค่าความแม่นยำและความสูญเสียในแต่ละรอบของการเรียนรู้


6. เมื่อครบรอบการเรียนรู้ใน 1 ครั้ง 15 รอบ จะนำมาทดสอบกับชุดข้อมูล `k-Fold Cross-Validation (K=5)` ที่ได้เตรียมไว้ซึ่งจะได้ผลการเรียนรู้

ค่าความแม่นยำและความสูญเสีย

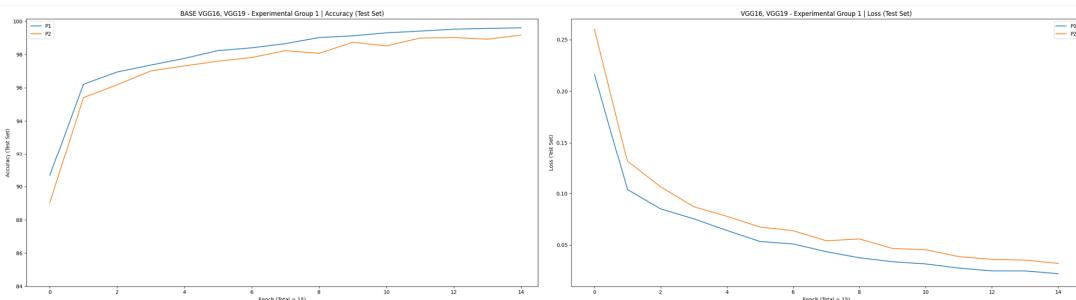

3.5 รูปแบบและวิธีการทดลอง

การออกแบบการทดลองได้แบ่งการทดลองเป็น 2 กลุ่ม กลุ่มที่ 1 ทดลองโดยใช้สถาปัตยกรรมพื้นฐานที่ได้รับความนิยมและทันสมัย 2 สถาปัตยกรรมได้แก่ `VGG16` และ `VGG19` ที่ไม่ได้มีการปรับแต่ง กลุ่มที่ 2 ทดลองโดยนำสถาปัตยกรรมพื้นฐานได้แก่ `VGG16` และ `VGG19` มาใช้โดยเทคนิคการถ่ายโอนข้อมูล และปรับแต่งชั้น `Fully Connected` ซึ่งนำรูปแบบการพัฒนาการเพิ่ม/ลดจำนวน `Node` ในการทดลอง 6 รูปแบบ ได้แก่ 1) การเพิ่มขึ้นของจำนวน `Node` スマ่เสมอ 2) การเพิ่มขึ้นของจำนวน `Node` สม่ำเสมอและลดลงอย่างสม่ำเสมอเท่ากับการเพิ่มขึ้น 3) การลดจำนวนของ `Node` สม่ำเสมอ 4) จำนวนของ `Node` เท่าเดิม 5) จำนวนของ `Node` สถาบันกัน (สองค่า) 6) จำนวนของ `Node` เพิ่มและลดไม่เท่ากันจาก (`Cherd som & Kanarkard, 2023`) ดังแสดงในภาพประกอบ 9 และกำหนดพารามิเตอร์ในการทดลองได้ของทั้ง 2 กลุ่มการทดลองได้แก่ `Optimizer` คือ `Adam Learning Rate` คือ 0.001 (ค่าตั้งต้นของ `Optimizer Adam`) `Batch Size` คือ 64 และ `Epoch` คือ 15 รอบ ดังแสดงในภาพประกอบ 8

การสร้างแบบจำลอง (Model for Pneumonia detection)

ภาพประกอบ 7 ขั้นตอนการเรียนรู้ของแบบจำลอง

4. ผลการวิจัย (Experimental Result)


4.1 ผลการทดลองกลุ่มที่ 1 การทดลองโดยใช้สถาปัตยกรรมพื้นฐาน (VGG16, VGG19)

ในการทดลองกลุ่มที่ 1 ทำการทดลองโดยใช้สถาปัตยกรรมพื้นฐานที่ไม่ได้มีการปรับแต่งชั้นต่างๆ ของแบบจำลอง ซึ่งเพิ่มชั้น Fully Connected เป็น

ชั้น Output ในการพยากรณ์โรคเท่านั้น ดังแสดงในตาราง 2 ข้อมูลในตารางแสดงผลจากการทดสอบค่าความแม่นยำ ค่าความสูญเสีย และค่าเบี่ยงเบนมาตรฐาน (Standard Deviation) รวมทั้งค่าเฉลี่ยของความแม่นยำและความสูญเสียจากชุดข้อมูลทดสอบ (Test Set) และภาพประกอบ 10 แสดงค่าความแม่นยำ และค่าความสูญเสียจากชุดข้อมูลทดสอบทั้ง 2 แบบจำลอง

ตาราง 2 ผลการทดลองกลุ่มที่ 1 การทดลองโดยใช้สถาปัตยกรรมพื้นฐาน

#	แบบจำลอง (Model)	Test set			Validation set (K=5)		
		ค่าความ แม่นยำ (Accuracy)	ค่าความ สูญเสีย (Loss)	ค่าเบี่ยงเบน มาตรฐาน (SD)	ค่าเบี่ยงเบน มาตรฐาน (SD Loss)	ค่าเฉลี่ย (Average Accuracy)	ค่าเฉลี่ย (Average Loss)
P1	VGG16	95.42	0.18	0.007	0.017	95.06	0.08
P2	VGG19	94.89	0.21	0.013	0.025	94.71	0.09

ภาพประกอบ 10 แสดงค่าความแม่นยำ (ซ้าย) และค่าความสูญเสีย (ขวา) ของแบบจำลองในตาราง 2

โดยในคอลัมน์ # ระบุ P1-P2 ซึ่งนำมาแสดงในกราฟค่าความแม่นยำและค่าความสูญเสียในภาพประกอบ 10

4.2 ผลการทดลองกลุ่มที่ 2 การปรับแต่งชั้น Fully connected

การทดลองกลุ่มที่ 2 ได้นำสถาปัตยกรรม VGG16 และ VGG19 มาใช้ในการพัฒนาเพิ่มเติม ในชั้นของ Fully Connected โดยใช้รูปแบบ 6 รูปแบบโดยใช้การถ่ายโอนข้อมูลและใช้รูปแบบการปรับแต่งจำนวนโนนด (Node) ดังแสดงในตาราง 3 - 8 ซึ่งข้อมูลในตารางแสดงผลจากการทดลองค่าความแม่นยำ ค่าความสูญเสีย และค่าเบี่ยงเบนมาตรฐาน รวมทั้งค่าเฉลี่ยของความแม่นยำ และความสูญเสีย จากชุดข้อมูลทดสอบ

รูปแบบที่ 1 การเพิ่มขึ้นของจำนวน Node สมำเสมอ ผลการทดลองได้แสดงในตาราง 3 จำนวน 3 รายการ ในแต่ละแบบจำลอง (3 ลำดับที่มีค่าความแม่นยำมากที่สุด) และภาพประกอบ 11 แสดงค่าความแม่นยำ และค่าความสูญเสียจากชุดข้อมูลทดสอบทั้ง 6 แบบจำลอง

3 รายการในแต่ละแบบจำลองโดยใช้สถาปัตยกรรม VGG16 และ VGG19 (3 ลำดับที่มีค่าความแม่นยำมากที่สุด) และภาพประกอบ 11 แสดงค่าความแม่นยำ และค่าความสูญเสียจากชุดข้อมูลทดสอบทั้ง 6 แบบจำลอง

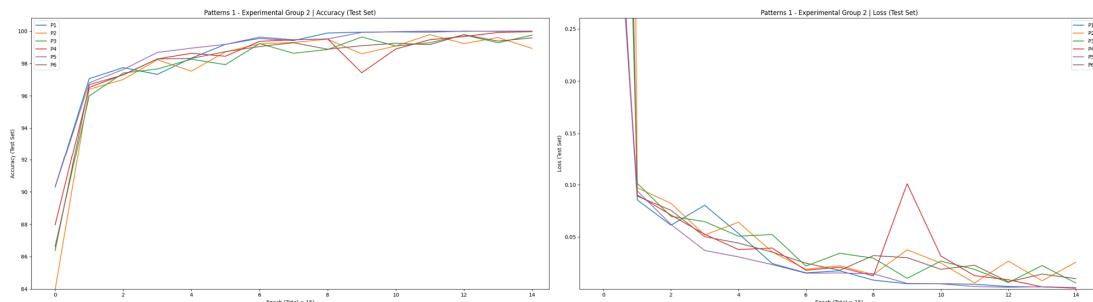
รูปแบบที่ 2 การเพิ่มขึ้นของจำนวน Node สมำเสมอและลดลงอย่างสมำเสมอเท่ากับการเพิ่มขึ้นผลการทดลองได้แสดงในตาราง 4 จำนวน 3 รายการ ในแต่ละแบบจำลอง (3 ลำดับที่มีค่าความแม่นยำมากที่สุด) และภาพประกอบ 12 แสดงค่าความแม่นยำ และค่าความสูญเสียจากชุดข้อมูลทดสอบทั้ง 6 แบบจำลอง

รูปแบบที่ 3 การลดจำนวนของ Node สมำเสมอ ผลการทดลองได้แสดงในตาราง 5 จำนวน 3 รายการ ในแต่ละแบบจำลอง (3 ลำดับที่มีค่าความแม่นยามากที่สุด) และภาพประกอบ 13 แสดง

ค่าความแม่นยำ และค่าความสูญเสียจากชุดข้อมูลทดสอบทั้ง 6 แบบจำลอง

รูปแบบที่ 4 จำนวนของ Node เท่าเดิม ผลการทดลองได้แสดงในตาราง 6 จำนวน 3 รายการ ในแต่ละแบบจำลอง (3 ลำดับที่มีค่าความแม่นยำมากที่สุด) และภาพประกอบ 14 แสดงค่าความแม่นยำ และค่าความสูญเสียจากชุดข้อมูลทดสอบทั้ง 6 แบบจำลอง

รูปแบบที่ 5 จำนวนของ Node สลับกัน (สองค่า) ผลการทดลองได้แสดงในตาราง 7 จำนวน

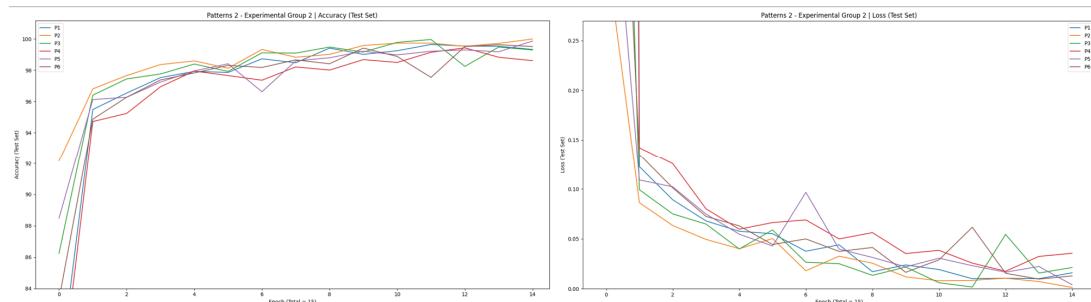

3 รายการในแต่ละแบบจำลอง (3 ลำดับที่มีค่าความแม่นยำมากที่สุด) และภาพประกอบ 15 แสดงค่าความแม่นยำ และค่าความสูญเสียจากชุดข้อมูลทดสอบทั้ง 6 แบบจำลอง

รูปแบบที่ 6 จำนวนของ Node เพิ่มและลดไม่เท่ากันจาก ผลการทดลองได้แสดงในตาราง 8 จำนวน 3 รายการในแต่ละแบบจำลอง (3 ลำดับที่มีค่าความแม่นยำมากที่สุด) และภาพประกอบ 16 แสดงค่าความแม่นยำ และค่าความสูญเสีย จากชุดข้อมูลทดสอบทั้ง 6 แบบจำลอง

ตาราง 3 ผลการทดลองกลุ่มที่ 2 การปรับแต่งชั้น Fully Connected รูปแบบที่ 1

#	แบบ จำลอง (Model)	จำนวน หนึดของ ชั้น Fully connected (Fc)	Test set		Validation set (K=5)			
			ค่า ความ แม่นยำ (Accuracy)	ค่า ความ สูญ เสีย (Loss)	ค่าเบี่ยงเบน มาตรฐาน (SD Accuracy)	ค่าเบี่ยง เบน มาตรฐาน (SD Loss)	ค่าเฉลี่ย (Average Accuracy)	ค่าเฉลี่ย (Average Loss)
P1	VGG16	64	97.54	0.11	0.005	0.027	97.00	0.07
P2	VGG16	64-128-256- 512-1024- 2048	97.18	0.07	0.007	0.029	97.10	0.09
P3	VGG16	64-128-256- 512-1024	96.07	0.23	0.007	0.024	96.89	0.09
P4	VGG19	64-128-256- 512	97.30	0.09	0.009	0.022	97.07	0.08
P5	VGG19	64	96.72	0.16	0.010	0.036	96.61	0.10
P6	VGG19	64-128-256- 512-1024- 2048	96.60	0.13	0.009	0.062	96.14	0.14

* โดยในคอลัมน์ # ระบุ P1-P6 ซึ่งนำมาแสดงในกราฟค่าความแม่นยำและค่าความสูญเสียในภาพประกอบ 11

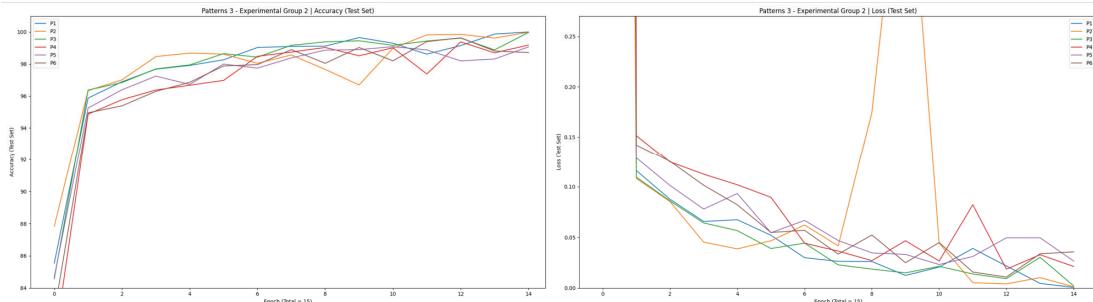


ภาพประกอบ 11 แสดงค่าความแม่นยำ (ซ้าย) และค่าความสูญเสีย (ขวา) ของแบบจำลองในตาราง 3

ตาราง 4 ผลการทดลองกลุ่มที่ 2 การปรับแต่งชั้น Fully Connected รูปแบบที่ 2

#	แบบ จำลอง (Model)	จำนวน โหนดของ ชั้น Fully connected (FC)	Test set			Validation set (K=5)		
			ค่าความ แม่นยำ (Accuracy)	ค่า ความ สูญเสีย (Loss)	ค่าเบี่ยงเบน มาตรฐาน (SD Accuracy)	ค่าเบี่ยง เบน มาตรฐาน (SD Loss)	ค่าเฉลี่ย (Average Accuracy)	ค่าเฉลี่ย (Average Loss)
P1	VGG16	64-128-256- 512-1024- 2048-1024- 512-256-128- 64	97.54	0.11	0.011	0.022	97.10	0.09
P2	VGG16	64-128-256- 128-64	97.18	0.07	0.015	0.053	96.50	0.11
P3	VGG16	64-128-256- 512-256-128- 64	96.07	0.23	0.005	0.018	97.01	0.08
P4	VGG19	64-128-256- 512-1024- 2048-1024- 512-256-128- 64	97.30	0.09	0.006	0.019	97.00	0.08
P5	VGG19	64-128-256- 512-256-128- 64	96.72	0.16	0.010	0.029	96.03	0.10
P6	VGG19	64-128-64	96.60	0.13	0.022	0.058	95.28	0.13

* โดยในคอลัมน์ # ระบุ P1-P6 ซึ่งนำมาแสดงในกราฟค่าความแม่นยำและค่าความสูญเสียในภาพประกอบ 12

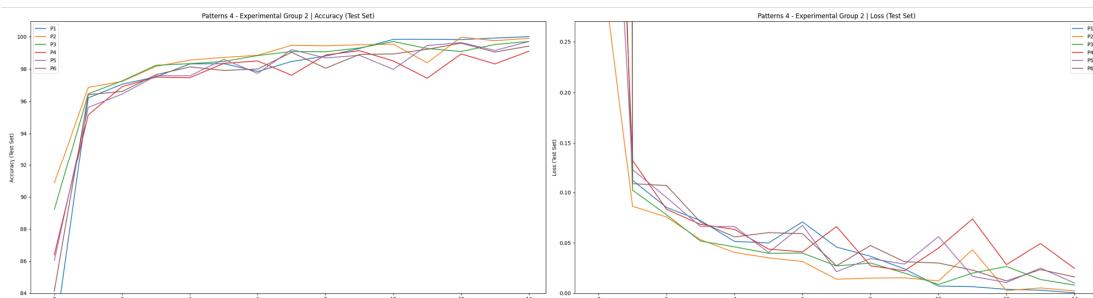


ภาพประกอบ 12 แสดงค่าความแม่นยำ (ซ้าย) และค่าความสูญเสีย (ขวา) ของแบบจำลองในตาราง 4

ตาราง 5 ผลการทดลองกลุ่มที่ 2 การปรับแต่งชั้น Fully Connected รูปแบบที่ 3

#	แบบ จำลอง (Model)	จำนวนหนึ่ด ของชั้น Fully connected (Fc)	Test set			Validation set (K=5)		
			ค่าความ แม่นยำ (Accuracy)	ค่าความ สูญเสีย (Loss)	ค่าเบี่ยงเบน มาตรฐาน (SD Accuracy)	ค่าเบี่ยง เบน มาตรฐาน (SD Loss)	ค่าเฉลี่ย (Average Accuracy)	ค่าเฉลี่ย (Average Loss)
P1	VGG16	2048-1024- 512-256-128- 64-32-16-8	97.83	0.11	0.004	0.014	97.61	0.09
P2	VGG16	2048-1024	97.54	0.12	0.013	0.068	96.64	0.11
P3	VGG16	2048-1024- 512-256-128- 64	97.48	0.11	0.013	0.063	96.59	0.10
P4	VGG19	2048-1024- 512	97.38	0.10	0.011	0.019	96.64	0.09
P5	VGG19	2048-1024- 512-256	97.30	0.09	0.021	0.114	95.93	0.13
P6	VGG19	2048-1024- 512-256-128- 64-32-16	97.24	0.08	0.010	0.028	96.66	0.10

* โดยในคอลัมน์ # ระบุ P1-P6 ซึ่งนำมาแสดงในกราฟค่าความแม่นยำและค่าความสูญเสียในภาพประกอบ 13

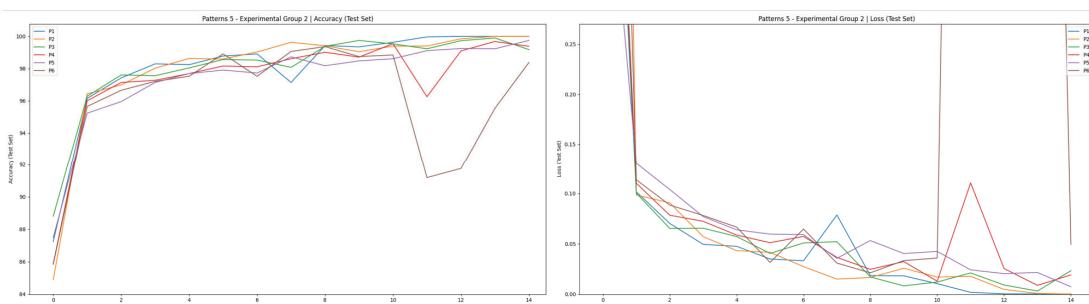


ภาพประกอบ 13 แสดงค่าความแม่นยำ (ซ้าย) และค่าความสูญเสีย (ขวา) ของแบบจำลองในตาราง 5

ตาราง 6 ผลการทดลองกลุ่มที่ 2 การปรับแต่งชั้น Fully Connected รูปแบบที่ 4

#	แบบ จำลอง (Model)	จำนวนโนนด ของชั้น Fully connected (Fc)	Test set		Validation set (K=5)			
			ค่าความ แม่นยำ (Accuracy)	ค่า ความ สูญเสีย (Loss)	ค่าเบี่ยง เบน มาตรฐาน (SD Accuracy)	ค่าเบี่ยง เบน มาตรฐาน (SD Loss)	ค่าเฉลี่ย (Average Accu- racy)	
P1	VGG16	20248-20248- 20248	97.59	0.13	0.013	0.030	96.61	0.10
P2	VGG16	128-128-128	97.59	0.13	0.010	0.026	97.10	0.09
P3	VGG16	512-512-512	97.24	0.12	0.018	0.919	96.64	0.49
P4	VGG19	128-128-128	97.24	0.09	0.027	0.094	95.56	0.14
P5	VGG19	64-64-64	97.07	0.10	0.014	0.028	96.75	0.09
P6	VGG19	20248-20248- 20248	96.60	0.15	0.008	0.013	96.05	0.10

* โดยในคอลัมน์ # ระบุ P1-P6 ซึ่งนำมาแสดงในกราฟค่าความแม่นยำและค่าความสูญเสียในภาพประกอบที่ 14

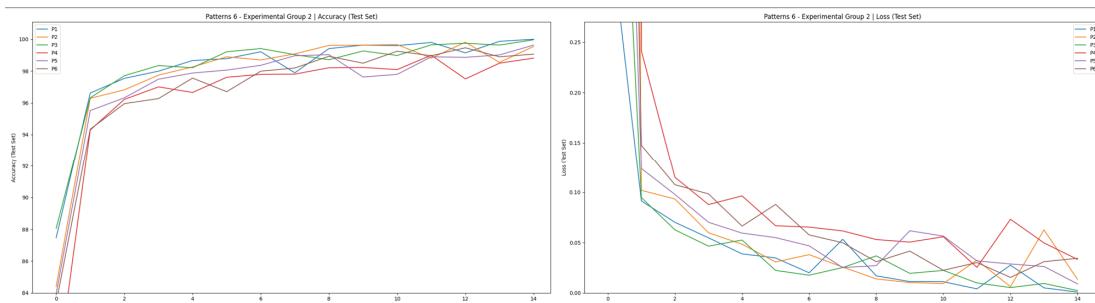


ภาพประกอบ 14 แสดงค่าความแม่นยำ (ซ้าย) และค่าความสูญเสีย (ขวา) ของแบบจำลองในตาราง 6

ตาราง 7 ผลการทดลองกลุ่มที่ 2 การปรับแต่งชั้น Fully Connected รูปแบบที่ 5

#	แบบ จำลอง (Model)	จำนวน โหนดของ ชั้น Fully connected (Fc)	Test set			Validation set (K=5)		
			ค่าความ แม่นยำ (Accuracy)	ค่า ความ สูญเสีย (Loss)	ค่าเบี่ยงเบน มาตรฐาน (SD Accuracy)	ค่าเบี่ยง เบน มาตรฐาน (SD Loss)	ค่าเฉลี่ย (Average Accuracy)	ค่าเฉลี่ย (Average Loss)
P1	VGG16	128-64- 128-64- 128-64	97.59	0.12	0.012	0.025	96.78	0.09
P2	VGG16	512-256- 512-256- 512-256	97.48	0.16	0.013	0.042	96.38	0.11
P3	VGG16	256-128- 256-128- 256-128	97.42	0.10	0.010	0.027	95.23	0.15
P4	VGG19	128-64- 128-64- 128-64	97.24	0.12	0.011	0.026	96.36	0.10
P5	VGG19	32-16-32- 16-32-16	97.24	0.10	0.009	0.026	96.61	0.09
P6	VGG19	256-128- 256-128- 256-128	96.72	0.13	0.027	0.088	94.46	0.16

* โดยในคอลัมน์ # ระบุ P1-P6 ซึ่งนำมาแสดงในกราฟค่าความแม่นยำและค่าความสูญเสียในภาพประกอบ 15



ภาพประกอบ 15 แสดงค่าความแม่นยำ (ซ้าย) และค่าความสูญเสีย (ขวา) ของแบบจำลองในตาราง 7

ตาราง 8 ผลการทดลองกลุ่มที่ 2 การปรับแต่งชั้น Fully Connected รูปแบบที่ 6

#	แบบจำลอง (Model)	จำนวนโน๊ต ของชั้น Fully connected (Fc)	Test set		Validation set (K=5)			
			ค่าความ แม่นยำ (Accuracy)	ค่าความ สูญเสีย (Loss)	ค่าเบี่ยงเบน มาตรฐาน (SD Accuracy)	ค่าเบี่ยง เบน มาตรฐาน (SD Loss)	ค่าเฉลี่ย [†] (Average Accuracy)	
P1	VGG16	32-2048-32- 16-8	97.65	0.13	0.004	0.012	97.01	0.09
P2	VGG16	2048-32- 2048-32-16	97.36	0.10	0.007	0.016	96.87	0.10
P3	VGG16	128-128-128- 128-64-128- 64-128-64	97.36	0.13	0.007	0.013	97.15	0.09
P4	VGG19	64-128-256- 512-2048- 20248-20248	97.24	0.11	0.019	0.042	96.38	0.10
P5	VGG19	128-128-128- 128-64-128- 64-128-64	97.07	0.11	0.023	0.072	96.00	0.12
P6	VGG19	2048-1024- 512-256-128- 64-32-16-8- 4-4-4	96.59	0.11	0.016	0.037	96.19	0.11

* โดยในคอลัมน์ # ระบุ P1-P6 ซึ่งนำมาแสดงในกราฟค่าความแม่นยำและค่าความสูญเสียในภาพประกอบ 16

ภาพประกอบ 16 แสดงค่าความแม่นยำ (ซ้าย) และค่าความสูญเสีย (ขวา) ของแบบจำลองในตาราง 8

ตาราง 9 เปรียบเทียบผลการทดลองกับทักษะอื่น

อ้างอิง (Reference)	แบบจำลอง (Model)	ค่าความแม่นยำ (Accuracy)
(Chouhan <i>et al.</i> , 2020)	Ensemble model [AlexNet, DenseNet121, InceptionV3, GoogLeNet, and ResNet18]	96.40
(Zhang <i>et al.</i> , 2021)	Xception MobileNet VGG16 ResNet50 ResNet121	96.06 95.47 94.35 92.80 87.35
Racic <i>et al.</i> (2021)	CNN	88.90
(Singh <i>et al.</i> , 2023b)	CNN VGG16 VGG19 ResNet50 InceptionV3 Xception InceptionResNetV2 NasNetLarge	95.47 92.14 89.90 84.24 89.42 86.64 86.17 88.14
(Mabrouk <i>et al.</i> , 2022)	Ensemble model [MobileNetV2, DenseNet169, Vision Transformer (ViT)] MobileNetV2 DenseNet169 Vision Transformer (ViT)	93.91 91.35 90.87 92.47
(Shankar <i>et al.</i> , 2023)	CNN VGG16 ResNet	89.74 75.80 88.14
(Singh <i>et al.</i> , 2023a)	QCSA VGG16 VGG19	94.53 92.14 90.22
(Chiwariro & Wosowi, 2023)	VGG16 VGG19 ResNet50 InceptionNet	88.00 80.00 73.00 79.00
(Papadimitriou <i>et al.</i> , 2023)	CNN	95.59
ผู้เขียน	VGG16 VGG19 VGG16 + FC (นำเสนอด)	95.42 94.89 97.83

สรุปผลการทดลอง

จากการพัฒนาแบบจำลองในการตรวจหาโรคปอดบวมจากภาพอักซ์เรย์ทรวงอกโดยใช้โครงข่ายประสาทเทียมแบบคอนโวอลูชันได้แก่ สถาปัตยกรรม VGG16, VGG19 เพื่อนำมาใช้ร่วมกับเทคนิคการถ่ายโอนความรู้ (Transfer Learning) แบ่งการทดลองออกเป็น 2 กลุ่ม กลุ่มที่ 1 การทดลองโดยใช้สถาปัตยกรรม VGG16 และ VGG19 โดยที่ไม่มีการปรับแต่งใดๆ และกลุ่มที่ 2 นำสถาปัตยกรรม VGG16 และ VGG19 มาใช้โดยการถ่ายโอนความรู้ และปรับแต่งชั้น Fully Connected (Fc) โดยใช้รูปแบบในการปรับแต่งโหนด 6 รูปแบบ จากชุดข้อมูลของ (Kermany, Zhang, & Goldbaum, 2018) และมีการทำ k-fold Cross-Validation (K=5) กับชุดข้อมูลที่นำมาสร้างและทดสอบแบบจำลองโดยแต่ละ Fold แบ่งข้อมูลออกเป็น 70:20:10 (Training Set : Validation Set : Test Set)

กลุ่มการทดลองที่ 1 ทั้งสองสถาปัตยกรรม VGG16 และ VGG19 ได้ค่าความแม่นยำที่ใกล้เคียงกันคือร้อยละ 95.42 และ 94.89 เมื่อเทียบกับค่าความแม่นยำในการนำแบบจำลองทั้งสองไปใช้งานกับบทความอื่นๆ พบรความมีความแม่นยำที่ไม่แตกต่างกันอย่างมีนัยสำคัญมากนัก และเมื่อเปรียบเทียบทั้งสองสถาปัตยกรรมพบว่าค่าเบี่ยงเบนมาตรฐาน (Standard Deviation) มีวิการกระจายตัวไม่แตกต่างกันมากนักที่ของค่าความแม่นยำ 0.006 ของค่าความสูญเสีย 0.008 และค่าเฉลี่ย (Average) ของค่าความแม่นยำ 0.36 ของค่าความสูญเสีย 0.01

กลุ่มการทดลองที่ 2 เป็นการพัฒนาเพิ่มเติมในชั้นของ Fully connected โดยใช้เทคนิคการถ่ายโอนความรู้จากสถาปัตยกรรม VGG16 และสถาปัตยกรรม VGG19 จำนวน 6 รูปแบบ

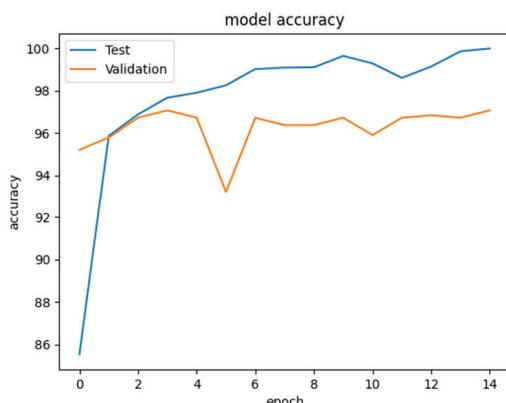
รูปแบบที่ 1 ในการทดลองทั้งหมดพบว่าแบบจำลองที่ได้ผลดีที่สุดคือ VGG16 + FC (64) เพียงหนึ่งชั้นได้ค่าความแม่นยำสูงถึงร้อยละ 97.77

และค่าความสูญเสียร้อยละ 0.08 และที่ได้ผลดีน้อยที่สุดคือ VGG16 + FC (64-128-256-512) ได้ค่าความแม่นยำสูงถึงร้อยละ 93.87 และค่าความสูญเสียเพิ่มมากถึงร้อยละ 2.41 และเมื่อเทียบกับค่าความแม่นยำของรูปแบบที่ได้รับโดยใช้สถาปัตยกรรม VGG16 และ VGG19 ได้ค่าความแม่นยำสูงถึงร้อยละ 3.9 และค่าความสูญเสียมากถึงร้อยละ 2.33 และค่าเบี่ยงเบนมาตรฐาน (Standard Deviation) มีการกระจายตัวไม่แตกต่างกันมากนักที่ค่าสูงสุดที่ 0.010 และน้อยที่สุดที่ 0.005 ส่วนค่าเฉลี่ย (Average) ของค่าความแม่นยำสูงที่สุดคือ 97.10 ต่ำที่สุดคือ 96.14 ของค่าความสูญเสียสูงที่สุดคือ 0.14 ต่ำที่สุดคือ 0.08 อีกทั้งเมื่อนำค่าความแม่นยามาเปรียบเทียบกับค่าเฉลี่ยความแม่นยำแล้วมีความแตกต่างไม่มากนักไม่เกิน 0.82 โดยเฉลี่ยแล้วค่าความแม่นยำที่ดีที่สุดในรูปแบบนี้คือการถ่ายโอนความรู้ของแบบจำลอง VGG16 แต่ไม่ได้มีความแตกต่างกับ VGG19

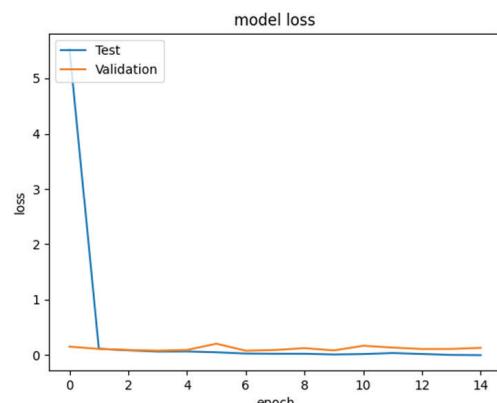
รูปแบบที่ 2 ในการทดลองทั้งหมดพบว่าแบบจำลองที่ได้ผลดีที่สุดคือ VGG16 + FC (64-128-256-512-1024-2048-1024-512-256-128-64) ได้ค่าความแม่นยำสูงถึงร้อยละ 97.54 และค่าความสูญเสียร้อยละ 0.11 และที่ได้ผลดีน้อยที่สุดคือ VGG16 + FC (64-128-256-512-1024-512-256-128-64) ค่าความแม่นยำสูงถึงร้อยละ 96.07 และค่าความสูญเสียเพิ่มมากถึงร้อยละ 0.23 และเมื่อเปรียบเทียบพบว่ามีระยะห่างของความแม่นยาร้อยละ 1.47 และค่าความสูญเสียมากถึงร้อยละ 0.12 และค่าเบี่ยงเบนมาตรฐานมีวิการกระจายตัวไม่แตกต่างกันมากนักที่ค่าสูงสุดที่ 0.060 และน้อยที่สุดที่ 0.005 ส่วนค่าเฉลี่ยของค่าความแม่นยามากที่สุดคือ 97.10 ต่ำที่สุดคือ 93.71 ของค่าความสูญเสียสูงที่สุดคือ 0.18 ต่ำที่สุดคือ 0.08 อีกทั้งเมื่อนำค่าความแม่นยามาเปรียบเทียบกับค่าเฉลี่ยความแม่นยามาแล้วมีความแตกต่างไม่มากนักไม่เกิน 1.32 โดยเฉลี่ยแล้วค่าความแม่นยำที่ดีที่สุดในรูปแบบนี้คือการถ่ายโอนความรู้ของแบบจำลอง VGG16 แต่ไม่ได้มีความแตกต่างกับ VGG19

รูปแบบที่ 3 ในการทดลองทั้งหมดพบว่า แบบจำลองที่ได้ผลดีที่สุดคือ VGG16 + FC (2048-1024-512-256-128-64-32-16-8) ได้ค่าความแม่นยำสูงถึงร้อยละ 97.83 และค่าความสูญเสียร้อยละ 0.11 และที่ได้ผลดีน้อยที่สุดคือ VGG16 + FC (2048-1024-512-256-128) ค่าความแม่นยำสูงร้อยละ 85.59 และค่าความสูญเสียร้อยละ 0.19 และเมื่อเปรียบเทียบพบว่ามีระยะห่างของความแม่นยำมากถึงร้อยละ 12.24 และค่าความสูญเสียเพียงร้อยละ 0.08 และค่าเบี่ยงเบนมาตรฐานมีการกระจายตัวไม่แตกต่างกันมากนักที่ค่าสูงสุดที่ 0.021 และน้อยที่สุดที่ 0.004 ส่วนค่าเฉลี่ยของค่าความแม่นยำสูงที่สุดคือ 97.61 ต่ำที่สุดคือ 95.93 ของค่าความสูญเสียสูงที่สุดคือ 0.13 ต่ำที่สุดคือ 0.09 อีกทั้งเมื่อนำค่าความแม่นยำมาเปรียบเทียบกับค่าเฉลี่ยความแม่นยำแล้วมีความแตกต่างไม่มากนักไม่เกิน 1.37 โดยเฉลี่ยแล้วค่าความแม่นยำที่ดีที่สุดในรูปแบบนี้คือการถ่ายโอนความรู้ของแบบจำลอง VGG19

รูปแบบที่ 4 ในการทดลองทั้งหมดพบว่า แบบจำลองที่ได้ผลดีที่สุดคือ VGG16 + FC (20248-20248-20248) ได้ค่าความแม่นยำสูงถึงร้อยละ 97.59 และค่าความสูญเสียร้อยละ 0.13 และที่ได้ผลดีน้อยที่สุดคือ VGG19 + FC (256-256-256) มีค่าความแม่นยำสูงถึงร้อยละ 96.54 และค่าความสูญเสียร้อยละ 0.15 และเมื่อเปรียบเทียบพบว่ามีระยะห่างของความแม่นยำเพียงถึงร้อยละ 1.05 และค่าความสูญเสียเพียงร้อยละ 0.02 และค่าเบี่ยงเบนมาตรฐานมีการกระจายตัวไม่แตกต่างกันมากนักที่ค่าสูงสุดที่ 0.027 และน้อยที่สุดที่ 0.008 ส่วนค่าเฉลี่ยของค่าความแม่นยำสูงที่สุดคือ 97.10 ต่ำที่สุดคือ 95.56 ของค่าความสูญเสียสูงที่สุดคือ 0.49 ต่ำที่สุดคือ 0.09 อีกทั้งเมื่อนำค่าความแม่นยามาเปรียบเทียบกับค่าเฉลี่ยความแม่นยำแล้วมีความแตกต่างไม่มากนักไม่เกิน 1.68 โดยเฉลี่ยแล้วค่าความแม่นยำที่ดีที่สุดในรูปแบบนี้คือการถ่ายโอนความรู้ของแบบจำลอง VGG16

