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Abstract

Air pollution caused by fine particulate matter (PM2.5) is a major envi-
ronmental and public health concern, particularly in Northern Thailand.
Agricultural residue burning is a primary contributor to PM2.5 pollution
in Nakhon Sawan Province, Thailand, where rice and sugarcane cultiva-
tion generate substantial biomass waste. This study develops a dispersion
model based on the Gaussian Plume Model to analyze PM2.5 spread from
burning sites, aiding pollution forecasting and management. The method-
ology comprises three steps: (1) calculating PM2.5 emission rates, (2)
predicting dispersion using meteorological data, and (3) visualizing re-
sults through concentration graphs and geospatial mapping. The model
evaluates PM2.5 dispersion under different wind speeds (light, moderate,
and strong) and atmospheric stability conditions. Simulated results indi-
cate that PM2.5 concentrations peak near the source and decrease along
the x-axis. Under light breeze conditions, the PM2.5 concentration at
125 meters is 0.00245 pg/m?, decreasing to nearly zero at 1,000 meters.
Stronger winds enhance dispersion, reducing concentrations more rapidly.
The findings confirm the model’s effectiveness in estimating PM2.5 dis-
persion and emphasize the influence of meteorological factors on pollutant
distribution. Future improvements should incorporate geographical fac-
tors, additional emission sources, and regional accumulation effects for
improved accuracy. The model provides a foundation for policymakers
to develop air pollution mitigation strategies that promote public health

and environmental sustainability.

1. Introduction

PM2.5 is a particulate matter that significantly con-
tributes to air pollution and currently has the most
substantial impact on human health. PM2.5 can be
produced from various sources, such as emissions from
vehicle engines, forest fires, and the burning of agricul-
tural waste. According to air quality monitoring by the
Pollution Control Department in Northern Thailand,
six provinces have recorded pollution levels exceeding
the standard: Chiang Rai, Chiang Mai, Lampang, Lam-
phun, Phrae, and Nan (Pollution Control Department)
2019). In Nakhon Sawan province, pollution levels ex-
ceeded the standard by 11-20% throughout the year
(Air Quality and Noise Management Bureau, Pollution
Control Department, [2020)).

The predominant factor contributing to elevated
pollution levels in Nakhon Sawan province is the open
burning of agricultural residues following harvest. Ap-
proximately 49% of the province’s agricultural land
is allocated to rice and sugarcane cultivation, both
of which generate significant residual biomass. Post-
harvest residue management practices primarily involve
either plowing the biomass into the soil or burning it to
prepare for the subsequent planting season. When farm-
ers opt for burning, particularly during periods of stag-
nant atmospheric conditions with minimal wind, the ac-
cumulation of fine particulate matter (PM2.5) in the air
significantly increases. This practice is a major contrib-
utor to pollution levels that frequently exceed estab-
lished air quality standards (Wongwaitayakool, 2018)).

Due to the issue of air pollution accumulation ex-
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ceeding standard levels caused by the burning of agri-
cultural waste, the researcher is interested in developing
a model to measure the dispersion distance of PM2.5
from burning agricultural areas. This model aims to
serve as a crucial tool in applying knowledge gained
from studying the factors affecting the dispersion dis-
tance of PM2.5. It will be used to forecast the accumu-
lation of PM2.5 and to plan for the prevention, control,
and management of such events.

2. Literature Review

Traditional atmospheric dispersion modeling has been
extensively used to understand how pollutants like
PM2.5 spread in various environments. One of the most
common models, the Gaussian Plume Model (GPM),
provides a mathematically simple yet effective tool
to simulate pollutant behavior under assumptions of
steady-state emissions and homogeneous atmospheric
conditions. |Lotrecchiano et al.[(2020) applied the GPM
to simulate fire-related pollutant dispersion and found
the model’s predictions to be reliable when multiple
monitoring stations were used to validate concentration
levels. |[Abdel-Rahman| (2008) also verified the useful-
ness of the Gaussian Plume approach for near-ground
pollutant emissions, emphasizing its sensitivity to wind
speed, atmospheric stability, and emission height.

Another important study by |Yang et al.| (2020) mod-
ified the GPM for predicting ammonia and PM dis-
persion from poultry farms. Their version incorpo-
rated field-specific assumptions such as steady emission
sources, constant wind speed, and uniform distribution.
Their findings confirmed that while GPM assumptions
limit real-world accuracy, its predictions aligned well
with field measurements when environmental parame-
ters were tightly controlled. This affirmed its applica-
bility for rural agricultural settings.

