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Abstract
In recent years, multiclass classification has gained significant attention
due to its wide-ranging applications in fields such as healthcare, finance,
and image recognition. The ability to accurately classify data into mul-
tiple categories is essential for developing intelligent and robust systems.
This research compares the performance of several machine learning and
deep learning algorithms for multiclass classification tasks, with a focus
on adaptive techniques in neural networks. The evaluated algorithms
include Support Vector Machines (SVM), One-vs-Rest Logistic Regres-
sion (OvR-LR), Deep Neural Networks (DNN), Dropout-enhanced DNN,
and Adaptive Regularization-based DNN. The experimental evaluation
was conducted using both the train–test split and 5-fold cross-validation
methods to ensure result reliability and generalizability. The Adaptive
Regularization-DNN model achieved the highest performance among all
tested approaches, with an accuracy of 98.75% under the train–test split
and 97.3% under cross-validation. These results highlight the model’s
robustness and its effectiveness in minimizing overfitting in structured
multiclass classification problems. Performance metrics including preci-
sion, recall, F1-score, and accuracy were used to provide a comprehensive
evaluation of each model’s capabilities.

1. Introduction

In today’s data-driven world, Big Data is character-
ized by immense volume, variety, and velocity, present-
ing challenges that exceed the processing capabilities of
traditional database systems. Data can exist in both
structured and unstructured forms, encompassing both
quantitative and qualitative aspects. Choosing the ap-
propriate features for classification tasks is critical and
largely depends on the nature of the data and the objec-
tives of the task. These tasks can involve either binary
classification or, more commonly in complex scenar-
ios, multiclass classification (Moral et al., 2022), where
data must be categorized into multiple distinct, non-
overlapping classes.

The importance of multiclass classification lies in its
widespread applications across various domains, such
as image recognition (Gao and Zhou, 2021; Liu et al.,
2021), speech processing (Pawar and Dhage, 2020), and
medical diagnosis (Tiwari et al., 2022), where catego-

rization into more than two classes is often essential.
For example, in medical imaging, diagnosing diseases
from X-ray or MRI data requires precise differenti-
ation among multiple possible conditions (Choudhuri
and Paul, 2021), while in natural language processing
(Vernikou et al., 2022), classifying text or speech into
distinct languages or emotions relies heavily on effec-
tive multiclass strategies (Khan and Zubair, 2020; Zehra
et al., 2021). This makes multiclass classification a sig-
nificant problem in machine learning research.

Several machine learning approaches exist for solv-
ing multiclass problems, including Support Vector Ma-
chines (SVM) (Kumar Sahu and Pandey, 2023; Guo
et al., 2021), One-vs-Rest Logistic Regression (Hus-
sain and Ashraf, 2023), and Neural Networks, par-
ticularly Deep Neural Networks (DNNs) (Park et al.,
2022). Among these, DNNs are widely recognized for
their ability to capture complex patterns from large
datasets, making them well-suited for multiclass clas-
sification (Chen et al., 2022; Bagla and Kumar, 2023).
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However, multiclass classification presents unique chal-
lenges, especially as the complexity of the data grows.
This complexity often leads to overfitting (Bejani and
Ghatee, 2021), a common issue in deep learning models.
The model can become overly focused on the training
data, learning specific patterns that do not generalize
effectively to new, unseen data. As a result, the model
may show strong performance on the training set but
struggle to handle test data due to overfitting to the in-
tricate details that are only relevant within the training
environment.

Overfitting is a critical issue in deep learning because
it hampers a model’s ability to generalize and accurately
predict new, unseen data. Overfitting occurs when a
model captures noise or insignificant details in the train-
ing data, reducing its performance on the test data (Rice
et al., 2020). To combat this, various regularization
techniques have been developed (Thakkar and Lohiya,
2021), including Dropout (Lee and Lee, 2020), L2 reg-
ularization (Zhu and Liu, 2021), and adaptive learning
methods (Ni et al., 2021), identified overfitting and pro-
longed training time as two key challenges in multilayer
neural network learning, especially in deep learning. To
address these issues, dropout and batch normalization
have emerged as two widely accepted techniques that
help improve model performance and efficiency (Garbin
et al., 2020).