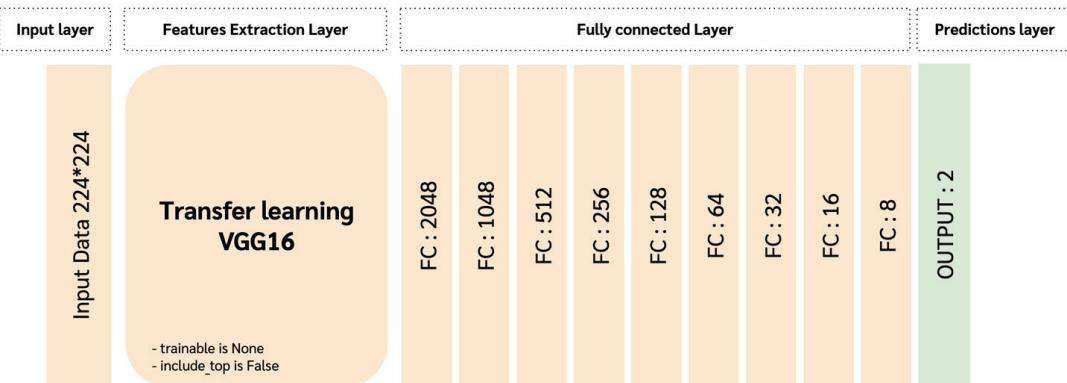

รูปแบบที่ 5 ในการทดลองทั้งหมดพบว่า แบบจำลองที่ได้ผลดีที่สุดคือ VGG16 + FC (128-64-128-64-128-64) ได้ค่าความแม่นยำสูงถึงร้อยละ 97.59 และค่าความสูญเสียร้อยละ 0.12 และที่ได้ผลดีน้อยที่สุดคือ VGG19 + FC (512-256-512-256-512-256) มีความแม่นยำร้อยละ 82.90 และค่าความสูญเสียร้อยละ 1.06 และเมื่อเปรียบเทียบพบว่ามีระยะห่างของความแม่นยำมากถึงร้อยละ 14.69 และค่าความสูญเสียมากร้อยละ 0.94 และค่าเบี่ยงเบนมาตรฐานมีการกระจายตัวไม่แตกต่างกันมากนักที่ค่าสูงสุดที่ 0.088 และน้อยที่สุดที่ 0.025 ส่วนค่าเฉลี่ยของค่าความแม่นยำสูงที่สุดคือ 96.78 ต่ำที่สุดคือ 94.46 ของค่าความสูญเสียสูงที่สุดคือ 0.15 ต่ำที่สุดคือ 0.09 อีกทั้งเมื่อนำค่าความแม่นยำมาเปรียบเทียบกับค่าเฉลี่ยความแม่นยำแล้วมีความแตกต่างไม่มากนักไม่เกิน 2.26 โดยเฉลี่ยแล้วค่าความแม่นยำที่ดีที่สุดในรูปแบบนี้คือการถ่ายโอนความรู้ของแบบจำลอง VGG16

รูปแบบที่ 6 ในการทดลองทั้งหมดพบว่า แบบจำลองที่ได้ผลดีที่สุดคือ VGG16 + FC (32-2048-32-16-8) ได้ค่าความแม่นยำสูงถึงร้อยละ 97.65 และค่าความสูญเสียร้อยละ 0.13 และที่ได้ผลดีน้อยที่สุดคือ VGG19 + FC (2048-1024-2048-1024-512-256-128) มีความแม่นยำร้อยละ 50.00 และค่าความสูญเสียร้อยละ 3,556.00 ซึ่งเป็นการทดลองที่ไม่สามารถ运行ได้อีกทั้งไม่เหมาะสมกับชั้น FC ที่ทดลองและเมื่อเปรียบเทียบพบว่ามีระยะห่างของความแม่นยำสูงถึงร้อยละ 47.65 และค่าความสูญเสียมากร้อยละ 3,555.87 และค่าเบี่ยงเบนมาตรฐานมีการกระจายตัวไม่แตกต่างกันมากนักที่ค่าสูงสุดที่ 0.023 และน้อยที่สุดที่ 0.072 ส่วนค่าเฉลี่ยของค่าความแม่นยำสูงที่สุดคือ 97.15 ต่ำที่สุดคือ 96.00 ของค่าความสูญเสียสูงที่สุดคือ 0.12 ต่ำที่สุดคือ 0.09 อีกทั้งเมื่อนำค่าความแม่นยามาเปรียบเทียบกับค่าเฉลี่ยความแม่นยำแล้วมีความแตกต่างไม่มากนักไม่เกิน 1.07 โดยเฉลี่ยแล้ว


ค่าความแม่นยำที่ดีที่สุดในรูปแบบนี้คือการถ่ายโอนความรู้ของแบบจำลอง VGG16

และเมื่อเปรียบเทียบทั้ง 6 รูปแบบการทดลองแล้วพบว่าการทดลองที่ใช้สถาปัตยกรรม VGG16 ร่วมกับชั้น Fully connected โดยมีจำนวนโนードคือ 2048-1024-512-256-128-64-32-16-8 ตามลำดับซึ่งแสดงดังภาพประกอบ 19 ได้ค่าความแม่นยามากที่สุดคือ 97.83 และค่าความสูญเสีย 0.11 และค่าเบี่ยงเบนมาตรฐานมีการกระจายตัวที่ 0.004 ส่วนค่าเฉลี่ยของค่าความแม่นยำคือ 97.61 ของค่าความสูญเสียคือ 0.09 อีกทั้งเมื่อนำค่าความแม่นยำ

มาเปรียบเทียบกับค่าเฉลี่ยความแม่นยำแล้วมีความแตกต่างไม่มากนักคือ 0.22 ซึ่งอยู่ในรูปแบบที่ 3 ในภาพประกอบ 17 ได้แสดงค่าความแม่นยำและค่าความสูญเสียระหว่างการเรียนรู้ของแบบจำลองที่นำเสนอและเป็นแบบจำลองที่มีความแม่นยำสูงที่สุดและภาพประกอบ 18 แสดง Confusion Matrix ของการพยากรณ์ เมื่อนำมาเปรียบเทียบสถาปัตยกรรม VGG16 และ VGG19 ที่ไม่ได้มีการปรับแต่งพบว่ามีค่าความแม่นยำเพิ่มขึ้น 2.41 และค่าความสูญเสียลดลง 0.07 เมื่อเปรียบเทียบกับ VGG16 ค่าความแม่นยำเพิ่มขึ้น 2.94 และค่าความสูญเสียลดลง 0.10 เมื่อเปรียบเทียบกับ VGG19



ภาพประกอบ 17 แสดงค่าความแม่นยำ (ซ้าย) และค่าความสูญเสีย (ขวา) ของแบบจำลองที่นำเสนอ

ภาพประกอบ 18 แสดง Confusion Matrix ของแบบจำลองที่นำเสนอ

ปกติ (Normal)	โรคปอดบวม (Pneumonia)	
ปกติ (Normal)	420	8
โรคปอดบวม (Pneumonia)	10	418

ภาพประกอบ 19 โครงสร้างแบบจำลองของแบบจำลองที่นำเสนอ

5. อภิปรายผล (Discussion)

การทดลองได้แบ่งออกเป็น 2 กลุ่ม กลุ่มที่ 1 การทดลองโดยใช้สถาปัตยกรรม VGG16 และ VGG19 โดยที่ไม่มีการปรับแต่งใดๆ และกลุ่มที่ 2 นำสถาปัตยกรรม VGG16 และ VGG19 มาใช้โดยการถ่ายโอนความรู้และปรับแต่งชั้น Fully connected (FC) 6 รูปแบบเพื่อให้เห็นความแตกต่างของของแบบจำลองที่ไม่ได้มีการปรับแต่งค่าใดๆ ในกลุ่มที่ 1 และที่มีการปรับแต่งค่าของแบบจำลองในกลุ่มที่ 2 นั้น แสดงให้เห็นว่าการปรับแต่งในชั้น Fully Connected สามารถเพิ่มประสิทธิภาพและความแม่นยำในการพยากรณ์โรคปอดบวมเพิ่มมากขึ้นจากแบบจำลองตั้งต้น ในแต่ละรูปแบบของการทดลองในกลุ่มที่ 2 ให้ผลที่ไม่แตกต่างกันมากนักเนื่องจากการใช้เทคนิคการถ่ายโอนความรู้นั้น มีประสิทธิภาพพอสมควรอยู่แล้ว ทำให้การปรับแต่งในชั้น Fully Connected ไม่ได้มีผลความแม่นยำที่เพิ่มขึ้นอย่างมีนัยสำคัญ ถึงอย่างไรนั้น การทดลองในการปรับแต่งทั้ง 6 รูปแบบ โดยชุดข้อมูลมีจำนวนภาพทั้งหมด 8,546 ภาพ ทำการแบ่งจำนวนข้อมูลสำหรับการสร้างการเรียนรู้ของแบบจำลองเป็น Training set ร้อยละ 70 จำนวน 2,991 ภาพ Validation Set ร้อยละ 20 จำนวน 854 ภาพ Test Set ร้อยละ 10 จำนวน 428 ภาพ ของแต่ละกลุ่มข้อมูล และมีการทำ k-fold Cross-Validation (K=5) โดยใช้การจัดกลุ่มข้อมูลจากการสุ่มให้เป็นชุดข้อมูลใหม่

ทั้ง 5 กลุ่ม สามารถนำมาใช้เป็นแนวทางในการพัฒนาแบบจำลองทั้งในส่วนของการปรับแต่งชั้น Features Extraction รวมทั้ง Fully Connected ที่ปรับแต่งในการทดลองนี้ได้และผลจากการทดลอง เมื่อนำแบบจำลองที่นำเสนอและได้ความแม่นยำมากที่สุดนั้น ได้ค่าความแม่นยำมากที่สุดคือ 97.83 และค่าความสูญเสีย 0.11 และค่าเบนมาตรฐาน (Standard Deviation) มีการกระจายตัวที่ 0.004 ส่วนค่าเฉลี่ย (Average) ของค่าความแม่นยำคือ 97.61 ของค่าความสูญเสียคือ 0.09 อีกทั้งเมื่อนำค่าความแม่นยามาเปรียบเทียบกับค่าเฉลี่ยความแม่นยำแล้วมีความแตกต่างไม่มากนักคือ 0.22 การนำผลมาเปรียบเทียบกับกับผลการทดลองของแบบจำลองต่างๆ จากบทความอื่นๆ จากตาราง 9 แสดงให้เห็นว่าวิธีการและรูปแบบที่นำมาใช้ในการทดลองมีประสิทธิภาพสามารถเพิ่มความแม่นยำให้กับแบบจำลองได้และสามารถนำไปใช้ในการตรวจหโรคและคัดกรองผู้ป่วยได้

6. สรุปผลการวิจัย (Conclusion)

ผลการทดลองในบทความนี้ชี้ให้เห็นว่าสามารถนำแบบจำลองที่พัฒนาขึ้นไปใช้ในการตรวจหโรคปอดบวมจากภาพเอ็กซ์เรย์ทรวงอกเบื้องต้นได้ ก่อนให้แพทย์วินิจฉัยอย่างละเอียดอีกครั้งเพื่อลดการทำลายของบุคลากรที่เกี่ยวข้อง โดยที่แบบจำลองที่ได้พัฒนาขึ้นมีความแม่นยำร้อยละ 97.83 ซึ่งแบบจำลอง

ที่นำเสนอวิธีนี้สามารถนำมาใช้วินิจฉัยโรคปอดบวมและลดอัตราการเสียชีวิตในเด็กและผู้สูงอายุได้ แต่เนื่องด้วยการใช้งานจริงภายใต้ความเสี่ยงของการวินิจฉัยโรคการนำไปใช้งานควรให้แล พทยเป็นผู้สื่อสารผลและวินิจฉัยเพิ่มเติมให้มีความแม่นยำและถูกต้อง อีกครั้งเพื่อป้องกันความผิดพลาดที่จะกระทบต่อผู้ป่วย

ข้อเสนอแนะ ในการทดลองนี้จะเห็นได้ว่า ชุดข้อมูลนี้ข้อจำกัด ซึ่งมีเพียง 5,232 ภาพ แบ่งออก เป็นภาพที่บ่งบอกว่าปกติ (Normal) จำนวน 1,583 ภาพและที่บ่งบอกว่าไม่ปกติหรือเป็นโรคปอดบวม (Pneumonia) จำนวน 4,273 ภาพ ซึ่งผู้วิจัยมีความเห็นว่าไม่เพียงพอต่อการนำมาใช้ในการเรียนรู้ของแบบจำลอง เพื่อวัดคุณประสิทธิภาพของการใช้งานจริง ถึงแม้จะใช้เทคนิคในการเพิ่มข้อมูลและให้วิธีการถ่ายโอนความรู้แล้วนั้น ผู้วิจัยจึงเสนอแนะให้มีการนำชุดข้อมูลจากภาพอีกชุดเพิ่มเติมจากชุดข้อมูลอื่นๆ ที่เป็นโรคอื่นๆ เข้ามาร่วมด้วยเพื่อให้ปริมาณข้อมูลและความหลากหลายของข้อมูลมากขึ้น

เอกสารอ้างอิง

CherdSom, P., & Kanarkard, W. (2023). Analysis of student engagement in online classroom using convolutional neural networks (CNN). *ECTI Transaction on Application Research and Development*, 3(3), 39-52. <https://doi.org/10.37936/ectiard.2023-3-3.250499> [In Thai]

Chiwariro, R., & Wosowi, J. B. (2023). comparative analysis of deep learning convolutional neural networks based on transfer learning for pneumonia detection. *International Journal for Research in Applied Science and Engineering Technology*, 11(1), 1161-1170. <https://doi.org/10.22214/ijraset.2023.48685>

Chouhan, V., Singh, S. K., Khamparia, A., Gupta, D., Tiwari, P., Moreira, C., Damaševičius, R., & de Albuquerque, V. H. C. (2020). A novel transfer learning based approach for pneumonia detection in chest X-ray images. *Applied Sciences*, 10(2), 559. <https://doi.org/10.3390/app10020559>

Department of Disease Control. (2022). *Pneumonia*. Retrieved 6 December 2023, from https://ddc.moph.go.th/disease_detail.php?d=21 [In Thai]

Department of Disease Control. (2023). *prevention of diseases and health hazards during the winter season in Thailand, 2023*. Retrieved 6 December 2023, from <https://ddc.moph.go.th/uploads/publish/1501520231123052757.pdf> [In Thai]

Iman, M., Arabnia, H. R., & Rasheed, K. (2023). A review of deep transfer learning and recent advancements. *Technologies*, 11(2), 40. <https://doi.org/10.3390/technologies11020040>

Karen, S. & Andrew, Z. (2015). *very deep convolutional networks for large-scale image recognition*. The International Conference on Learning Representations (ICLR). <https://doi.org/10.48550/arXiv.1409.1556>

Kermany, D., Zhang, K., & Goldbaum, M. (2018). *Labeled optical coherence tomography (OCT) and chest X-ray images for classification* [Data set]. Mendeley Data. <https://data.mendeley.com/datasets/rscbjbr9sj/2>

Mabrouk, A., Díaz Redondo, R. P., Dahou, A., Abd Elaziz, M., & Kayed, M. (2022). Pneumonia detection on chest X-ray images using ensemble of deep convolutional neural networks. *Applied Sciences*, 12(13), 6448. <https://doi.org/10.3390/app12136448>

Papadimitriou, O., Kanavos, A., & Maragoudakis, M. (2023). automated pneumonia detection from chest X-ray images using deep convolutional neural networks. *2023 14th International Conference on Information, Intelligence, Systems & Applications (IISA)*, 1–4. <https://doi.org/10.1109/iisa59645.2023.10345859>

Racic, L., Popovic, T., Cakic, S., & Sandi, S. (2021). pneumonia detection using deep learning based on convolutional neural network. *2021 25th International Conference on Information Technology (IT)*, 1–4. <https://doi.org/10.1109/it51528.2021.9390137>

Sengupta, S., Basak, S., Saikia, P., Paul, S., Tsalavoutis, V., Atiah, F., Ravi, V., & Peters, A. (2020). A review of deep learning with special emphasis on architectures, applications and recent trends. *Knowledge-Based Systems*, 194, 105596. <https://doi.org/10.1016/j.knosys.2020.105596>

Shankar, A. P., Shah, S., Ghosh, S., Ismail, Z., M, V., J, J., & S, D. (2023). Comparative performance analysis of machine learning and deep learning techniques in pneumonia detection: A study. *2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT)*, 1–8. <https://doi.org/10.1109/icccnt56998.2023.10306711>

Singh, S., Kumar, M., Kumar, A., Verma, B. K., & Shitharth, S. (2023a). Pneumonia detection with QCSA network on chest X-ray. *Scientific Reports*, 13(1). <https://doi.org/10.1038/s41598-023-35922-x>

Singh, S., Singh Rawat, S., Gupta, M., K. Tripathi, B., Alanzi, F., Majumdar, A., Khuwuthyakorn, P., & Thinnukool, O. (2023b). Deep attention network for pneumonia detection using chest X-ray images. *Computers, Materials & Continua*, 74(1), 1673–1691. <https://doi.org/10.32604/cmc.2023.032364>

Varshni, D., Thakral, K., Agarwal, L., Nijhawan, R., & Mittal, A. (2019). Pneumonia detection using CNN based feature extraction. *2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT)*, 1–7. <https://doi.org/10.1109/icecct.2019.8869364>

Zhang, D., Ren, F., Li, Y., Na, L., & Ma, Y. (2021). pneumonia detection from chest X-ray images based on convolutional neural network. *Electronics*, 10(13), 1512. <https://doi.org/10.3390/electronics10131512>

การคัดเลือกคุณลักษณะด้วยการวิเคราะห์แยกแยะเชิงเส้นเพื่อเพิ่มประสิทธิภาพ การจำแนกข้อมูลผู้ป่วยโรคหลอดเลือดหัวใจ

Feature Selection with Linear Discriminant Analysis to Improve the Performance of Hearth Disease Classification

รติพร จันทร์กลั่น^{1,*}, กีรชาติ สุขสุทธิ¹, เกตุกาลย์จน์ โพธิจิตติกานต์¹

Ratiporn Chanklan^{1,*}, Keerachart Suksut¹, Kedkarn Podhijittikarn¹

¹ สาขาวิชกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์และเทคโนโลยี มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน นครราชสีมา 30000 ประเทศไทย

¹ Computer Engineering, Faculty of Engineering and Technology, Rajamangala University of Technology Isan,
Nakhon Ratchasima 30000, Thailand

* Corresponding author: Ratiporn Chanklan, ratiporn.ch@rmuti.ac.th

Received:

19 April 2024

Revised:

1 July 2024

Accepted:

19 September 2024

คำสำคัญ:

โรคหลอดเลือดหัวใจ, การคัดเลือกคุณลักษณะ, การวิเคราะห์แยกแยะเชิงเส้น

Keywords:

Heart Disease, Feature Selection, Linear Discriminant Analysis

บทคัดย่อ: เทคโนโลยีปัญญาประดิษฐ์ได้รับความนิยมอย่างแพร่หลายในการประยุกต์ใช้ในหลากหลายสาขา รวมถึงในด้านการแพทย์ ซึ่งถูกนำมาใช้สนับสนุนการวินิจฉัยโรคอย่างมีประสิทธิภาพ โดยเฉพาะโรคหลอดเลือดหัวใจซึ่งเป็นโรคที่สามารถเกิดได้กับทุกเพศ ทุกวัย และทุกเชื้อชาติ อีกทั้งยังเป็นสาเหตุสำคัญของการเสียชีวิตในปัจจุบัน การวินิจฉัยโรคหลอดเลือดหัวใจสามารถดำเนินการร่วมกับเทคโนโลยีปัญญาประดิษฐ์ โดยใช้ข้อมูลจากการตรวจเลือดเพื่อพิจารณาความเสี่ยงของโรค ข้อมูลที่ใช้ในการวิเคราะห์มักประกอบด้วยคุณลักษณะจำนวนมากเกินความจำเป็น ซึ่งอาจส่งผลต่อประสิทธิภาพของโมเดล งานวิจัยนี้จึงสนใจการคัดเลือกคุณลักษณะด้วยเทคนิคการวิเคราะห์แยกแยะเชิงเส้นเพื่อเพิ่มความแม่นยำในการจำแนกผู้ป่วยโรคหลอดเลือดหัวใจ พร้อมเปรียบเทียบกับเทคนิคการคัดเลือกคุณลักษณะโดยใช้ค่าสหสัมพันธ์ และค่าเกณฑ์ความรู้ โดยประเมินผลผ่านการสร้างโมเดลด้วย 3 อัลกอริทึม ได้แก่ การคัดถอยหลังสัติก ชัพพอร์ตเวกเตอร์แมชชีน และโครงข่ายประสาทเทียม ผลการทดลองพบว่า การใช้เทคนิคการวิเคราะห์แยกแยะเชิงเส้นช่วยเพิ่มค่าเฉลี่ยความแม่นยำกรร้อยละ 77.82 เป็นร้อยละ 86.46 (เพิ่มขึ้นร้อยละ 11.10) และเมื่อใช้ร่วมกับโครงข่ายประสาทเทียมสามารถจำแนกข้อมูลได้อย่างแม่นยำสูงสุดที่ร้อยละ 87.39 จากผลการศึกษา ผู้วิจัยจึงพัฒนาโปรแกรมประเมินความเสี่ยงโรคหลอดเลือดหัวใจ โดยใช้เทคนิคดังกล่าว ซึ่งสามารถใช้เป็นเครื่องมือช่วยคัดกรองบุคคลที่มีความเสี่ยงสูง พร้อมทั้งให้ข้อมูลเกี่ยวกับโอกาสการเกิดโรคหลอดเลือดหัวใจในแต่ละบุคคลได้อย่างมีประสิทธิภาพ

Abstract: Artificial intelligence (AI) technology has become increasingly popular and is widely applied across various fields. In the medical domain, AI has been employed to support disease diagnosis. Heart disease is a common condition that affects individuals of all genders, ages, and races, and remains a leading cause of mortality worldwide. Currently, the diagnosis of heart disease can be performed using AI by leveraging electrocardiogram (ECG) data in combination with machine learning algorithms. However, in some cases, the number of data features required is excessive, which may reduce model performance. In this research, we propose a feature selection method based on Linear Discriminant Analysis (LDA) to improve the classification accuracy of a heart disease dataset. The proposed method is compared with two other feature selection techniques: correlation-based selection and information gain. We then construct classification models using three algorithms: logistic regression, support vector machines (SVM), and artificial neural networks (ANN). The experimental results show that the proposed technique improves the average classification accuracy from 77.82% to 86.46%, representing an 11.10% increase. The highest classification accuracy of 87.39% is achieved when combining ANN with LDA. The researcher employed this technique to develop a program for assessing the risk of coronary heart disease. The program assists in screening individuals at high risk and provides users with personalized information regarding their likelihood of developing the disease.

1. บทนำ

โรคหลอดเลือดหัวใจเป็นหนึ่งในโรคที่ทำให้ผู้คนเสียชีวิตมากที่สุดทั่วโลก การวินิจฉัยโรคได้อย่างแม่นยำ รวมไปถึงการรู้ล่วงหน้าถึงความเสี่ยงที่มีต่อโรคหลอดเลือดหัวใจสามารถช่วยลดความเสี่ยงในการเสียชีวิตโดยการปรับเปลี่ยนพฤติกรรมที่ส่งผลต่อสุขภาพหัวใจ เช่น การบริโภคอาหาร การออกกำลังกาย และยังช่วยให้ได้รับการรักษาที่เหมาะสมได้ซึ่งโดยทั่วไปมักจะใช้แพทย์ผู้เชี่ยวชาญในการวินิจฉัยด้วยการตรวจพื้นฐาน เช่น การซักประวัติคุณใจ สอบคลາอาการ การเอกซ์เรย์หัวใจ รวมไปถึงใช้วิธีการตรวจลิ้นไฟฟ้าหัวใจ (Electrocardiogram: ECG) เพื่อบันทึกและวิเคราะห์คุณลิ้นไฟฟ้าที่เกิดขึ้นในขณะที่หัวใจทำงาน ซึ่งเป็นวิธีที่ใช้กันอย่างแพร่หลายในการตรวจวินิจฉัยโรคหัวใจ

ในขณะที่เทคโนโลยีทางด้านปัญญาประดิษฐ์ (Artificial Intelligence: AI) สามารถนำมาประยุกต์

ใช้ให้คอมพิวเตอร์สามารถประมวลผล วิเคราะห์ผลและจำแนกผลได้ตามแต่ละประเภทที่นำไปประยุกต์ใช้งาน ซึ่งในทางการแพทย์ก็ได้มีการนำเทคโนโลยีด้านปัญญาประดิษฐ์เข้ามาช่วยด้านการวินิจฉัยโรค การบำบัด รวมไปถึงการแนะนำวิธีการรักษาเบื้องต้น การใช้ปัญญาประดิษฐ์เข้ามาประยุกต์ใช้จำแนกโรคหัวใจที่เป็นหนึ่งในแขนงที่นักจิตแพทย์ต้องการท้าทายเพื่อเพิ่มประสิทธิภาพด้านความแม่นยำในการจำแนก ด้วยการใช้เทคโนโลยีคอมพิวเตอร์ด้านอัลกอริทึม หรือกระบวนการในการแก้ปัญหาต่างๆ เข้ามาประยุกต์ใช้ร่วมกับปัญญาประดิษฐ์เพื่อให้การจำแนกโรคหัวใจมีความแม่นยำมากขึ้นซึ่งกำลังเป็นที่นิยมในปัจจุบัน ดังงานวิจัยดังต่อไปนี้

Radhika & George (2021) ใช้การเรียนรู้ของเครื่องเพื่อทำนายแนวโน้มการเกิดโรคหลอดเลือดหัวใจโดยใช้อัลกอริทึม K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Naïve Bayes

(NB), Logistic Regression (LR), Decision Tree (DT) และ Random Forest (RF) ในการทดลองใช้ ข้อมูลโรคหัวใจจาก UCI (University of California, Irvine C.A) ซึ่งมีจำนวนข้อมูล 303 ข้อมูล มีจำนวน 12 คุณสมบัติ ผลการทดลองพบว่า KNN และ RF ให้ประสิทธิภาพดีที่สุดเท่ากัน โดยมีความแม่นยำที่ร้อยละ 88.52

Chowdhury *et al.* (2021) ใช้ข้อมูลที่รวบรวมข้อมูลโดยใช้แบบสอบถาม ซึ่งมีผู้ให้ข้อมูล 564 คน โดยเป็นผู้ป่วยโรคหัวใจเดียวทั้งหมด 313 คน และคนที่มีสุขภาพดีอยู่ที่ 251 คน ในงานวิจัยใช้อัลกอริทึม DT, LR, KNN, NB และ SVM โดยอัลกอริทึมที่ให้ประสิทธิภาพสูงสุดด้วยความแม่นยำร้อยละ 91 คือ SVM

Lakshmi & Devi (2023) ใช้ชุดข้อมูลโรคหัวใจเดียวจากเว็บไซต์ Kaggle เพื่อวิเคราะห์โรคหัวใจ ข้อมูลประกอบด้วย 4238 รายการข้อมูล มีจำนวน 16 คุณสมบัติ มีการเตรียมข้อมูลด้วยการลบข้อมูลที่ไม่เหมาะสมออกจากชุดข้อมูล จำนวนนั้น จึงใช้อัลกอริทึม Whale Optimization Algorithm (EWOA) เพื่อเลือกคุณสมบัติที่เหมาะสมก่อนนำไปสร้างโมเดลที่ชื่นชอบโรคหัวใจ ในงานวิจัยใช้อัลกอริทึม SVM, RF, DT, LR และ KNN, SVM-RF (HSVRF) และ SVM-KNN (HSVKN) วิธีการจำแนกประเภทด้วยอัลกอริทึม HSVRF ให้ผลลัพธ์ที่ดีที่สุดด้วยความแม่นยำร้อยละ 85.79

Kavitha *et al.* (2021) ใช้วิธีการสร้างโมเดลไบบิริ ซึ่งเป็นเทคนิคใหม่ที่มีการระบุความน่าจะเป็นที่มาจากการเรียนรู้ของเครื่องที่นั่นเป็นอินพุตให้กับโมเดลการเรียนรู้ของเครื่องอื่น ในงานวิจัยนี้ ใช้ข้อมูลจาก UCI โดยอัลกอริทึมที่ใช้ประกอบด้วย DT, RF และ Hybrid (DT ร่วมกับ RF) ผลการทดลองพบว่าวิธีการที่นำเสนอนี้ให้ผลลัพธ์ที่ดีที่สุดด้วยความแม่นยำร้อยละ 88

Imanbek, Buribayev, & Yerkos (2023) ใช้ข้อมูลโรคหัวใจเดียวที่มี 12 คุณสมบัติ จำนวน 1,190 ข้อมูล มีการเติมข้อมูลสูญหายด้วยวิธี KNNImputer ซึ่งใช้วิธี One Hot Encoding กับข้อมูล Chest pain type, Resting ecg และ ST slope เพื่อแปลงข้อมูลแยกคุณสมบัติให้เป็นคุณสมบัติย่อย แบบใบารีตามค่าจริงของข้อมูล ในงานวิจัยใช้อัลกอริทึม RF, XGBoost (XGB) และ Light Gradient Boosting Machine (LGBM) มีการปรับแต่งไฮเปอร์พารามิเตอร์เพื่อผลลัพธ์ที่ดีที่สุดโดยใช้วิธี GridSearchCV และประเมินประสิทธิภาพของโมเดล ด้วยวิธี 5-fold cross-validation มีการคัดเลือกคุณสมบัติโดยเลือกใช้ 5 คุณสมบัติจากการพิจารณาของ RF, XGB และ LGBM ผลการทดลอง LGBM ให้ประสิทธิภาพสูงสุดให้ค่าเฉลี่ย ROC score (AUC=0.95)

Modak, Abdel-Raheem, & Rueda (2022) ใช้ข้อมูลโรคหัวใจเดียวที่มี 14 คุณสมบัติ จำนวน 1,190 ข้อมูล ใช้กระบวนการ Infinite Feature Selection เพื่อคัดเลือกคุณสมบัติ และใช้อัลกอริทึม Deep Neural Networks ในการสร้างโมเดลจำแนก และใช้ 5-fold cross-validation ในการประเมินประสิทธิภาพโมเดล ซึ่งให้ค่าความแม่นยำเฉลี่ยที่ร้อยละ 87.70

Kadhim & Radhi (2023) ใช้ข้อมูลโรคหัวใจเดียวที่มี 12 คุณสมบัติ จำนวน 1,190 ข้อมูล มีการลบข้อมูลที่มีบางคุณสมบัติไม่มีข้อมูล และลบข้อมูลสัญญาณรบกวนด้วยการพิจารณาด้วย Boxplots แบ่งข้อมูลฝึก (Training Set) 80% และข้อมูลทดสอบ (Test Set) 20% สร้างโมเดลโดยใช้ RF, SVM, KNN และ DT มีการหาค่าพารามิเตอร์ที่เหมาะสมของแต่ละโมเดลด้วย Random Search Optimization ผลการทดลองพบว่า RF ให้ประสิทธิภาพค่าความแม่นยำสูงสุดที่ร้อยละ 94.9

จะเห็นได้ว่าการเพิ่มประสิทธิภาพการจำแนก โรคหลอดเลือดหัวใจมักจะใช้อัลกอริทึมด้านปัญญาประดิษฐ์มาใช้ในการจำแนกร่วมกัน การใช้การคัดเลือกคุณสมบัติที่เหมาะสมของข้อมูลทำให้ได้โมเดลที่มีประสิทธิภาพมากกว่าการใช้ข้อมูลทั้งหมด เนื่องจากคุณลักษณะของข้อมูลบางประการไม่มีความจำเป็นที่ใช้ในการจำแนก ดังนั้นงานวิจัยนี้ใช้เทคนิคการคัดเลือกคุณสมบัติด้วยการวิเคราะห์เบย์เบย์ เชิงเส้นซึ่งเป็นวิธีการคัดเลือกคุณสมบัติโดยการพยายามรักษาข้อมูลที่ใช้ในการแยกคลาส (Class) ให้มากที่สุดและทำให้คลาสต่างๆ ถูกแยกออกจากกันมากที่สุด โดยจะหาทิศทางการวางข้อมูลในมิติใหม่ที่ทำให้ข้อมูลของคลาสต่างๆ มีความแปรปรวนภายในคลาสต่ำสุดและความแปรปรวนระหว่างคลาสสูงสุด 比べกับวิธีการที่มีแนวคิดของการคัดเลือก เลือกคุณสมบัติของข้อมูลที่แตกต่างกัน ได้แก่ ค่าสหสัมพันธ์ (Correlation-based Selection) และค่าเกนความรู้ (Information Gain) โดยค่าสหสัมพันธ์จะตัดข้อมูลที่มีความซ้ำซ้อนกันออก ค่าเกนความรู้จะคัดเลือกคุณสมบัติที่สามารถแบ่งคลาสของข้อมูลได้ดี ซึ่งจะเห็นว่าการคัดเลือกคุณสมบัติด้วยการวิเคราะห์เบย์เบย์เชิงมีการมองข้อมูลในมิติใหม่และมีเงื่อนไขในการคัดเลือกคุณสมบัติที่ซับซ้อนกว่าค่าสหสัมพันธ์ และค่าเกนความรู้ ในงานวิจัยนี้ใช้เทคโนโลยีปัญญาประดิษฐ์เพื่อสร้างโมเดลที่ใช้สำหรับการจำแนกข้อมูลผู้ป่วยโรคหลอดเลือดหัวใจ ได้แก่ การถดถอยโลจิสติกส์ (Logistic Regression: LR) ชัพพอร์ตเวอร์แมชีน (Support Vector Machine: SVM) และโครงข่ายประสาทเทียม (Artificial Neural Network: ANN)

2. ปริทัศน์และวรรณกรรมที่เกี่ยวข้อง

2.1 ค่าสหสัมพันธ์ (Correlation Coefficient)

ค่าสหสัมพันธ์ เป็นกระบวนการสำหรับหาความสัมพันธ์ระหว่างตัวแปรสองตัว โดยพิจารณา

ว่าตัวแปรที่มาจากการแผลงเดียวกันมีความสัมพันธ์หรือมีความแปรปรวนร่วมกันมากหรือน้อยเพียงใด ซึ่งความแปรปรวนร่วมเป็นตัวชี้วัดความเปลี่ยนแปลงของตัวแปรทั้งสองมีการเปลี่ยนแปลงตามกันมากน้อยเพียงใด โดยพบว่า หากมีความแปรปรวนร่วมกันมากหมายความว่าตัวแปรทั้งสองตัวนั้นมีความสัมพันธ์กันสูงมาก ในขณะที่หากตัวแปรทั้งสองตัวมีความแปรปรวนร่วมกันน้อย สามารถตีความได้ว่าตัวแปรทั้งสองตัวมีความสัมพันธ์กันต่ำ และหากตัวแปรทั้งสองตัวไม่มีความสัมพันธ์กันก็จะส่งผลให้ตัวแปรทั้งสองไม่มีความแปรปรวนร่วมกัน

การหาค่าสหสัมพันธ์แบบเพียร์สัน (Pearson Product Moment Correlation) จะใช้หาความสัมพันธ์ระหว่างตัวแปรสองตัวที่มีความสัมพันธ์เป็นเส้นตรง (Linear Relationship) โดยสามารถหาค่าสหสัมพันธ์แบบเพียร์สันได้ดังสมการที่ 1

$$r = \frac{\sum(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum(x_i - \bar{x})^2 \sum(y_i - \bar{y})^2}} \quad (1)$$

โดยที่

r คือ ค่าสหสัมพันธ์

x_i, y_i คือ ค่าของตัวแปร x และ y ลำดับที่ i ในชุดข้อมูล

\bar{x}, \bar{y} คือ ค่าเฉลี่ยของตัวแปร x และ y

ค่าสหสัมพันธ์จะมีค่าอยู่ระหว่าง -1 ถึง 1 โดยเครื่องหมาย + และ - จะแสดงทิศทางของความสัมพันธ์กัน หากความสัมพันธ์มีค่าเป็นบวก หมายความว่าตัวแปรทั้งสองตัวมีความสัมพันธ์ในเชิงแปรผันร่วมกัน แต่หากความสัมพันธ์เป็นในทิศทางตรงกันข้าม หรือผกผันกัน จะส่งผลให้ค่าสหสัมพันธ์มีค่าเป็นลบ สำหรับการแปรความหมายเชิงปริมาณของ

ตาราง 1 การแปลความหมายประมาณของค่าสหสัมพันธ์

ค่าสหสัมพันธ์	การตีความ
0.0 – 0.09	มีความสัมพันธ์เล็กน้อย
0.10 – 0.39	มีความสัมพันธ์ต่ำ
0.40 - 0.69	มีความสัมพันธ์ปานกลาง
0.70 – 0.89	มีความสัมพันธ์สูง
0.90 – 1.00	มีความสัมพันธ์สูงมาก