In contrast, AERMOD, developed by the U.S. EPA
and used by |Alemayehu and Hackett| (2015)), introduces
additional complexity by integrating boundary layer
meteorology and terrain data. Their application showed
that both PM2.5 and SO2 dispersion patterns could
be simulated more accurately within regulatory limits.
AERMOD’s strength lies in its ability to model vari-
able meteorological profiles, although it requires more
extensive input data than GPM.

Recent innovations have explored the integration of
remote sensing data and machine learning. |Li et al.
(2015) combined satellite imagery with Random Forest
regression models to estimate surface PM2.5 concentra-
tions across large spatial extents. This hybrid model
significantly improved spatial resolution and prediction
accuracy (R? = 0.98), especially in areas lacking mon-
itoring infrastructure. However, its reliance on large,
labeled datasets and computational resources limits its
applicability in small-scale agricultural settings.

Zhang et al.| (2018) proposed a weather-integrated
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GPM that dynamically adjusted model parameters
based on real-time meteorological inputs. This improve-
ment increased temporal precision in PM2.5 forecasts
while maintaining the model’s core simplicity. It bridges
the gap between static Gaussian models and dynamic
hybrid systems.

More advanced approaches include hybrid Al
models. For instance, Wu et al| (2023) in-
troduced CEEMDAN-PE-GWO-VMD-BILSTM-AT, a
deep learning framework capable of capturing nonlinear
relationships in time-series PM2.5 data. Similarly, [Ma;
et al| (2024) employed Graph Convolutional Networks
(GCNs) to model the spatial-temporal correlation of
emissions across urban environments. GCNs adapt well
to irregular spatial distributions and are highly suitable
for dense cities but are computationally intensive.

Li and Wu (2024) utilized LSTM networks to track
PM2.5 variability across multiple stations in China,
demonstrating effectiveness for time-series forecasting
in data-rich environments. |[Huang (2016|) proposed a
hybrid ARIMA-SVM model to overcome the limitations
of linear models in predicting pollutant trends. Tirink
(2025) used ensemble learning methods (e.g., XGBoost,
Light GBM) on air pollution datasets to outperform con-
ventional dispersion models. Qin et al.[ (2019) applied
convolutional neural networks (CNNs) on spatial grids
to assess fine-grained pollutant diffusion. Meanwhile,
Feng et al| (2022) developed a transfer learning ap-
proach to adapt trained PM2.5 models from urban to
suburban environments with minimal labeled data.

Based on the comprehensive literature review, the
existing pollution dispersion models can be broadly cat-
egorized into several groups. Each approach presents
distinct strengths and limitations depending on its un-
derlying methodology and data requirements. The fol-
lowing table summarizes a qualitative comparison of
these models, highlighting their respective advantages,
challenges, and suitable application contexts. This clas-
sification aims to provide a clearer understanding of how
the proposed GPM fits within the spectrum of available
modeling techniques, as shown in Table

Collectively, these studies highlight a continuum of
modeling approaches ranging from empirical models
such as the GPM to advanced Al-based systems. While
sophisticated machine learning frameworks offer high
accuracy, they often require extensive data and com-
putational resources. In contrast, this study adopts a
GPM-based approach that is physically grounded and
computationally efficient, making it well-suited for rural
agricultural settings where data availability may be lim-
ited. This model aims to strike a balance between prac-
ticality and accuracy, providing a reliable tool to sup-
port local air quality forecasting and inform evidence-
based environmental management strategies.
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Table 1. Comparative overview of PM2.5 dispersion modeling approaches.

Model Strengths Limitations Suitable Applications
GPM - Physically based, simple, - Assumes steady-state - Suitable for rural areas or
and fast to implement. emissions and homogeneous scenarios with stable
- Requires relatively atmospheric conditions. sources and weather
minimal input data (e.g., - Not suitable for complex  conditions.
wind speed, emission rate). terrain or highly variable
meteorological conditions.
AERMOD - Incorporates terrain and - Requires extensive input - Suitable for urban or

detailed meteorological
data.

- Models atmospheric
boundary layer changes
effectively.

data and computational
resources.

complex terrain
environmental impact
assessments.

Machine Learning
Models (LSTM, RF,
GCN, etc.)

- High accuracy when
trained with large,
comprehensive datasets.
- Can capture complex
nonlinear relationships.

- Requires large labeled
datasets and high
computational power.

- May lack clear physical
interpretability.

- Suitable for long-term
forecasting and dense
urban areas with rich
monitoring data.

Hybrid Models (AI
+ Physics-based)

- Combines strengths of
physical and data-driven
approaches.

- Complex and
data-intensive.

- Used when high accuracy
is needed across diverse
environmental conditions.