Given these challenges, it is crucial to develop adap-
tive DNN techniques that can efficiently address multi-
class classification problems while minimizing the risk
of overfitting. Regularization and adaptive techniques
(Abuduweili et al., 2021), such as those using dropout
and dynamic architecture tuning, allow DNNs to learn
generalized patterns without becoming overly complex,
leading to better performance on test data (Lv et al.,
2020; Liu et al., 2024). This research focuses on devel-
oping and evaluating adaptive deep learning methods
tailored for multiclass problems, with the goal of im-
proving model performance and generalization ability.

The research objectives are to compare algorithms
for solving multiclass classification problems and to en-
hance deep neural network algorithms.

In this article, the presentation is structured as fol-
lows: Section 2 covers the related work, Section 3 ex-
plains the methods, Section 4 presentes the experimen-
tal results, and Section 5 provides the conclusion.

2. Related Work

This section reviews existing literature and studies
relevant to multiclass classification and the applica-
tion of various machine learning techniques. Numer-
ous researchers have explored algorithms such as Sup-
port Vector Machines (SVM), Logistic Regression, and
Deep Neural Networks (DNN) for effective classification
across diverse datasets. Additionally, advancements in
regularization methods and dropout techniques have

been extensively investigated to combat overfitting,
thereby enhancing the predictive performance of mod-
els in complex classification tasks. This body of work
serves as a foundation for the methodologies applied in
the current research, demonstrating the evolving land-
scape of multiclass classification strategies.

2.1 Support Vector Machines (SVM)

Support Vector Machines (SVM) is a method for clas-
sifying data by appropriately determining a hyperplane
that best separates the data into two parts. SVM uses a
kernel function to aid in the classification process (Pany-
atip et al., 2022). The SVM algorithm works by finding
the widest margin between data points from each class.
The use of a kernel function allows for the separation
of non-linear data, making SVM well-suited for solving
complex problems. Tang et al. (2019) explored a new
method for multiclass classification with their Regular
Simplex Support Vector Machine (RSSVM). Traditional
SVM methods for multiclass classification use partition-
ing strategies, which limit the efficiency and sparsity
of the model. To overcome these challenges, RSSVM
maps K classes to the vertices of a (K-1)-dimensional
regular simplex, treating the problem as a (K-1)-output
learning task. Unlike traditional methods that require
multiple classifiers, RSSVM uses a single minimization
process with linear inequality constraints, enhancing the
model’s sparsity and computational efficiency.

While SVM is effective for binary and well-separated
multiclass problems, it does not adapt its internal struc-
ture based on data characteristics and often requires
manual tuning of hyperparameters and kernels. This
lack of adaptability limits its performance on more com-
plex, nonlinear datasets—a gap that adaptive DNNs
aim to address.

2.2 One-vs-Rest (OvR)-Logistic Regression

One-vs-Rest (OvR) (Pawara et al., 2020) Logistic Re-
gression is a technique used to solve multiclass classifica-
tion problems by employing multiple logistic regression
models. In OvR, one logistic regression model is created
for each class, where the class of interest is treated as
the positive class, and all other classes are considered
negative. Therefore, the total number of logistic regres-
sion models equals the number of classes in the prob-
lem. OvR works effectively in solving multiclass clas-
sification tasks by using logistic regression, which often
yields good results when the classes are well-separated.
Dong et al. (2018) conducted a study on single-label
multiclass image classification by deep logistic regres-
sion, thoroughly analyzing the standard learning ob-
jective functions for multiclass classification in CNNs:
softmax regression (SR) for single-label scenarios and
logistic regression (LR) for multi-label scenarios. The
dataset used was the large-scale multi-label clothing at-
tribute dataset, DeepFashion. The experiment setup in-
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volved testing two networks, ResNet-50 and MobileNet.
The study observed the following: (1) The LR meth-
ods demonstrated a significant improvement over the
vanilla algorithm, consistent with results in single-label
object classification and person re-identification. (2)
Both hard and soft selection strategies showed simi-
lar performance across different networks and metrics.
Abramovich et al. (2021) conducted a study on multi-
class classification by sparse multinomial logistic regres-
sion, where they explored high-dimensional multiclass
classification using sparse multinomial logistic regres-
sion.