ค่าสหสัมพันธ์ (Schober, Boer, & Schwarte, 2018)

แสดงดังตาราง 1

μ_i คือ ค่าเฉลี่ยของข้อมูลแต่ละกลุ่ม

μ คือ ค่าเฉลี่ยของข้อมูลทั้งหมด

2.2 การวิเคราะห์แยกแยะเชิงเส้น (Linear Discriminant Analysis: LDA)

การวิเคราะห์แยกแยะเชิงเส้น เป็นอัลกอริทึมการเรียนรู้ของเครื่องที่ใช้ในการจำแนกข้อมูลตั้งแต่ 2 กลุ่มข้อมูลเข้าไป โดยจะใช้เทคนิคการเรียนรู้แบบมีผู้ฝึกสอน ซึ่งหลักการทำงานจะคล้ายคลึงกับการคัดเลือกคุณลักษณะด้วยการวิเคราะห์องค์ประกอบหลัก (Principle Component Analysis: PCA) เพียงแต่การวิเคราะห์แยกแยะเชิงเส้นจะนำคำอธิบาย (Label) ของข้อมูลมาพิจารณาร่วมด้วย และปรับปรุงเงื่อนไขสำหรับการหาเมทริกซ์ด้วยการหาค่าความแปรปรวนระหว่างกลุ่ม (Covariance between Group: S_B) กับค่าความแปรปรวนร่วมภายในกลุ่ม (Covariance within Group: S_W) สูงสุด แสดงดังสมการที่ 2 และ 3

$$S_W = \sum_{j=1}^c \sum_{i=1}^{n_j} (x_{ij} - \mu_i)(x_{ij} - \mu_i)^T \quad (2)$$

$$S_B = \sum_{i=1}^c (\mu_i - \mu)(\mu_i - \mu)^T \quad (3)$$

โดยที่

c คือ จำนวนกลุ่ม

x_{ij} คือ ข้อมูลตัวที่ i ในกลุ่มที่ j

เมื่อหาอัตราส่วนระหว่างค่าความแปรปรวนระหว่างกลุ่มและค่าความแปรปรวนร่วมภายในกลุ่มแล้ว จึงนำค่าที่ได้ไปหาค่าไอegen (Eigenvalues) (Tharwat et al., 2017) แสดงดังสมการที่ 4 โดยค่าไอegenจะใช้บ่งบอกถึงความสำคัญของแต่ละคุณสมบัติในชุดข้อมูล ซึ่งจะนำค่านี้มาพิจารณาเพื่อลดมิติข้อมูล

$$S_w w = \lambda S_B w \quad (4)$$

โดยที่

S_w คือ ค่าความแปรปรวนร่วมภายในกลุ่ม

S_B คือ ค่าความแปรปรวนระหว่างกลุ่ม

w หาค่าได้จาก $w = S_w^{-1} S_B$

λ คือ ค่าไอegen

2.3 การถดถอยโลจิสติกส์ (Logistic Regression: LR)

การถดถอยโลจิสติกส์เป็นเทคนิควิเคราะห์ทางสถิติที่ใช้สำหรับการทำนายเหตุการณ์ที่สนใจ

ว่าจะเกิดขึ้นหรือไม่ มีหลักการทำนายคล้ายคลึงกับการวิเคราะห์การถดถอยเชิงเส้น การถดถอยโลจิสติกส์ จะทำการวิเคราะห์หาความสัมพันธ์ของตัวแปรในรูปแบบความน่าจะเป็นของการเกิดเหตุการณ์ที่สนใจ (Stoltzfus, 2011) โดยการวิเคราะห์การถดถอยโลจิสติกส์จะประกอบไปด้วยตัวแปรทำนาย (ตัวแปรต้น) และตัวแปรผล (ตัวแปรตอบสนอง)

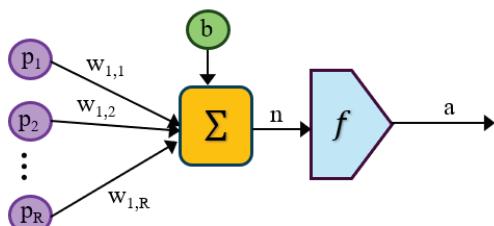
ในการวิเคราะห์การถดถอยโลจิสติกส์ จะใช้ตัวแปรทำนายเพื่อทำนายโอกาสในการเกิดตัวแปรผล โดยอาศัยโอกาสความน่าจะเป็นของตัวแปรทำนายเพื่อหาความน่าจะเป็นที่จะเกิดค่าแต่ละค่าของตัวแปรผล ในกรณีที่มีตัวแปรทำนาย 1 ตัวจะเรียกว่า การวิเคราะห์การถดถอยเชิงเส้นโลจิสติกส์อย่างง่าย (Simple Logistic Regression) แต่หากมีตัวแปรทำนายมากกว่า 1 ตัวขึ้นไปจะเรียกว่า การวิเคราะห์การถดถอยโลจิสติกส์เชิงพหุ (Multiple Logistic Regression) เมื่อพิจารณาที่ตัวแปรผลถ้าตัวแปรผลมีค่าที่เป็นไปได้เพียงสองค่าเท่านั้น เช่น การศึกษาการเป็นโรคหลอดเลือดหัวใจ ตัวแปรผล y มีค่าเป็น 1 คือป่วย และ y มีค่าเป็น 0 คือไม่ป่วย จะเรียกว่า การวิเคราะห์การถดถอยโลจิสติกส์แบบสองกลุ่ม (Binary Logistic Regression) แต่ถ้าตัวแปรผลมีค่ามากกว่า 2 ค่า จะเรียกว่า การวิเคราะห์การถดถอยโลจิสติกส์แบบหลายกลุ่ม (Multinomial Logistic Regression) และสมการถดถอยโลจิสติกส์ดังสมการที่ 5

$$\hat{Y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_i x_i \quad (5)$$

โดยที่

\hat{Y} คือ การประมาณค่าตัวแปรผล หรือตัวแปรตอบสนอง

β_n คือ ค่าสัมประสิทธิ์ความถดถอยของตัวแปรทำนายตัวที่ n


x_i คือ ค่าของตัวแปรทำนายตัวที่ i

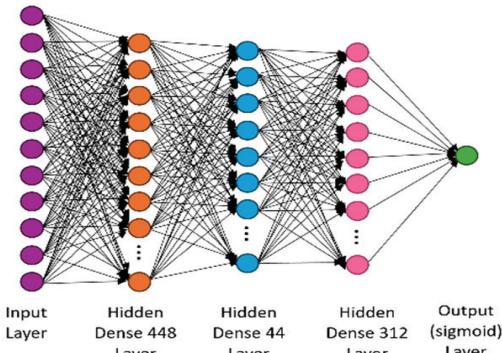
2.4 โครงข่ายประสาทเทียม (Artificial Neural Network: ANN)

โครงข่ายประสาทเทียม เป็นการจำลองการทำงานของเครือข่ายประสาทในสมองของมนุษย์ ด้วยแบบจำลองทางคณิตศาสตร์ซึ่งมีการปรับเปลี่ยนตัวเองต่อการตอบสนองของข้อมูลนำเข้าหรือค่าอินพุต ตามกฎการเรียนรู้ (Learning Rule) หลังจากที่เครือข่ายได้เรียนรู้สิ่งที่ต้องการ เครือข่ายนั้นจะสามารถทำงานที่กำหนดได้ได้ เป็นแนวความคิดที่ต้องการให้คอมพิวเตอร์มีความสามารถในการเรียนรู้เหมือนมนุษย์ สมองมนุษย์มีนิรwonหรือเซลล์ประสาท ซึ่งเป็นหน่วยประมวลผลที่มีการเชื่อมต่อกันมากมายอยู่ในสมองมนุษย์มีประมาณ 10^{11} นิรwon จึงสามารถกล่าวได้ว่าสมองมนุษย์เป็นคอมพิวเตอร์ที่มีการปรับตัวเอง (Adaptive) ไม่เป็นเชิงเส้น (Nonlinear) และมีการทำงานแบบขนาน (Parallel) ในการจัดการการทำงานร่วมกันของนิรwon

คุณลักษณะเด่นของโครงข่ายประสาทเทียมคือ โครงข่ายจะประกอบไปด้วยหน่วยประมวลผลอยู่ๆ ซึ่งเชื่อมต่อบนแบบขนานเป็นจำนวนมาก ในหน่วยประมวลผลอยู่แต่ละหน่วยมีโครงสร้างง่ายๆ และไม่ค่อยมีความสามารถ แต่เมื่อหน่วยประมวลผลอยู่ๆ เหล่านี้ทำงานร่วมกันแบบกระจายทำให้โครงข่ายประสาทเทียมจะมีการทำงานที่มีประสิทธิภาพ โครงข่ายจะมีการเชื่อมต่อด้วยหน่วยประมวลผลอยู่ๆ จำนวนมาก ถ้าเครือข่ายบางส่วนเสียหาย แต่การทำงานของโครงข่ายประสาทเทียมจะยังคงสามารถทำงานได้ คุณสมบัติที่เด่นสุดคือ สามารถเรียนรู้และแก้ไขปัญหาได้อย่างมีประสิทธิภาพ จากการเรียนรู้ด้วยตัวอย่างข้อมูลบางส่วนนำไปสู่การตอบสนองต่อข้อมูลอินพุตที่เข้ามาใหม่

โครงข่ายประสาทเทียมประกอบไปด้วยเซตของโนนดและเส้นเชื่อมระหว่างโนนด โดยที่โนนดจะแบ่งเป็น 3 ระดับ ได้แก่ ชั้นอินพุต (Input layer) ชั้นซ่อน (Hidden layer) และชั้นเอาท์พุต (Output

ภาพประกอบ 1 โครงข่ายประสาทเทียมหนึ่งหน่วยแบบหลายอินพุต


layer) ที่ชั้นซ่อนอาจจะมีได้มากกว่า 1 ชั้นขึ้นอยู่กับการออกแบบโครงข่าย โดยสถาปัตยกรรมของโครงข่ายประสาทเทียมภายในโครงข่ายจะมีสีน้ำเงินจากทุกโนน์ในชั้นอินพุตไปยังทุกโนน์ในชั้นซ่อนและมีสีน้ำเงินจากทุกโนน์ในชั้นซ่อนไปยังทุกโนน์ในชั้นเอาท์พุต โดยที่สีน้ำเงินแต่ละสีจะมีค่าน้ำหนัก (Weight) โครงข่ายประสาทเทียมหนึ่งหน่วยสามารถมีหลายอินพุตได้ (Chanklan, 2017) แสดงโครงข่ายประสาทเทียมหนึ่งหน่วยดังภาพประกอบ 1

การทำงานของแต่ละโนน์เดียวกับได้กับเซลล์ประสาทในสมองมนุษย์ 1 เซลล์ อินพุตที่เข้าสู่โนน์จะเป็นเวกเตอร์ของคุณสมบัติของข้อมูลตัวอย่างมีค่า $p = [p_1, p_2, \dots, p_R]$ ซึ่งเป็นค่าอินพุตที่ถูกป้อนมีจำนวน R องค์ประกอบ และเวกเตอร์น้ำหนัก $W = [w_1, w_2, \dots, w_R]$ มีค่าเฉลี่ยหรือไบแอส b นำอินพุตมาคูณกับน้ำหนักของแต่ละสีน้ำเงิน ผลที่ได้จากอินพุตทุกๆ สีน้ำเงินของโนน์จะนำมารวมกันและรวมกับค่าไบแอสแล้วส่งต่อไปยังฟังก์ชันถ่ายโอน (Transfer Function) ซึ่งก็คือเป็นค่าเอาท์พุต a ในที่นี้ f เป็นฟังก์ชันถ่ายโอนที่หน้าที่รับค่าอินพุต n เพื่อเปลี่ยนเป็นค่าเอาท์พุต a ค่าเอาท์พุต a สามารถคำนวณได้จากสมการที่ 6

$$a = f(n) = f(Wp + b) \quad (6)$$

โดยที่

f คือ ฟังก์ชันถ่ายโอน

ภาพประกอบ 2 โครงข่ายประสาทเทียมที่ใช้งานวิจัย

W คือ เวกเตอร์น้ำหนัก

b คือ ค่าไบแอส

p คือ ค่าอินพุต หรือข้อมูลนำเข้า

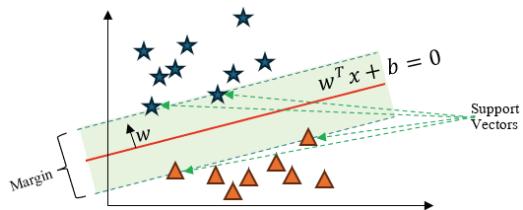
สำหรับงานวิจัยนี้ได้ออกแบบโครงสร้างของโครงข่ายประสาทเทียมที่ใช้ในการทดลองโดยหาโครงข่ายประสาทเทียมที่เหมาะสมกับข้อมูลโดยใช้แบบจำลองไฮเปอร์พารามิเตอร์ด้วย Keras Tuner เพื่อกำหนดจำนวนและความกว้างของเลเยอร์ที่ชั้นอยู่ โดยกำหนดจำนวนโนน์โดยอยู่ในช่วง 8-512 และจำนวน 3 ชั้นเลเยอร์ และกับหน่วยการโดยได้โครงข่ายประสาทเทียมที่ใช้ในงานวิจัยมีรายละเอียดดังนี้:

ชั้นแรก (Input Layer): มี 11 โนน์ และใช้ฟังก์ชันการกระตุ้น $relu$ โดยรับข้อมูลจากจำนวนโนน์ขึ้นอยู่กับขนาดของข้อมูลนำเข้า

ชั้นที่สอง: มี 448 โนน์ ใช้ฟังก์ชันการกระตุ้น $relu$

ชั้นที่สาม: มี 44 โนน์ ใช้ฟังก์ชันการกระตุ้น $relu$

ชั้นที่สี่: มี 312 โนน์ ใช้ฟังก์ชันการกระตุ้น $relu$


ชั้นสุดท้าย (Output Layer): มี 1 โหนดใช้ฟังก์ชันการกระตุ้น sigmoid ซึ่งใช้สำหรับการจำแนกประเภทแบบบинаรี

โครงข่ายนี้จะรับข้อมูลนำเข้าผ่านชั้นแรกและผ่านการประมวลผลต่อเนื่องผ่านชั้นต่างๆ จนถึงชั้นสุดท้ายที่จะให้ผลลัพธ์เป็นค่าความน่าจะเป็นระหว่าง 0 ถึง 1 สำหรับการจำแนกประเภทสองกลุ่ม โดยมีค่า learning rate=0.001 และงูปโครงข่ายได้ดังภาพประกอบ 2

2.5 ชั้พพอร์ตเวกเตอร์แมชชีน (Support Vector Machine: SVM)

ชัพพอร์ตเวกเตอร์แมชชีน เป็นอัลกอริทึมที่ใช้ในการจำแนกประเภทข้อมูลในแต่ละคลาสที่ได้รับความนิยมมาก (Hearst *et al.*, 1998) เนื่องจากมีความสามารถในการจำแนกประเภทข้อมูลแต่ละคลาสได้อย่างมีประสิทธิภาพและมีความแม่นยำสูง โดยหลักการสำคัญของอัลกอริทึมชัพพอร์ตเวกเตอร์แมชชีนคือการสร้างเส้นแบ่ง (Hyperplane) เพื่อแบ่งแยกประเภทข้อมูลที่ต่างชนิดกันให้แยกออกจากกัน

ในการสร้างเส้นแบ่งของชัพพอร์ตเวกเตอร์แมชชีนเพื่อใช้ในการจำแนกข้อมูล จะสร้างเส้นแบ่งข้อมูลที่มีระยะห่างระหว่างข้อมูลมากที่สุด ซึ่งจะอาศัยเวกเตอร์ถ่วงน้ำหนัก w (Weight Vector) เป็นตัวกำหนดพิธิทางและใช้กำหนดความเสี่ยงของระนาบ (Hyperplane) ซึ่งเวกเตอร์ w จะตั้งฉากกับเส้นแบ่ง และข้อมูลจะถูกแบ่งให้อยู่ในรูปแบบเวกเตอร์ x สำหรับการตีความว่าข้อมูลใดนั้นจะถูกกำหนดเป็นแบ่งข้อมูลออกเป็นประเภท (หรือ คลาส) 1 หรือ -1 นั้นจะกำหนดจากตัวแปร y โดยสามารถแสดงสมการในการหาคลาสข้อมูลดังสมการที่ 7

ภาพประกอบ 3 เส้นแบ่งสำหรับแบ่งข้อมูลด้วยอัลกอริทึมชัพพอร์ตเวกเตอร์แมชชีน

$$w^T x + b \geq 1, \text{ เมื่อ } y_i = +1 \quad (7)$$

$$w^T x + b \leq 1, \text{ เมื่อ } y_i = -1$$

เมื่อ

w คือ เวกเตอร์ถ่วงน้ำหนัก (Weight Vector)

b คือ ค่าไบแอส (Bias)

x คือ ข้อมูลที่จุดใดๆ

โดยกราฟแสดงการสร้างเส้นแบ่งสำหรับแบ่งข้อมูลด้วยอัลกอริทึมชัพพอร์ตเวกเตอร์แมชชีน ในภาพประกอบ 3

2.6 เกณฑ์ความรู้ (Information Gain: IG)

เกณฑ์ความรู้เป็นวิธีการคำนวณค่าน้ำหนักเพื่อใช้คัดเลือกคุณสมบัติ โดยการคัดเลือกคุณสมบัติจะเลือกคุณสมบัติที่มีเกณฑ์ความรู้ที่มีค่าสูง การคำนวณค่า Information Gain จะต้องใช้ค่า Entropy ใน การคำนวณ ซึ่งค่า Entropy เป็นการวัดความไม่เป็นระเบียบหรือความแตกต่างของข้อมูลมีค่าตั้งแต่ 0 ถึง 1 ถ้าค่า Entropy สูงจะหมายถึงข้อมูลมีความแตกต่างหรือกระจายตัวมาก โดยค่า Entropy ของแต่ละกลุ่มในชุดข้อมูลคำนวณได้ดังสมการที่ 8

$$\text{Entropy (Condition)} = -\sum_{n=1}^k (\text{Prob}(C_n) \times \log_2(\text{Prob}(C_n))) \quad (8)$$

เมื่อ

k คือ จำนวนกลุ่มของข้อมูลทั้งหมด

C_n คือ กลุ่มของข้อมูล n โดยที่ n มีค่าตั้งแต่ $1, 2, 3, \dots, k$

$\text{Prob}(C_n)$ คือ ความน่าจะเป็นกลุ่มของข้อมูลที่สนใจ

เมื่อคำนวนหาค่า Entropy เรียบร้อยแล้ว จึงคำนวนค่าเงนความรู้ของแต่ละคุณสมบัติได้ดังสมการที่ 9

$$IG = \text{Entropy}(\text{Parent}) - \sum_{i=1}^k (\text{Prob}(C_i) \times \text{Entropy}(C_i)) \quad (9)$$

เมื่อ

$\text{Entropy}(\text{Parent})$ คือ ผลรวมของค่า Entropy ของแต่ละกลุ่มข้อมูลในแต่ละคุณสมบัติ

C_i คือ กลุ่มของข้อมูล n โดยที่ n มีค่าตั้งแต่ $1, 2, 3, \dots, k$

2.7 /confusion matrix (Confusion Matrix)

/confusion matrix เป็นตารางที่ใช้ในการประเมินประสิทธิภาพของผลลัพธ์ในการทำนายหรือค่าที่คาดการณ์ (Prediction) ซึ่งผลลัพธ์การทำนายจะได้รับจากโมเดลที่สร้างขึ้นจากอัลกอริทึมการเรียนรู้ของเครื่อง (Ting, 2011) โดยจะเป็นตารางที่แสดงค่าสัดส่วนระหว่างค่าจริง (Actual) เปรียบเทียบกับผลลัพธ์การทำนาย ในตารางซึ่งของ/confusion matrix จะประกอบไปด้วยค่า True Positive (TP), False Negative (FN), True Negative (TN) และ False Positive (FP) แสดงดังภาพประกอบ 4

โดย ค่า True Positive (TP) คือ จำนวนที่โมเดลทำนายว่า Yes ได้ถูกต้องตรงกับค่าจริง

ค่า False Negative(FN) คือ จำนวนที่โมเดลทำนายว่า No ซึ่งทำนายผิด เพราะค่าจริงคือ Yes

ค่า True Negative (TN) คือ จำนวนที่โมเดลทำนายว่า No ได้ถูกต้องตรงกับค่าจริง

ค่า False Positive (FP) คือ จำนวนที่โมเดลทำนายว่า Yes ซึ่งทำนายผิด เพราะค่าจริงคือ No

สามารถคำนวณค่าในตาราง/confusion matrix คำนวณหาค่าความถูกต้อง (Accuracy) เพื่อประเมิน

age	sex	chest pain type	resting bp	s	cholesterol	fasting blood sugar	resting ecg	max heart rate	exercise	angina	oldpeak	ST slope
0	40	1	2	140	289	0	0	172	0	0.00	1	
1	49	0	3	160	180	0	0	156	0	1.00	2	
2	37	1	2	130	283	0	1	98	0	0.00	1	
3	48	0	4	138	214	0	0	108	1	1.50	2	
4	54	1	3	150	195	0	0	122	0	0.00	1	
5	39	1	3	120	339	0	0	170	0	0.00	1	
6	45	0	2	130	237	0	0	170	0	0.00	1	
7	54	1	2	110	208	0	0	142	0	0.00	1	
8	37	1	4	140	207	0	0	130	1	1.50	2	
9	48	0	2	120	284	0	0	120	0	0.00	1	

ภาพประกอบ 5 ตัวอย่างข้อมูลโรคหลอดเลือดหัวใจ

		Actual	
		Yes	No
Predict	Yes	TP	FP
	No	FN	TN

ภาพประกอบ 4 ตารางคุณพิวชันเมทริกซ์

ประสิทธิภาพการคำนวณของโมเดลได้ในสมการที่ 10

$$\text{Accuracy} = \frac{(TP+TN)}{(TP+FP+TN+FN)} \quad (10)$$

3. ขั้นตอนดำเนินการ

ในงานวิจัยนี้ผู้วิจัยใช้ชุดข้อมูลโรคหลอดเลือดหัวใจจาก <https://ieee-dataport.org/open-access/heart-disease-dataset-comprehensive> ซึ่งเป็นข้อมูลที่ได้รวบรวมข้อมูลจาก 5 ชุดข้อมูลโดยข้อมูลนี้มีทั้งหมด 1,190 รายการโดยไม่มีข้อมูลสูญหาย (Missing Value) ประกอบไปด้วยตัวอย่างข้อมูลนักปอด (ไม่เป็นโรคหลอดเลือดหัวใจ) จำนวน 561 รายการ และผู้ป่วยโรคหลอดเลือดหัวใจจำนวน 629 รายการ ซึ่งงานวิจัยนี้จะแบ่งข้อมูลออกเป็น 2 ส่วน โดยใช้สัดส่วน 70:30 ซึ่งร้อยละ 70 ของข้อมูลคิดเป็นจำนวน 833 ข้อมูลจะถูกใช้สำหรับฝึกสอนเพื่อหารูปแบบของข้อมูล และข้อมูลทดสอบจำนวน 357 ข้อมูลคิดเป็นร้อยละ 30 ของข้อมูลทั้งหมด ซึ่งข้อมูลที่นำมาใช้มีจำนวนคุณสมบัติทั้งหมด 12 คุณสมบัติโดยแสดงตัวอย่างของข้อมูลดังภาพประกอบ 5 ชุด ข้อมูลโรคหลอดเลือดหัวใจมีจำนวนข้อมูลมากที่สุดเพื่อวัดคุณสมบัติในการวิจัยและวินิจฉัยโรคหลอดเลือดหัวใจ โดยชุดข้อมูลทั้ง 5 ชุด มีแหล่งที่มาดังต่อไปนี้

1. Cleveland Dataset: ชุดข้อมูลนี้มาจาก Cleveland Clinic Foundation โดยเป็นข้อมูลได้รับจากผู้ป่วยที่เข้ารับการตรวจที่โรงพยาบาล Cleveland Clinic ในช่วงปี 1988-1991 ชุดข้อมูลนี้มีจำนวนตัวอย่างทั้งหมด 303 รายการ

2. Hungarian Dataset: ชุดข้อมูลนี้รวบรวมจาก Institute of Cardiology, University of Debrecen, Hungary เป็นข้อมูลที่ได้รับจากผู้ป่วยที่เข้ารับการตรวจที่โรงพยาบาลในประเทศฮังการี ชุดข้อมูลนี้มีจำนวนตัวอย่างทั้งหมด 294 รายการ

3. Switzerland Dataset: ชุดข้อมูลนี้มาจาก University Hospital Zurich ในประเทศสวิตเซอร์แลนด์ ซึ่งเป็นข้อมูลจากผู้ป่วยที่เข้ารับการตรวจที่โรงพยาบาล ชุดข้อมูลนี้มีจำนวนตัวอย่างทั้งหมด 123 รายการ

4. Long Beach VA Dataset: ชุดข้อมูลนี้มาจาก Long Beach Veterans Administration Medical Center เป็นข้อมูลจากผู้ป่วยที่เข้ารับการตรวจที่โรงพยาบาลในเมือง Long Beach ที่รัฐ California ชุดข้อมูลนี้มีจำนวนตัวอย่างทั้งหมด 200 รายการ

5. Statlog (Heart) Data Set: ชุดข้อมูลนี้ได้รับมาจาก Statlog Project ประกอบไปด้วยข้อมูลจากผู้ป่วยที่เข้ารับการตรวจที่โรงพยาบาลในประเทศอังกฤษ ชุดข้อมูลนี้มีจำนวนตัวอย่างทั้งหมด 270 รายการ

เมื่อรวมรวมข้อมูลโรคหลอดเลือดหัวใจทั้ง 5 ชุด ทำให้ได้ชุดข้อมูลที่ประกอบไปด้วยคุณสมบัติทั้งหมด 12 คุณสมบัติซึ่งมีรายละเอียดของแต่ละคุณสมบัติดังต่อไปนี้:

1. age: อายุของผู้ป่วย (ปี)
2. sex: เพศ (1 = ชาย, 0 = หญิง)
3. chest pain type: ประเภทของอาการเจ็บหน้าอกร (1 = อาการเจ็บหน้าอกรที่เกิดขึ้นจากการขับปัสสาวะ, 2 = อาการเจ็บหน้าอกรที่เกิดขึ้นจากการเดินขึ้นบันไดหรือการเดินขึ้นเนิน, 3 = อาการเจ็บหน้าอกรที่ไม่มีการเคลื่อนไหว, 4 = อาการเจ็บหน้าอกรที่มีการเคลื่อนไหว)

4. resting bp s: ความดันโลหิตในช่วงการทดสอบ (mm Hg)

5. cholesterol: ระดับคอเลสเตอรอลในเลือด (mg/dl)

6. fasting blood sugar: ระดับน้ำตาลในเลือดที่เกินเกณฑ์ปกติ (1 = เกินเกณฑ์ปกติ, 0 = ไม่เกินเกณฑ์ปกติ)

7. resting ecg: ผลการตรวจ ECG (คลื่นไฟฟ้าหัวใจ (Electrocardiogram)) ในช่วงการทดสอบ (0 = ปกติ, 1 = มีความผิดปกติที่ ST-T, 2 = มีความผิดปกติที่ ST-T และความผิดปกติที่ Q)

8. max heart rate: อัตราการเต้นของหัวใจสูงสุดในช่วงการทดสอบ (ครั้งต่อนาที)

9. exercise angina: อาการเจ็บหน้าอกที่เกิดขึ้นในช่วงการทดสอบ (1 = มี, 0 = ไม่มี)

10. oldpeak: ค่าที่ลดลงของ ST depression ในคลื่นไฟฟ้าของ ECG ที่เกิดขึ้นในช่วงการทดสอบ (เมื่อเทียบกับการพักฟื้น) มีหน่วยเป็น mm (มิลลิเมตร) โดยค่าที่มากขึ้นอาจแสดงถึงความรุนแรงของโรคหัวใจ

11. ST slope: ความลาดของค่า ST segment ในคลื่นไฟฟ้าของ ECG ที่เกิดขึ้นในช่วงการทดสอบ (1 = ลาดขึ้น, 2 = ลาดเรียบ, 3 = ลาดลง)

12. target: เป็นโรคหลอดเลือดหัวใจหรือไม่ (0=ปกติ, 1=เป็นโรคหลอดเลือดหัวใจ)

งานวิจัยนี้ใช้ภาษา Python บน Google Colab ในการทดลองโดยมีขั้นตอนการดำเนินงานดังนี้

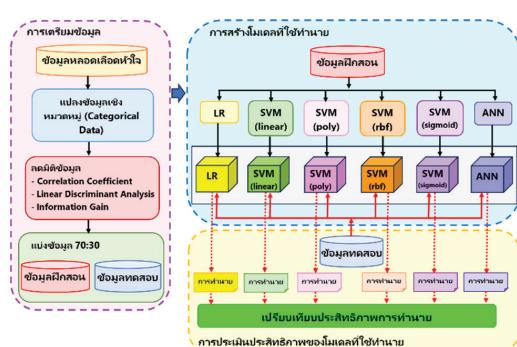
1. การเตรียมข้อมูล จะดำเนินโดยการพิจารณาข้อมูลทั้งหมดทั้ง 12 คุณสมบัติเพื่อแยกคุณสมบัติที่ข้อมูลเป็นข้อมูลเชิงตัวเลข (Numeric Data) และข้อมูลเชิงหมวดหมู่ (Categorical Data) จากนั้นทำการแปลงข้อมูลคุณสมบัติเชิงหมวดหมู่ แปลงข้อมูลให้เป็นรูปแบบที่สามารถใช้กับอัลกอริ

ทึมการเรียนรู้ของเครื่องได้ dummy variables โดยการสร้างคอลัมน์ใหม่สำหรับแต่ละค่าหมวดหมู่ และกำหนดค่าในคอลัมน์นั้นเป็น 1 หากข้อมูลในแคว้นนั้น ตรงกับค่าหมวดหมู่ที่คอลัมน์นั้นแทน และเป็น 0 หากไม่ตรง

2. ลดมิติข้อมูลด้วยการคัดเลือกคุณสมบัติที่เหมาะสมโดยใช้การหาค่าสหสัมพันธ์ ค่าเกณฑ์ความรู้ และการวิเคราะห์แยกแยะเชิงสัน โดยเลือกคุณสมบัติจำนวน 5 คุณสมบัตินามาใช้เป็นตัวแทนของข้อมูล

3. การแบ่งข้อมูล ดำเนินการโดยสุ่มแบ่งชุดข้อมูลออกเป็นชุดสำหรับการฝึก (Training set) 70% และชุดสำหรับการทดสอบ (Test set) 30% การแบ่งข้อมูลลักษณะนี้ช่วยให้สามารถประเมินประสิทธิภาพของโมเดลได้อย่างเป็นกลาง เพราะแบ่งข้อมูลสำหรับการฝึกเพื่อสร้างโมเดลในการการทำงาน และใช้ข้อมูลสำหรับการทดสอบเพื่อประเมินประสิทธิภาพซึ่งข้อมูลชุดนี้จะทำหน้าที่เป็นตัวแทนของข้อมูลใหม่ที่โมเดลไม่เคยเห็นมาก่อน ทำให้การประเมินประสิทธิภาพของโมเดลมีความน่าเชื่อถือ

4. การสร้างโมเดล เมื่อได้คุณสมบัติที่เป็นตัวแทนของข้อมูลจากวิธีการคัดเลือกคุณสมบัติในแต่ละวิธีแล้ว จะนำข้อมูลเข้าสู่กระบวนการจำแนก ด้วยอัลกอริทึมด้านการเรียนรู้ของเครื่อง ได้แก่ LR, ANN และ SVM โดยใช้ 4 เครื่องเรียน (Kernel) ได้แก่ Radial Basis Function (RBF), Linear, Polynomial และ Sigmoid

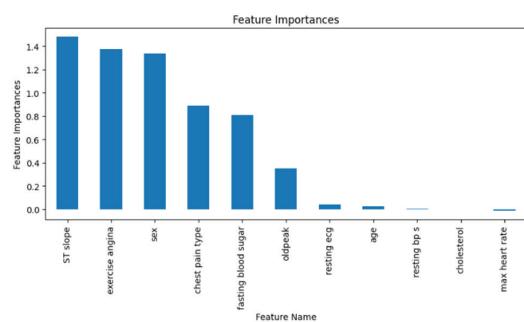

5. การเปรียบเทียบประสิทธิภาพ ในการทำงาน ในการทดลองจะเปรียบเทียบประสิทธิภาพการทำงานของโมเดลที่เกิดจากอัลกอริทึมที่ก่อตัวข้างต้น โดยสร้างโมเดลจากข้อมูลนำเข้า 4 แบบ ได้แก่ ข้อมูลตั้งเดิม ข้อมูลที่ถูกคัดเลือกคุณสมบัติด้วยวิธีการค่าสหสัมพันธ์ ค่าเกณฑ์ความรู้ และวิเคราะห์แยกแยะเชิงสัน ที่นำเสนอ ในการพิจารณาเปรียบเทียบประสิทธิภาพ จะใช้ค่าความถูกต้องในการทำงาน โดยแสดงวิธีการดำเนินการวิจัยดังภาพประกอบ 6

4. ผลการศึกษาและอภิรายผล

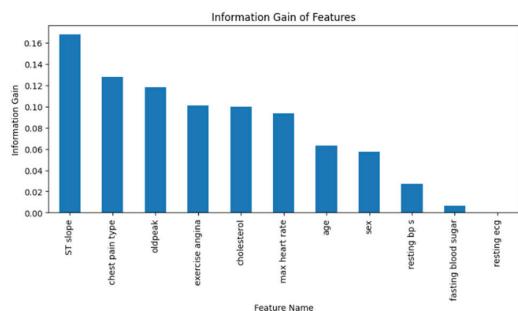
ในการคัดเลือกคุณลักษณะด้วยการใช้อัลกอริทึมในการคัดเลือกคุณลักษณะจำนวน 2 อัลกอริทึม ดังต่อไปนี้

การคัดเลือกคุณลักษณะด้วยค่าสหสัมพันธ์ โดยใช้ความสัมพันธ์ระหว่างข้อมูลแต่ละคุณลักษณะ เพื่อพิจารณาความสัมพันธ์กัน ซึ่งค่าที่ได้จะมีค่าอยู่ระหว่าง -1 ถึง 1 ซึ่งหากค่าสัมบูรณ์ของค่าสหสัมพันธ์ที่ได้มีค่าสูง จะสามารถตีความได้ว่า คุณสมบัติทั้งสองมีความสัมพันธ์กันสูง เช่นกัน โดยเครื่องหมายจะบ่งบอกถึงทิศทางของความสัมพันธ์ว่ามีความสัมพันธ์กันในทิศทางใด โดยผลการวิเคราะห์ค่าสหสัมพันธ์ของข้อมูลโรคหลอดเลือดหัวใจแสดงในภาพประกอบ 7 โดยคัดเลือกคุณลักษณะที่มีค่าสัมบูรณ์ของค่าสหสัมพันธ์ที่มีค่าสูงกว่า 0.4 นั้นหมายความว่าคุณสมบัติที่เลือกเหล่านี้จะมีความสัมพันธ์กันระดับปานกลางขึ้นไป โดยจะดูความสัมพันธ์ทุกคู่คุณสมบัติที่เป็นไปได้ ทำให้ได้คุณสมบัติที่สามารถนำไปใช้งานทั้งสิ้น 4 คุณลักษณะได้แก่ chest pain type, exercise angina, oldpeak และ ST slope

การคัดเลือกคุณลักษณะด้วยการวิเคราะห์แยกแยะเชิงเส้น โดยแสดงค่าไอเกนที่ใช้ในการบ่งบอกถึงความสำคัญของแต่ละคุณสมบัติในชุดข้อมูลทั้ง 12 คุณสมบัติ โดยผลการวิเคราะห์ความสัมพันธ์แสดงดังภาพประกอบ 8 โดยค่าไอเกนแสดงถึงปริมาณ


ภาพประกอบ 6 กรอบแนวคิดงานวิจัย

ความแปรปรวนที่แต่ละฟีเจอร์สามารถอธิบายในการแยกคลาสไม่มีเกณฑ์ที่แน่นอนสำหรับค่าที่เหมาะสมในการคัดเลือกคุณสมบัติ ดังนั้นในงานวิจัยจึงคัดเลือกคุณสมบัติที่มีค่าไอเกนสูงที่สุดจำนวน 4 คุณสมบัติ เพื่อให้เท่ากับจำนวนที่ใช้ในค่าสหสัมพันธ์ ได้แก่ ST slope, exercise angina, sex และ chest pain type


การคัดเลือกคุณสมบัติด้วยการคำนวณค่าไอเกนความรู้ โดยแสดงค่าไอเกนความรู้เพื่อใช้เป็นค่าน้ำหนักในการคัดเลือกคุณสมบัติในชุดข้อมูลดังภาพประกอบ 9 ค่าไอเกนความรู้ไม่มีค่าเกณฑ์ที่แน่นอน