3. Methodology

The methodology of this research is divided into three
steps: Step 1 involves calculating the emission rate of
PMZ2.5 into the air; Step 2 involves forecasting the dis-
persion of PM2.5 in the air; and Step 3 involves pre-
senting the model results, as shown in Fig.

Step 1: Calculating the Emission Rate of
PM2.5 into the Air

In this model, the calculation area is defined as
1 Thai Rai (40 meters x 40 meters). The PM2.5 pollu-
tant quantity is based on the mass of dry rice straw|Jun-
pen et al.| (2018]), as shown in Equation

Qpym2s =M x EFpyos (1)

where QQppso.5 is the emission rate of PM2.5 pollutants
(milligrams/second), M is the mass of dry rice straw
(grams dry mass/rai), and EFppe 5 is the emission fac-
tor of PM2.5 pollutants (seconds/Thai rai).

Step 2: Forecasting the Dispersion of PM2.5
in the Air

This research uses data from agricultural burning in
Tambon Nong Bua, Amphoe Nong Bua, Nakhon Sawan
Province (Office of Agricultural Economics, Ministry of
Agriculture and Cooperatives| 2020)). The calculation of
PM2.5 concentration includes horizontal test distances,
wind speed, atmospheric stability, and the height of the
area (Yang et all) [2020)). The horizontal test distances

are set at 125 meters intervals from the burning point
up to 1,000 meters. Wind speed is categorized into three
levels:

e Light breeze: smoke rises straight up, wind speed
of 0.44 meters/second.

e Moderate breeze: dust disperses, wind speed of
5.78 meters/second.

e Strong breeze: large branches sway, wind speed
of 11.11 meters/second (National Oceanic and At-
mospheric Administration (NOAA)| 2020]).

For atmospheric stability, levels B (moderately un-
stable) and D (neutral) are used (U.S. Environmental
Protection Agencyl [1995)), representing the worst-case
scenarios for air pollution accumulation at the selected
wind speeds. The calculations using the GPM (Colls,
2002) can be expressed as follows:

. Q y?
Clz,y,2) = 2muoy 0, xp 202

o o 12

o, = 465.11628 = tan(O) (3)
© = 0.017453293 [c — dIn(z)] (4)
o, =ax’ (5)



Sittiwa et al. Journal of Applied Informatics and Technology 2026, 8(2), 260470

Step 1 Step 2 Step 3

Forecasting the diffusion and
concentration of PM, ¢

The outcomes of the
diffusion distance model

Calculation of PM, ¢
emission rate in the air.

in the air. will be presented through
_ —o)? i
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Figure 1. Methodology framework.

where:
C(z,y,z) : pollutant concentration at position

(2,9, 2) (milligrams/cubic meter)

Q@ : emission rate of the pollutant
(milligrams/second)

7 : constant, 3.141

x : distance along the x-axis from
the emission source (meters)

y : distance along the y-axis (meters),

perpendicular to the x-axis

IS

: height above ground level (meters)
H : height of the emission source (meters),
set to 0 since burning occurs at
ground level
oy : horizontal dispersion coefficient (meters)
o : vertical dispersion coefficient (meters)
© : angle perpendicular to the x-axis

(radians)

The parameters a, b, ¢, and d are derived from at-
mospheric stability levels, corresponding to wind speed
(meters/second) and the amount of sunlight or cloud
cover. Equation [2| calculates the pollutant concentra-
tion at height z, determined by subtracting the eleva-
tion at the PM2.5 source from the elevation at the target
point. The resulting value can be positive or negative.

Equations oy is calculated using ©, where the
horizontal distance z is in kilometers.

e For light breeze conditions (u = 0.44 meters per
second, stability level B): ¢ = 18.3330, d = 1.8096.

e For moderate breeze conditions (v = 5.78 me-
ters per second, stability level D): ¢ = 8.333,
d = 0.72382.

e For strong breeze conditions (v = 11.11 meters
per second, stability level D): ¢ = 8.333, d =
0.72382.

Equation o, uses the horizontal distance z (in
kilometers).

e Light breeze (u = 0.44 meters per second, stabil-
ity level B):

— Distance < 200 meters:
0.93198.

— 210 meters < Distance < 400 meters: a =
98.483, b = 0.98332.

— Distance > 400 meters: a = 109.300, b =
1.09710.

a = 90.673, b =

e Moderate breeze (u = 5.78 m/s, stability level D):

— Distance < 300 meters:
0.86974.

— 310 meters < Distance < 1,000 meters:
a = 32.093, b = 0.81066.

a = 34.459, b =

e Strong breeze (u = 11.11 meters per second, sta-
bility level D):

— Distance < 300 meters:
0.86974.