2.3 Deep Neural Network (DNN)

A Deep Neural Network (DNN) is an artificial neural
network with multiple layers (deep) that consist of sev-
eral nodes in each layer (Wang et al., 2020), enabling it
to learn and classify complex data (Feng et al., 2020).
DNN is a machine learning algorithm used to build mod-
els consisting of three main components:

1. Input Layer: This layer contains the input data,
where each feature is represented by a node.
For example, if the dataset contains 10 fea-
tures, the input layer will have nodes representing
x1, x2, x3, ..., x10.

2. Hidden Layer: This intermediate layer performs
hidden processing, significantly influencing the
model’s performance. It consists of multiple lay-
ers, and each layer contains neurons that process
input data using an activation function, as de-
scribed by the following Equations:

Z [l] = W [l]A[l−1] + b[l] (1)

A[l] = g
(
Z [l]

)
(2)

where A[l−1] is the output from the previous layer
l − 1, W [l] is the weight matrix for layer l, b[l] is
the bias vector for layer l, and g is the activation
function.

3. Output Layer: This layer takes the results from
the hidden layers and provides the final output,
as follows:

Z [l] = W [l]A[l−1] + b[L] (3)

Y = A[L] = g
(
Z [L]

)
(4)

where L is the output layer, and A[L] is the pre-
dicted output. Thus, the general Equation for the
neural network can be summarized as follows:

Z [l] = W [l]A[l−1] + b[l] (5)

A[l] = g
(
Z [l]

)
(6)

For each l, 1 ≤ l ≤ L− 1 represents the output of
the final layer, and the output layer follows:

Z [L] = W [L]A[L−1] + b[L] (7)

Ŷ = A[L] = g
(
Z [L]

)
(8)

where L is the number of layers, and W [L] and
B[L] are the weights and biases for layer L, re-
spectively, g is the activation function, and Ŷ is
the predicted output of the network.

2.4 Dropout Deep Neural Network
(Dropout-DNN)

The Dropout technique is used in deep neural networks
to randomly drop some nodes from the hidden layers
during training. This helps prevent the model from
overfitting by ensuring that it does not rely too heav-
ily on any one parameter during training. The dropout
Equation is as follows:

a(l) = M (l) a(l) (9)

where M (l) is a binary mask generated by a Bernoulli
distribution, determining which nodes will be active (1)
and which will be deactivated (0). The element-wise
multiplication (Hadamard product) applies this mask
to the input. a(l) represents the input to the next layer
after dropout. Garbin et al. (2020) conducted an em-
pirical study that measured the increase in training and
prediction times when using dropout and batch normal-
ization. Their findings revealed that non-adaptive opti-
mizers can outperform adaptive ones, but only with the
caveat of significantly longer training times required for
hyperparameter tuning. In contrast, adaptive optimiz-
ers performed well with minimal tuning, offering a more
efficient solution in terms of training time. Manita et al.
(2022) explored the application of dropout networks in
random mode, demonstrating that this approach can be
extended to a broad range of networks and even to ap-
proximation methods beyond neural networks. The key
insight is an algebraic property that shows how deter-
ministic networks can be precisely matched in expecta-
tion by their random network counterparts. Dropout is
a widely used technique to mitigate overfitting by ran-
domly deactivating neurons during training. However,
dropout rates are often fixed and do not adjust dynam-
ically based on the training process or dataset complex-
ity. Our proposed adaptive regularization model im-
proves upon this by tuning the regularization strength
during training, resulting in better generalization.
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2.5 Regularization Deep Neural Network
(Regularization-DNN)

Regularization is a technique used to reduce overfit-
ting in neural networks by adding a regularization term
to the model’s loss function. This penalty term ad-
justs the network’s parameters and reduces the model’s
complexity by limiting the magnitude of the weights,
thereby improving generalization. Regularization typ-
ically adds a penalty to the loss function, helping the
model avoid overfitting and improve its predictive per-
formance. Some recent studies, such as Zhao et al.
(2019) propose adaptive regularization approaches us-
ing prior distributions and dynamic adjustments. How-
ever, these methods are not widely tested in structured
multiclass tasks and often focus on unstructured data
like images. Our study extends this concept by system-
atically comparing adaptive regularization with dropout
and standard DNN approaches under a controlled envi-
ronment.