ภาพประกอบ 7 ค่าสหสัมพันธ์ของข้อมูลโรคหลอดเลือดหัวใจ

ภาพประกอบ 8 ค่าไอเกนของแต่ละคุณสมบัติของข้อมูลโรคหลอดเลือดหัวใจด้วย

ภาพประกอบ 9 ค่าเกณฑ์ความรู้ของแต่ละคุณสมบัติ ของข้อมูลโรคหลอดเลือดหัวใจด้วย

ในการคัดเลือกว่าควรใช้ค่าค่าเกณฑ์ความรู้เท่าไหร่ถึงควรเลือกคุณสมบัติ ดังนั้นในงานวิจัยจึงคัดเลือกคุณสมบัติจำนวน 4 คุณสมบัติเพื่อให้เท่ากับจำนวนที่ใช้ในค่าสหสัมพันธ์ ได้แก่ ST slope, chest pain type, max heart rate และ exercise angina

เมื่อได้ผลการคัดเลือกคุณสมบัติจากค่าสหสัมพันธ์และการวิเคราะห์แยกแยะเชิงเส้นแล้ว จะนำไปสร้างโมเดลเพื่อใช้ในการทำนายผู้ป่วยโรคหลอดเลือดหัวใจโดยใช้อัลกอริทึมด้านการเรียนรู้ของเครื่องที่ได้แก่ อัลกอริทึมการคัดถอยหลัง (LDA) วิเคราะห์แยกแยะเชิงเส้น (SVM (linear)) ได้แก่ RBF, Linear, Polynomial, Sigmoid) มีการกำหนดค่าพารามิเตอร์ γ = 0.1, C = 1.0 เท่ากัน

ทุกโมเดลเพื่อไม่ให้เกิดความเอียง และอัลกอริทึมโครงข่ายประสาทเทียมใช้ Keras Tuner เพื่อให้ได้โครงข่ายที่เหมาะสมกับข้อมูลและใช้โครงข่ายดังกล่าวในทุกโมเดลที่ใช้โครงข่ายประสาทเทียม โดยจะเปรียบเทียบผลประสิทธิภาพด้านความถูกต้องในการทำนายของโมเดลที่ข้อมูลจากเทคนิคการคัดเลือกคุณลักษณะด้วยการวิเคราะห์แยกแยะเชิงเส้น เปรียบเทียบกับการใช้ข้อมูลคุณลักษณะดังเดิม (ไม่มีการคัดเลือก) และการคัดเลือกคุณลักษณะด้วยค่าสหสัมพันธ์และค่าเกณฑ์ความรู้ ผลการทดลองแสดงดังตาราง 2

จากตาราง 2 จะเห็นว่าที่ข้อมูลดังเดิมโมเดลที่มีค่าความถูกต้อง (Accuracy) สูงสุดคือที่ชั้พพอร์ท เวกเตอร์แมชชีนด้วยเครื่องเนล Linear (SVM (linear)) โดยมีค่าความถูกต้องร้อยละ 85.99 เมื่อนำข้อมูลที่คัดเลือกคุณสมบัติด้วยค่าสหสัมพันธ์ (Correlation) ไปสร้างโมเดลด้วย SVM (RBF) ทำให้ประสิทธิภาพสูงสุดที่ร้อยละ 84.87 และเมื่อใช้เทคนิคการวิเคราะห์แยกแยะเชิงเส้น (LDA) ในการคัดเลือกคุณสมบัติมีค่าความถูกต้องสูงสุดที่ร้อยละ 87.39 และเมื่อนำข้อมูลที่ถูกคัดเลือกคุณสมบัติโดยค่าเกณฑ์ IG (IG) โมเดล มีประสิทธิภาพสูงสุดที่ SVM (Linear) โดยมีค่า

ตาราง 2 ผลการทดลอง

Algorithm	Accuracy			
	ข้อมูลดังเดิม	Correlation	LDA	IG
LR	84.87%	84.31%	87.11%	84.03%
SVM (linear)	85.99%	80.11%	84.03%	84.31%
SVM (poly)	82.35%	83.47%	86.83%	81.23%
SVM (rbf)	73.11%	84.87%	86.55%	82.63%
SVM (sigmoid)	56.86%	72.83%	86.83%	56.86%
ANN	83.75%	83.47%	87.39%	84.03%
เอนด์	77.82%	81.51%	86.46%	78.85%

ภาพประกอบ 10 โปรแกรมที่ใช้สำหรับประเมิน
ความเสี่ยงการเป็นโรคหลอดเลือดหัวใจ

ภาพประกอบ 12 แสดงตัวอย่างการทำนาย
ของโปรแกรมเมื่อมีความเสี่ยงเป็นโรคหัวใจ

ภาพประกอบ 11 แสดงตัวอย่างการทำนายของ
โปรแกรมเมื่อไม่มีความเสี่ยงเป็นโรคหัวใจ

ความถูกต้องที่ร้อยละ 84.31 การใช้ LDA เพื่อคัดเลือกคุณสมบัติที่เหมาะสมเมื่อเปรียบเทียบกับการใช้ข้อมูลดังเดิมในการสร้างโมเดลจะเห็นว่ามีประสิทธิภาพดีที่สุด แบบทุกโมเดลยกเว้น SVM (Linear) แต่ถ้าพิจารณาที่ค่าความถูกต้องเฉลี่ยเป็นวิธีการที่มีค่าเฉลี่ยมากที่สุด เมื่อเทียบกับโมเดลที่สร้างจากข้อมูลดั้งเดิมและข้อมูลจากการคัดเลือกคุณสมบัติจากวิธีการอื่นๆ ซึ่งแสดงให้เห็นว่าเป็นวิธีการที่ทำให้ช่วยเพิ่มประสิทธิภาพการทำนาย เนื่องจาก LDA เป็นวิธีการคัดเลือกคุณสมบัติที่ซับซ้อนโดยพิจารณาข้อมูลในมิติใหม่โดยพิจารณาสองเงื่อนไขได้แก่ ข้อมูลจะต้องมีความแปรปรวนภายในคลาสต่ำสุดและความแปรปรวนระหว่างคลาสสูงสุด ทำให้ข้อมูลที่ถูกคัดเลือกสามารถใช้ในการแยกคลาสต่างๆ ออกจากกันมากที่สุด ซึ่งในขณะที่ Correlation ตัดคุณลักษณะที่ซ้ำกันออกโดยพิจารณาเพียงแค่ค่าความแปรปรวน และ IG ที่คัดเลือกคุณลักษณะที่สามารถแบ่งคลาสของข้อมูลได้ดี โดยพิจารณาจาก Entropy ที่แสดงถึงความความแตกต่างหรือกระจายตัวมากในการแยกคลาส

เมื่อได้โมเดลที่ให้ประสิทธิภาพที่ดีที่สุดในการทำนายโรคหลอดเลือดหัวใจและจึงได้นำไปพัฒนาเป็นโปรแกรมที่ใช้สำหรับประเมินความเสี่ยงการเป็นโรคหลอดเลือดหัวใจ แสดงหน้าต่างโปรแกรมดังภาพประกอบ 10 ซึ่งการใช้งานโปรแกรมญี่ปุ่นจะต้องมีข้อมูล เพศ ประวัติของการเจ็บหน้าอก อาการเจ็บหน้าอกที่เกิดขึ้นในช่วงทดสอบ และค่าความลัดของค่า ST segment ในคลื่นไฟฟ้าของ ECG เมื่อใส่ข้อมูลครบถ้วนแล้วกดปุ่ม Submit โปรแกรมจะแสดงผลการทำนายความเสี่ยงการเป็นโรคหลอดเลือดหัวใจดังภาพประกอบ 11 ในกรณีที่ไม่มีความเสี่ยง และภาพประกอบ 12 ในกรณีที่มีความเสี่ยง

5. สรุปผล

งานวิจัยนี้นำเสนอเทคโนโลยีการคัดเลือกคุณสมบัติของข้อมูลด้วยการวิเคราะห์แยกแยะเชิงเส้น เพื่อลดขนาดมิติของข้อมูลเพื่อเพิ่มประสิทธิภาพด้านความถูกต้องในการจำแนกข้อมูลผู้ป่วยโรคหลอดเลือดหัวใจ เมื่อทำการคัดเลือกคุณลักษณะของข้อมูลแล้ว จะใช้เฉพาะข้อมูลของคุณสมบัติที่ได้รับเลือกไปใช้ในการสร้างโมเดลจำแนกประเภทข้อมูลทางด้านการเรียนรู้ของเครื่อง ได้แก่ อัลกอริทึมการตัดถอยโลจิสติกส์ อัลกอริทึมชั้นพอร์ทเฟลร์แมชชีน และอัลกอริทึมโครงข่ายประสาทเทียม ซึ่งเปรียบเทียบประสิทธิภาพความถูกต้องในการจำแนกกับการใช้ชุดข้อมูลดั้งเดิม ร่วมกับอัลกอริทึมดังกล่าว รวมไปถึงเปรียบเทียบ

กับการคัดเลือกคุณลักษณะด้วยการใช้ค่าสหสัมพันธ์ ผลการทดลองแสดงให้เห็นว่าการคัดเลือกคุณลักษณะด้วยวิธีการที่นำเสนอสามารถช่วยเพิ่มประสิทธิภาพความถูกต้องโดยดูจากค่าเฉลี่ยรวมของทุกโมเดลที่ใช้ในการจำแนกประเภทข้อมูลผู้ป่วยโรคหลอดเลือดหัวใจ นอกจากนี้ยังนำโมเดลที่ได้ไปประยุกต์ใช้พัฒนาเป็นโปรแกรมที่ใช้สำหรับประเมินความเสี่ยงการเป็นโรคหลอดเลือดหัวใจเพื่อให้ผู้ใช้งานได้รับทราบโอกาสความเสี่ยงต่อการเกิดโรคหลอดเลือดหัวใจของตนเอง และสามารถหาทางรักษาได้อย่างทันท่วงที แต่เนื่องด้วยข้อมูลที่ต้องใช้ในการประเมินความเสี่ยงเป็นข้อมูลที่ต้องมีการตรวจจากผู้เชี่ยวชาญจึงเป็นโปรแกรมที่เหมาะสมนำไปใช้ในการช่วงคัดกรองในสถานพยาบาล

สำหรับแนวทางการวิจัยในอนาคตจะมุ่งเน้นการใช้แหล่งข้อมูลโรคหัวใจที่มาจากหลากหลายแหล่งที่มาของข้อมูลเพื่อเพิ่มประสิทธิภาพความแม่นยำและความน่าเชื่อถือของการวิจัย

เอกสารอ้างอิง

Chowdhury, M. N. R., Ahmed, E., Siddik, Md. A. D., & Zaman, A. U. (2021). Heart disease prognosis using machine learning classification techniques. *2021 6th International Conference for Convergence in Technology (I2CT)*, 1–6. <https://doi.org/10.1109/i2ct51068.2021.9418181>

Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., & Scholkopf, B. (1998). Support vector machines. *IEEE Intelligent Systems and Their Applications*, 13(4), 18–28. <https://doi.org/10.1109/5254.708428>

Imanbek, R., Buribayev, Z., & Yerkos, A. (2023). Processing of ischemic heart disease data using ensemble classification methods of machine learning. *Journal of Problems in Computer Science and Information Technologies*, 1(2). <https://doi.org/10.26577/jpcsit.2023.v1.i2.06>

Kadhim, M. A., & Radhi, A. M. (2023). Heart disease classification using optimized machine learning algorithms. *Iraqi Journal for Computer Science and Mathematics*, 31–42. <https://doi.org/10.52866/ijcsm.2023.02.02.004>

Kavitha, M., Gnaneswar, G., Dinesh, R., Sai, Y. R., & Suraj, R. S. (2021). Heart disease prediction using hybrid machine learning model. *2021 6th International Conference on Inventive Computation Technologies (ICICT)*, 1329–1333. <https://doi.org/10.1109/icict50816.2021.9358597>

Lakshmi, A., & Devi, R. (2023). Heart disease prediction using enhanced whale optimization algorithm based feature selection with machine learning techniques. *2023 12th International Conference on System Modeling & Advancement in Research Trends (SMART)*, 644–648. <https://doi.org/10.1109/smart59791.2023.10428617>

Modak, S., Abdel-Raheem, E., & Rueda, L. (2022). Heart disease prediction using adaptive infinite feature selection and deep neural networks. *2022 International Conference on Artificial Intelligence in Information and Communication (ICAICC)*, 235–240. <https://doi.org/10.1109/icaicc54071.2022.9722652>

Radhika, R., & George, S. T. (2021). Heart disease classification using machine learning techniques. *Journal of Physics: Conference Series*, 1937(1), 012047. <https://doi.org/10.1088/1742-6596/1937/1/012047>

Chanklan, R. (2017). *Modeling with machine learning techniques to predict runoff* [Doctor dissertation, Suranaree University of Technology]. Retrieved from <http://sutir.sut.ac.th:8080/jspui/handle/123456789/7683> [In Thai]

Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. *Anesthesia & Analgesia*, 126(5), 1763–1768. <https://doi.org/10.1213/ane.0000000000002864>

Stoltzfus, J. C. (2011). Logistic regression: A brief primer. *Academic Emergency Medicine*, 18(10), 1099–1104. Portico. <https://doi.org/10.1111/j.1553-2712.2011.01185.x>

Tharwat, A., Gaber, T., Ibrahim, A., & Hassanien, A. E. (2017). Linear discriminant analysis: A detailed tutorial. *AI Communications*, 30(2), 169–190. <https://doi.org/10.3233/aic-170729>

Ting, K. M. (2011). Confusion matrix. *Encyclopedia of Machine Learning*, 209–209. https://doi.org/10.1007/978-0-387-30164-8_157

ระบบสารสนเทศเพื่อการบริหารข้อมูลการจัดเก็บถังขยะเปียกในส่วนท้องถิ่น: กรณีศึกษาองค์การบริหารส่วนตำบลลังสู จังหวัดสตูล

Information System for Wet Garbage Bin Data Management in Local Areas: A Case Study of Langu Subdistrict Administrative Organization, Satun Province

นรเทพ ศักดิ์เพชร^{1,*}, ชาติรัส จิตรกษ์ธรรม¹, อรรณพ บุญจันทร์¹, กลพัฒน์ ยิ่งคำนุ่น¹,
สกรรจ์ รอดคล้าย², ชัยณูนาซุ พุ่มพวง³
Norathee Sakphet^{1,*}, Chatirot Jitrugtham¹, Annop Bunjan¹,
Kullaphat Yingdumnoon¹, Sakan Rodklai², Chanyanuch Pumpuang³

¹ วิทยาลัยนวัตกรรมและการจัดการ มหาวิทยาลัยราชภัฏสุขุมวิท สงขลา 90000 ประเทศไทย

² คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏสุขุมวิท สงขลา 90000 ประเทศไทย

³ กองสาธารณสุขและสิ่งแวดล้อม องค์การบริหารส่วนตำบลลังสู สตูล 91110 ประเทศไทย

¹ College of Innovation and Management, Songkhla Rajabhat University, Songkhla, 90000, Thailand

² Faculty of Science and Technology, Songkhla Rajabhat University, Songkhla 90000, Thailand

³ Division of Public Health and Environment, La-ngu Subdistrict Administrative Organization, La-ngu, Satun 91110, Thailand

* Corresponding Author: Norathee Sakphet, norathee.s@skru.ac.th

Received:
10 January 2024

Revised:
15 May 2024

Accepted:
20 June 2024

คำสำคัญ:

ระบบสารสนเทศ, การจัดการขยะ,
ขยะเปียก, จังหวัดสตูล

Keywords:

Information System, Waste
Management, Wet Garbage,
Satun Province

บทคัดย่อ: การวิจัยนี้มุ่งเน้นการพัฒนาระบบสารสนเทศเพื่อการบริหารจัดการ
ข้อมูลถังขยะเปียกในพื้นที่องค์การบริหารส่วนตำบลลังสู จังหวัดสตูล โดย
มีวัตถุประสงค์เพื่อแก้ไขปัญหาการจัดการถังขยะเปียกที่ไม่มีระบบระเบียบ
และเพิ่มประสิทธิภาพในการบริหารจัดการข้อมูลขยะในระดับท้องถิ่น
ขั้นตอนการดำเนินงานวิจัยประกอบด้วย การวิเคราะห์ความต้องการของระบบ
การพัฒนาโปรแกรมด้วยเทคโนโลยี Flutter Framework และการประเมิน
ความพึงพอใจของผู้ใช้งาน ผลการทดลองใช้งานระบบพบว่า ระบบที่พัฒนาขึ้น
สามารถช่วยลดปัญหาขยะเปียกในพื้นที่ได้อย่างมีประสิทธิภาพ ลดผลกระทบต่อ
สิ่งแวดล้อม และส่งเสริมการมีส่วนร่วมของชุมชนในการจัดการขยะ นอกจากนี้
เมื่อเชื่อมโยงผลการวิจัยกับทฤษฎีและงานวิจัยที่เกี่ยวข้อง พบว่า การนำ
นวัตกรรมและเทคโนโลยีสมัยใหม่มาใช้ในการบริหารจัดการขยะ มีส่วนสำคัญ
ต่อการพัฒนาแนวทางการจัดการขยะที่ยั่งยืนในระดับท้องถิ่น

Abstract: This research focuses on developing an information system for managing wet garbage bin data in the Langu Subdistrict Administrative Organization, Satun Province. The aim is to resolve disorganized wet garbage bin management and enhance the efficiency of local waste data administration. The research

methodology consists of three key phases: analyzing system requirements, developing the system using Flutter Framework technology, and evaluating user satisfaction. Experimental results show that the developed system effectively reduces issues related to wet waste in the area, mitigates environmental impacts, and fosters greater community participation in waste management efforts. Furthermore, integrating the findings with relevant theories and previous studies underscores the critical role of innovation and modern technology in establishing sustainable local waste management solutions.

1. บทนำ (Introduction)

การจัดการขยะมูลฝอยเปียกในชุมชนเป็นประเด็นสำคัญที่ต้องการการแก้ไขอย่างต่อเนื่องเพื่อลดปริมาณขยะที่สะสมและส่งเสริมการนำกลับมาใช้ประโยชน์ได้ เช่น การผลิตปุ๋ยหรือแก๊สชีวภาพ (Xu et al., 2022) แม้ว่าโนบายและแนวทางต่างๆ จะถูกนำมาใช้เพื่อพยายามปรับปรุงกระบวนการจัดการขยะในท้องถิ่น แต่การดำเนินการจริงยังคงพบกับปัญหา รวมถึงความล่าช้าในการเข้าถึงข้อมูลและความไม่แน่นอนในการจัดเก็บข้อมูลขยะ (Tungchuvong et al., 2022)

ในการศึกษานี้ ผู้วิจัยมุ่งเน้นการพัฒนาระบบใหม่ที่ออกแบบมาเพื่อบริหารข้อมูลการจัดเก็บถังขยะเปียกในองค์กรบริหารส่วนตำบลลัง จังหวัดสตูล โดยใช้เทคโนโลยี Flutter Framework ซึ่งระบบนี้มีจุดเด่นที่สามารถเชื่อมต่อระบบบริหารจัดการข้อมูลแบบตั้งเดิมที่ยังคงใช้กระดาษและเอกสาร (Langub Subdistrict Administrative Organization, 2022) ปัญหาหลักที่เผชิญ ได้แก่ การสูญหายข้อมูล ความล่าช้าในการค้นหาข้อมูล และการใช้ทรัพยากรที่ไม่

คุ้มค่า การนำเทคโนโลยีดิจิทัลมาใช้ในระบบนี้จึงเป็นทางออกที่จำเป็นและเร่งด่วน

การพัฒนานี้ไม่เพียงแต่จะช่วยแก้ไขปัญหาเหล่านั้น แต่ยังนำเสนอทางออกที่สามารถนำไปใช้กับวิธีการจัดการข้อมูลอย่างยั่งยืนในชุมชน ด้วยความสามารถในการสร้างส่วนต่อประสานผู้ใช้ (User Interface: UI) ที่สวยงาม การทำงานที่รวดเร็ว และความสามารถในการพัฒนาแอปพลิเคชันได้ทั้ง iOS และ Android จากการใช้โค้ดชุดเดียวกัน (Flutter, 2022) ความโดดเด่นของ Flutter ได้แก่ Hot Reload ซึ่งช่วยให้นักพัฒนาเห็นผลของการเปลี่ยนแปลงโค้ดทันทีโดยไม่ต้องรีสตาร์ทแอปพลิเคชัน (Ankam et al., 2023) นอกจากนี้ยังมี Rich Set of Widgets ที่หลากหลายและสามารถปรับแต่งได้เต็มที่ และประสิทธิภาพที่โค้ดภาษา Dart ถูกคอมไพล์เป็นโค้ดเฉพาะระบบปฏิบัติการหนึ่งโดยเฉพาะ (Native Application) ทำให้แอปพลิเคชันทำงานได้รวดเร็วและลื่นไหล

การนำเสนอระบบใหม่ มุ่งเน้นที่การสำรวจและเก็บรวบรวมข้อมูลถังขยะเปียกและพัฒนาแอปพลิเคชันเพื่อบริหารข้อมูลการจัดเก็บถังขยะเปียกในส่วนท้องถิ่น โดยมุ่งเน้นที่การนำเทคโนโลยีมาช่วยแก้ไขปัญหาทางสังคมในอนาคต นอกจากการลดปัญหาการสะสมขยะแล้ว ยังส่งเสริมความรับผิดชอบทางสังคมในการรักษาสิ่งแวดล้อม และเป็นแบบอย่างที่ดีในการนำเทคโนโลยีและนวัตกรรมไปใช้ในการแก้ไขปัญหาของชุมชนและสังคมในประเทศไทยอย่างมีประสิทธิภาพและเหมาะสม

2. ทฤษฎีและงานวิจัยที่เกี่ยวข้อง (Theoretical Background and Literature Review)

ในทัวร์นี้ก่อร่างสิ่งที่เกี่ยวข้องในการพัฒนาระบบของผู้วิจัย ประกอบด้วยหัวข้อ ดังนี้

2.1 ทฤษฎีเกี่ยวกับการจัดการขยะเปียก

Xu et al. (2022) ได้อธิบายถึงกระบวนการย่อยสลายทางชีวภาพเพื่อแปลงขยะเปียกเป็นสารเคมีที่มีค่า เช่น กรดและแอลกอฮอล์ และอภิปรายถึงการใช้เทคโนโลยีทางชีวภาพและเคมีเพื่อการรีไซเคิลขยะอย่างยั่งยืน การย่อยสลายแบบไม่ใช้อาหาร (Anaerobic Digestion) ถูกนำมาใช้เป็นวิธีหลักในการแปลงขยะอินทรีย์เป็นเชื้อเพลิงชีวภาพ เช่น ไบโอดีเซล ซึ่งเป็นแหล่งพลังงานทดแทนที่สำคัญ นอกจากนี้ยังมีการนำเสนอนวัตกรรมในการปรับปรุงประสิทธิภาพการแปลงขยะเป็นเชื้อเพลิงและสารเคมี เช่น การย่อยสลายแบบแห้ง (Dry AD) ซึ่งสามารถผลิตก๊าซมีเทนในปริมาณมาก ซึ่งงานวิจัยที่กล่าวไปข้างต้นเน้นกระบวนการย่อยสลายทางชีวภาพเพื่อแปลงขยะเปียกเป็นสารเคมีที่มีค่า เช่น กรดและแอลกอฮอล์ และการใช้เทคโนโลยีทางชีวภาพและเคมีเพื่อการรีไซเคิลขยะอย่างยั่งยืน

Eriksson, Strid, & Hansson (2015) ได้ศึกษาเปรียบเทียบผลกระทบด้านสิ่งแวดล้อมที่เกิดจากการจัดการเศษอาหารเหลือทิ้งในบริบทของประเทศไทยสีเด่น งานวิจัยดังกล่าวมุ่งเน้นการวิเคราะห์อย่างละเอียดต่อปริมาณการปล่อยก๊าซเรือนกระจกที่เกิดขึ้นจากการจัดการขยะ (Waste Hierarchy) มาใช้เป็นกรอบแนวคิดในการประเมินประสิทธิภาพของวิธีการต่างๆ ผลการศึกษาพบว่าลักษณะเฉพาะของผลิตภัณฑ์อาหารแต่ละประเภทมีบทบาทสำคัญอย่างยิ่งต่อการเลือกวิธีการจัดการที่เหมาะสมที่สุด การค้นพบนี้มีความสอดคล้องกับแนวคิดการจัดการขยะเปียกในระดับท้องถิ่น โดยเฉพาะในบริบทของการวางแผนระบบการเก็บรวบรวมและกำจัดขยะมูลฝอยที่มีประสิทธิภาพ นอกจากนี้ งานวิจัยยังเน้นย้ำถึงความจำเป็นในการพิจารณาผลกระทบด้านสิ่งแวดล้อมอย่างรอบด้าน ไม่เพียงแต่คำนึงถึงปริมาณขยะที่เกิดขึ้น แต่ยังรวมถึงศักยภาพในการลดผลกระทบทางสุขภาพในเมือง ด้วย แนวทางการวิเคราะห์ดังกล่าวให้ข้อมูลแบบ

ที่มีคุณค่าสำหรับการพัฒนาระบบการจัดการขยะในชุมชน โดยเฉพาะการประยุกต์เทคโนโลยีสารสนเทศเพื่อเพิ่มประสิทธิภาพในการติดตามและควบคุมกระบวนการจัดการขยะเปียกในพื้นที่ต่างๆ ซึ่งสามารถนำไปปรับใช้กับบริบทการจัดการขยะในระดับองค์กรปกครองส่วนท้องถิ่นได้อย่างเหมาะสม

2.2 ทฤษฎีเกี่ยวกับการพัฒนาระบบ

Sampaothong & Sanchana (2023) ได้พัฒนาแอปพลิเคชันส่งเสริมการท่องเที่ยวเชิงเกษตรของวัสดุพาร์มโดยใช้เทคโนโลยีความเป็นจริงเสริม (Augmented Reality: AR) ผู้วิจัยได้ประยุกต์ใช้วงจรการพัฒนาระบบ (System Development Life Cycle: SDLC) ในการพัฒนาซึ่งประกอบด้วยขั้นตอนต่างๆ ดังนี้ (1) การวิเคราะห์ความต้องการของผู้ใช้และการรวบรวมข้อมูล: ศึกษาและรวบรวมข้อมูลความต้องการของผู้ใช้เพื่อนำมาใช้ในการพัฒนาแอปพลิเคชันและสร้างฐานข้อมูลที่เกี่ยวข้องกับเนื้อหาภักดีพาร์ม (2) การออกแบบส่วนต่อประสานผู้ใช้ และโมเดล 3 มิติ: ออกแบบส่วนต่อประสานผู้ใช้และโมเดล 3 มิติที่จำเป็นสำหรับการทำงานของแอปพลิเคชันในรูปแบบ AR โดยใช้เครื่องมือออกแบบกราฟิกและโมเดลลิ่ง (3) การพัฒนาและการทดสอบแอปพลิเคชัน: พัฒนาแอปพลิเคชันโดยใช้โปรแกรม Unity และเทคโนโลยี AR เช่น AR Core และ AR Foundation รวมทั้งการทดสอบความเสถียรและประสิทธิภาพของแอปพลิเคชันในสภาพแวดล้อมจริง (4) การประเมินผลการใช้งานจากผู้ใช้จริง: ประเมินผลการใช้งานจากผู้ใช้จริงและวิเคราะห์ข้อมูลเพื่อนำไปปรับปรุงแอปพลิเคชันให้ตอบโจทย์และมีประสิทธิภาพมากขึ้น (5) การปรับปรุงและการบำรุงรักษาระบบ: ดำเนินการปรับปรุงและแก้ไขข้อผิดพลาดตามข้อมูลเพื่อให้ทำงานได้อย่างต่อเนื่องและมีความเสถียร ซึ่งงานวิจัยที่กล่าวไปข้างต้นได้ประยุกต์ใช้วงจรพัฒนาระบบแบบ SDLC ในการพัฒนาแอปพลิเคชันดังกล่าว

Al-Rahmi *et al.* (2021) ทฤษฎีการยอมรับเทคโนโลยี (Technology Acceptance Model: TAM) ถูกนำมาใช้อธิบายปัจจัยที่มีผลต่อการยอมรับและการใช้งานเทคโนโลยีในบริบทของการใช้โฉเชี่ยลมีเดียในสถาบันการศึกษา การวิจัยนี้ได้สำรวจความสัมพันธ์ระหว่างความมีประโยชน์ที่รับรู้และความตั้งใจที่จะใช้เชี่ยลมีเดียเพื่อการเรียนรู้ และได้ผลว่ามีความสัมพันธ์ที่มีนัยสำคัญ ความมีประโยชน์ที่รับรู้ (Perceived Usefulness) ถูกนิยามว่าผู้ใช้รู้สึกว่าการใช้เทคโนโลยีใหม่จะช่วยเพิ่มประสิทธิผลของงานของตน ส่วนความตั้งใจในการใช้งานที่รับรู้ (Perceived Ease of Use) คือการรู้สึกว่าการใช้เทคโนโลยีใหม่นั้นง่ายและไม่ยุ่งยาก ซึ่งงานวิจัยที่กล่าวไปข้างต้นจะมุ่งเน้นการเพิ่มความลึกในการศึกษาปัจจัยที่มีผลต่อการยอมรับและการใช้งานเทคโนโลยีในบริบทอื่นๆ

2.3 เทคโนโลยีที่ใช้ในการพัฒนาระบบ

Flutter (2022) Flutter เป็น Framework ที่ Google เปิดตัวครั้งแรกในปี 2017 และได้รับการพัฒนาอย่างต่อเนื่องจนกลายเป็นเครื่องมือยอดนิยมสำหรับการพัฒนาแอปพลิเคชันข้ามแพลตฟอร์ม (Google, 2017; Flutter, 2022) โดยสามารถสร้างแอปพลิเคชันที่ทำงานได้บนหลายแพลตฟอร์ม ทั้ง Android, iOS, Linux, macOS, Windows, และระบบฝังตัว (Embedded System) ด้วยโค้ดเดียวกัน คุณสมบัติหลักของ Flutter ได้แก่ ความเร็วในการทำงานเนื่องจากโค้ดถูกคอมไพล์เป็นชุดคำสั่ง การทำงานแบบ Hot Reload ที่ช่วยให้นักพัฒนาสามารถดูการเปลี่ยนแปลงได้ทันทีโดยไม่สูญเสียสถานะของระบบ และความยืดหยุ่นในการควบคุมการแสดงผลบนหน้าจอได้อย่างละเอียด ซึ่งทำให้เป็นเครื่องมือที่เหมาะสมสำหรับการพัฒนาแอปพลิเคชันที่มีความสวยงามและมีประสิทธิภาพ

Rawat *et al.* (2021) ระบบการจัดการฐานข้อมูล (Database Management System: DBMS) เป็นองค์ประกอบหลักในการบริหารจัดการข้อมูล

ที่มีความซับซ้อนและมีปริมาณมากในองค์กรและสถาบันต่างๆ ทฤษฎีนี้ครอบคลุมถึงการใช้ออฟต์แวร์สำหรับจัดการฐานข้อมูล รวมถึงการดำเนินการคำสั่งต่างๆ ในฐานข้อมูลเพื่อเพิ่มความสะดวกในการเข้าถึง การคุ้มครอง และการแก้ไขข้อมูลอย่างรวดเร็วและมีประสิทธิภาพ (ทั้งมีประสิทธิภาพ มีประสิทธิผล และแม่นยำ) ตัวอย่างของ DBMS ที่ได้รับความนิยมคือ MySQL ซึ่งเป็นระบบการจัดการฐานข้อมูลแบบ Relational (RDBMS) และสามารถจัดการข้อมูลในรูปแบบตารางที่ประกอบด้วยแทร์ (Records) และคอลัมน์ (Fields) ได้อย่างหลักหลา ทำให้การจัดการข้อมูลในปริมาณมากเป็นไปได้อย่างมีประสิทธิภาพ นอกจากนี้ DBMS ช่วยให้ผู้ดูแลระบบสามารถควบคุมและจัดการฐานข้อมูลผ่านหน้าเว็บได้สะดวกขึ้น ทำให้ง่ายต่อการคุ้ดและจัดการข้อมูลต่างๆ ดังนั้น DBMS จึงมีความสำคัญในการสนับสนุนการบริหารจัดการข้อมูลอย่างมีประสิทธิภาพ และช่วยให้สามารถเข้าถึงข้อมูลได้อย่างรวดเร็วและแม่นยำ ซึ่งเป็นสิ่งจำเป็นในยุคดิจิทัลปัจจุบัน ซึ่งงานวิจัยที่กล่าวไปข้างต้นจะมุ่งเน้นเกี่ยวกับ DBMS ซึ่งเป็นส่วนสำคัญของการบริหารจัดการข้อมูลที่มีความซับซ้อนและมากในองค์กรและสถาบันต่างๆ

Christensen *et al.* (2020) ได้กล่าวถึงการใช้การประเมิน 生命周期 (Life Cycle Assessment: LCA) เพื่อประเมินผลกระทบทางสิ่งแวดล้อมและการใช้ทรัพยากรของระบบการจัดการขยะ ซึ่งรวมถึงขั้นตอนตั้งแต่การสร้างขยะไปจนถึงการขจัด การบำบัด การกำจัดขยะ รวมทั้งการแลกเปลี่ยนวัสดุ และพัฒนาภับสังคมโดยรอบ การใช้ LCA ช่วยให้เข้าใจประสิทธิภาพและผลกระทบทางสิ่งแวดล้อมของเทคโนโลยีใหม่ๆ ในการจัดการขยะ ซึ่งสามารถนำไปสู่การพัฒนาทางเทคโนโลยีที่มีประสิทธิภาพสูง สำหรับระบบการจัดเก็บข้อมูลขยะ เปยกที่ผู้ศึกษา กำลังพัฒนา การประเมินนี้สนับสนุนให้ผู้ศึกษาออกแบบและปรับปรุงเทคโนโลยีหรือกระบวนการในระบบของผู้ศึกษาเพื่อเพิ่มประสิทธิภาพการเก็บข้อมูลและ

การจัดการข้อมูลที่มีผลกระทบสิ่งแวดล้อมต่ำสุด ซึ่งงานวิจัยที่กล่าวไว้ข้างต้นจะมุ่งเน้นการใช้การประเมินวงศ์ชีวิต เพื่อประเมินผลกระทบทางสิ่งแวดล้อมและการใช้ทรัพยากรของระบบการจัดการขยะทั้งหมด

2.4 งานวิจัยที่เกี่ยวข้อง (Literature Review)

Deepa (2020) ได้ทำวิจัยเรื่อง การพัฒนาระบบการจัดการขยะมูลฝอยที่มีประสิทธิภาพสำหรับพื้นที่เมืองที่มีการพัฒนาแบบอัจฉริยะ โดยการประยุกต์นวัตกรรมทางด้านเทคโนโลยีสารสนเทศ ทั้งในรูปแบบของแอปพลิเคชันบนอุปกรณ์พกพาและระบบเว็บไซต์ แนวคิดหลักของระบบดังกล่าวมุ่งเน้นการยกระดับคุณภาพการดำเนินงานด้านการรวบรวมและขนส่งขยะมูลฝอย พร้อมทั้งสนับสนุนการลดการใช้งานทรัพยากรสาธารณูปโภคที่หายาก ลดภาระทางเศรษฐกิจและสิ่งแวดล้อม ที่สำคัญยังช่วยลดภาระทางเศรษฐกิจและสิ่งแวดล้อมที่ส่งผลกระทบต่อสิ่งแวดล้อมและสังคมในระยะยาว ซึ่งงานวิจัยที่กล่าวไว้ข้างต้นมุ่งเน้นเกี่ยวกับการปรับปรุงระบบการจัดการขยะให้เหมาะสมและเป็นระเบียบในหน่วยงานราชการท้องถิ่น โดยการศึกษาการตั้งถังขยะมูลฝอยในสถานที่สาธารณะและสถานที่เป็นของภาคเอกชน เพื่อให้เป็นระเบียบสวยงาม และเหมาะสมกับการใช้งาน

Ankam *et al.* (2023) ได้ทำวิจัยเรื่อง การพัฒนาแอปพลิเคชันบนอุปกรณ์มือถือที่มุ่งเสริมสร้างการจัดการขยะในเมือง โดยใช้เทคโนโลยีที่ติดตั้งตามสถานที่เพื่อแจ้งเตือนผู้ใช้เกี่ยวกับการมาถึงของรถจัดเก็บขยะและช่วยให้ผู้ใช้ระบบสามารถค้นหาจุดทิ้งขยะที่ใกล้ที่สุดได้ นวัตกรรมนี้ช่วยเพิ่มความเป็นระเบียบและประสิทธิภาพในการจัดการขยะ ซึ่งทำให้ผู้ใช้ระบบสามารถเข้าถึงข้อมูลการจัดการขยะได้สะดวกและทันสมัยมากขึ้น การใช้เทคโนโลยี Flutter Framework ในการพัฒนาระบบไม่เพียงแต่ช่วยลดความซ้ำซ้อนในการพัฒนาเนื่องจากแอปพลิเคชันนี้สามารถทำงานได้ทั้งบนอุปกรณ์ iOS และ Android จากฐานข้อมูลเดียวกัน แต่ยังสนับสนุนการเข้าถึงระบบอย่างกว้างขวางด้วย โดยเฉพาะอย่างยิ่ง การวิจัยนี้มุ่งเน้นการพัฒนาระบบฐานข้อมูลและแพลตฟอร์มที่มีความยืดหยุ่นและปรับแต่งได้สูง ซึ่งช่วยให้การพัฒนาระบบหรือแพลตฟอร์มสำหรับผู้ดูแลระบบและแอปพลิเคชันสำหรับผู้ใช้มีประสิทธิภาพ

