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Abstract
The city of Surabaya serves as the capital of East Java Province, In-
donesia, experiencing the most intensive anthropogenic activities in this
province. It has emerged as a primary destination for urbanization from
various regions, leading to notable shifts in land use, vegetation, and Land
Surface Temperature (LST). This study aims to analyzing the impact of
urbanization on urban heat island and urban thermal field variance of
coastal city Surabaya, Indonesia between 2005 and 2020. The findings
reveal that Land Use Land Cover (LULC) changes significantly impact
LST in Surabaya. Pearson Correlation results showed a positive corre-
lation between Normalized Difference Vegetation Index, Urban Thermal
Field Variance Index, and Urban Heat Island in 2005, 2011, 2015 and
2020 (p < 0.01). Alterations in land use contribute to elevated surface
temperatures owing to diminished vegetation and increased built-up ar-
eas, thereby exacerbating ecological degradation and posing health risks
to the urban environment. Consequently, implementing mitigation and
adaptation measures becomes imperative to address the escalating urban
heat phenomenon. Strategies such as augmenting green infrastructure
and optimizing blue infrastructure are crucial for maintaining thermal
equilibrium across the urban landscape.

1. Introduction

Urbanization denotes the transition from rural to urban
areas characterized by heightened population density
and improved infrastructure (Wu et al., 2023). It is pro-
pelled by escalating population growth and rapid devel-
opment, influenced by social, economic, demographic,
and environmental factors (Moazzam et al., 2022; Ji
et al., 2023). The ramifications of urbanization are di-
verse, encompassing alterations in vegetation (Ji et al.,
2023), land cover and use (Moazzam et al., 2022), mod-
ulation of land surface temperatures (Seun et al., 2022),
and heightened greenhouse emissions. Changes in land
cover and increased land use stem from construction ac-
tivities, road infrastructure expansion, and growing de-
mand for amenities (Chairuman et al., 2023), impacting
urban temperatures (Choudhury et al., 2019) and Land

Surface Temperature (LST). Diminished land cover in
urban locales leads to higher temperatures compared to
rural areas (Safitri et al., 2022), attributed to height-
ened human activity resulting in increased heat release
(Khanh et al., 2023). LST exhibits a significant corre-
lation with Urban Heat Island (UHI), where UHI de-
notes a phenomenon in which urban areas retain and
absorb more heat than their surroundings (Rahardian
and Ruslana, 2022), primarily due to intensified hu-
man activity such as construction and emissions (Ziar
et al., 2019). Building construction, characterized by
low albedo surfaces, absorbs solar radiation and heat en-
ergy, contributing to heat buildup (Noviyanti and San-
toso, 2016), while reducing vegetation diminishes the
cooling effect facilitated by the evapotranspiration pro-
cess (Sasmito and Suprayogi, 2017), indirectly elevating
LST.
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Surabaya, with its rich cultural, historical, and trade
heritage, witnesses rapid changes in land cover types
driven by surging population growth rates (Faza Illiyin
et al., 2019). The city’s reputation as a hot urban
center stems from its pronounced urbanization, leading
to a surge in its population (Katherina and Indrapra-
hasta, 2019). Surabaya’s status as the capital of East
Java Province, Indonesia, bolstered by governmental,
economic, tourism, cultural, and educational prowess,
underscores its allure for urbanization (Katherina and
Indraprahasta, 2019). Continued development to meet
burgeoning human needs transforms green spaces into
commercial, industrial, and transportation infrastruc-
tures, impeding water absorption and exacerbating heat
retention (Syafitri et al., 2021). The proliferation of
large-scale, high-density constructions further worsens
temperature trapping and urban heat (Syafitri et al.,
2021). Persistent urbanization and development por-
tend a significant rise in regional temperatures, epito-
mized by UHI, amplifying energy consumption and air
conditioning demands in Surabaya (Sari, 2021). As in
the study conducted by Yin et al. (2023) which showed
that the increase in population increased the urban heat
island and discomfort in the New York City area by
50%. Understanding the nexus between land use and
land cover changes attributable to urbanization and ris-
ing surface temperatures serves as a blueprint for for-
mulating land use mechanisms, development planning,
policy formulation, and land use evaluation (Pan et al.,
2023).

The objectives of this study were as follows:

1. To ascertain the impact of Land Use Land Cover
(LULC) changes on LST utilizing Landsat-7 and
Landsat-8 remote sensing analysis.

2. To establish correlations between LST and Nor-
malized Difference Vegetation Index (NDVI), Nor-
malized Difference Built-Up Index (NDBI), UHI,
and Urban Thermal Field Variance Index (UT-
FVI).

3. To devise mitigation and adaptation strategies in
response to UHI trends.

2. Materials and Methods

2.1 Study Area

The study was conducted in the Surabaya City area,
which is the capital of East Java Province, Indonesia
(Fig. 3). This city exhibits a high degree of urban-
ization and rapid development (Kurniati and Nitivat-
tananon, 2016). Geographically, this region lies between
7◦9′–7◦21′ South latitude and 112◦36′–112◦57′ East lon-
gitude (Kurniati and Nitivattananon, 2016), and cov-
ers an area of approximately 335.28 km2, comprising
31 districts and 154 sub-districts with a population of
more than 3 million (Khafid et al., 2020). Surabaya

City experiences an average temperature ranging from
26.07◦C to 29.03◦C, with humidity levels between 35%
and 99%. Additionally, the city receives significant rain-
fall throughout the year, totaling 551.8 mm. Land use
in Surabaya is varied, including residential areas, com-
mercial and service sectors, as well as green open spaces
(Kusuma et al., 2020).

(a)

(b)

(c)

Figure 1. Maps of the study area: (a) East Java
Province, Indonesia; (b) Surabaya City; (c) Satellite im-
age of Surabaya City.