While dropout and regularization are well-known
overfitting prevention techniques, few studies have
conducted a systematic comparison of these methods
in structured, balanced multiclass classification tasks.
This paper attempts to fill this gap by evaluating and
contrasting both techniques under identical experimen-
tal conditions.

Summary of the Research Gap

While SVM and logistic regression offer stable but
rigid solutions, DNNs bring the power of representa-
tional learning but suffer from overfitting. Regulariza-
tion and dropout are effective countermeasures but are
commonly implemented with fixed parameters. Very
few studies systematically evaluate these techniques on
structured tabular data or introduce adaptive mecha-
nisms to dynamically control complexity during train-
ing. This research fills this gap by proposing and eval-
uating an Adaptive Regularization-DNN that incorpo-
rates dynamic L1 regularization into the training pro-
cess. By comparing it against dropout-based and stan-
dard DNNs using consistent evaluation metrics and data
conditions, this work contributes a clearer understand-
ing of how adaptability enhances generalization in mul-
ticlass classification

3. Methods

This section outlines the methodologies employed in this
research to address the multiclass classification problem.
Various algorithms, including Support Vector Machines
(SVM), One-vs-Rest (OvR) Logistic Regression, and
Deep Neural Networks (DNN), were utilized to develop
models capable of accurately classifying mobile price
categories. Additionally, advanced techniques such as
Dropout and Regularization were implemented to en-
hance model performance and mitigate issues related to

overfitting.

3.1 Research Tools

The tools used in this research include the Python pro-
gramming language and Google Colab. The dataset
used in this research is the Mobile Price Classifica-
tion dataset, obtained from the Kaggle website (https:
//www.kaggle.com), as of August 15, 2023.

3.2 Research Procedure

3.2.1 Data Selection and Inspection

Data Selection: The Mobile Price Classification dataset
comprises 21 columns and 2,000 rows, distributed across
4 distinct classes.

Inspection: The dataset was examined for feature
correlations and class balance. Each class contained an
equal number of 500 rows. The data characteristics are
illustrated in Figure 1.

Figure 1. The characteristics of the data.

3.2.2 Data Preparation and Cleaning

The data preparation process included handling miss-
ing values and removing the target label, ‘Price range’,
which consisted of four classes. Furthermore, the
dataset was reviewed as follows.

1. Data correlations were analyzed to assess the re-
lationships between features. This step is crucial
to identify patterns and dependencies among the
variables, which can impact the model’s perfor-
mance and accuracy in Fig. 2.

Figure 2. Data correlations.
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2. Outlier Detection: Potential outliers in the
dataset were analyzed, as shown in Fig. 3. De-
tecting outliers is critical for ensuring data in-
tegrity and improving model performance, as ex-
treme values can distort the results of the analy-
sis. By identifying and addressing these outliers,
we can ensure the model’s robustness and prevent
bias in predictions.

Figure 3. Outlier detection.

3.2.3 Model Development for Classification

The classification models developed in this research in-
cluded: SVM, OvR Logistic Regression, DNN, Dropout-
DNN, and Regularization-DNN. The adjustment of
deep neural networks using L1 regularization techniques
involves the following methods.

J(θ) = Loss(θ) + λ

n∑
i=1

|ωi| (10)

where J(θ) is the total loss function, Loss(θ) is the loss
function without the regularization term, λ is the reg-
ularization strength parameter,

∑n
i=1 |ωi| is the sum of

the absolute values of the weights.
The L1 regularization Equation added to the loss

function to reduce overfitting can be written as follows.