Piriyapun (2022) ได้ทำวิจัยเรื่อง “ภาชนะสำหรับรับขยะมูลฝอยในหน่วยงานราชการท้องถิ่น มุ่งเน้นการปรับปรุงระบบการจัดการขยะให้เหมาะสมและเป็นระเบียบ” โดยการศึกษาเกี่ยวกับการตั้งถังขยะมูลฝอยในสถานที่สาธารณะและสถานที่เป็นของภาคเอกชน เพื่อให้เป็นระเบียบ สวยงาม และเหมาะสมกับการใช้งาน งานวิจัยนี้ได้นำเสนอห้องสมุดระบบภาชนะที่เหมาะสมสำหรับการจัดการขยะมูลฝอยในหน่วยงานราชการท้องถิ่น โดยระบบภาชนะนี้จะมีการ

และตอบสนองต่อความต้องการของผู้ใช้ได้อย่างดี การพัฒนาดังกล่าวไม่เพียงแต่ช่วยให้การจัดการข้อมูล เป็นไปอย่างมีประสิทธิภาพ แต่ยังรวมถึงการออกแบบ ที่ทันสมัยและการทำงานที่ราบรื่น ซึ่งงานวิจัยที่กล่าวไปข้างต้นจะมุ่งเน้นการพัฒนาแอปพลิเคชันบนอุปกรณ์ มือถือเพื่อส่งเสริมการจัดการขยะในเมือง โดยผู้วิจัยใช้ Flutter Framework สำหรับการพัฒนาในครั้งนี้

จากที่ศึกษาทุกภูมิและงานวิจัยที่เกี่ยวข้อง กับการพัฒนาระบบจัดการขยะข้างต้น ผู้วิจัยจึงได้ นำแนวทางข้างต้นมาประยุกต์และปรับปรุงแก้ไข เพื่อ พัฒนาระบบของผู้วิจัยให้สามารถทำงานได้อย่างมี ประสิทธิภาพ

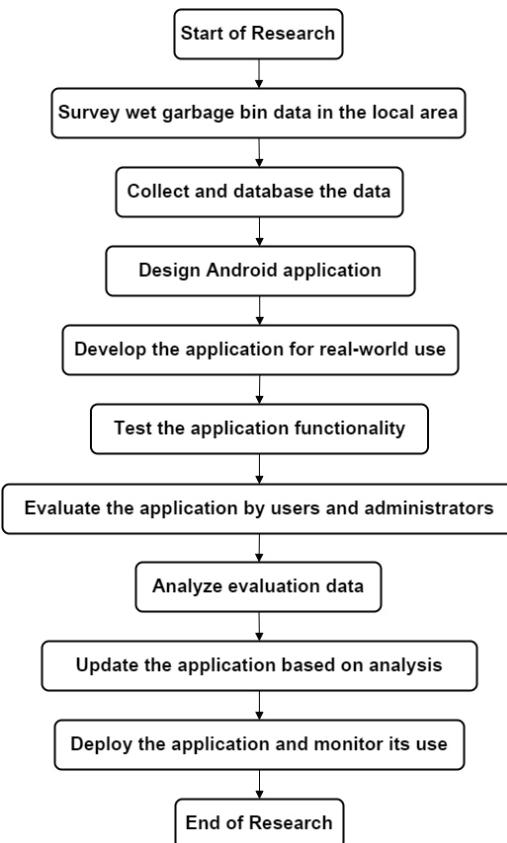
3. กรอบแนวคิดการวิจัย (The Research Conceptual Framework)

การศึกษาในครั้งนี้เป็นการศึกษาระบบ สารสนเทศเพื่อการบริหารข้อมูลการจัดเก็บถังขยะ เปิยกในส่วนท้องถิ่น: กรณีศึกษาของค์การบริหารส่วน ตำบลลง จังหวัดสตูล โดยมีกรอบแนวคิดการวิจัย ดังภาพประกอบ 1

3.1 เริ่มต้นการวิจัย: จุดเริ่มต้นของโครงการ วิจัยระบบสารสนเทศเพื่อการบริหารข้อมูลการจัดเก็บ ถังขยะเปิยก

3.2 สำรวจข้อมูลถังขยะเปิยกในพื้นที่ ท้องถิ่น: การเก็บข้อมูลและสำรวจสถานที่จริง เพื่อเก็บข้อมูลถังขยะ

3.3 เก็บรวบรวมและจัดฐานข้อมูลข้อมูล: การประมวลผลข้อมูลที่เก็บมาเพื่อใช้ในการวิเคราะห์ และพัฒนาแอปพลิเคชัน


3.4 ออกแบบและพัฒนาแอปพลิเคชัน Android: การออกแบบและพัฒนาแอปพลิเคชันตามข้อมูลที่ได้จาก การวิจัยเบื้องต้น

3.5 พัฒนาแอปพลิเคชันสำหรับใช้งานจริง: การพัฒนาแอปพลิเคชันเพื่อให้พร้อมสำหรับการใช้งานในสภาพแวดล้อมจริง

3.6 ทดสอบฟังก์ชันการทำงานของ แอปพลิเคชัน: ทดสอบคุณภาพและการทำงานของ แอปพลิเคชันในสถานการณ์จำลอง

3.7 ประเมินแอปพลิเคชันโดยผู้ใช้และ ผู้ดูแลระบบ: การประเมินผู้ใช้งานเพื่อสอบถาม ความพึงพอใจโดยใช้แบบประเมินแบบ Likert Scale 5 ระดับ (Likert, 1932) เพื่อวัดระดับความพึงพอใจ อย่างเป็นระบบ

3.8 วิเคราะห์ข้อมูลการประเมิน: วิเคราะห์ ข้อมูลที่ได้จากการประเมินโดยใช้เทคนิค Black Box

Testing (Myers, Sandler, & Badgett, 2012) เพื่อหาข้อเสนอแนะในการปรับปรุง

3.9 อัปเดตแอปพลิเคชันตามการวิเคราะห์: ปรับปรุงแอปพลิเคชันตามข้อมูลและข้อเสนอแนะที่ได้รับ

3.10 นำแอปพลิเคชันไปใช้งานและติดตามผล: การนำแอปพลิเคชันไปใช้งานจริงและติดตามผลการใช้งาน

3.11 สื้นสุดการวิจัย: จุดสื้นสุดของโครงการวิจัยระบบสารสนเทศเพื่อการบริหารข้อมูลการจัดเก็บถังขยะเปียก

4. เครื่องมือที่ใช้การวิจัย (Research Instruments)

1. โปรแกรมจัดเก็บข้อมูลถังขยะเปียก อบต.ละงุ

2. แบบประเมินประสิทธิภาพระบบสารสนเทศเพื่อการบริหารข้อมูลการจัดเก็บถังขยะเปียกในส่วนท้องถิ่น: กรณีศึกษาองค์กรบริหารส่วนตำบลละงุ จังหวัดสตูล

3. แบบสอบถามความพึงพอใจของระบบสารสนเทศเพื่อการบริหารข้อมูลการจัดเก็บถังขยะเปียกในส่วนท้องถิ่น: กรณีศึกษาองค์กรบริหารส่วนตำบลละงุ จังหวัดสตูล

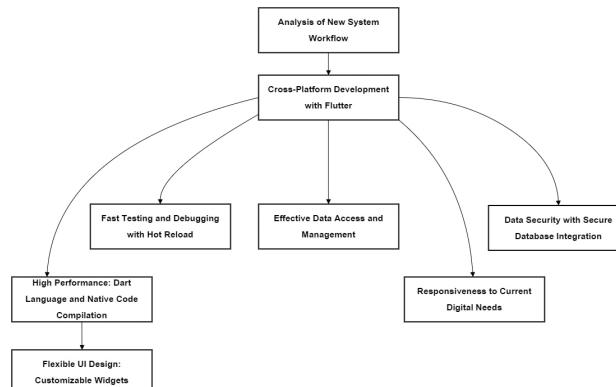
5. วิธีการดำเนินการวิจัย (Research Methodology)

การวิจัยเรื่องการพัฒนาระบบสารสนเทศเพื่อการบริหารข้อมูลการจัดเก็บถังขยะเปียกในส่วนท้องถิ่น: กรณีศึกษาองค์กรบริหารส่วนตำบลละงุ จังหวัดสตูล ได้ดำเนินการด้วยวิธี SDLC (Sampaonthong & Sanchana, 2023) ซึ่งประกอบไปด้วย 5 หัวข้อ ย่อๆ ดังต่อไปนี้

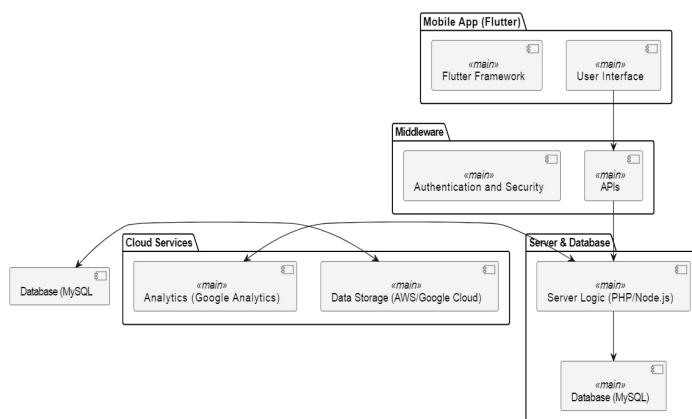
5.1 การวิเคราะห์ความต้องการ (Requirement Analysis)

ในขั้นตอนนี้ ผู้วิจัยได้ดำเนินการสำรวจและสัมภาษณ์เพื่อรับรวมข้อมูลความต้องการของผู้ใช้สำหรับแอปพลิเคชันการจัดการขยะเปียกโดยใช้ Flutter Framework สำหรับการพัฒนาแอปพลิเคชันข้ามแพลตฟอร์ม (Cross Platform Application) ขั้นตอนนี้เน้นการทำความเข้าใจปัญหาและความต้องการจริงจากผู้ใช้ในท้องถิ่น ข้อมูลที่ได้รวบรวมมาถูกบันทึกและวิเคราะห์อย่างละเอียดใน Google Sheets เพื่อเตรียมพร้อมสำหรับการออกแบบระบบต่อไป การวิเคราะห์ที่ช่วยให้สามารถกำหนดคุณสมบัติที่จำเป็นสำหรับระบบได้อย่างแม่นยำ

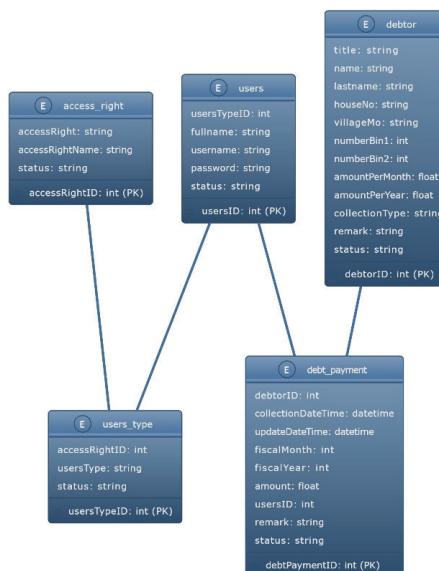
5.2 การออกแบบระบบ (System Design)


การออกแบบระบบสารสนเทศเพื่อการบริหารข้อมูลการจัดเก็บถังขยะเปียก แบ่งเป็น 2 ส่วนหลัก คือ

5.2.1 การวิเคราะห์ระบบ (System Analysis)


ข้อมูลที่ได้จากการวิเคราะห์ความต้องการ นำมาวิเคราะห์เพิ่มเติมเพื่อกำหนดโครงสร้างข้อมูลและความต้องการทางเทคนิคของระบบใหม่ การวิเคราะห์ที่เน้นที่ความสมมัติ์และความต้องการของข้อมูลซึ่งจะช่วยในการกำหนดรายละเอียดทางเทคนิคสำหรับการออกแบบฐานข้อมูลและอินเตอร์เฟสผู้ใช้

5.2.2 การออกแบบระบบ (System Testing)


จากการวิเคราะห์ ผู้วิจัยดำเนินการออกแบบฐานข้อมูลที่สามารถรองรับการจัดการข้อมูลแบบเรียลไทม์และอินเตอร์เฟสผู้ใช้ที่มีประสิทธิภาพและง่ายต่อการใช้งาน โดยภาพประกอบ 2 แสดงถึง

ภาพประกอบ 2 การวิเคราะห์ระบบงานใหม่

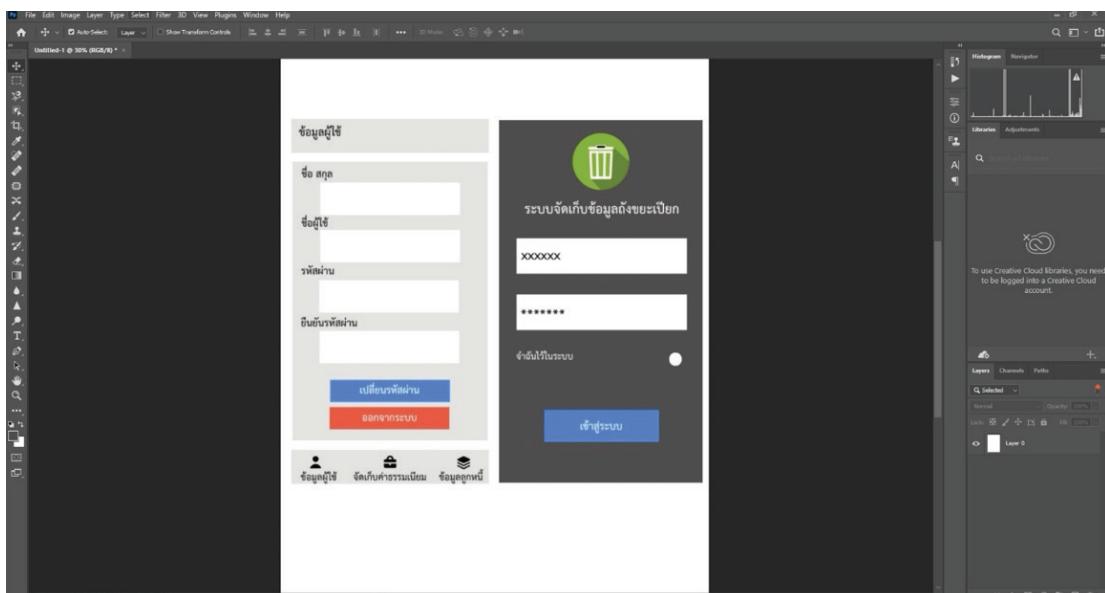
ภาพประกอบ 3 สถาปัตยกรรมระบบ

ภาพประกอบ 4 การออกแบบระบบฐานข้อมูล (Entity-Relationship Diagram: ERD)

การวิเคราะห์ระบบงานใหม่ ภาพประกอบ 3 แสดงถึง สถาปัตยกรรมของระบบ และภาพประกอบ 4 แสดงถึงการออกแบบระบบฐานข้อมูลด้วยวิธี Entity-Relationship Diagram (ERD)

5.3 การพัฒนาระบบ (System Development)

ในขั้นตอนนี้ ผู้วิจัยได้พัฒนาแอปพลิเคชันตามแผนการออกแบบที่ได้วางไว้โดยใช้ Flutter Framework เพื่อรับการใช้งานระบบปฏิบัติการ Android มีการทดสอบครอบคลุมทุกฟังก์ชันการทำงานและการปรับปรุงตามผลลัพธ์ที่ได้รับ รวมถึงการทดสอบความสามารถในการใช้งาน (Usability Testing) ที่ช่วยให้แน่ใจว่าผู้ใช้สามารถใช้งานได้อย่างง่ายดาย และมีประสิทธิภาพ ตัวอย่างการออกแบบ UI แสดงดังภาพประกอบ 5


5.4 ประเมินระบบ (System Evaluation)

การวิจัยนี้ใช้การประเมินประสิทธิภาพ ด้วยวิธี Black Box Testing ซึ่งเป็นเทคนิคการทดสอบ

ซอฟต์แวร์ที่มีประสิทธิภาพและได้รับการยอมรับในวงการพัฒนาระบบ (Myers et al., 2012; Nie, 2015) สำหรับการประเมินระบบมีสองส่วน คือ การประเมินประสิทธิภาพโดยผู้ดูแลระบบ 3 คน และการประเมินความพึงพอใจจากผู้ใช้ 40 คน ซึ่งรวมถึง พนักงานของ อบต.ละงุ และประชาชนในท้องถิ่น การประเมินช่วยวัดผลตอบรับของผู้ใช้และประสิทธิภาพการทำงานของระบบในสภาพแวดล้อมจริง

5.5 ติดตั้งและบำรุงรักษา (Deployment and Maintenance)

แอปพลิเคชัน Android ถูกติดตั้งให้กับเจ้าหน้าที่จัดเก็บขยะของ อบต.ละงุ และใช้งานเป็นเวลา 1 ปี การบำรุงรักษาระบบรวมถึงการตรวจสอบและปรับปรุงแอปพลิเคชันเป็นประจำเพื่อรักษาความเสถียรและประสิทธิภาพการใช้งาน พร้อมทั้งการประเมินความพึงพอใจจากผู้ใช้เพื่อปรับปรุงแอปพลิเคชันให้ดียิ่งขึ้น

ภาพประกอบ 5 ตัวอย่างการออกแบบส่วนต่อประสานผู้ใช้

6. ผลการวิจัย (Experimental Results)

จากการศึกษาสามารถแสดงผลการวิจัยได้ดังต่อไปนี้

6.1 ผลสำรวจและเก็บรวบรวมข้อมูลถังขยะเปียกในส่วนท้องถิ่น

กรณีศึกษาของค์การบริหารส่วนตำบลลงทะเบี่จังหวัดสตูล ผู้วิจัยได้กำหนดประเภทของข้อมูล คือ หมู่ที่ จำนวนถังขยะเปียก โดยเก็บรวบรวมข้อมูลจากการลงภาคสนามและข้อมูลของ อบต.ลงทะเบี่ มีผลดังรายละเอียดในตาราง 1

ตาราง 1 จำนวนถังขยะเปียก

หมู่บ้าน	จำนวนถังขยะเปียก
หมู่ที่ 1	460
หมู่ที่ 2	577
หมู่ที่ 3	442
หมู่ที่ 4	380
หมู่ที่ 5	249
หมู่ที่ 6	390
หมู่ที่ 7	171
หมู่ที่ 8	240
หมู่ที่ 9	272
หมู่ที่ 10	338
หมู่ที่ 11	314
หมู่ที่ 12	373
หมู่ที่ 13	213
หมู่ที่ 14	240
หมู่ที่ 15	270
หมู่ที่ 16	172
หมู่ที่ 17	180
หมู่ที่ 18	177
รวม 18 หมู่บ้าน	5,458 ถัง

จากการสำรวจ 1 ผลการสำรวจและเก็บรวบรวมข้อมูลถังขยะเปียกในส่วนท้องถิ่น: กรณีศึกษา องค์การบริหารส่วนตำบลลงทะเบี่ จังหวัดสตูล โดยผู้วิจัยได้จัดเก็บข้อมูล หมู่ที่ และจำนวนถังขยะเปียก ดังนี้ จำนวนถังขยะเปียก 5,458 ถัง ใน 18 หมู่บ้าน ของ อบต.ลงทะเบี่

6.2 ผลการพัฒนาระบบสารสนเทศเพื่อการจัดการข้อมูลถังขยะเปียกในพื้นที่ท้องถิ่น

กรณีศึกษาของค์การบริหารส่วนตำบลลงทะเบี่ จังหวัดสตูล ระบบนี้ถูกออกแบบมาเพื่อลดเวลา และเพิ่มประสิทธิผลในการจัดการข้อมูลถังขยะเปียก โดยยังส่งเสริมให้การสื่อสารระหว่างผู้ดูแลระบบและสมาชิกเป็นไปอย่างราบรื่นและมีประสิทธิภาพ งานวิจัยนี้พัฒนาระบบเป็น 2 ส่วนหลัก

6.2.1 ผู้ดูแลระบบ

ประกอบด้วยเว็บแอปพลิเคชันที่พัฒนาโดยใช้ HTML5, CSS3, PHP7, MySQL ซึ่งเป็นระบบจัดการฐานข้อมูลที่มีเอกสารอ้างอิงอิกรอบถ้วนและได้รับการสนับสนุนอย่างต่อเนื่อง (Oracle Corporation, 2023) และ JavaScript เพื่อการประสานงานและจัดการข้อมูลอย่างมีประสิทธิภาพ ระบบนี้ช่วยให้ผู้ดูแลสามารถเข้าถึงและบริหารจัดการข้อมูลได้จากทุกที่และทุกเวลา โดยมีฟังก์ชันที่หลากหลายเพื่อรับความต้องการของการบริหารจัดการข้อมูลอย่างละเอียด

6.2.2 สมาชิก (พนักงาน อบต.ลงทะเบี่)

การใช้งานผ่านแอปพลิเคชันระบบปฏิบัติการ Android ที่พัฒนาด้วย Flutter Framework ช่วยให้พนักงานสามารถอัพเดตข้อมูลถังขยะเปียกในท้องถิ่นได้ทันท่วงที และมีฟังก์ชันนี้ออกแบบมาเพื่อการใช้งานที่ง่ายและมีประสิทธิภาพ โดยมีฟังก์ชันต่างๆ ที่ช่วยให้สามารถทำงานได้ภายใต้เงื่อนไขต่างๆ และมี

ภาพประกอบ 6 หน้าจอการเข้าแอปพลิเคชัน
และ Log-in เข้าระบบ

ข้อมูลผู้ใช้	ข้อมูลผู้ใช้
ชื่อ สกุล Administrator	ชื่อ สกุล เจ้าหน้าที่_อบต.ละจุ
ชื่อผู้ใช้ admin	ชื่อผู้ใช้ user
รหัสผ่าน	รหัสผ่าน
บันทึกรหัสผ่าน	บันทึกรหัสผ่าน
เปลี่ยนรหัสผ่าน	เปลี่ยนรหัสผ่าน
ออกจากระบบ	ออกจากระบบ

ภาพประกอบ 7 หน้าจอข้อมูลผู้ใช้เข้าใช้ระบบ

การประเมินผลการใช้งานให้เห็นผลทันที สำหรับการนำไปใช้งานและประเมินผล งานวิจัยนี้นำเสนอเฉพาะ การพัฒนาและการใช้งานระบบในส่วนของระบบปฏิบัติ การ Android โดยมีผู้ทดสอบระบบ 40 คน รวมถึง พนักงานของ อบต.ละจุ และประชาชนในท้องถิ่น เพื่อประเมินประสิทธิภาพของแอปพลิเคชันและความ พึงพอใจของผู้ใช้งาน ผลการทดสอบและประเมินผล ได้รับการเก็บข้อมูลและวิเคราะห์เพื่อสะท้อน ความสำเร็จและพัฒนาต่ออยอดในการใช้งานจริง ภาพประกอบ 6 แสดงหน้าจอการเข้าแอปพลิเคชัน และ Log-in เข้าระบบ ภาพประกอบ 7 แสดงหน้า จอข้อมูลผู้ใช้ระบบ และภาพประกอบ 8 แสดงเมนู จัดเก็บข้อมูลและการออกแบบหน้าจอ UI ที่ยึดหยุ่น ของ Flutter

6.3 ผลการทดลองระบบ

การทดสอบระบบด้วยสมการความพร้อม ใช้งาน (Top & Ali, 2021) แสดงดังตาราง 2

จากตาราง 2 อธิบายข้อมูลแต่ละคอลัมน์ ได้ดังนี้

ข้อมูลลูกหนี้	จัดเก็บค่าธรรมเนียม
บัญชี*	2565
บัญชี*	19
บัญชี*	26/182
ค่าก่อหนี้	คงเหลือค่าก่อหนี้
ชื่อ	บริษัท ศักดิ์เพชร
บัญชี	จำนวนเดือน
จำนวนเดือน	จำนวนเดือน
จำนวนเดือน	20.00
จำนวนเดือน	\$
จำนวนเดือน	หมายเหตุ
จำนวนเดือน	ระบบดังขยะเปียกไม่มีค่าใช้จ่าย

ภาพประกอบ 8 เมนูจัดเก็บข้อมูลและการออกแบบ UI ที่ยึดหยุ่นของ Flutter

1) Date: วันที่การทดสอบถูกดำเนินการ ตั้งแต่วันที่ 1 มิถุนายน ถึง 15 มิถุนายน 2566

2) Total Time (hours): จำนวนชั่วโมง ทั้งหมดที่ระบบควรจะทำงานในแต่ละวัน ซึ่งเป็น 24 ชั่วโมงต่อวัน

3) Uptime (hours): จำนวนชั่วโมงที่ ระบบสามารถทำงานได้จริงโดยไม่มีปัญหา ค่านี้

ตาราง 2 ผลทดลองระบบด้วยสมการความพร้อมใช้งาน

Date	Total Time (hours)	Uptime (hours)	Availability (%)
2023-06-01	24	22	91.67
2023-06-02	24	23	95.83
2023-06-03	24	22	91.67
2023-06-04	24	22	91.67
2023-06-05	24	22	91.67
2023-06-06	24	23	95.83
2023-06-07	24	23	95.83
2023-06-08	24	23	95.83
2023-06-09	24	23	95.83
2023-06-10	24	23	95.83
2023-06-11	24	23	95.83
2023-06-12	24	23	95.83
2023-06-13	24	23	95.83
2023-06-14	24	23	95.83
2023-06-15	24	23	95.83

บางวันน้อยกว่า 24 ชั่วโมงเนื่องจากมีการบำรุงรักษา หรือปัญหาที่ทำให้ระบบไม่สามารถให้บริการได้

4) Availability (%): อัตราความพร้อมใช้งานของระบบแสดงเป็นเปอร์เซ็นต์ ซึ่งคำนวณจาก $(\text{Uptime} / \text{Total Time}) \times 100\%$ ตัวอย่างเช่น ถ้าระบบทำงานได้ 22 ชั่วโมงจากทั้งหมด 24 ชั่วโมง ความพร้อมใช้งานจะเป็น 91.67%

6.4 ผลการประเมินประสิทธิภาพระบบจัดเก็บข้อมูลถังขยะเปียก

การประเมินประสิทธิภาพของระบบสารสนเทศเพื่อการบริหารข้อมูลการจัดการจัดเก็บถังขยะเปียก ในส่วนท้องถิ่นดำเนินการโดยผู้เชี่ยวชาญ จำนวน 3 คน โดยผลการประเมินประสิทธิภาพแสดงดังตาราง 3

ตาราง 3 ผลการประเมินประสิทธิภาพ ระบบจัดเก็บข้อมูลถังขยะเปียก โดยผู้เชี่ยวชาญ พบว่า ผู้เชี่ยวชาญตอบแบบประเมินประสิทธิภาพระบบจัดเก็บข้อมูลถังขยะเปียกในภาพรวม อยู่ในระดับมาก ($\bar{X}=4.25$, $S.D.=0.49$) เมื่อพิจารณาเป็นรายข้อ พบว่า ทุกหัวข้อมีประสิทธิภาพอยู่ในระดับมาก

6.5 ผลประเมินความพึงพอใจระบบจัดเก็บข้อมูลถังขยะเปียก

ผู้จัดได้ประเมินความพึงพอใจระบบจัดเก็บข้อมูลถังขยะเปียกโดยประเมินจากสมาชิกจำนวน 40 ท่าน แสดงผลดังตาราง 4

ตาราง 4 ผลการประเมินความพึงพอใจ ระบบจัดเก็บข้อมูลถังขยะเปียก พบร้า ผู้ตอบแบบประเมินมีความพึงใจเนื้อหาในภาพรวม อยู่ในระดับ

ตาราง 3 ผลประเมินประสิทธิภาพระบบจัดเก็บข้อมูลถังขยะเปียก

รายการ	\bar{X}	S.D.	ระดับประสิทธิภาพ
1. ความสามารถในการใช้งาน (Usability)	4.33	0.47	มาก
2. ประสิทธิภาพ (Performance)	4.24	0.50	มาก
3. ความปลอดภัย (Security)	4.33	0.47	มาก
4. ความน่าเชื่อถือ (Reliability)	4.28	0.52	มาก
5. ความครอบคลุมของฟังก์ชัน (Functionality)	4.08	0.51	มาก
ค่าเฉลี่ยรวม	4.25	0.49	มาก

ตาราง 4 ผลประเมินความพึงพอใจระบบจัดเก็บข้อมูลถังขยะเปียก

รายการ	\bar{X}	S.D.	ระดับความพึง พอใจ
1. ความสามารถในการใช้งาน (Usability)	4.33	0.47	มาก
2. ประสิทธิภาพ (Performance)	4.33	0.47	มาก
3. ความปลอดภัย (Security)	4.28	0.51	มาก
4. ความน่าเชื่อถือ (Reliability)	3.98	0.54	มาก
ค่าเฉลี่ยรวม	4.23	0.49	มาก

มาก ($\bar{X}=4.23$, S.D.=0.49) เมื่อพิจารณาเป็นรายข้อพบว่า ทุกหัวข้อมีความพึงพอใจอยู่ในระดับมาก

7. อภิปรายผลการวิจัย (Discussion)

การพัฒนาระบบสารสนเทศสำหรับบริหารข้อมูลการจัดเก็บถังขยะเปียกขององค์กรบริหารส่วนตำบลลง แสดงให้เห็นถึงความสำเร็จในการปรับปรุงกระบวนการจัดการข้อมูลขยะ เพื่อเพิ่มความมีระเบียบและลดความผิดพลาดในการบันทึกข้อมูล ผลลัพธ์นี้ตอบสนองต่อวัตถุประสงค์หลักของการวิจัยในการปรับปรุงคุณภาพและความรวดเร็วของการจัดการข้อมูลขยะเปียกภายในองค์กร การพัฒนาดังกล่าวถูกสนับสนุนโดยการใช้งานเทคโนโลยี Flutter Framework ซึ่งช่วยให้การพัฒนาแอปพลิเคชันข้ามแพลตฟอร์มเป็นไปได้อย่างง่ายดาย และสะดวก วรรณกรรมที่มีอยู่ซึ่งให้เห็นถึงประสิทธิภาพ

ของเทคโนโลยีในการปรับปรุงกระบวนการธุรกิจ และการจัดการข้อมูล (Xu et al., 2022; Eriksson, Strid, & Hansson, 2015) การนำเทคโนโลยีนี้มาใช้ในการวิจัยนี้ไม่เพียงแต่เพิ่มประสิทธิภาพการบันทึกข้อมูลเท่านั้น แต่ยังช่วยลดเวลาที่ใช้ในการจัดการข้อมูล ทำให้ผู้ใช้สามารถใช้เวลาในการแก้ไขปัญหาอื่นๆ ในการจัดการขยะได้มากขึ้น เมื่อเปรียบเทียบกับระบบการจัดการข้อมูลแบบดั้งเดิมที่ใช้ในองค์กร บริหารส่วนตำบลลงก่อนหน้านี้ ผลการวิจัยนี้ชี้ให้เห็นว่าระบบใหม่มีความสามารถในการลดข้อผิดพลาดและเพิ่มประสิทธิภาพการจัดการข้อมูล ผู้ใช้งานรายงานว่าพึงพอใจกับความสามารถของระบบใหม่ในการลดความซับซ้อนและเพิ่มความเร็วในการเข้าถึงข้อมูล ผลลัพธ์เหล่านี้สอดคล้องกับข้อสรุปจากการวิจัยอื่นๆ ที่ยืนยันถึงประโยชน์ของ การใช้เทคโนโลยีใหม่ในการปรับปรุงกระบวนการ

ทางธุรกิจ (Ankam *et al.*, 2023) การศึกษานี้เน้นย้ำถึงความสำคัญของการใช้เทคโนโลยีใหม่ในการแก้ไขปัญหาการจัดการข้อมูลขยะ และเป็นตัวอย่างที่ดีที่แสดงให้เห็นว่าการประยุกต์ใช้เทคโนโลยีสามารถนำมาซึ่งการปรับปรุงที่มีความหมายได้อย่างไร ผลการวิจัยนี้จะสามารถให้ข้อมูลอ้างอิงที่มีค่าสำหรับการศึกษาในอนาคตและการพัฒนาอย่างยั่งยืนในองค์การบริหารส่วนตำบลและหน่วยงานที่มีความท้าทายในการจัดการข้อมูลขยะที่คล้ายคลึงกัน

8. สรุปผลการวิจัย (Conclusion)

การวิจัยนี้เน้นไปที่การพัฒนาและการประเมินผลของระบบสารสนเทศที่ใช้ในการบริหารจัดการข้อมูลการจัดเก็บถังขยะเปียก ซึ่งระบบดังกล่าวได้ถูกออกแบบและพัฒนาโดยใช้ Flutter Framework บนระบบปฏิบัติการ Android เพื่อรับการใช้งานในสภาพแวดล้อมท้องถิ่นที่องค์การบริหารส่วนตำบล ลงวุ จังหวัดสตูล ผลการพัฒนาระบบได้ชี้ให้เห็นถึงประโยชน์หลายประการตามวัตถุประสงค์ของการวิจัยที่ได้วางไว้

การสำรวจและรวบรวมข้อมูล: ระบบช่วยให้สามารถสำรวจและรวบรวมข้อมูลเกี่ยวกับถังขยะเปียกได้อย่างมีประสิทธิภาพและเป็นระบบ ทำให้สามารถเข้าถึงข้อมูลได้ง่ายและรวดเร็ว ซึ่งตอบสนองต่อความต้องการในการติดตามและจัดการข้อมูลขยะเปียกในท้องถิ่นได้ดียิ่งขึ้น

พัฒนาแอปพลิเคชัน: การพัฒนาแอปพลิเคชันทำให้การบริหารจัดการข้อมูลสามารถทำได้ทันท่วงที และมีประสิทธิภาพ แอปพลิเคชันที่ออกแบบมาสำหรับการใช้งานง่ายช่วยให้ผู้ดูแลระบบและสามารถทำงานร่วมกันได้อย่างราบรื่น

ผลลัพธ์ของการวิจัยแสดงให้เห็นว่าการใช้เทคโนโลยีดิจิทัล อย่าง Flutter Framework ได้ช่วยเสริมประสิทธิภาพและความสามารถในการจัดการข้อมูลขยะเปียก โดยมีการประเมินผลจากผู้ใช้ระบบ

จำนวน 40 คน ทั้งผู้ดูแลระบบและประชาชนในท้องถิ่น ผลการประเมินความพึงพอใจชี้ให้เห็นว่ามีการตอบรับที่ดี และระบบได้รับการพัฒนาอย่างต่อเนื่อง เพื่อตอบโจทย์ความต้องการจริงของผู้ใช้ การนำเทคโนโลยีดิจิทัลมาใช้ไม่เพียงแต่เพิ่มความเหมาะสม และความครอบคลุมของการบริหารจัดการข้อมูลเท่านั้น แต่ยังรวมถึงการปรับปรุงกระบวนการทำงานที่สามารถประเมินผลได้จากการใช้งานจริง ผลการวิจัยนี้ยืนยันถึงความสำเร็จของการบูรณาการเทคโนโลยีใหม่ในการบริหารจัดการข้อมูลท้องถิ่นและสนับสนุนการอนุรักษ์สิ่งแวดล้อมในระดับชุมชน

9. ข้อเสนอแนะในการวิจัยครั้งต่อไป (Recommendations for Future Research Directions)

การวิจัยนี้ได้เปิดเผยศักยภาพและประโยชน์ของ การใช้เทคโนโลยีดิจิทัลในการบริหารจัดการข้อมูลถังขยะเปียก ซึ่งสามารถนำไปสู่การพัฒนาและขยายการวิจัยในอนาคต ดังนี้

9.1 พัฒนาระบบสารสนเทศภูมิศาสตร์เพื่อบริหารจัดการข้อมูลถังขยะเปียก

การใช้ระบบสารสนเทศภูมิศาสตร์ (Geographic information systems: GIS) จะช่วยให้สามารถมองเห็นข้อมูลการจัดเก็บขยะแบบเชิงพื้นที่ได้อย่างชัดเจน ทำให้สามารถวิเคราะห์และบริหารจัดการข้อมูลได้ดียิ่งขึ้นตามความต้องการและสถานการณ์จริงของแต่ละพื้นที่

9.2 ศึกษาและพัฒนาการเชื่อมต่อระบบกับเทคโนโลยีอื่นๆ

การพัฒนาเทคโนโลยี เช่น เช็นเซอร์หรือ Internet of Things (IoT) สามารถช่วยให้การรวบรวมข้อมูลเป็นไปอย่างอัตโนมัติและเพิ่มความแม่นยำในการจัดการข้อมูลขยะเปียก

9.3 ขยายการวิจัยไปยังชุมชนที่มีความหลากหลายมากขึ้น

การทดสอบระบบในสภาพแวดล้อมที่แตกต่างกันจะช่วยให้เห็นถึงประสิทธิภาพและความเหมาะสมของระบบในการตอบสนองต่อความต้องการที่หลากหลาย และช่วยในการปรับปรุงระบบให้เหมาะสมกับแต่ละพื้นที่ได้ดียิ่งขึ้น

9.4 สำรวจการปรับปรุงและขยายความสามารถของแอปพลิเคชัน

การพัฒนาระบบในโลกปัจจุบัน ช่วยให้การเรียนรู้เครื่องจักร (Machine Learning) เพื่อวิเคราะห์และทำนายแนวโน้มข้อมูลฝอย ช่วยให้การวางแผนเชิงกลยุทธ์ในการจัดการข้อมูลฝอยมีประสิทธิภาพยิ่งขึ้น และเป็นประโยชน์ต่อการบริหารจัดการข้อมูลชุมชนและการอนุรักษ์สิ่งแวดล้อม

กิตติกรรมประกาศ (Acknowledgments)

คณะกรรมการวิจัยขอขอบคุณวิทยาลัยนวัตกรรมและการจัดการ มหาวิทยาลัยราชภัฏสิงห์บุรี ที่ให้ทุนอุดหนุนการวิจัยจากงบประมาณเงินรายได้ (เงินบำรุงการศึกษา) วิทยาลัยนวัตกรรมและการจัดการ ประจำปีงบประมาณ พ.ศ. 2566 ขอขอบคุณกองสารสนเทศและสิ่งแวดล้อม และทีมบุคลากรขององค์การบริหารส่วนตำบลละงู อำเภอละงู จังหวัดสตูล สำหรับการอนุเคราะห์ข้อมูล คำชี้แจงและทดสอบระบบข้อมูลคณฑ์วิจัยและคณะกรรมการที่ให้คำแนะนำในการดำเนินงานวิจัยให้สำเร็จลุล่วงไปด้วยดี ผู้ประสานงานการกิจประสานงานวิจัยโครงการที่ดูแลและคณฑ์วิจัยและอำนวยความสะดวกในทุกเรื่อง ขอกราบขอพระคุณทุกท่านมา ณ โอกาสหนึ่ง

เอกสารอ้างอิง (References)

Al-Rahmi, A. M., Shamsuddin, A., Alturki, U., Aldraiweesh, A., Yusof, F. M., Al-Rahmi, W. M., & Aljeraawi, A. A. (2021). The influence of information system success and technology acceptance model on social media factors in education. *Sustainability*, 13(14), 7770. <https://doi.org/10.3390/su13147770>

Ankam, R., Pawar, A., Pingale, D., & Dhadake, S. (2023). Survey on location-based waste management system application using Flutter. *International Research Journal of Modernization in Engineering Technology and Science*, 5(10), 2282-2286. <https://doi.org/10.56726/irjmets45591>

Christensen, T. H., Damgaard, A., Levis, J., Zhao, Y., Björklund, A., Arena, U., Barlaz, M. A., Starostina, V., Boldrin, A., Astrup, T. F., & Bisinella, V. (2020). Application of LCA modelling in integrated waste management. *Waste Management*, 118, 313–322. <https://doi.org/10.1016/j.wasman.2020.08.034>

Deepa, P. (2020). Design and development of mobile application for waste management. *International Journal for Research in Applied Science and Engineering Technology*, 8(8), 465–473. <https://doi.org/10.22214/ijraset.2020.30930>

Eriksson, M., Strid, I., & Hansson, P.-A. (2015). Carbon footprint of food waste management options in the waste hierarchy – A Swedish case study. *Journal of Cleaner Production*, 93, 115–125. <https://doi.org/10.1016/j.jclepro.2015.01.026>

Flutter. (2022). *What is Flutter framework*. Retrieved 3 December 2022, from <https://flutter.dev/learn/>

Google. (2017). *Flutter: Google's UI toolkit for building beautiful, natively compiled applications for mobile, web, and desktop from a single codebase*. Retrieved from <https://flutter.dev/>

Langu Subdistrict Administrative Organization. (2022). *Number of households in Langu Subdistrict Administrative Organization*. Retrieved 21 September 2022, from <http://www.langu.go.th/> [In Thai]

Likert, R. (1932). A technique for the measurement of attitudes. *Archives of Psychology*, 22(140), 1-55.