— 310 meters < Distance < 1,000 meters:
a = 32.093, b = 0.81066.

a = 34.459, b =
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Step 3: Displaying the Results of the Model

The results of the dispersion model will be presented in
the form of graphs and tables using the GPM method.
The concentration of PM2.5 from the source will be
highest at the emission point and will decrease to near
zero as the horizontal distance along the x-axis in-
creases. The results will be displayed according to vary-
ing wind speeds and atmospheric stability levels. The
calculated concentration of PM2.5 will be expressed in
units of micrograms per cubic meter (ug/m3).

4. Findings and Discussion

The simulation of PM2.5 dispersion using the GPM
was conducted at distances of 125, 250, 375, 500, 675,
750, 875, and 1,000 meters from the source, assuming
a constant emission rate of 399.667 milligrams per sec-
ond. Under a light breeze, the initial concentration was
0.00245 micrograms per cubic meter, gradually decreas-
ing to 0.00037 micrograms per cubic meter at 1,000 me-
ters. For moderate wind conditions, the concentra-
tion started at 0.00095 micrograms per cubic meter and
dropped to 6.46 x 10~° micrograms per cubic meter,
while under strong winds, it began at 0.00049 micro-
grams per cubic meter and fell to 3.36 x 10~ micro-
grams per cubic meter. The highest concentration along
the x-axis was observed at 675 meters.
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Figure 2. Concentration of PM2.5.

As shown in Fig. 2] PM2.5 concentrations decrease
with increasing distance from the source under varying
wind speeds.
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light breeze

strong breeze

Figure 3. Results on Google Map.

Fig. 3] illustrates the spatial distribution of PM2.5
concentrations on Google Maps within the study area,
highlighting that dust concentration changes least over
time under light breeze conditions and most rapidly un-
der strong breeze conditions. These measurements cor-
respond to coordinates 15.85902 latitude and 100.6547
longitude.

The findings from this study are particularly valu-
able for local policymakers and rural environmental
management authorities. By utilizing readily avail-
able meteorological data, the model allows local gov-
ernments to estimate PM2.5 dispersion patterns and
identify high-risk areas during agricultural burning pe-
riods. This enables the implementation of targeted in-
terventions such as temporary burning restrictions, lo-
calized public health advisories, and the promotion of
alternative biomass management practices. Its low data
requirements and computational simplicity make the
model highly suitable for rural contexts, where access
to advanced monitoring technologies is often limited.
Consequently, this study provides a practical and cost-
effective tool to support evidence-based decision-making
and strengthen air quality management in agricultural
communities.

5. Conclusion

This study developed a Gaussian Plume Model to es-
timate the dispersion distance of PM2.5 emitted from
agricultural residue burning in Nakhon Sawan Province,
Thailand. The findings emphasize the critical role of
meteorological conditions, particularly wind speed and
atmospheric stability, in influencing pollutant disper-
sion patterns. While the model demonstrates practical
applicability for forecasting PM2.5 spread in rural agri-
cultural settings, it also faces limitations, such as the
exclusion of complex terrain effects and other pollution
sources, which may affect prediction accuracy. Despite
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these challenges, the model provides a valuable founda-
tion for local authorities to better understand and man-
age air quality risks associated with agricultural burn-
ing. Future work should focus on addressing these lim-
itations through incorporation of geographical factors,
additional emission sources, and validation with field
measurements. Ultimately, this research contributes to
the ongoing efforts to develop accessible and effective
tools that support evidence-based policies aimed at re-
ducing PM2.5 exposure and protecting public health in
rural communities.

In future research, it is essential to incorporate de-
tailed geographical factors into the dispersion model to
better reflect the influence of terrain, land use, and el-
evation on the spread of PM2.5 pollutants. Including
such spatial characteristics will allow for more accu-
rate predictions of pollutant behavior across complex
rural landscapes. Additionally, the model should be
expanded to consider multiple sources of PM2.5 emis-
sions beyond agricultural residue burning, such as those
originating from vehicles, industrial facilities, and other
anthropogenic activities within and around the study
area. Accounting for these diverse emission sources will
provide a more comprehensive understanding of air pol-
lution dynamics and cumulative impacts on local air
quality. Furthermore, future work should address the
accumulation and interaction of PM2.5 from neighbor-
ing regions, as pollutant transport across boundaries
can significantly influence concentration levels and ex-
posure risks. By integrating these factors, the model’s
overall accuracy and relevance to real-world conditions
will be greatly enhanced, thereby improving its utility as
a decision-support tool for environmental management
and public health protection.
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