Jregularized(W, b) = J(W, b) +
λ

m

L∑
l=1

∥∥∥W [l]
∥∥∥
1

(11)

where J(W, b) is the normal loss function of the DNN, λ
is the regularization strength parameter, m is the num-
ber of samples in the training set,

∥∥W [l]
∥∥
1
is the abso-

lute value of the weights in layer j.
In summary, when combining Equations 10 and 11,

we obtain the Equation for training DNNs with L1 reg-
ularization techniques as follows.

J(W, b) = Jregularized(W, b) + L1 Regularization Term
(12)

The Regularization-DNN algorithm is designed to
mitigate overfitting by incorporating a regularization
term into the loss function, which penalizes large weight
values in the neural network. Below is a high-level out-
line of how the Regularization-DNN can be expressed
as an Algorithm 1:

Algorithm 1 Adaptive Regularization-DNN

Require: Dataset D = {(xi, yi)}ni=1, learning rate η,
regularization strength λ, number of iterations T ,
batch size

Ensure: Trained weights W and biases b
1: Randomly initialize weights W and biases b
2: Set regularization parameter λ
3: for epoch t = 1 to T do
4: Divide dataset D into mini-batches
5: for each mini-batch do
6: Forward Pass: Compute predicted output γ̂ =

f(x;W, b)
7: Loss Calculation:

L = Loriginal + λ
∑
j

W 2
j

8: Backward Pass: Compute gradients ∂L
∂W , ∂L

∂b
9: Update Weights and Biases:

W ←W − η · ∂L
∂W

,

b← b− η · ∂L
∂b

10: end for
11: end for
12: Output: Trained W and b

3.3 Statistics Used to Measure Performance

The statistics used to measure performance include Pre-
cision, Recall, F1-Score, and Accuracy, with the details
as follows.

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1-Score =
2× (Precision× Recall)

Precision + Recall
(15)

Accuracy =
TP + TN

TP + TN + FP + FN
(16)

where

• TP (True Positive) refers to the data that is pre-
dicted as positive and matches the true label as
positive.

• TN (True Negative) refers to the data that is pre-
dicted as negative and matches the true label as
negative.

• FN (False Negative) refers to the data that is pre-
dicted as negative but matches the true label as
positive.
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• FP (False Positive) refers to the data that is pre-
dicted as positive but matches the true label as
negative.

3.4 Comparative Design of Regularization
Techniques

To better understand the behavior of overfitting pre-
vention strategies in multiclass classification tasks, this
study was designed to systematically compare Dropout-
DNN and Adaptive Regularization-DNN under identi-
cal experimental settings. Unlike many prior studies
that apply these techniques in isolation or within image-
based datasets, this work focuses on structured tabular
data with balanced classes, allowing for clearer perfor-
mance attribution.

Both Dropout and Adaptive Regularization were im-
plemented in the same DNN architecture, using the
same optimizer, learning rate, and evaluation metrics.
This ensures that any observed differences in perfor-
mance can be attributed to the regularization method
rather than other confounding variables.

4. Experimental Results

This section presents the findings from the conducted
experiments aimed at evaluating the effectiveness of var-
ious multiclass problem-solving algorithms. The per-
formance of each algorithm was assessed using a com-
prehensive set of metrics, including Precision, Recall,
F1-Score, and Accuracy.

Figure 4. Comparative Analysis of Algorithms using
Train-Test Split Evaluation.

4.1 Comparative Analysis of Algorithms us-
ing Train–Test Split Method

To evaluate the effectiveness of various algorithms in
solving multiclass classification problems, a compara-
tive analysis was conducted using the train–test split
approach, in which the dataset was divided into 80%
for training and 20% for testing. The algorithms evalu-
ated included SVM, OvR-Logistic Regression, a stan-
dard DNN, a DNN with dropout, and the proposed
DNN with adaptive regularization. The evaluation fo-
cused on key performance metrics including precision,
recall, F1-score, and accuracy. The results of this com-
parative analysis are summarized in Table 1, and Fig. 4,

which illustrates the relative performance of each model
under consistent experimental conditions.