Myers, G. J., Sandler, C., & Badgett, T. (2012). *The art of software testing* (3rd ed.). John Wiley & Sons.

Nie, B. (2015). A study on the second-person narrative in Jennifer Egan's black box. *Open Journal of Social Sciences*, 3, 51–58. <https://doi.org/10.4236/jss.2015.310008>

Oracle Corporation. (2023). *MySQL 8.0 reference manual*. Retrieved from <https://dev.mysql.com/doc/refman/8.0/en/>

Piriyapun, K. (2022). The database preparation and analysis of spatial data with geographic information systems (GIS) for general solid waste management: A case study of Tha Kham Subdistrict, Bang Pakong District, Municipality. *Journal of Information Science research and practice*, 40(2), 67-94. <https://doi.org/10.14456/jiskku.2022.1> [In Thai]

Rawat, B., Purnama, S., & Mulyati, P. (2021). MySQL database management system (DBMS) on FTP Site LAPAN Bandung. *International Journal of Cyber and IT Service Management (IJCITSM)*, 1(2), 173-179. <https://doi.org/10.34306/ijcitsm.v1i1.47>

Sampaothong, T., & Sanchana, W. (2023). The development application promote agritourism of Pakdee Farm with augmented reality technology. *Journal of Applied Informatics and Technology*, 5(1), 71-85. <https://doi.org/10.14456/jait.2023.6> [In Thai]

Top, C., & Ali, B. J. (2021). Customer satisfaction in online meeting platforms: Impact of efficiency, fulfillment, system availability, and privacy. *Revista Amazonia Investiga*, 10(38), 70–81. <https://doi.org/10.34069/ai/2021.38.02.7>

Tungchuvong, L., Payungvivattanakul, C., & Tangchuwong, V. (2022). Information management for sustainable waste management. *Interdisciplinary Academic and Research Journal*, 2(4), 241-256. <https://so03.tci-thaijo.org/index.php/IARJ/article/view/262394> [In Thai]

Xu, L., Zhou, X., Dong, C., Fang, Z., & Smith, R. L. (2022). Sustainable technologies for recycling organic solid wastes. *Production of Biofuels and Chemicals from Sustainable Recycling of Organic Solid Waste*, 3–29. https://doi.org/10.1007/978-981-16-6162-4_1

การผลิตเมล็ดพันธุ์ข้าวด้วยระบบเกษตรอัจฉริยะ

Rice Seed Production with Smart Farm

ชาลาวัล วรรณทอง¹, วนิดา สารัญรัมย์², อุทิศ ทาหوم³, วิริษฐ์ กิตติธนาธุรกุล¹, เอกลักษณ์ ลักษกคำ^{1,*}
Chalawan Wantong¹, Wanida Sumranram¹, Utis Tahom³,
Varit Kitthanarut¹, Ekkaluk Salukkham^{1,*}

¹ สาขาวิชาภูมิสารสนเทศ คณะวิทยาศาสตร์ มหาวิทยาลัยราชภัฏบุรีรัมย์ บุรีรัมย์ 31000 ประเทศไทย

² สาขาวิชาเกษตรศาสตร์ คณะเทคโนโลยีการเกษตร มหาวิทยาลัยราชภัฏบุรีรัมย์ บุรีรัมย์ 31000 ประเทศไทย

³ สาขาวิชาการพัฒนาสังคม คณะมนุษยศาสตร์และสังคมศาสตร์ มหาวิทยาลัยราชภัฏบุรีรัมย์ บุรีรัมย์ 31000 ประเทศไทย

¹ Department of GeoInformation, Faculty of Science, Buriram Rajabhat University, Buriram 31000, Thailand

² Department of Agricultural Science, Faculty of Agricultural Technology, Buriram Rajabhat University, Buriram 31000, Thailand

³ Department of Social Development, Faculty of Humanities and Social Science, Buriram Rajabhat University, Buriram 31000, Thailand

* Corresponding Author: Ekkaluk Salukkham, aekkarak.sk@bru.ac.th

Received:

19 January 2024

Revised:

21 April 2024

Accepted:

2 May 2024

คำสำคัญ:

เกษตรอัจฉริยะ, อินเทอร์เน็ต
แห่งสรรพสิ่ง, แผนที่ออนไลน์

Keywords:

Smart Farm, Internet of
Things, Online Map

บทคัดย่อ: กระบวนการผลิตข้าวเป็นปัจจัยสำคัญที่ส่งผลต่อคุณภาพของเมล็ดพันธุ์ข้าว แต่ราคาของเมล็ดพันธุ์ข้าวที่ค่อนข้างสูงเป็นอุปสรรคต่อเกษตรกรในหลายพื้นที่ กลุ่มเกษตรกรบ้านหนองสรวงจึงได้รวมกลุ่มกันผลิตเมล็ดพันธุ์ข้าวเพื่อจำหน่าย อย่างไรก็ตาม ในกระบวนการผลิตข้าวยังคงประสบปัญหาในการควบคุมระดับน้ำในแปลงข้าว งานวิจัยนี้มีวัตถุประสงค์เพื่อพัฒนาระบบเกษตรอัจฉริยะสำหรับการผลิตเมล็ดพันธุ์ข้าวโดยใช้เทคโนโลยีอินเทอร์เน็ต แห่งสรรพสิ่งร่วมกับเทคโนโลยีภูมิสารสนเทศ เพื่อการตรวจวัด ติดตาม และควบคุมระดับน้ำในแปลงข้าวอย่างเหมาะสม ระบบที่พัฒนาขึ้นสามารถแสดงผลข้อมูลผ่านแอปพลิเคชันในรูปแบบแผนที่ออนไลน์ อีกทั้งยังมีการประเมินความพึงพอใจของเกษตรกรผ่านแบบสอบถามแบบปลายปิดและมาตราวัดแบบลิเคริท ตลอดจนวิเคราะห์จุดคุ้มทุนของระบบโดยเปรียบเทียบต้นทุนกับกำไรจากการผลิต ผลการศึกษาแสดงให้เห็นว่าระบบสามารถดำเนินการตรวจวัดและควบคุมระดับน้ำได้อย่างมีประสิทธิภาพ เกษตรกรมีระดับความพึงพอใจโดยรวมในระดับมากที่สุด (ค่าเฉลี่ย 4.88) โดยเฉพาะในด้านการลดเวลาในการดูแลแปลงข้าว ซึ่งส่งผลให้เกษตรกรมีเวลาว่างเพิ่มขึ้น และสามารถประกอบอาชีพเสริมเพื่อเพิ่มรายได้ในด้านต้นทุนพบว่า ค่าระบบเกษตรอัจฉริยะเฉลี่ยอยู่ที่ 1,433 บาทสำหรับอุปกรณ์ และ 1,500 บาทต่อไร่ สำหรับค่าติดตั้ง หากเกษตรกรมีระบบพื้นฐาน เช่น บ่อबาดาล ปั้มน้ำแบบซับเมอร์ส และแฟรงซ์ลาร์เซลล์ จะสามารถคืนทุนได้จากการผลิต 3,033.33

บาทต่อไร่จากการผลิตเพียง 1 ไร่ ในทางกลับกัน หากมีเพียงบางส่วนหรือไม่มีระบบพื้นฐานเลย จะต้องมีพื้นที่เพาะปลูกอย่างน้อย 14 ไร่ และ 23 ไร่ ตามลำดับจึงจะสามารถคืนทุนได้

Abstract: The rice production process plays a important role in determining the quality of rice seeds. However, the relatively high cost of certified seeds remains a major constraint for farmers in many areas. Consequently, a group of farmers in Ban Nong Suang formed a cooperative to produce and distribute rice seeds locally. Despite these efforts, challenges continue to exist, particularly in managing water levels in paddy fields, which directly impact productivity. This study aims to develop a smart farming system for rice seed production by integrating Internet of Things (IoT) technology with Geographic Information Systems (GIS) to enable real-time monitoring, tracking, and control of water levels in rice fields. A mobile application with an integrated online map is used to visualize field data in real time. Farmer satisfaction with the system was assessed using a close-ended questionnaire and a Likert scale, while cost-effectiveness was analyzed by comparing implementation costs against the profits generated from rice production. The results demonstrate that the system efficiently monitors and regulates water levels. Farmers expressed a very high level of satisfaction (mean score of 4.88), particularly in relation to time savings on field management tasks. This improvement enabled farmers to allocate more time to alternative income-generating activities. Regarding cost, the average expense for smart farming equipment was 1,433 baht, with an installation cost of 1,500 baht per rai. Farmers with access to existing infrastructure, such as artesian wells, submersible pumps, and solar panels, were able to recover the investment with a profit of 3,033.33 baht per rai from cultivating just one rai of land. In contrast, farmers with only partial or no infrastructure would require a minimum of 14 rai and 23 rai, respectively, to achieve a break-even point.

1. บทนำ (Introduction)

เกษตรกรรมเป็นอาชีพหลักของสังคมไทยมาตั้งแต่อดีต เนื่องจากสภาพภูมิศาสตร์ของประเทศไทย มีความเหมาะสมและเอื้อต่อการเพาะปลูก อย่างไรก็ตาม การเกษตรของไทยได้เปลี่ยนแปลงไปตามยุคสมัยและกระแสการเปลี่ยนแปลงต่างๆ ของโลกมาตามลำดับ (Thongmeethip, 2021; Maeroh & Tongsri, 2023) ความต้องการด้านอาหารที่เพิ่มสูงขึ้นเนื่องจากการเพิ่มขึ้นของจำนวนประชากรโลก แต่ขณะเดียวกัน พื้นที่เกษตรกรรมกลับมีขนาดพื้นที่ลดลงเนื่องจากถูกเปลี่ยนแปลงไปเป็นพื้นที่ประเภท

อื่น ก่อให้เกิดคำถามถึงขีดความสามารถของระบบเกษตรกรรมแบบดั้งเดิมว่าจะยังคงสามารถผลิตอาหารที่มีคุณภาพได้เพียงพอต่อความต้องการของประชากรที่เพิ่มขึ้นได้หรือไม่ (Lioutas & Charatsari, 2020) ช่วงสองทศวรรษที่ผ่านมา การเกษตรได้ก้าวเข้าสู่ยุคเกษตรกรรม 4.0 (Mohamed et al., 2021) หรือเกษตรกรรมดิจิทัล (Digital Agriculture) หรือเกษตรอัจฉริยะ (Smart Farming) ซึ่งเป็นการปรับเปลี่ยนกระบวนทัศน์ (Paradigm Shift) สำหรับการเกษตร เพื่อให้การบริหารจัดการพื้นที่เกษตรกรรมเป็นไปอย่างเหมาะสม และช่วยปรับปรุงประสิทธิภาพของการทำเกษตรกรรม (Lioutas & Charatsari, 2020) โดย

การบูรณาการเทคโนโลยีสารสนเทศและการสื่อสาร (Information and Communication Technology: ICT) และปัญญาประดิษฐ์ (Artificial Intelligence: AI) เข้ากับการทำเกษตรแบบดั้งเดิม (Moysiadis et al., 2021) การปรับเปลี่ยนรูปแบบการทำเกษตรแบบดั้งเดิมซึ่งขึ้นอยู่กับสภาพพื้นที่อาชญาคไปเป็นการทำเกษตรสมัยใหม่ที่เน้นการบริหารจัดการด้วยเทคโนโลยี (Thana-dechophol, Teamsuwan, & Chamnankaew, 2018) นอกจากจะทำให้เกิดความสะดวกและง่ายต่อการบริหารจัดการกระบวนการผลิตแล้ว เกษตรอัจฉริยะยังช่วยเพิ่มปริมาณผลผลิต และช่วยลดต้นทุนการผลิต ตลอดจนช่วยเพิ่มคุณภาพมาตรฐาน การผลิต มาตรฐานสินค้า และความปลอดภัยทั้งต่อผู้บริโภคและสิ่งแวดล้อม (Shashwathi, Borkotoky, & Suhas, 2012) เกษตรอัจฉริยะเป็นรูปแบบการทำเกษตรสมัยใหม่ที่ถูกนำมาใช้ในการบริหารจัดการเกี่ยวกับการทำเกษตรที่กำลังได้รับความนิยมในปัจจุบัน (Phasinam, Kassanuk, & Shabaz, 2022) โดยการนำเทคโนโลยีต่างๆ มาประยุกต์ใช้ในการทำการเกษตร อาทิ การรับรู้จากระยะไกล (Remote Sensing), ระบบดาวเทียมนำทางโลก (Global Navigation Satellite System: GNSS), ระบบสารสนเทศภูมิศาสตร์ (Geographic Information System: GIS), อากาศยานไร้คนขับ (Unmanned Aerial Vehicles: UAVs), เทคโนโลยีการให้ปุ๋ย น้ำ และยาฆ่าแมลง (Variable Rate Technology: VRT), การวิเคราะห์ข้อมูลหัด (Big Data Analytic: BDA), การเรียนรู้ของเครื่อง (Machine Learning) และเทคโนโลยีอินเทอร์เน็ตแห่งสรรพสิ่ง (Internet of Things: IoT) (Boursianis, et al., 2022) เกษตรอัจฉริยะจึงแตกต่างจากเกษตรมั่นยำ (Precision Agriculture) (Lioutas & Charatsari, 2020) เนื่องจากแนวคิดหลักของเกษตรมั่นยำคือเน้นการปรับปรุงการจัดการเชิงพื้นที่เพื่อเพิ่มผลผลิต ด้านการเกษตรและเพื่อลดการใช้ปุ๋ยและสารเคมีโดยการใช้สารเคมีและปุ๋ยเฉพาะที่ (Specific Areas) อย่างมั่นยำ ขณะที่เกษตรอัจฉริยะช่วยปรับปรุง

วิธีการทำการทำเกษตรมากกว่าที่นั้น (Amato et al., 2015) ซึ่งนอกจากจะช่วยส่งเสริมการทำเกษตรมั่นยำ ด้วยเทคโนโลยีที่ทันสมัยแล้ว เกษตรอัจฉริยะยังช่วยให้เกษตรกรสามารถติดตามผลผลิตได้จากระยะไกล และช่วยปรับปรุงพัฒนากระบวนการทำการทำเกษตรตั้งแต่การเพาะปลูกจนถึงการเก็บเกี่ยวโดยอาศัยเซ็นเซอร์แบบอัตโนมัติและเครื่องจักร ซึ่งช่วยให้เกษตรกรทำงานได้อย่างมีประสิทธิภาพยิ่งขึ้น (Dhanarajun et al., 2022) เกษตรอัจฉริยะจึงถือเป็นการทำเกษตรที่พัฒนาต่ออยอดมาจากเกษตรมั่นยำ (Kamilaris et al., 2016) ซึ่ง Mohamed et al. (2021) ได้กล่าวสรุปถึงข้อดีของเกษตรอัจฉริยะไว้ดังนี้ 1) เกษตรอัจฉริยะช่วยเพิ่มข้อมูลแบบเรียลไทม์ (Real Time) ของผลผลิต 2) เกษตรกรสามารถติดตามและควบคุมผลผลิตได้จากระยะไกล 3) สามารถควบคุมน้ำและทรัพยากรธรรมชาติอื่นๆ ได้ 4) ช่วยปรับปรุงการจัดการด้านปศุสัตว์ 5) สามารถประเมินคุณภาพดิน และผลผลิตอย่างมั่นยำ และ 6) ช่วยปรับปรุงการผลผลิตด้านการเกษตร

เทคโนโลยีอินเทอร์เน็ตแห่งสรรพสิ่งเป็นหนึ่งในเทคโนโลยีการสื่อสารแบบไร้สายที่ทันสมัย (Atzori, Iera, & Morabito, 2010) ช่วยให้อุปกรณ์ต่างๆ สามารถเชื่อมต่อกันจากระยะไกลเพื่อการทำเกษตรอัจฉริยะ (Patil & Kale, 2016) ซึ่งมีส่วนสำคัญต่อการพัฒนาการจัดการด้านเกษตรกรรม (Mohamed et al., 2021) การนำเทคโนโลยีอินเทอร์เน็ตแห่งสรรพสิ่งมาประยุกต์ใช้ด้านการเกษตร อาทิ การตรวจจับและติดตามค่าความเป็นกรดด่าง ค่ารากตุ่น อาหารหลัก อุณหภูมิ ความชื้น เป็นต้น จะทำให้การติดตามข้อมูลที่เกี่ยวข้องมีประสิทธิภาพมากยิ่งขึ้น (Srbivovska et al., 2015) ผลการบททวนงานวิจัยที่เกี่ยวข้อง พบว่า นักวิจัยหลายท่านได้นำเทคโนโลยีอินเทอร์เน็ตแห่งสรรพสิ่งไปประยุกต์ใช้ในการทำการเกษตรอัจฉริยะได้อย่างมีประสิทธิภาพ และได้รับความนิยมอย่างแพร่หลายในช่วงที่ผ่านมา อาทิ Jeepet, Sudharatna, & Ueasangkomsate

(2017) ทำการพัฒนาเครื่องมือและทดสอบความสามารถการทำงานของระบบอัตโนมัติที่มีเทคโนโลยีอินเทอร์เน็ต แห่งสรรพสิ่ง ผลการวิจัยพบว่า ระบบสามารถดำเนินการตามคำสั่งและทำงานได้โดยไม่ต้องใช้คนควบคุม และสามารถแสดงให้เห็นถึงต้นทุนปัจจัยและการคาดคะเนต้นทุนในอนาคต ส่วน Fongnogen, Petchhan, & Yajor, (2018) ได้ออกแบบระบบควบคุมอุณหภูมิ และความชื้นสำหรับโรงเรือนเพาะพืช ซึ่งระบบดังกล่าวสามารถจากจะทำงานได้ตามเงื่อนไขที่ออกแบบไว้แล้ว ยังสามารถควบคุมการบ่มเชื้อเห็ดเพื่อเร่งการเจริญเติบโตของเชื้อเห็ดได้ เห็ดที่เก็บจากโรงเรือนที่มีการควบคุมอุณหภูมิและความชื้นจึงมีปริมาณมากกว่าเห็ดที่เก็บได้จากโรงเรือนทั่วไป ขณะที่ Foughali, Fathallah, & Frihida (2018) ทำการพัฒนาต้นแบบ (Prototype) ของระบบสนับสนุนการตัดสินใจ (Decision Support System: DSS) สำหรับป้องกันโรคใบไหม้ในมันผั่งโดยอาศัยเทคโนโลยีอินเทอร์เน็ต แห่งสรรพสิ่ง คณผู้วิจัยได้นำเอาเซนเซอร์ตรวจวัดพารามิเตอร์เกี่ยวกับสภาพอากาศแบบต่างๆ ไปติดตั้งบริเวณแปลงเพาะปลูก และข้อมูลสภาพอากาศที่ถูกตรวจจับถูกส่งไปเก็บรวบรวมผ่านการเชื่อมต่ออินเทอร์เน็ต หรือระบบ Cloud IoT ซึ่งผลการพัฒนาต้นแบบดังกล่าวช่วยให้เกษตรกรสามารถควบคุมและดูแลผลผลิตได้อย่างมีประสิทธิภาพ นอกจากนี้ Pothong, Mekarun, & Choosumrong (2019) ได้พัฒนาระบบเกษตรอัจฉริยะด้วยชอร์ฟแวร์รหัสเปิด และเทคโนโลยีอินเทอร์เน็ตแห่งสรรพสิ่ง โดยใช้เซนเซอร์ตรวจวัดความชื้นดิน และเซนเซอร์วัดอุณหภูมิและความชื้นอากาศแบบอัตโนมัติ ผลการวิจัยพบว่า ข้อมูลที่ตรวจวัดได้สามารถแสดงผลบนสมาร์ทโฟนแบบเรียลไทม์ และสามารถสั่งเปิด-ปิดอุปกรณ์ควบคุมได้จากระยะไกล นอกจากนี้ ข้อมูลที่ตรวจวัดยังสามารถบันทึกลงฐานข้อมูล ส่งผลให้เกษตรกรสามารถนำเอาข้อมูลไปใช้ในการวางแผนการเพาะปลูก ตลอดจนการปรับปรุงขั้นตอนการผลิตเพื่อเพิ่มผลผลิต และการดำเนินงานคาดคะเนตของผลผลิต

ขณะที่ Srisingmuang *et al.* (2020) ได้พัฒนาระบบเกษตรอัจฉริยะในโรงเรือนปลูกพืช และศึกษาความพึงพอใจของผู้ใช้งานที่มีต่อระบบควบคุมเกษตรอัจฉริยะในโรงเรือนปลูกพืชถูกประเมินอยู่ในระดับมากที่สุด (ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานเท่ากับ 4.64 และ 0.18 ตามลำดับ) และกลุ่มตัวอย่างมีความพึงพอใจต่อการใช้งานระบบดังกล่าวอยู่ในระดับมากที่สุดเช่นกัน (ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานเท่ากับ 4.60 และ 0.04 ตามลำดับ) ส่วน Kanya *et al.* (2022) ได้นำเทคโนโลยีอินเทอร์เน็ตแห่งสรรพสิ่งไปพัฒนาระบบเกษตรอัจฉริยะซึ่งประกอบด้วยระบบควบคุมอุณหภูมิ ระบบควบคุมความชื้นดิน ระบบควบคุมแสง ระบบควบคุมปริมาณน้ำ และแอปพลิเคชันซึ่งสามารถควบคุมการทำงานของอุปกรณ์ตรวจต่างๆ ผ่านสมาร์ทโฟนได้อย่างมีประสิทธิภาพ ผลการประเมินคุณภาพของระบบเกษตรอัจฉริยะในภาครวมพบว่า ระบบดังกล่าวมีคุณภาพอยู่ในระดับมากที่สุด

เมล็ดพันธุ์ข้าวไม่เพียงเป็นปัจจัยที่สำคัญต่อการผลิตข้าว หากยังเป็นปัจจัยที่ช่วยลดต้นทุนการผลิตและเพิ่มคุณภาพให้กับผลผลิตอีกด้วย Jantachai, Yooprasert, & Saranrom (2019) กล่าวว่า เกษตรกรมีความต้องการใช้เมล็ดพันธุ์ข้าวประมาณ 1 ล้านตันต่อปี ขณะที่ภาครัฐสามารถผลิตเมล็ดพันธุ์ข้าวเพื่อตอบสนองความต้องการของเกษตรกรได้เพียงประมาณปีละ 100,000 ตันต่อปี ซึ่งก่อให้เกิดปัญหาการขาดแคลนเมล็ดพันธุ์ข้าวคุณภาพดี อย่างไรก็ตาม ที่ผ่านมาการผลิตข้าวของไทยยังคงดำเนินอยู่ได้เนื่องจากในห้องตลาดมีเมล็ดพันธุ์ข้าวที่ผลิตโดยเกษตรกร กลุ่มเกษตรกร หรือผู้ประกอบการป้อนเข้าสู่ตลาดเพื่อกระจายเมล็ดพันธุ์ไปยังเกษตรกร เมล็ดพันธุ์ข้าวที่เกษตรกรส่วนใหญ่นำมาใช้จึงเป็นขั้นเมล็ดพันธุ์จำหน่าย (Certified Seed) (Sirithunya, 2020) อย่างไรก็ตาม เนื่องจากการผลิตเมล็ดพันธุ์ข้าวเป็นการปลูกข้าวเพื่อให้ได้ปริมาณ

ของเมล็ดพันธุ์ข้าวมากขึ้นโดยรักษาความบริสุทธิ์ของเมล็ดพันธุ์ไว้ให้ตรงตามพันธุ์และมีคุณภาพมาตรฐาน การผลิตเมล็ดพันธุ์ข้าวจึงจำเป็นต้องมีการควบคุณภาพทุกขั้นตอน ตั้งแต่การคัดเลือกพื้นที่ซึ่งควรเลือกพื้นที่ในเขตคลปะรำทางหรือมีน้ำเพียงพอ กรรมนาคนำเสนอ ไม่เป็นพื้นที่ระบบของโรคและแมลงศัตรูพืช (Chantanut, 2022) ขณะที่เมล็ดพันธุ์ที่นำมาปลูกต้องมีความบริสุทธิ์ของสายพันธุ์มากกว่าร้อยละ 90 และมีอัตราการออกมากกว่าร้อยละ 80 และมีความชื้นต่ำ (Khamla, 2015) การปลูกข้าวแต่ละระยะจำเป็นต้องควบคุมระดับน้ำให้มีความเหมาะสมโดยระยะข้าวเป็นต้นกล้าครั้งมีระดับน้ำประมาณ 5 เซนติเมตร เมื่อข้าวถึงระยะแตกกอ ถ้าระดับน้ำสูงต้นข้าวจะเหนิน้ำ ระดับน้ำที่เหมาะสมจะไม่ควรเกิน 10 เซนติเมตร ขณะที่ระยะสร้างรากอ่อน ระดับน้ำที่เหมาะสมจะอยู่ระหว่าง 10-15 เซนติเมตร และเมื่อถึงระยะหลังข้าวออกดอก ควรรักษาระดับน้ำไว้จนถึงหลังข้าวออกดอก 15 วัน จึงปล่อยให้ระดับน้ำในนาแห้ง (Khamla, 2015; Chantanut, 2022) และเมื่อทำการเก็บเกี่ยวเมล็ดพันธุ์ข้าว เกษตรกรควรระบายน้ำก่อนเก็บเกี่ยวอย่างน้อย 7-10 วัน และเก็บเกี่ยวเมล็ดพันธุ์ข้าวที่ระยะสุกแก่พอดีประมาณ 30 วันหลังข้าวออกดอกร้อยละ 80 (Rice Department, 2016)

นอกจากนี้ การนำเทคนิคการปลูกข้าวแบบเปียกสลับแห้ง (Alternate Wetting and Drying: AWD) หรือการแก้ลังข้าว มาใช้ในการจัดการน้ำเพื่อการเกษตร โดยเฉพาะพื้นที่ที่มีข้อจำกัดเรื่องน้ำ จะช่วยลดต้นการเจริญเติบโตและปริมาณผลผลิตข้าว (Bumrungbood *et al.*, 2020) เทคนิคดังกล่าวเป็นการควบคุมระดับน้ำในนาข้าว โดยมีการปล่อยให้น้ำในแปลงนาแห้งช่วงเวลาหนึ่ง แต่ต้องไม่ให้ความชื้นของดินต่ำกว่าที่กำหนด จากนั้นจึงให้น้ำใหม่จนถึงระดับที่ต้องการ (Punyawansiri, Chinapongthitiwa, & Kwanyuen, 2020) การนำเทคนิคดังกล่าวไปใช้จะเริ่มจากการซั่งน้ำในแปลงนาให้มีระดับน้ำอยู่ที่

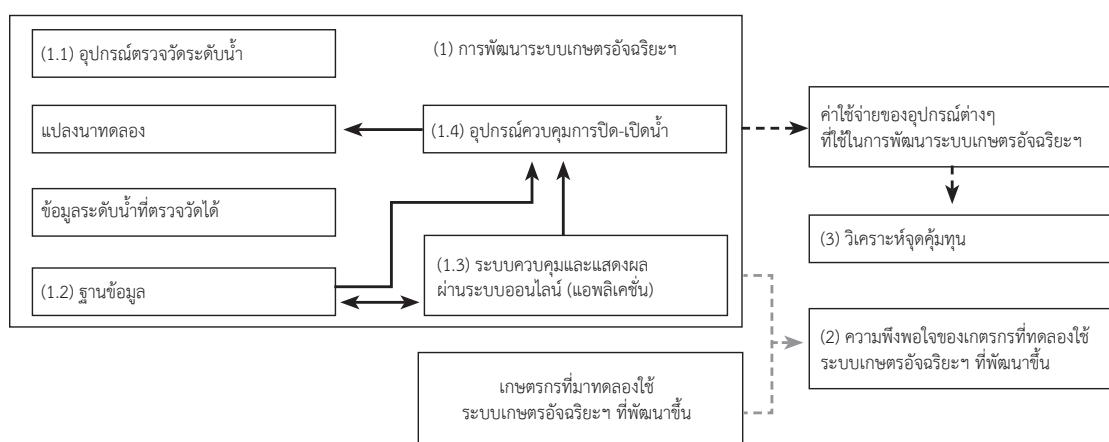
5 เซนติเมตร ในช่วงหลังปักจำจันกระทั้งข้าวอยู่ในช่วงตั้งท้องออกดอก จึงเพิ่มระดับน้ำในแปลงให้อยู่ระหว่าง 7-10 เซนติเมตร จากนั้นจะปล่อยให้ข้าวขาดน้ำครั้งที่ 1 ในช่วงการเจริญเติบโตทางลำต้น หรือข้าวมีอายุประมาณ 35-45 วัน เป็นเวลา 14 วัน หรือจนกว่าระดับน้ำในแปลงลดลงต่ำกว่าผิวแปลง 10-15 เซนติเมตร หรือดินในแปลงนาแตกร่างแข็ง จากนั้นจึงปล่อยน้ำเข้านา จนกระทั่งข้าวแตกกอสูงสุด หรือข้าวอายุประมาณ 60-65 วัน ก็จะปล่อยให้ข้าวขาดน้ำครั้งที่ 2 เป็นระยะเวลาอีก 14 วัน (Sanmany, 2017)

ชุมชนเกษตรกรรมบ้านหนองสรวง ตำบลบัวทอง อำเภอเมือง จังหวัดบุรีรัมย์ เป็นชุมชนหนึ่งที่มีการรวมกลุ่มของเกษตรกรเพื่อจัดตั้งกลุ่มผู้ผลิตเมล็ดพันธุ์ข้าว เนื่องจากเกษตรกรส่วนใหญ่ภายในชุมชนต่างประสบปัญหาเรื่องงบประมาณในการจัดทำเมล็ดพันธุ์ข้าวเพื่อนำไปใช้ในการเพาะปลูก เกษตรกรบางรายจึงรวมกลุ่มกันเพื่อผลิตเมล็ดพันธุ์ข้าวสำหรับนำไปจำหน่ายภายในชุมชนในราคาที่ถูกกว่าราคาของห้องตลาด อย่างไรก็ตาม เนื่องจากกระบวนการเพาะปลูก การดูแลรักษา และการเก็บเกี่ยวข้าวเพื่อนำไปผลิตเป็นเมล็ดพันธุ์ข้าวมีความซับซ้อนกว่าการปลูกข้าวทั่วไป ส่งผลให้เมล็ดพันธุ์ข้าวที่ผลิตได้ไม่เพียงพอต่อความต้องการของเกษตรกรภายในชุมชน (Kakhunrum, 2022) โดยปัญหาหลักที่พบก็คือการควบคุมระดับน้ำภายในแปลงนา เนื่องจากเกษตรกรส่วนใหญ่ยังคงอาศัยน้ำฝนและปล่อยผลผลิตตามสภาพอากาศ (Wantong *et al.*, 2023)

คณะกรรมการวิจัยจึงนำประสบการณ์ดังกล่าวไปพัฒนาเป็นโจทย์วิจัย โดยมีวัตถุประสงค์ของ การวิจัยคือ

1) เพื่อการพัฒนาระบบเกษตรอัจฉริยะเพื่อผลิตเมล็ดพันธุ์ข้าว โดยระบบดังกล่าวจะมุ่งเน้นที่การตรวจวัด ติดตาม และควบคุมระดับน้ำภายในแปลงนาผ่านระบบออนไลน์ (แอปพลิเคชัน) ซึ่งมีการแสดงผลในรูปแบบของแผนที่ออนไลน์

2) เพื่อประเมินความพึงพอใจของเกษตรกรที่มีต่อระบบเกษตรอัจฉริยะภายหลังจากได้ทดลองใช้งาน และ


3) เพื่อวิเคราะห์จุดดีและจุดเสียหายของระบบเกษตรอัจฉริยะที่พัฒนาขึ้น สำหรับการพัฒนาระบบเกษตรอัจฉริยะครั้งนี้ คณะผู้วิจัยได้นำกลุ่มเกษตรกรเข้ามา มีส่วนร่วมในการวางแผน การพัฒนาระบบ และการแก้ไขปัญหาต่างๆ ซึ่งเป็นการยกระดับองค์ความรู้ ด้านการผลิตเมล็ดพันธุ์ข้าวแบบดั้งเดิม ผสมผสาน กับองค์ความรู้สมัยใหม่ เพื่อให้เกิดกลไกในการพัฒนา เศรษฐกิจฐานรากที่เข้มแข็งต่อไป

2. วิธีการดำเนินการวิจัย (Methodology)

การวิจัยครั้งนี้มีขั้นตอนการดำเนินงาน แบ่งออกเป็น 3 ส่วน คือ 1) การพัฒนาระบบเกษตรอัจฉริยะเพื่อผลิตเมล็ดพันธุ์ข้าว, 2) การประเมินความพึงพอใจของเกษตรกรต่อระบบเกษตรอัจฉริยะ และ 3) การวิเคราะห์จุดดีและจุดเสียหายของระบบเกษตรอัจฉริยะ ดังภาพประกอบ 1

ภาพประกอบ 1 การวิจัยครั้งประกอบด้วย ขั้นตอนการวิจัยซึ่งแบ่งออกเป็น 3 ส่วน สดุดคล้อง กับวัตถุประสงค์ของการวิจัย คือ 1) เพื่อพัฒนาระบบเกษตรอัจฉริยะสำหรับการผลิตเมล็ดพันธุ์ข้าวที่มีความ

สามารถในการตรวจวัด ติดตาม และควบคุมระดับน้ำในแปลงนาผ่านระบบออนไลน์ (แอปพลิเคชัน) ที่ มีการแสดงผลในรูปแบบของแผนที่ออนไลน์ ระบบเกษตรอัจฉริยะประกอบด้วยโครงสร้างการทำงาน แบ่งออกเป็น 2 ส่วน ได้แก่ อุปกรณ์สำหรับติดตั้ง ในแปลงนา (ประกอบด้วยอุปกรณ์ตรวจวัดระดับน้ำ และอุปกรณ์ควบคุมการปิด-เปิดน้ำ) และระบบควบคุม และแสดงผลผ่านระบบออนไลน์ (ประกอบด้วย ฐานข้อมูล และแอปพลิเคชัน) โดยการทำงานของ ระบบเกษตรอัจฉริยะเริ่มจากอุปกรณ์วัดระดับน้ำ ในแปลงนาทำการตรวจวัดระดับน้ำแล้วส่งข้อมูล ไปยังฐานข้อมูล ส่วนอุปกรณ์ควบคุมการปิด-เปิดน้ำ จะประมวลผลระดับน้ำในฐานข้อมูลกับระยะเวลา การเจริญเติบโตของข้าว แล้วจึงปล่อยน้ำเข้าสู่แปลงนา ขณะที่ระบบควบคุมและแสดงผลผ่านระบบออนไลน์ ทำหน้าที่แสดงข้อมูลรายละเอียด สถานะการทำงาน ต่างๆ ในแปลงนาในรูปแบบของแผนที่ออนไลน์ ซึ่งอาศัยแผนที่พื้นฐานของ Google Map Platform โดยเกษตรกรสามารถควบคุมการปล่อยน้ำในแปลงนา ได้ด้วยตนเองผ่านสมาร์ทโฟน (Smart Phone), 2) เพื่อประเมินความพึงพอใจของเกษตรกรที่มีต่อ ระบบเกษตรอัจฉริยะ เกษตรกรที่ได้ทดลองใช้งาน ระบบดังกล่าวในแปลงนาทดลองจะถูกประเมินความพึงพอใจด้วยแบบสอบถามปลายปิด และประเมิน

ความพึงพอใจด้วยมาตราวัดแบบลิคีร์ท (Likert Rating Scale) และ 3) เพื่อวิเคราะห์จุดคุ้มทุนของระบบเกษตรอัจฉริยะที่พัฒนาขึ้น โดยการเปรียบเทียบต้นทุนของระบบเกษตรอัจฉริยะ (ค่าอุปกรณ์และค่าติดตั้ง) กับกำไรที่ได้จากการขายผลผลิต เพื่อเป็นรายละเอียดประกอบการตัดสินใจแก่เกษตรกรรายอื่น และผู้สนใจ สำหรับรายละเอียดของขั้นตอนต่างๆ มีดังนี้

2.1 การพัฒนาระบบเกษตรอัจฉริยะเพื่อผลิตเมล็ดพันธุ์ข้าว

ระบบเกษตรอัจฉริยะเพื่อผลิตเมล็ดพันธุ์ข้าว ถูกพัฒนาขึ้นตามแนวคิดของวงจรการพัฒนาระบบ (System Development Life Cycle: SDLC) โดยเริ่มต้นจากการเก็บรวบรวมข้อมูลและองค์ความรู้เกี่ยวกับการผลิตเมล็ดพันธุ์ข้าวของเกษตรกร บ้านหนองสรวง จำนวนทั้งสิ้น 24 คน ด้วยวิธีการสัมภาษณ์ชิงลึกและการจัดเวทีแลกเปลี่ยนองค์ความรู้ จากนั้นทำการวิเคราะห์ประเด็นปัญหาเกี่ยวกับการผลิตเมล็ดพันธุ์ข้าว ซึ่งพบว่า เกษตรกรกลุ่มผู้ผลิต เมล็ดพันธุ์ข้าวบ้านหนองสรวงต่างประสบปัญหาเกี่ยวกับการควบคุมระดับน้ำในแปลงนา เนื่องจากเกษตรกรส่วนใหญ่ยังคงอาศัยน้ำฝนและปล่อยผลผลิตตามสภาพอากาศ ประเด็นปัญหาดังกล่าวจึงถูกนำไปพัฒนาเป็นโจทย์วิจัยร่วมกับกลุ่มผู้ผลิตเมล็ดพันธุ์ข้าว เพื่อออกแบบและพัฒนาระบบเกษตรอัจฉริยะ ซึ่งมุ่งเน้นที่ระบบตรวจวัด ติดตาม และควบคุมระดับน้ำในแปลงนา

ระบบเกษตรอัจฉริยะที่พัฒนาขึ้นประกอบด้วย อุปกรณ์ต่างๆ ที่ทำงานร่วมกัน ได้แก่ อุปกรณ์ตรวจวัดระดับน้ำ, อุปกรณ์ควบคุมการปิด-เปิดน้ำ, ฐานข้อมูลของระดับน้ำที่ตรวจได้, และระบบควบคุมและแสดงผลผ่านระบบออนไลน์ (แอปพลิเคชัน) อย่างไร้ตัวตน เนื่องจากข้อจำกัดด้านงบประมาณและระยะเวลาในการวิจัย คณะกรรมการผู้วิจัยจึงได้คัดเลือกเกษตรกรต้นแบบจำนวน 1 ราย ที่มีระบบพื้นฐานที่จำเป็นต่อการติดตั้ง

ระบบเกษตรอัจฉริยะอยู่แล้ว ได้แก่ บ่อขนาด และชั้บเมอร์สปรอ์มโซล่าเซลล์ และใช้แปลงนาของเกษตรกรต้นแบบดังกล่าวเป็นแปลงนาทดลอง โดยมีเกษตรกรที่สนใจและมีความพร้อมในการลงทุนระบบเกษตรอัจฉริยะอีกจำนวน 9 คน มาร่วมพัฒนาและทดลองใช้งานระบบดังกล่าวในพื้นที่ดังกล่าว

2.2 การประเมินความพึงพอใจของเกษตรกรต่อระบบเกษตรอัจฉริยะ

แบบสอบถามแบบปลายปิด และมาตราวัดแบบลิคีร์ท ถูกนำมาใช้ในการประเมินความพึงพอใจของเกษตรกรต่อระบบเกษตรอัจฉริยะ โดยผู้ตอบแบบสอบถามจะเลือกระดับความพึงพอใจ ซึ่งแบ่งออกเป็น 5 ระดับ (ระดับที่ 1-5) โดยระดับที่ 5, 4, 3, 2 และ 1 หมายถึง เท็นด้วยที่สุด (พึงพอใจที่สุด), เท็นด้วย (พอใจ), เนยฯ (ปานกลาง), ไม่เท็นด้วย (ไม่พึงพอใจ) และไม่เท็นด้วยอย่างยิ่ง (ไม่พึงพอใจอย่างยิ่ง) ตามลำดับ ค่าคะแนนที่ได้ถูกนำไปคำนวณหาค่าเฉลี่ยเพื่อแปลงระดับความพึงพอใจของผู้ตอบแบบสอบถาม (Piroj, 2018) สำหรับการประเมินความพึงพอใจของเกษตรกรต่อระบบเกษตรอัจฉริยะครั้งนี้ ผู้วิจัยได้เก็บรวบรวมแบบสอบถามเฉพาะเกษตรกรที่ได้มาทดลองใช้งานระบบเกษตรอัจฉริยะ ซึ่งมีจำนวนทั้งสิ้น 10 คน (เกษตรกรต้นแบบ 1 คน และเกษตรกรในกลุ่มเกษตรกรผู้ผลิตเมล็ดพันธุ์ข้าวบ้านหนองสรวงอีก 9 คน)

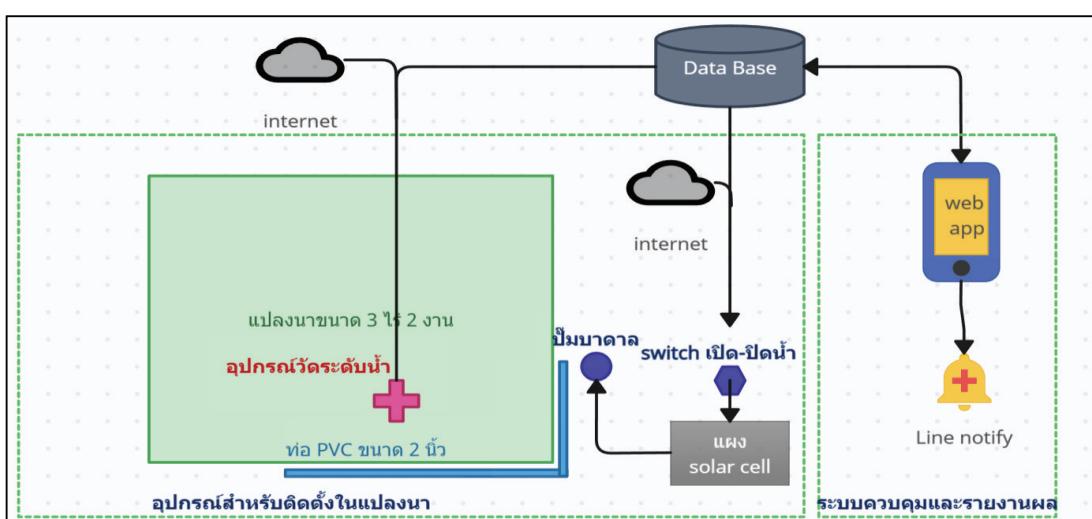
2.3 การวิเคราะห์จุดคุ้มทุน

Sangsuriyarat (2021) กล่าวว่า จุดคุ้มทุน (Break-even Point) คือจุดที่รายได้รวมมีค่าเท่ากับค่าใช้จ่าย หรือต้นทุนรวม (จุดที่กำไรเป็นศูนย์) สำหรับการวิเคราะห์หาจุดคุ้มทุนของระบบเกษตรอัจฉริยะ ครั้งนี้จะพิจารณาจากต้นทุนการผลิตเมล็ดพันธุ์ข้าว กำไรจากการขายผลผลิต และต้นทุนของระบบเกษตรอัจฉริยะ (ค่าอุปกรณ์และค่าติดตั้ง) เพื่อวิเคราะห์ว่า เกษตรกรต้องขายผลผลิตปริมาณเท่าไรจึงได้ต้นทุน

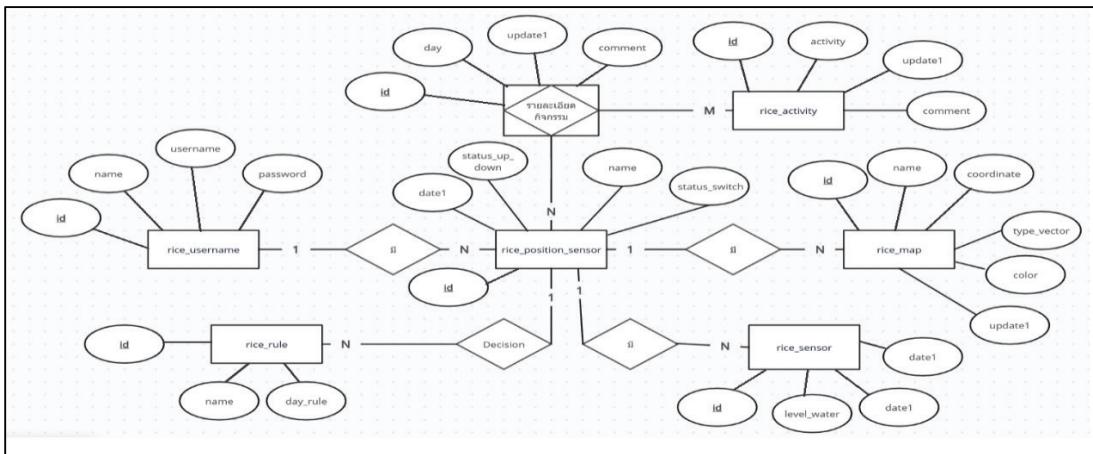
สำหรับระบบเกษตรอัจฉริยะกลับคืนมา สำหรับการพิจารณาจุดคุ้มทุนจะแบ่งออกเป็น 3 กรณี คือ กรณีที่เกษตรมีระบบพื้นฐานเข่นเดียวกับเกษตรต้นแบบ (บ่อขนาด และขั้บเมอร์สพร้อมโซล่าเซลล์), กรณีที่เกษตรมีเพียงบ่อขนาด, และกรณีที่เกษตรไม่มีระบบพื้นฐานใดเลย

3. ผลการวิจัย (Experimental Result)

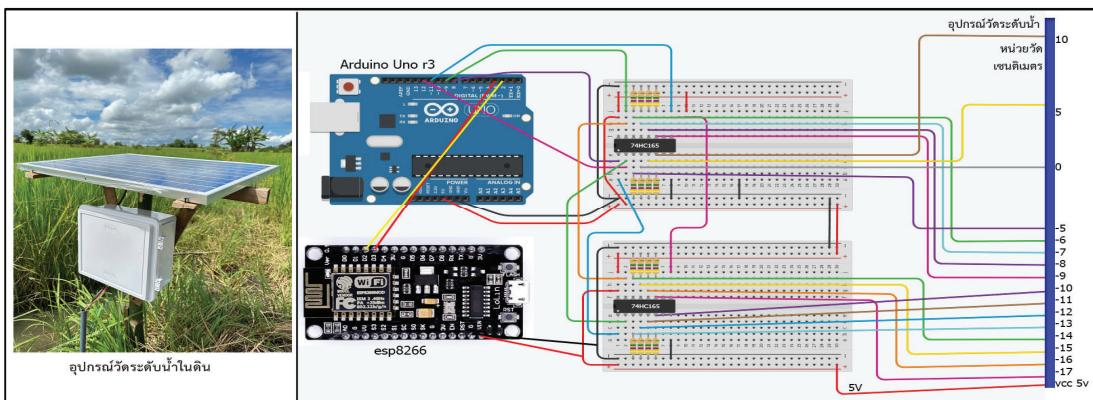
3.1 ระบบเกษตรอัจฉริยะเพื่อผลิตเมล็ดพันธุ์ข้าว


ระบบเกษตรอัจฉริยะเพื่อผลิตเมล็ดพันธุ์ข้าว ที่ถูกพัฒนาขึ้นครั้งนี้มีโครงสร้างการทำงานแบ่งออกเป็น 2 ส่วน ได้แก่ อุปกรณ์สำหรับติดตั้งในแปลงนา และระบบควบคุมและแสดงผลผ่านระบบออนไลน์ ดังภาพประกอบ 2

ภาพประกอบ 2 อุปกรณ์สำหรับติดตั้งในแปลงนาประกอบด้วยอุปกรณ์วัดระดับน้ำ และอุปกรณ์ควบคุมการปิด-เปิดน้ำ ส่วนระบบควบคุมและแสดงผลผ่านระบบออนไลน์ประกอบด้วยฐานข้อมูล และระบบควบคุมและแสดงผลผ่านระบบออนไลน์ ซึ่งอยู่ในรูปแบบของแอปพลิเคชัน การทำงานของระบบเกษตร


อัจฉริยะจะเริ่มจากอุปกรณ์วัดระดับน้ำในแปลงนา จะตรวจวัดระดับน้ำแล้วส่งข้อมูลไปยังฐานข้อมูล จากนั้นระบบจะแจ้งเตือนการทำงานต่างๆ ผ่านโปรแกรมไลน์ (Line) และอุปกรณ์ควบคุมการปิด-เปิดน้ำจะประมวลผลระดับน้ำในฐานข้อมูลกับระยะเวลา การเจริญเติบโตของข้าว แล้วจึงปล่อยน้ำเข้าสู่แปลงนา ขณะที่ระบบควบคุมและแสดงผลผ่านระบบออนไลน์ ทำหน้าที่แสดงข้อมูลรายละเอียด สถานะการทำงาน ต่างๆ ในแปลงนาในรูปแบบของแผนที่ออนไลน์ ซึ่งอาศัยแผนที่พื้นฐานของ Google Map Platform โดยเกษตรกรสามารถควบคุมการปล่อยน้ำในแปลงนาได้ด้วยตนเองผ่านสมาร์ทโฟน สำหรับรายละเอียดของอุปกรณ์และส่วนประกอบต่างๆ ของระบบเกษตร อัจฉริยะมีดังนี้

3.1.1 ฐานข้อมูล


คลังผู้วิจัยออกแบบฐานข้อมูลจากการรวบรวมองค์ความรู้ของเกษตรกร ผู้เชี่ยวชาญ และให้สอดคล้องกับอุปกรณ์ในแปลงนา เพื่อให้อุปกรณ์ต่างๆ สามารถทำงานร่วมกันได้อย่างมีประสิทธิภาพ ซึ่งสามารถออกแบบฐานข้อมูลได้ดังภาพประกอบ 3

ภาพประกอบ 2 การทำงานของระบบเกษตรอัจฉริยะสำหรับการผลิตเมล็ดพันธุ์ข้าว

ภาพประกอบ 3 การออกแบบฐานข้อมูลด้วยแผนภาพของระบบควบคุมและแสดงผลผ่านระบบออนไลน์

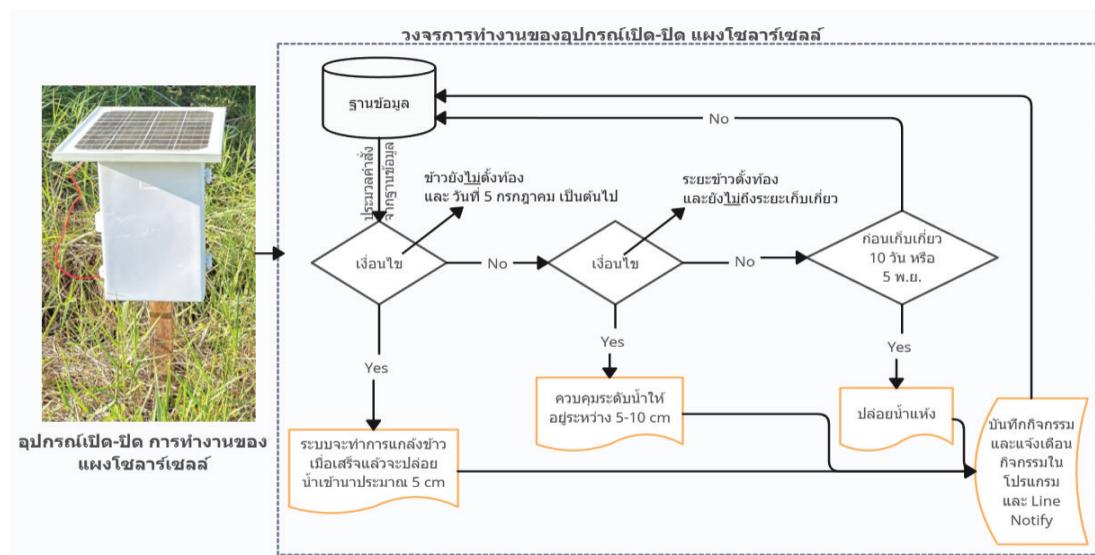
ภาพประกอบ 4 วงจรของอุปกรณ์วัดระดับน้ำ

ภาพประกอบ 3 ฐานข้อมูลประกอบด้วยตารางจำนวน 7 ตาราง โดยแต่ละตารางมีความสัมพันธ์กันและทำงานร่วมกันอย่างเป็นระบบ ได้แก่ rice_position_sensor, rice_username, rice_activity, rice_map, rice_sensor, rice_rule และรายละเอียดกิจกรรม (rice_activity_sub)

3.1.2 อุปกรณ์วัดระดับน้ำ

อุปกรณ์วัดระดับน้ำ ประกอบด้วย 1) ท่อวัดระดับน้ำ ซึ่งทำขึ้นจากการนำเอาท่อพีวีซีไปเจาะรูให้มีรั้งห่างตามที่กำหนด โดยเทียบระยะห่างของแต่ละรูเจาะด้วยไม้บรรทัดมาตรฐาน ท่อวัดระดับน้ำดังกล่าวจะถูกนำไปติดตั้งไว้ที่แปลงนา โดยให้ระดับ

น้ำที่พื้นผิวแปลงมีค่าเท่ากับ 0 เซนติเมตร ส่วนระดับน้ำเหนือพื้นผิวแปลงจะสามารถตรวจวัดได้ที่ระดับ 5-10 เซนติเมตร ซึ่งสอดคล้องกับระดับน้ำที่ใช้ในการปลูกข้าว (Khamla, 2015; Chantanut, 2022) ตรงกันข้าม ระดับน้ำในดินจะสามารถตรวจวัดได้ตั้งแต่ระดับ 5-17 เซนติเมตร (แสดงค่าเป็น -5 ถึง -17 เซนติเมตร) ซึ่งเป็นระดับน้ำที่ใช้ในการแกล้งข้าว โดยช่วงที่แกล้งข้าวจะปล่อยให้ระดับน้ำในแปลงลดลงต่ำกว่าพื้นแปลงประมาณ 10-15 เซนติเมตร (Sanmany, 2017) ในส่วนของรูเจาะวัดระดับน้ำในดินจะมีความละเอียดมากกว่ารูเจาะวัดระดับน้ำบนดิน เนื่องจากเป็นการป้องกันไม่ให้เกษตรกรลดระดับน้ำในแปลงนาต่ำจนเกินไปจนทำให้ข้าวตาย และ 2) วงจรของอุปกรณ์


วัดระดับน้ำถูกติดตั้งอยู่ในกล่องควบคุม (กล่องสีขาว) ซึ่งกล่องดังกล่าวจะถูกนำไปติดตั้งไว้ที่แปลงนาที่ด่องดังภาพประกอบ 4

ภาพประกอบ 4 ท่อวัดระดับน้ำจะถูกติดตั้งลงไปในแปลงนา โดยได้รับพื้นผิวแปลงเมี่องค่าเท่ากับ 0 เซนติเมตร เมื่อมีน้ำเอ่อขึ้นในแปลงนา หรือระดับน้ำลดต่ำลงกว่าพื้นผิวแปลง ระดับน้ำดังกล่าวจะถูกตรวจด้วยเซนเซอร์ที่ติดตั้งไว้ที่ท่อวัดระดับน้ำ ซึ่งสัญญาณที่ตรวจวัดได้จะถูกส่งไปวงจรของอุปกรณ์วัดระดับน้ำซึ่งติดตั้งไว้ในกล่องควบคุม (กล่องสีขาว) สำหรับวงจรของอุปกรณ์วัดระดับน้ำนั้น คณาผู้วิจัยได้ใช้งานรวม (Integrated Circuit: IC) รุ่น 74HC165 จำนวน 2 ตัว เพื่อให้สามารถรับค่าได้ทั้งสิ้น 16 ค่า (เท่ากับจำนวนนวนรูดระดับน้ำ) สัญญาณที่ตรวจวัดได้จากการรวมจะถูกส่งต่อไปยังบอร์ด Arduino Uno R3 เพื่อประมวลผลระดับน้ำที่ตรวจวัดได้ จากนั้นข้อมูลที่ประมวลผลแล้วจะถูกส่งไปยังบอร์ด ESP8266 เพื่อบันทึกข้อมูลดังกล่าวลงในฐานข้อมูลผ่านระบบอินเทอร์เน็ต ระดับน้ำที่ตรวจวัดได้จะเป็นระดับน้ำจริงในแปลงนา ซึ่งมีความแม่นยำในระดับเซนติเมตร

3.1.3 อุปกรณ์ควบคุมการปิด-เปิดน้ำ

เกษตรกรสามารถปิด-เปิดน้ำได้ด้วยตนเอง ผ่านสมาร์ทโฟน หรือที่ตู้ควบคุมซึ่งติดตั้งที่แปลงนา นอกจากนี้ ระบบยังถูกออกแบบให้สามารถปิด-เปิดน้ำได้แบบอัตโนมัติโดยพิจารณาจากการประมวลผลข้อมูลในระบบฐานข้อมูล ดังภาพประกอบ 5

ภาพประกอบ 5 อุปกรณ์ควบคุมการปิด-เปิดน้ำจะรับค่าจากฐานข้อมูลและประมวลผลคำสั่ง “ถ้าข้าวยังไม่ตั้งท้อง และวันที่ 15 กรกฎาคม เป็นต้นไป” เมื่อทำการทำงานจะเป็นจริง ดังนั้นระบบจะทำการแก้ไขการปล่อยให้น้ำแห้ง จนถึงระดับต่ำกว่า -15 เซนติเมตร เมื่อเสร็จแล้วจะปล่อยน้ำเข้ามาเรื่อยๆ ตั้งแต่ระดับน้ำ 5 เซนติเมตร ถ้าเงื่อนไขเป็นเท็จ ระบบจะทำการประมวลผลคำสั่งถัดไป คือ “ถ้าข้าวกำลังตั้งท้อง และยังไม่ถึงระยะเวลาเก็บเกี่ยว” เมื่อทำการทำงานจะเป็นจริง ดังนั้น ระบบจะทำการควบคุมระดับน้ำให้อยู่ระหว่าง 5-10 เซนติเมตร ถ้าเงื่อนไขเป็นเท็จ ระบบจะทำการประมวลผลคำสั่งถัดไป คือ “ถ้าวันนั้นเป็นวันที่ 5 พฤษภาคม หรือก่อนเก็บเกี่ยว 10 วัน” เมื่อทำการทำงานจะ

ภาพประกอบ 5 อุปกรณ์อัจฉริยะปิด-ปิดการทำงานของແຜ່ໂຊລາຣ໌ເຊລ໌

เป็นจริง ดังนั้น ระบบจะทำการปล่อยให้น้ำแห้ง และบันทึกกิจกรรมต่างๆ โดยอัตโนมัติ พร้อมทั้งแจ้งเตือนผ่านโปรแกรมไลน์

3.1.4 ระบบควบคุมและแสดงผลผ่านระบบออนไลน์

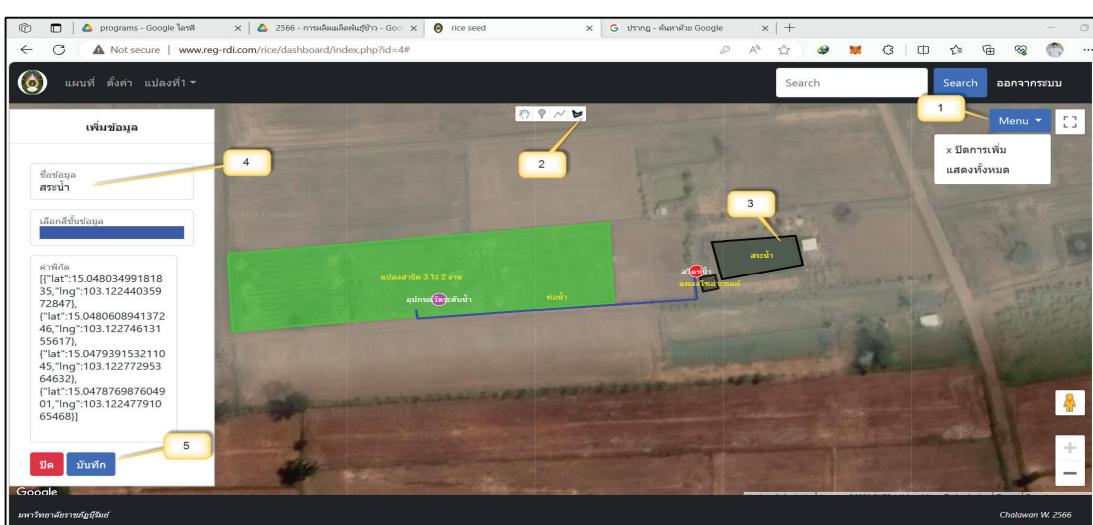
เป็นระบบที่สามารถควบคุมการปิด-เปิดน้ำโดยเกษตรกรสามารถควบคุมการปิด-เปิดน้ำได้ด้วยตนเอง หรือควบคุมการปิด-เปิดน้ำแบบอัตโนมัติ สำหรับส่วนของการแสดงผลจะแสดงค่าสถิติของระดับน้ำในแต่ละช่วงเวลา ตั้งแต่เริ่มปลูกข้าวจนถึง

ช่วงเก็บเกี่ยวผลผลิต ประวัติการรอม, รูปร่างของแปลงนา (Shape), ตำแหน่งของอุปกรณ์ต่างๆ โดยข้อมูลดังกล่าวจะถูกแสดงผลในรูปแบบของแผนที่ออนไลน์ ซึ่งอาศัยแพนที่พื้นฐานของ Google Map Platform นอกจากนี้ ยังรวมถึงการตั้งค่าต่างๆ ที่จำเป็นต่อการผลิตเมล็ดพันธุ์ข้าว อาทิ วันที่เริ่มทำนา, วันที่ข้าวตั้งท้อง และการวัดรูปแปลงนา เป็นต้น และมีระบบป้องกันความปลอดภัยของข้อมูลเกษตรกร ซึ่งสามารถใช้งานผ่านสมาร์ทโฟน และคอมพิวเตอร์ ดังภาพประกอบ 6

ภาพประกอบ 6 ภาพรวมโปรแกรมควบคุมและแสดงผลผ่านระบบออนไลน์



ภาพประกอบ 7 แผนที่ออนไลน์แสดงรายละเอียดแปลงนาและอุปกรณ์ต่างๆ ของเกษตรกร


ภาพประกอบ 6 แสดงภาพรวมของระบบควบคุมและแสดงผลผ่านระบบออนไลน์ โดยผู้ใช้สามารถเข้าสู่ระบบผ่านลิงค์ <http://www.reg-rdi.com/rice/dashboard> อย่างไรก็ตาม เนื่องจากแอพพลิเคชันถูกออกแบบมาให้มีระบบป้องกันความปลอดภัยของข้อมูลเกษตรกร ดังนั้น ผู้ใช้งานจึงจำเป็นต้องมีชื่อผู้ใช้ (Username) และรหัสผ่าน (Password) จึงจะสามารถเข้าไปใช้งานได้ กรณีบุคคลที่ว่าไปจะเข้าถึงระบบได้แค่หน้า Log-in ภายในระบบจะประกอบด้วยเมนูการเข้าสู่ระบบ แผนที่กิจกรรมในการทำงาน สถิติระดับบ้านในแปลงนา การจ่ายน้ำ และการตั้งค่าการ

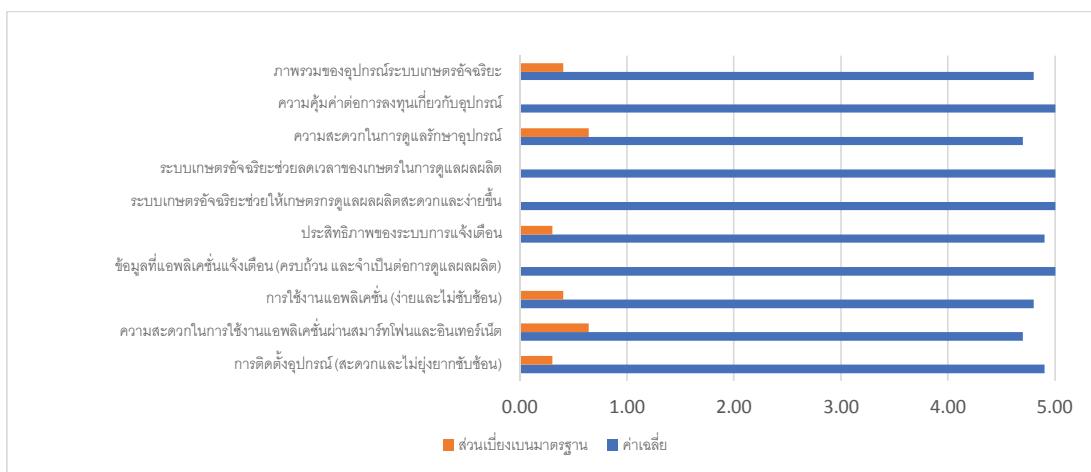
ทำงานต่างๆ ของระบบ ซึ่งการทำงานทั้งหมดจะแสดงรายละเอียดต่างๆ ในหน้าแผนที่ ดังภาพประกอบ 7

ภาพประกอบ 7 เมื่อเข้าสู่ระบบควบคุมและแสดงผลผ่านระบบออนไลน์แล้ว หน้าแรกจะแสดงข้อมูลต่างๆ ในรูปแบบของแผนที่ออนไลน์ อาทิ แปลงนาของเกษตรกร ตำแหน่งอุปกรณ์วัดระดับน้ำ อุปกรณ์ปิด-เปิดการทำงานของแพงโซลาร์เซลล์ (สวิตซ์น้ำ) เป็นต้น ซึ่งข้อมูลดังกล่าวสามารถดูรายละเอียดได้โดยการเลือกข้อมูลที่ต้องการ และแสดงข้อมูลของอุปกรณ์ดังภาพประกอบ 8

ภาพประกอบ 8 แสดงข้อมูลของอุปกรณ์วัดระดับน้ำ

ภาพประกอบ 9 แสดงการเพิ่มข้อมูลในแผนที่ออนไลน์

ภาพประกอบ 8 ตัวอย่างการแสดงผลระดับน้ำที่ถูกตรวจวัด และแสดงระดับน้ำในปัจจุบันจากการตัดบัน้ำที่ 0 เซนติเมตร คือระดับน้ำที่พื้นผิวแปลง หากระดับน้ำมีค่าเป็นค่าบวกจะหมายถึงระดับน้ำเหนือพื้นดิน ตรงกันข้าม หากระดับน้ำมีค่าเป็นลบจะหมายถึงระดับน้ำในดิน จากการตัวอย่างจะสังเกตเห็นว่ามีบางช่วงที่ระดับน้ำติดลบ ซึ่งช่วงเวลาดังกล่าวเป็นช่วงที่มีการแก้ลังข้าว ระดับน้ำจึงลดลงต่ำกว่าระดับพื้นแปลง นอกเหนือนี้ เกษตรกรยังสามารถเพิ่มข้อมูลแปลงนา ตำแหน่งอุปกรณ์วัดระดับน้ำ และตำแหน่งอื่นๆ ตามที่ต้องการได้ด้วยตนเอง โดยการเลือกเมนูในแผนที่ ซึ่งจะแสดงแบบเครื่องมือสำหรับวัดรูป (Digitize) และทำการวัดรูปข้อมูลที่ต้องการลงในแผนที่แสดงดังภาพประกอบ 9


ภาพประกอบ 9 การเพิ่มข้อมูลลงในแผนที่โดยเลือก (1) Menu >> (2) เลือกเครื่องมือวัดรูป >> (3) วัดรูป (Digitize) >> (4) ตั้งชื่อและเลือกสีของข้อมูล >> (5) บันทึกข้อมูล

3.2 ความพึงพอใจของเกษตรกรต่อระบบเกษตรอัจฉริยะเพื่อผลิตเมล็ดพันธุ์ข้าว

เมื่อเกษตรกรได้ทดลองใช้งานระบบเกษตรอัจฉริยะแล้ว คณผู้วิจัยได้ประเมินความพึงพอใจของ

เกษตรที่มีต่อระบบดังกล่าวด้วยแบบสอบถามพื้นที่ใช้งาน การทดสอบความเที่ยงของแบบสอบถามจากผู้ใช้ชาวญี่ปุ่น 3 ท่าน ซึ่งเป็นอาจารย์ประจำในสาขาวิชาการพัฒนาสังคม, เทคโนโลยีสารสนเทศ, และสถิติ ของมหาวิทยาลัยราชภัฏบุรีรัมย์ โดยผลการวิเคราะห์ค่าดัชนี IOC (Index of Item Objective Congruence) พบว่า ประเด็นต่างๆ ในแบบสอบถาม มีความสอดคล้องกับวัตถุประสงค์ของแบบประเมินโดยทุกประเด็นมีค่าความสอดคล้อง IOC มากกว่า 0.50 ซึ่งถือว่าผ่านเกณฑ์ที่สามารถนำแบบสอบถามไปใช้เก็บรวบรวมข้อมูลได้ (Suttiyotin, 2016) แบบสอบถามที่ผ่านการทดสอบข้างต้นจะถูกส่งให้เกษตรกรกลุ่มผู้ผลิตเมล็ดพันธุ์ข้าวบ้านหนองสรวงทั้งหมดที่ได้มาทดลองใช้งานระบบเกษตรอัจฉริยะทั้งหมด ซึ่งมีจำนวนทั้งสิ้น 10 คน (เกษตรกรต้นแบบ 1 คน และเกษตรกรรายใหญ่กลุ่มที่สนใจอีก 9 คน) และมีผลการประเมินความพึงพอใจของเกษตร ดังภาพประกอบ 10

ผลการประเมินความพึงพอใจของเกษตรต่อระบบเกษตรอัจฉริยะ (ภาพประกอบ 10) พบว่าเกษตรกรมีความพึงพอใจเฉลี่ยต่อภาพรวมของอุปกรณ์ระบบเกษตรอัจฉริยะอยู่ในระดับมากที่สุด ($\bar{x} = 4.88$) โดยประเด็นที่มีค่าเฉลี่ยของความพึงพอใจอยู่ในระดับมากที่สุด (5.00) ได้แก่ ข้อมูลที่แอพพลิเคชันแจ้งเตือนมีความครบถ้วน และจำเป็นต่อการดูแล

ภาพประกอบ 10 ผลการประเมินความพึงพอใจของเกษตรต่อระบบเกษตรอัจฉริยะ

ผลผลิต, ระบบเกษตรอัจฉริยะช่วยให้เกษตรกรดูแลผลผลิตสะดวกและง่ายขึ้น, ระบบเกษตรอัจฉริยะช่วยลดเวลาของเกษตรกรในการดูแลผลผลิต, และระบบดังกล่าวมีความคุ้มค่าต่อการลงทุน รองลงมาคือ ประเด็นเรื่องการติดตั้งอุปกรณ์ที่มีความสะดวกและไม่ยุ่งยากซับซ้อน และประสิทธิภาพของระบบการเจ็บต่อ โดยมีค่าคะแนนเฉลี่ยเท่ากับ 4.90 คะแนน ส่วนการใช้งานแอปพลิเคชัน และภาพรวมของอุปกรณ์ระบบเกษตรอัจฉริยะ มีค่าคะแนนเฉลี่ยเท่ากับ 4.80 คะแนน ขณะที่ประเด็นเรื่องความสะดวกในการใช้งาน แอปพลิเคชันผ่านสมาร์ทโฟนและอินเทอร์เน็ต และความสะดวกในการดูแลรักษาอุปกรณ์ มีค่าคะแนนเฉลี่ยต่ำที่สุด คือ 4.70 คะแนน และเมื่อนำผลการประเมินดังกล่าวไปวิเคราะห์ความเชื่อมั่นของแบบสอบถามด้วยค่าสัมประสิทธิ์อัลฟ่าของ cronbach's Alpha (Cronbach's Alpha Coefficient) พบร้า ค่าสัมประสิทธิ์อัลฟ่าของ cronbach's Alpha มีค่าเท่ากับ 0.75 บ่งชี้ว่าแบบสอบถามดังกล่าวมีความเชื่อมั่นค่อนข้างสูง (Suttiyotin, 2016)