Table 1. Performance comparison of multiclass classifi-
cation algorithms using train–test split

Method Precision

(%)

Recall

(%)

F1-Score

(%)

Accuracy

(%)

SVM 96.54 96.50 96.50 96.50
OvR-Logistic Regression 85.42 85.75 85.52 85.75
DNN 69.06 70.25 67.70 70.25
Dropout-DNN 92.87 92.75 92.76 92.75
Adaptive
Regularization-DNN
(Proposed)

98.78 98.75 98.75 98.75

4.2 Results of Deep Neural Network Algo-
rithm Tuning using Cross-Validation

To enhance the performance of the DNN in solving mul-
ticlass classification problems, the researcher conducted
algorithm tuning using two regularization techniques:
(1) Dropout-DNN, which randomly deactivates a sub-
set of neurons during training to prevent overfitting,
and (2) Adaptive Regularization-DNN, which applies
a regularization term to the network’s loss function to
improve generalization. These tuned models were com-
pared against the baseline DNN without regularization.

In addition, the evaluation included two traditional
machine learning classifiers—SVM and OvR-Logistic
Regression—for benchmarking purposes. All models
were evaluated using 5-fold cross-validation to ensure
robustness and to minimize bias from a single data split.

The results of the algorithm performance evaluation
are summarized in Table 2 and visualized in Fig. 5. The
Adaptive Regularization-DNN outperformed all other
models in every metric, demonstrating its effectiveness
in handling multiclass problems with high precision, re-
call, F1-score, and accuracy.

Figure 5. Comparative Analysis of Algorithms Using
Cross-Validation Technique.
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Table 2. Performance comparison of multiclass classifi-
cation algorithms using 5-fold cross-validation.

Method Precision

(%)

Recall

(%)

F1-Score

(%)

Accuracy

(%)

SVM 87.94 87.65 87.72 87.65
OvR-Logistic Regression 86.78 86.95 86.82 86.95
DNN 71.31 65.60 64.09 65.60
Dropout-DNN 92.91 92.80 92.81 92.80
Adaptive
Regularization-DNN
(Proposed)

97.32 97.30 97.29 97.30

4.3 Comparative Performance Analysis and
Model Behavior

To gain deeper insights into the classification behavior
of each model, confusion matrices were generated and
analyzed. These matrices, illustrated in Fig. 6 to Fig.
8, provide a class-level breakdown of correct and incor-
rect predictions across the four classes (0 to 3) in the
Mobile Price Classification dataset in Table 3.

Table 3. Per-class F1-scores.

Class DNN Dropout-

DNN

Adaptive

Regularization-

DNN

0 0.98 0.95 0.99
1 0.76 0.91 0.98
2 0.78 0.93 0.98
3 0.99 0.97 0.99

From the confusion matrices, several key observa-
tions can be made:

Baseline DNN (see Fig. 6) exhibits frequent mis-
classifications, particularly between neighboring classes
such as class 1 and 2, and class 2 and 3. This reflects
the model’s limited ability to separate classes with sub-
tle differences.

Figure 6. Confusion matrix of Deep Neural Network
(DNN).

Dropout-DNN (see Fig. 7) significantly improves
classification accuracy. Misclassifications are reduced
across all classes, though some overlap remains between
classes 2 and 3, which are often close in feature space.

Figure 7. Confusion matrix of Dropout-DNN.

Adaptive Regularization-DNN (see Fig. 8) demon-
strates superior performance, with near-perfect classi-
fication across all classes. The model exhibits strong
generalization with minimal confusion even between ad-
jacent classes.

Figure 8. Confusion matrix of Adaptive Regularization-
DNN.

4.4 Critical Analysis

The performance of the proposed mobile phone price
classification model was critically compared with sev-
eral existing studies discussed in the literature. Table
4 presents a comparison of eight studies conducted be-
tween 2020 and 2025, including the current work. The
objective was to evaluate whether the proposed Adap-
tive Regularization-DNN provides a significant improve-
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ment over traditional machine learning and deep learn-
ing approaches.