ตาราง 1 ต้นทุนการผลิตเมล็ดข้าวพันธุ์

รายการ	ราคา (บาท)	
	ต่อ 3 ไร	เฉลี่ย 1 ไร
ค่าเมล็ดพันธุ์ข้าว	2,250.00	750.00
ค่าไถ่เดินทาง (รอบแรก)	840.00	280.00
ค่าไถ่ติดคราดพรวนดิน, ห่ว่านเมล็ดพันธุ์	990.00	330.00
ค่าน้ำมันตัดข้าว	200.00	66.67
ค่าปุ๋ยเคมี	4,020.00	1,340.00
ค่าเกี่ยว	1,950.00	650.00
ค่าปุ๋ยฉีดทางใบ	1,200.00	400.00
ค่าจ้างคนงาน	450.00	150.00
รวม	11,900	3,966.67

3.3 การวิเคราะห์จุดคุ้มทุน

การวิเคราะห์จุดคุ้มทุนครั้งนี้ค่อนข้างวิจัยได้นำเอาต้นทุนการผลิตเมล็ดพันธุ์ข้าว ต้นทุนของระบบเกษตรอัจฉริยะ (ค่าอุปกรณ์และค่าติดตั้งระบบ) และกำไรจากการขายผลผลิตมาเปรียบเทียบกัน สำหรับรายละเอียดของต้นทุนการผลิตเมล็ดพันธุ์ข้าว และค่าอุปกรณ์ระบบเกษตรอัจฉริยะ ดังตาราง 1 และ 2 ตามลำดับ

เกษตรกรต้นแบบมีพื้นที่เพาะปลูกจำนวน 3 ไร โดยมีค่าใช้จ่ายต่างๆ ซึ่งเป็นต้นทุนของการผลิต เมล็ดพันธุ์ข้าว (ดังตาราง 1) คิดเป็นต้นทุน 11,900 บาท หรือเฉลี่ย 3,966.67 บาทต่อไร่ ขณะที่เมล็ดพันธุ์ข้าวมีราคาขายอยู่ที่ 20 บาทต่อกิโลกรัม และเกษตรกรต้นแบบได้ผลผลิตอยู่ที่ 350 กิโลกรัมต่อไร่ (Kakhunrum, 2022) ดังนั้น ราคาผลผลิตต่อไร่ จะมีค่าเท่ากับ $20 \times 350 = 7,000$ บาทต่อไร่ เมื่อพิจารณาราคาผลผลิตทั้งหมดที่เกษตรกรต้นแบบได้จากการผลิตเมล็ดพันธุ์ข้าวในพื้นที่ของตนเอง (3 ไร) เกษตรกรต้นแบบจะขายเมล็ดพันธุ์ข้าวได้ทั้งสิ้น 21,000 บาท และเมื่อหักต้นทุนการผลิต (11,900 บาท) เกษตรกรต้นแบบจะมีกำไรทั้งสิ้น 9,100 บาท หรือคิดเป็นกำไรเฉลี่ย 3,033.33 บาทต่อไร่

ตาราง 2 ค่าอุปกรณ์ระบบเกษตรอัจฉริยะ (สำหรับการวิจัยครั้งนี้)

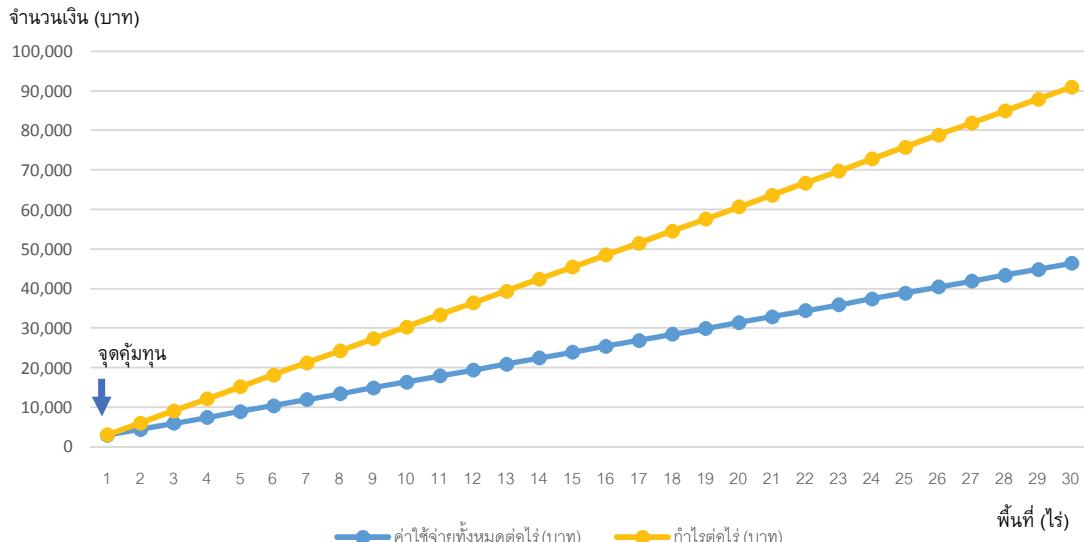
รายการอุปกรณ์ระบบเกษตรอัจฉริยะ		ราคา (บาท)
ประเภท	รายการ	
เซนเซอร์	บอร์ดวงจร ESP8266	78.00
	บอร์ด Arduino R3	210.00
	IC เบอร์ 74165	12.00
	ตัวต้านทาน	16.00
	สายไฟ	20.00
	ท่อเซนเซอร์	10.00
	กล่อง	197.00
	แผงโซล่าเซลล์ 5 วัตต์	179.00
	ถ่านถีรีเมฟอสเฟต 2 ก้อน	140.00
	ซีเนอร์ไดโอด 5 โวลต์	20.00
	ท่อ PVC แกลังข้าว (ยาว 30 เซนติเมตร)	35.00
	รวม	917.00
สวิตซ์	แผงโซล่าเซลล์ 5 วัตต์	179.00
	ถ่านถีรีเมฟอสเฟต 2 ก้อน	140.00
	ซีเนอร์ไดโอด 5 โวลต์	20.00
	ดีเลอร์	50.00
	กล่อง	127.00
	รวม	516.00
ค่าอุปกรณ์ทั้งหมด	(เซนเซอร์ + สวิตซ์)	1,433.00
ค่าวางระบบ	ท่อพีวีซี (ขนาด 2 นิ้ว ยาว 4 เมตร) ราคาท่อละ * พื้นที่ 1 ไร่จะใช้ท่อทั้งหมด 10 ท่อ	150.00
	รวม (ต่อพื้นที่ 1 ไร่)	1,500.00

ระบบเกษตรอัจฉริยะมีรายการอุปกรณ์และค่าใช้จ่ายต่างๆ ดังตาราง 2 โดยแบ่งเป็นค่าใช้จ่ายเกี่ยวกับเซนเซอร์และสวิตซ์ เท่ากับ 917 และ 516 บาท ตามลำดับ คิดเป็นค่าใช้จ่ายทั้งสิ้นเท่ากับ $917 + 516 = 1,433$ บาท อย่างไรก็ตาม นอกจากค่าอุปกรณ์ข้างต้นแล้ว ยังมีค่าติดตั้งระบบเกษตรอัจฉริยะโดยเป็นค่าท่อพีวีซี (ท่อขนาด 2 นิ้ว ยาว 4 เมตร)

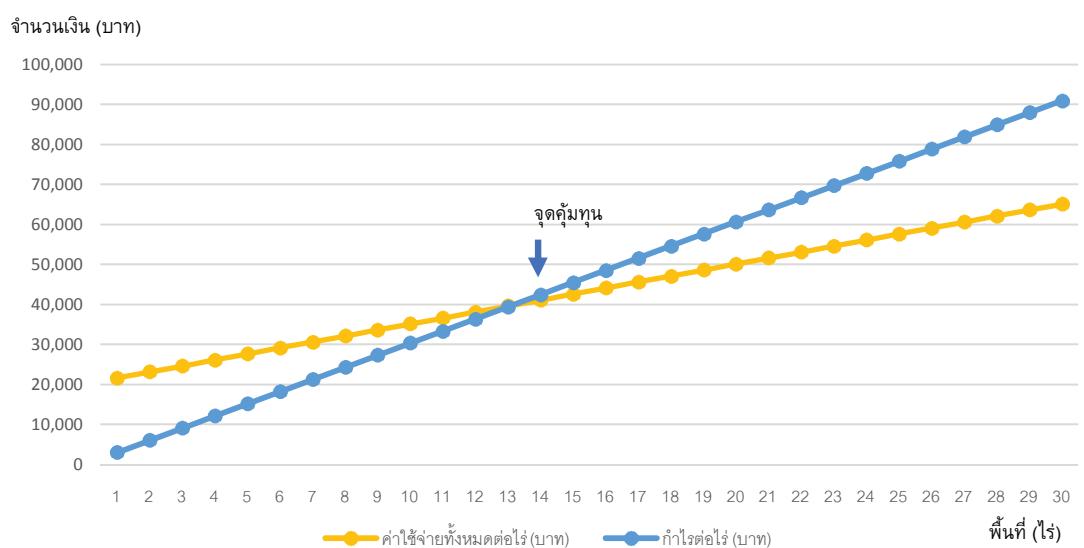
สำหรับการวางระบบ ซึ่งท่อพีวีซี 1 ท่อ มีราคาประมาณ 150 บาท การวางระบบท่อในพื้นที่ขนาด 1 ไร่ ต้องใช้ท่อสำหรับการวางระบบทั้งสิ้น 10 ท่อ รวมเป็นค่าใช้จ่ายเท่ากับ $150 \times 10 = 1,500$ บาทต่อไร่

สำหรับการวิเคราะห์จุดคุ้มทุน คณะผู้วิจัยได้แบ่งผลการวิเคราะห์ออกเป็น 3 กรณี คือ กรณีที่

ตาราง 3 สรุปค่าอุปกรณ์ระบบเกษตรอัจฉริยะของแต่ละกรณี


กรณีที่	ระบบพื้นฐานที่มี	รายการอุปกรณ์ที่ต้องลงทุน	ค่าลงทุน (บาท)
1	เงยตรกรต้นแบบ (ป้องก้าม, ชับเมอร์ส, โซลาร์เซลล์)	ค่าอุปกรณ์ดังตาราง 2	1,433
	รวมค่าลงทุนอุปกรณ์ทั้งหมด		1,433
2	เงยตรกรมีบ่อ蝙蝠อยู่แล้ว	ค่าอุปกรณ์ดังตาราง 2 ชับเมอร์ส โซลาร์เซลล์	1,433 8,500 10,200
	รวมค่าลงทุนอุปกรณ์ทั้งหมด		20,133
3	เงยตรกรไม่มีระบบพื้นฐาน	ค่าอุปกรณ์ดังตาราง 2 ชับเมอร์ส โซลาร์เซลล์ ค่าชุดบ่อ蝙蝠 (เริ่มต้น)	1,433 8,500 10,200 15,000
	รวมค่าลงทุนอุปกรณ์ทั้งหมด		35,133

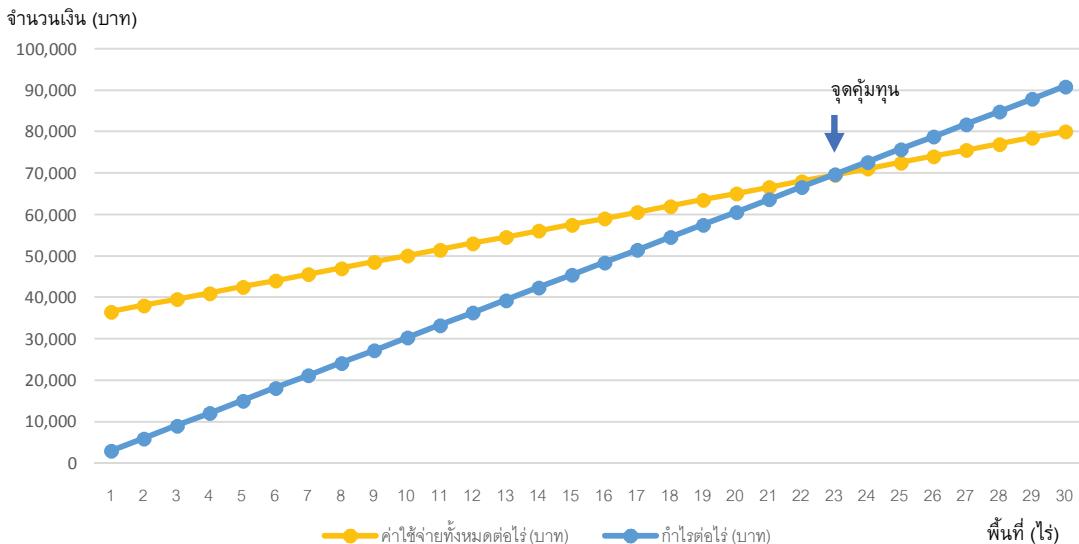
เกษตรกรรมระบบพื้นฐานทั้งหมดเด่นเดียวกับเกษตรกรต้นแบบ, กรณีที่เกษตรกรรมพึ่งงบอุดหนุน แต่ยังไม่มีชั้บเมอร์ส และโซล่าเซลล์, และกรณีที่เกษตรกรไม่มีระบบพื้นฐานใดเลย โดยค่าใช้จ่ายสำหรับระบบเกษตรอัจฉริยะแต่ละกรณี ดังตาราง 3


ตาราง 3 กรณีที่เกษตรกรมีระบบพื้นฐาน เช่นเดียวกันเกษตรกรต้นแบบ คือ เกษตรกรมีบ่อขนาด 1 วา ลึก 1.5 วา ชั้บเมอร์ส และโซล่าเซลล์ เกษตรกรจะมีค่าใช้จ่ายในการลงทุนเท่ากับ 1,433 บาท สำหรับกรณีที่เกษตรกรที่มีเพียงบ่อขนาด จำกัดต้องเพิ่มค่าใช้จ่ายของชั้บเมอร์ส (8,500 บาท) และโซล่าเซลล์ (10,200 บาท) รวมกับค่าอุปกรณ์ต่างๆ โดยคิดเป็นค่าลงทุนทั้งสิ้นเท่ากับ 20,133 บาท ส่วนกรณีที่เกษตรกรไม่มีระบบพื้นฐานเลย เกษตรกรต้องเพิ่มค่าใช้จ่ายของชั้บเมอร์ส (8,500 บาท) โซล่าเซลล์ (10,200 บาท) และค่าชุดบ่อขนาด (15,000 บาท) รวมกันค่าอุปกรณ์ต่างๆ โดยคิดเป็นค่าลงทุนทั้งสิ้นเท่ากับ 35,133 บาท

การวิเคราะห์จุดคุ้มทุนจะพิจารณาจากกำหนดการขายผลิตต่อไป ซึ่งในที่นี้คือ 3,033.33 บาท ต่อตัว และค่าลงทุนเกี่ยวกับระบบเกษตรอัจฉริยะ ซึ่งเป็นต้นทุนของอุปกรณ์แต่ละกรณี (ตาราง 3) และค่าวาระระบบซึ่งแตกต่างกันตามขนาดพื้นที่ แต่มีค่าเฉลี่ยของการวางแผนระบบอยู่ที่ 1,500 บาทต่อตัว สำหรับผลการวิเคราะห์จุดคุ้มทุนกรณีที่เกษตรกรมีระบบพื้นฐานเช่นเดียวกับเกษตรกรต้น กรณีที่เกษตรกรมีเพียงบ่อขนาดเล็ก แต่ยังไม่มีซับเมอร์ส และโซล่าเซลล์ และกรณีที่เกษตรกรไม่มีระบบพื้นฐานใดเลย ดังภาพประกอบ 11, 12 และ 13 ตามลำดับ

ผลการวิเคราะห์จุดคุ้มทุนกรณีที่เกษตรกรมีระบบพื้นฐานเช่นเดียวกับเกษตรกรต้นแบบ (ภาพประกอบ 11) พบว่า จุดคุ้มทุนระหว่างค่าใช้จ่ายทั้งหมด และกำไรจากการขายผลผลิต อยู่ที่ตำแหน่งพื้นที่ขนาด 1 ไร่ กล่าวคือ หากเกษตรกรขายผลผลิตได้ 1 ไร่ ก็เพียงพอต่อค่าลงทุนระบบเกษตรอัจฉริยะแล้ว เนื่องจากค่าลงทุนของระบบเกษตรอัจฉริยะในกรณีนี้ค่าเท่ากับ 1,433 บาท ส่วนค่าว่างระบบ

ภาพประกอบ 11 ผลการวิเคราะห์จุดคุ้มทุนกรณีที่เกษตรกรมีระบบพื้นฐานชั้นเดียวกับเกษตรกรต้นแบบ



ภาพประกอบ 12 ผลการวิเคราะห์จุดคุ้มทุนกรณีที่เกษตรกรมีเพียงบ่อขนาด

ในพื้นที่ขนาด 1 ไร่ มีค่าเท่ากับ 1,500 บาท รวมเป็นค่าใช้จ่ายทั้งสิ้น $1,433 + 1,500 = 2,933$ บาท ขณะที่เกษตรกรได้กำไรจากการขายผลผลิต 1 ไร่ เท่ากับ 3,033.33 บาท จะเห็นได้ว่ากำไรจากการขายผลผลิต มีค่ามากกว่าค่าใช้จ่ายในการลงทุนระบบเกษตรอัจฉริยะ

ผลการวิเคราะห์จุดคุ้มทุนกรณีที่เกษตรกรมีเพียงบ่อขนาด (ภาพประกอบ 12) พบว่า จุดคุ้มทุน

ระหว่างค่าใช้จ่ายทั้งหมด และกำไรจากการขายผลผลิต อยู่ที่ตำแหน่งพื้นที่ขนาด 14 ไร่ หรือกล่าวได้ว่า เกษตรกรต้องขายผลผลิตให้ได้อย่างน้อย 14 ไร่ จึงจะไม่ขาดทุน เนื่องจากค่าลงทุนของระบบเกษตรอัจฉริยะในกรณีนี้ประกอบด้วยค่าอุปกรณ์ (1,433 บาท) ค่าซับเมอร์ส (8,500 บาท) ค่าโซล่าเซลล์ (10,200 บาท) และค่าว่างระบบในพื้นที่ขนาด 14 ไร่

ภาพประกอบ 13 ผลการวิเคราะห์จุดคุ้มทุนกรณีที่เกษตรกรไม่มีระบบพื้นฐานใดเลย

มีค่าเท่ากับ $1,500 \times 14 = 21,000$ บาท รวมเป็นค่าใช้จ่ายทั้งสิ้นเท่ากับ $1,433 + 8,500 + 10,200 + 21,000 = 41,133$ บาท ขณะที่เกษตรกรได้กำไรจากการขายผลผลิต 14 ไร่ เท่ากับ $3,033.33 \times 14 = 42,466.62$ บาท ซึ่งกำไรจากการขายผลผลิตมีค่ามากกว่าค่าใช้จ่ายในการลงทุนระบบเกษตรอัจฉริยะ

ผลการวิเคราะห์จุดคุ้มทุนกรณีที่เกษตรกรไม่มีระบบพื้นฐานใดเลย (ภาพประกอบ 13) พบว่า จุดคุ้มทุนระหว่างค่าใช้จ่ายทั้งหมด และกำไรจากการขายผลผลิต อยู่ที่ตำแหน่งพื้นที่ขนาด 23 ไร่ หรือกล่าวได้ว่า เกษตรกรต้องขายผลผลิตให้ได้อย่างน้อย 23 ไร่จึงจะไม่ขาดทุน เนื่องจากค่าลงทุนของระบบเกษตรอัจฉริยะในกรณีนี้ประกอบด้วยค่าอุปกรณ์ (1,433 บาท) ค่าซัพเมอร์ส (8,500 บาท) ค่าโซล่าเซลล์ (10,200 บาท) ค่าขุดบ่อขนาด (15,000 บาท) และค่าวาระระบบในพื้นที่ขนาด 23 ไร่ มีค่าเท่ากับ $1,500 \times 23 = 34,500$ บาท รวมเป็นค่าใช้จ่ายทั้งสิ้นเท่ากับ $1,433 + 8,500 + 10,200 + 15,000 + 34,500 = 69,633$ บาท ขณะที่เกษตรกรได้กำไรจากการขายผลผลิต 23 ไร่ เท่ากับ $3,033.33 \times 23 = 69,766.59$ บาท ซึ่งกำไรจากการขายผลผลิตมีค่ามากกว่าค่าใช้จ่ายในการลงทุนระบบเกษตรอัจฉริยะ

4. อภิปรายผล (Discussion)

ระบบเกษตรอัจฉริยะที่ถูกพัฒนาขึ้นช่วยให้เกษตรกรสามารถควบคุมและดูแลผลผลิตได้อย่างมีประสิทธิภาพมากยิ่งขึ้น สอดคล้องกับงานวิจัยของ Jeepet, Sudharatna, & Ueasangkomsate (2017), Fongngen, Petchhan, & Yajor (2018), Foughali, Fathallah, & Frihida (2018), Pothong, Mekarun, & Choosumrong (2019), Srisongmuang *et al.* (2020) และ Kanya *et al* (2022) ซึ่งได้นำเอ้าเทคโนโลยีอินเทอร์เน็ตแห่งสรรพสิ่งเข้าไปควบคุมระบบต่างๆ เพื่อเพิ่มประสิทธิภาพด้านการบริหารจัดการฟาร์ม ดังจะเห็นได้จากผลสำรวจความพึงพอใจของเกษตรกรต่อระบบดังกล่าว คือ ระบบเกษตรอัจฉริยะช่วยให้เกษตรกรดูแลผลผลิตสะดวกและง่ายขึ้น ระบบเกษตรอัจฉริยะช่วยลดเวลาของเกษตรกรในการดูแลผลผลิต และระบบดังกล่าวมีความคุ้มค่าต่อการลงทุน ซึ่งเป็นประเด็นที่เกษตรกรมีความพึงพอใจมากที่สุด ซึ่งผลจากการที่เกษตรกรใช้เวลาในการดูแลผลผลิตน้อยลง อีกทั้งสามารถดูแลผลผลิตได้สะดวกยิ่งขึ้น ส่งผลให้เกษตรกรสามารถไปทำอาชีพเสริมได้ โดย Kakhunrum (2022) ซึ่งเป็นเกษตรกรต้นแบบ กล่าวว่า ตนเองได้ไปทำอาชีพเสริมอื่นๆ

ได้แก่ การรับติดตั้งเครื่องปรับอากาศ รับจ้างไถพรวนดิน และรับจ้างเกี่ยวกับงานด้านไฟฟ้า ส่งผลให้มีรายได้เฉลี่ยจากอาชีพเสริมอยู่ที่ 15,000 บาทต่อเดือน

5. สรุปผลการวิจัย (Conclusion)

ระบบเกษตรอัจฉริยะเพื่อผลิตเมล็ดพันธุ์ข้าวถูกพัฒนาขึ้นจากประเด็นปัญหาเกี่ยวกับการควบคุมระดับน้ำในแปลงนาของเกษตรกรกลุ่มผู้ผลิตเมล็ดพันธุ์ข้าวบ้านหนองสรวง ระบบเกษตรอัจฉริยะที่พัฒนาขึ้นประกอบไปด้วยอุปกรณ์สำหรับติดตั้งในแปลงนา และระบบควบคุมและแสดงผลผ่านระบบออนไลน์ โดยอุปกรณ์ที่ติดตั้งในแปลงนาจะตรวจระดับน้ำภายในแปลงนาแบบอัตโนมัติ แล้วส่งข้อมูลไปยังระบบควบคุมและแสดงผลผ่านระบบออนไลน์ ซึ่งจะรับข้อมูลที่ตรวจจากแปลงนาเพื่อนำไปวิเคราะห์สภาพแวดล้อมของแปลงนา ณ ช่วงเวลาหนึ่งๆ และวิเคราะห์หาค่าที่เหมาะสมต่อสภาพการเพาะปลูก ณ ช่วงเวลาดังกล่าว ข้อมูลที่ผ่านการประมวลผลเรียบร้อยแล้วจะถูกส่งกลับไปยังระบบของส่วนแปลงนาอีกรั้งเพื่อให้อุปกรณ์ที่ติดตั้งไว้ที่แปลงนาควบคุมการปิด-เปิดน้ำอัตโนมัติ อย่างไรก็ตาม คงจะผู้วิจัยได้ออกแบบระบบให้เกษตรกรสามารถควบคุมการทำงานระบบเกษตรอัจฉริยะผ่านระบบออนไลน์ได้ด้วยตนเอง และสามารถติดตามสถานะของแปลงนาได้จากการแจ้งเตือนสถานะต่างๆ ผ่านระบบที่พัฒนาขึ้น

ผลการประเมินความพึงพอใจของเกษตรกรกลุ่มผู้ผลิตเมล็ดพันธุ์ข้าวบ้านหนองสรวงที่มีต่อระบบเกษตรอัจฉริยะ พบร่วมกับเกษตรกรมีความพึงพอใจต่อภาพรวมของอุปกรณ์ระบบเกษตรอัจฉริยะในระดับมากที่สุด โดยประเด็นที่มีค่าเฉลี่ยของความพึงพอใจอยู่ในระดับมากที่สุด (5.00 คะแนน) ได้แก่ ข้อมูลที่แอพพลิเคชันแจ้งเตือนมีความครบถ้วน และจำเป็นต่อการดูแลผลผลิต, ระบบเกษตรอัจฉริยะช่วย

ให้เกษตรกรดูแลผลผลิตสะดวกและง่ายขึ้น, ระบบเกษตรอัจฉริยะช่วยลดเวลาของเกษตรกรในการดูแลผลผลิต, และระบบดังกล่าวมีความคุ้มค่าต่อการลงทุนอย่างไรก็ตาม ประเด็นเรื่องความสะดวกในการใช้งานแอพพลิเคชันผ่านสมาร์ทโฟนและอินเทอร์เน็ต และความสะดวกในการดูแลรักษาอุปกรณ์ มีค่าคะแนนเฉลี่ยต่ำที่สุด คือ 4.70 คะแนน

ขณะที่ผลการวิเคราะห์จุดคุ้มทุน พบร่วมกับระบบดังกล่าวมีต้นทุนค่าอุปกรณ์อยู่ที่ประมาณ 1,433 บาท และมีค่าว่างระบบเฉลี่ย 1,500 บาทต่อไร่ หากเกษตรกรมีระบบพื้นฐาน (บ่อबาดาล และชั้บเมอร์สพร้อมโซล่าเซลล์) และได้กำจัดจากการขายผลผลิตเฉลี่ย 3,033.33 บาทต่อไร่ เช่นเดียวกับเกษตรกรต้นแบบ กำไรจากการขายผลผลิตเพียง 1 ไร่ก็เพียงพอต่อค่าลงทุนระบบเกษตรอัจฉริยะ อย่างไรก็ตาม กรณีที่เกษตรกรมีเพียงบ่อบาดาล หรือกรณีที่เกษตรกรไม่มีระบบพื้นฐานใดเลย เกษตรกรต้องขายผลผลิตให้ได้อย่างน้อย 14 และ 23 ไร่ ตามลำดับ จึงจะมีกำไรเพียงพอต่อการลงทุนติดตั้งระบบเกษตรอัจฉริยะ

สำหรับการวิจัยครั้งต่อไปนี้ ผู้วิจัยควรพัฒนาอุปกรณ์ให้มีความสามารถในการส่งข้อมูลด้วยสัญญาณวิทยุ ซึ่งจะทำให้สามารถส่งข้อมูลครอบคลุมพื้นแปลงนาได้มากขึ้น อาทิ เครือข่ายสื่อสารที่ส่งข้อมูลกำลังต่อแบบไร้สาย (Long Range Wide Area Network: LoRaWan)

กิตติกรรมประกาศ (Acknowledgments)

งานวิจัยนี้ได้รับทุนสนับสนุนจากสำนักงานคณะกรรมการส่งเสริมวิทยาศาสตร์ วิจัย และนวัตกรรม (สกสว.)

เอกสารอ้างอิง (References)

Amato, F., Havel, J., Gad, A.-A., & El-Zeiny, A. (2015). Remotely sensed soil data analysis using artificial neural networks: A case study of El-Fayoum depression, Egypt. *ISPRS International Journal of Geo-Information*, 4(2), 677–696. <https://doi.org/10.3390/ijgi4020677>

Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of things: A survey. *Computer Networks*, 54(15), 2787–2805. <https://doi.org/10.1016/j.comnet.2010.05.010>

Bumrungbood, J., Hanpattanakit, P., Chidthaisong, A., Saeng-Ngam, S., & Vanitchung, S. (2020). Efficiency of water management by alternate wetting and drying on rice growth and production. *Srinakharinwitot University (Journal of Sciences and Technology)*, 12(24), 10-22. <https://ph02.tci-thaijo.org/index.php/swujournal/article/view/243091> [In Thai]

Boursianis, A. D., Papadopoulou, M. S., Diamantoulakis, P., Liopa-Tsakalidi, A., Barouchas, P., Salahas, G., Karagiannidis, G., Wan, S., & Goudos, S. K. (2022). Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review. *Internet of Things*, 18, 100187. <https://doi.org/10.1016/j.iot.2020.100187>

Chantanut, S. (2022). *Technology transferring for high quality rice seed production for using of Banbak, Bong Nuea, Sawang Dan Din, Sakon Nakhon, Thailand* (Master's thesis, Maejo University, Chiang Mai, Thailand). [In Thai]

Dhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S., & Kaliaperumal, R. (2022). Smart farming: Internet of things (IoT)-based sustainable agriculture. *Agriculture*, 12(10), 1745. <https://doi.org/10.3390/agriculture12101745>

Fongngen, W., Petchhan, S., & Yajor, R. (2018). Application with the internet of things technology control in smart farms mushroom. *Journal of Technology Management Rajabhat Maha Sarakham University*, 5(1), 172–182. <https://ph02.tci-thaijo.org/index.php/itm-journal/article/view/140258> [In Thai]

Foughali, K., Fathallah, K., & Frihida, A. (2018). Using cloud IOT for disease prevention in precision agriculture. *Procedia Computer Science*, 130, 575–582. <https://doi.org/10.1016/j.procs.2018.04.106>

Jantachai, T., Yooprasert, B., & Saranrom, P. (2019). Extension needs for rice seed production of farmers in Ubon Ratchathani rice seed center. *Proceedings of the 9th STOU National Research Conference*, 940–951 [In Thai]

Jeepet, S., Sudharatna, Y., & Ueasangkomsate, P. (2017). Industrial 4.0 technology adoption applying to small agriculture farm. *Proceedings of 55th Kasetsart University Annual Conference: Education, Economics and Business Administration, Humanities and Social Sciences*, 392–399. [In Thai]

Kamilaris, A., Gao, F., Prenafeta-Boldu, F. X., & Ali, M. I. (2016). Agri-IoT: A semantic framework for Internet of Things-enabled smart farming applications. *2016 IEEE 3rd World Forum on Internet of Things (WF-IoT)*, 442–447. <https://doi.org/10.1109/wf-iot.2016.7845467>

Kanya, P., Seesman, T., Jeamkoh, K., Seekhamsaen, P., Chaisongkhram, P., Klaimanee, P., & Bophimai, U. (2022). Smart agriculture system development. *Journal of Industrial Technology Surin Rajabhat University*, 7(1), 33-45. <https://doi.org/10.14456/journalindus.2022.4> [In Thai]

Lioutas, E. D., & Charatsari, C. (2020). Smart farming and short food supply chains: Are they compatible?. *Land Use Policy*, 94, 104541. <https://doi.org/10.1016/j.landusepol.2020.104541>

Maeroh, A., & Tongsri, P. (2023). The development of agriculture in Thai Society and the guideline of farmer-household economic management toward social development. *Journal of Legal Entity Management and Local Innovation*, 9(4), 377-388. <https://so04.tci-thai.org/index.php/jsa-journal/article/view/260426> [In Thai]

Said Mohamed, E., Belal, AA., Kotb Abd-Elmabod, S., El-Shirbeny, M. A., Gad, A., & Zahran, M. B. (2021). Smart farming for improving agricultural management. *The Egyptian Journal of Remote Sensing and Space Science*, 24(3), 971–981. <https://doi.org/10.1016/j.ejrs.2021.08.007>

Moysiadis, V., Sarigiannidis, P., Vitsas, V., & Khelifi, A. (2021). Smart farming in Europe. *Computer Science Review*, 39, 100345. <https://doi.org/10.1016/j.cosrev.2020.100345>

Patil, K.A., & Kale, N.R. (2016). A model for smart agriculture using IoT. *2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC)*, 543-545.

Phasinam, K., Kassanuk, T., & Shabaz, M. (2022). Applicability of internet of things in smart farming. *Journal of Food Quality*, 2022, 1–7. <https://doi.org/10.1155/2022/7692922>

Piroj, K. (2018). *Likert Scale คืออะไร? (มาตรวัดของลีกิร์ท)* [What is a Likert scale? (Likert rating scale)]. Retrieved 26 January 2023, from <https://greed-isgoods.com/likert-scale/> [In Thai]

Pothong, T., Mekarun, P., & Choosumrong, S. (2019). Development of smart farming service system for smart farmer using FOSS4G and IoT. *Naresuan Agriculture Journal*, 16(2), 10-17. <https://li01.tci-thaijo.org/index.php/aginujournal/article/view/247974> [In Thai]

Punyawansiri, S., Chinapongthitiwa, V., & Kwanyuen, B. (2020). Grain yield and water use efficiency of riceberry rice in response to water-saving irrigation techniques. *Thai Agriculture Research Journal*, 38(2), 128-138. <https://li01.tci-thaijo.org/index.php/thaiagriculturalresearch/article/view/214953> [In Thai]

Rice Department. (2016). *เมล็ดพันธุ์และการผลิตเมล็ดพันธุ์ข้าว* [Seeds and rice seed production]. Retrieved 9 January 2024, from <http://webold.ricethailand.go.th/rkb3/index.php?file=content.php&id=13.htm> [In Thai]

Sanmany, K. (2017). *Effects of water management on growth and yield of rice* (Master's thesis, Maejo University, Chiang Mai, Thailand). http://mdc.library.mju.ac.th/thesis/2564/keooudone_sanmany/fulltext.pdf [In Thai]

Shashwathi, N., Borkotoky, P., & Suhas, K. (2012). Smart farming: A step towards techno-savvy agriculture. *International Journal of Computer Applications*, 57(18), 45-48. <https://www.ijcaonline.org/archives/volume57/number18/9218-3773/>

Sirithunya, K. (2020). *เสริมแกร่งช้านา ผลิตเมล็ดพันธุ์ข้าวคุณภาพดี* [Empowering farmers to produce high-quality rice seeds]. Retrieved 9 January 2024, from <https://www.nstda.or.th/agritec/rice-seed/> [In Thai]

Srisongmuang, P., Srisongmuang, C., Busabok, S., Homsub, C., & Kongsomsawang, S. (2020). *Development of smart farm management system model in plant house by embedded computer* (Research report). Rajamangala University of Technology Suvarnabhumi. <https://research.rmutsb.ac.th/fullpaper/2563/research.rmutsb-2563-20200805134658195.pdf> [In Thai]

Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. *Journal of Cleaner Production*, 88, 297-307. <https://doi.org/10.1016/j.jclepro.2014.04.036>

Suttiyotin, N. (2016). การตรวจสอบคุณภาพเครื่องมือวิจัย [Assessment of Research Instrument Quality]. Retrieved 26 January 2023, from https://nattawatt.blogspot.com/2016/09/blog-post_99.html [In Thai]

Thana-dechophol, T., Teamsuwan, V., & Chamnakaew, U. (2018). Agricultural reform in Thailand. *11th THAICID National symposium*, 292-303. https://www.rid.go.th/thaicid/_5_article/11symposium/article-23.pdf [In Thai]

Thongmeethip, K. (2021). Agricultural development in Thailand in terms of community development and quality of life. *PSDS Journal of Development Studies Thammasat University*, 4(1), 132-162. <https://so05.tci-thaijo.org/index.php/gvc-tu/article/view/252520> [In Thai]

Khamla, P. (2015). *Factors affecting success in rice seed production of farmers, members of Lampang rice seed center* (master's thesis, Chiang Mai University, Chiang Mai, Thailand). <https://cmudc.library.cmu.ac.th/frontend/Info/item/dc:123391> [In Thai]

Kakhunrum. S. (2022, December 16). *Personal communication*. [Unpublished interview, in Thai]

Sangsuriyarat, V. (2021). การวิเคราะห์จุดคุ้มทุนโครงการเดี่ยว [ตอนที่ 1] [Break-Even Analysis of a Single Project [Part 1]]. Retrieved 9 January 2024, from <http://ae.engineer.rmutt.ac.th/wp-content/uploads/2021/09/การวิเคราะห์จุดคุ้มทุนตอนที่-1.pdf> [In Thai]

Wantong, C., Sumranram, W., Tahom, U., & Kitthanarut, V. (2023). *Rice seed production with smart farm (Research Report)*. Buriram Rajabhat University. [In Thai]