Table 4. Comparison of our best model Adaptive
Regularization-DNN

No. Title Author Best Model Accuracy

(%)

1 Classification of
Mobile Price using
Machine Learning

Sunariya et al.
(2024)

SVM 98.00

2 Classification of
Mobile Phone Price
Dataset using Machine
Learning Algorithms

Hu (2022) SVM 95.50

3 Mobile Phone Price
Classification using
Machine Learning

Aksoy Ercan
and Şimşek
(2023)

SVM 96.16

4 Mobile Phone Price
Prediction with
Feature Reduction

Chen (2023) Pearson
Correlation

95.80

5 Performance
Evaluation of Different
Supervised Learning
Algorithms for Mobile
Price Classification

Pipalia and
Bhadja (2020)

Gradient
Boosting

90.00

6 Comparison of KNN
and DNN Classifiers
Performance in
Predicting Mobile
Phone Price Ranges

Güvenç et al.
(2021)

DNN 94.00

7 Our Study Baseline DNN 70.75
8 Our Study Adaptive

Regularization-
DNN

98.75

The majority of related works employed SVM as
the best-performing model, achieving accuracies rang-
ing from 95.5% to 98%. Notably, the study by Sunariya
et al. (2024) reported the highest accuracy at 98% using
SVM. Similarly, studies by Hu (2022) and Aksoy Ercan
and Şimşek (2023) demonstrated strong performance
with SVM, achieving 95.5% and 96.16%, respectively.

Other works explored different techniques such
as Gradient Boosting (90% accuracy), Pearson
Correlation-based feature reduction (95.8%), and DNN
with varying performance. For instance, the study by
Güvenç et al. (2021) achieved 94% using DNN, while
the baseline model from our own study yielded a lower
accuracy of 70.75%.

In contrast, the proposed Adaptive Regularization-
DNN in this study outperformed all other approaches,
reaching an accuracy of 98.78%, exceeding both tradi-
tional machine learning and prior deep learning mod-
els. This improvement highlights the strength of inte-
grating regularization techniques into deep learning ar-
chitectures, particularly when dealing with structured
tabular data in multiclass classification problems.

5. Conclusion

This study evaluated and compared the performance of
several algorithms for solving multiclass classification
problems, including Support Vector Machines (SVM),

One-vs-Rest (OvR) Logistic Regression, a baseline Deep
Neural

Network (DNN), a Dropout-enhanced DNN, and a
Regularization-based DNN. The evaluation was con-
ducted using both train–test split and 5-fold cross-
validation to ensure robustness and generalizability of
the results. Performance metrics such as accuracy, pre-
cision, recall, and F1-score were used to provide a com-
prehensive assessment.

The results indicate that the Adaptive
Regularization-DNN consistently outperformed other
methods across all evaluation metrics, achieving an av-
erage accuracy of 97.3% in the cross-validation setting.
This demonstrates the effectiveness of incorporating
regularization in deep neural networks for reducing
overfitting and improving generalization. In compari-
son, SVM and Dropout-DNN also yielded strong per-
formance, with accuracies of 87.65% and 92.8%, respec-
tively while OvR-Logistic Regression and the standard
DNN performed less effectively.

These findings highlight the importance of model
regularization in deep learning and reinforce the need
for structured experimentation in multiclass classifi-
cation tasks involving tabular data. Although the
techniques applied in this study are established, their
systematic comparison under controlled settings con-
tributes to a clearer understanding of their relative
strengths. Future research could extend this work by
exploring ensemble strategies, hybrid models, or adap-
tive learning techniques to further enhance classification
performance in complex multiclass scenarios.
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Aksoy Ercan, S. and Şimşek, M. (2023). Mobile phone
price classification using machine learning. Interna-
tional Journal of Advanced Natural Sciences and En-

8



Onprasonk et al. Journal of Applied Informatics and Technology 2026, 8(1), 259124

gineering Researches, 7(4):458–462. DOI: 10.59287/i-
janser.791.

Bagla, P. and Kumar, K. (2023). Breaking down health
fakes: A hybrid DNN model for multi-class classifi-
cation on a self-constructed dataset. Sādhanā, 48(4).
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