2.2 Data Source and Pre-processing

This study utilized Landsat-7 satellite image data for
the years 2005 and 2011, along with Landsat-8 data
for 2015 and 2020 (Table 1). The dataset spans five
years across four time periods. However, data from
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2010 was excluded due to unsatisfactory image quality,
primarily attributed to significant cloud cover. Conse-
quently, the 2011 image was utilized as a substitute.
The data were procured from the US Geological Sur-
vey (USGS) via earthexplorer.usgs.gov, ensuring cloud
cover was less than 10%. These satellite images facil-
itated analysis of LULC, LST, UHI, UTFVI, NDVI,
and NDBI within the Surabaya city limits. Image pre-
processing encompassed radiometric and atmospheric
correction, as well as brightness temperature extrac-
tion from Landsat images using QGIS version 3.28.11
software, complemented by the Semi-automatic Clas-
sification Plugin (SCP) developed by Congedo (2021).
The SCP facilitated various remote sensing data pro-
cessing tasks, including data downloading, image pre-
processing, image classification and analysis, and post-
processing to enhance data interpretation and classifica-
tion accuracy (Tempa and Aryal, 2022). Specifically, in
this study, SCP was instrumental in the pre-processing
phase of Landsat images, notably for atmospheric cor-
rections aimed at mitigating cloud interference and min-
imizing the impact of thin fog present in the images.

Table 1. Landsat images used in this research.

Satellites /

Sensors

Acquisition

Date

(YY/M-

M/DD)

Path /

Row

Spatial

Resolution of

Spectral

Bands (m)

Spatial

Resolution of

TIR Band

(m)

Cloud

Cover (%)

Landsat-7 ETM+ 2005-03-08 118/65 30 60 9.00
Landsat-7 ETM+ 2011-09-01 118/65 30 60 2.00
Landsat-8 OLI 2015-06-16 118/65 30 100 0.24
Landsat-8 OLI 2020-07-31 118/65 30 100 4.98

2.3 Experimental Design

The acquired dataset underwent processing in ArcGIS®

version 10.8 to assess the presence of UHI phenomenon
within Surabaya. This analysis aimed to determine the
values of the NDVI, NDBI, and LST. The land cover
classification involved categorizing LULC using sample
points for each land cover type —urban, green space,
and water— utilizing the Maximum Likelihood Clas-
sification tool (Saputra et al., 2023). Subsequently,
LULC accuracy was assessed using Google Earth Pro
with sample points created by a confusion matrix to
ascertain accuracy percentages.

Calculation of NDVI, NDBI, and LST values was
conducted using a raster calculator with thermal bands,
according to their respective functions within the Land-
sat image dataset (Fig. 2). This is done to find out the
relationship between UTFVI and UHI, but other com-
parisons are needed in the form of NDVI, NDBI, LST,
LULC. Determination of UHI values entailed LST calcu-
lations, incorporating raster values alongside minimum
temperature values (Bala et al., 2021). Furthermore,
the calculation of UTFVI involved computing LST and
mean LST values to derive the Ecological Evaluation
Index (EEI) for Surabaya city. Subsequently, variables
such as NDVI, NDBI, UHI, LST, and UTFVI under-
went Pearson correlation analysis using IBM Statis-

tics SPSS® version 22 software to elucidate statistical
conclusions and interrelationships among the variables
(Alademomi et al., 2022).

Figure 2. Flowchart of the methodology.

2.4 Computation of Land Use Land Cover

Remote sensing, utilizing Landsat imagery, is instru-
mental in mapping land cover and its temporal changes
across various class classifications (Karakuş, 2019). The
city of Surabaya was classified into three distinct cate-
gories based on land use —urban, green space, and wa-
ter— during the years 2005, 2011, 2015, and 2020 (Table
2). Urban Classification uses a “false color” composition
where densely populated urban areas are shown in light
blue. This combination of TM bands gives results simi-
lar to traditional color infrared aerial photography. The
water band combination is used to distinguish land from
water. In the image, ice will appear as bright magenta,
land will appear as green and orange, and water will
appear as shades of blue. With this band combination,
vegetation type and condition show as variations of hues
(browns, greens and oranges), as well as in tone. This
combination of bands is called infrared color because
chlorophyll reflects near infrared light, the composition
of this band is useful for analyzing vegetation. Specifi-
cally, the red areas have better vegetation. Dark areas
are water and urban areas are white. Notably, the year
2010 was excluded from LULC classification due to high
cloud cover rendering image results unusable, hence the
2011 image was utilized as a replacement. This clas-
sification process was executed using ArcGIS 10.8 and
Google Earth Pro software, employing sample points to
ascertain accuracy (Islami et al., 2022). The kappa ac-
curacy test was employed to compare classified satellite
image data with field data obtained from Google Earth
Pro (Dash et al., 2023). Accuracy points were gener-
ated randomly in ArcGIS 10.8 using a confusion matrix
to establish truth levels, yielding Kappa points (Alade-
momi et al., 2022). Accuracy was calculated by dividing
the number of pixels classified in each class by the total
number of pixels tested for that class, thereby repre-
senting the percentage of correct classifications (Olof-
sson et al., 2014). LULC in the city of Surabaya was
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delineated into three primary land cover classes: urban,
green space, and water (Taufik et al., 2016).

Table 2. Description of LULC classes in the Surabaya
City research area.

LULC Information

Urban All built-up areas, including residential,

commercial, industrial, transportation

infrastructure, and villages.

Green Space Agricultural areas, plantations, grasslands,

cemeteries, natural forests, bare areas, fields, and

mangrove forests.

Water All open water areas, including lakes, reservoirs,

rivers, ponds, and seas.

2.5 Retrieval of Land Surface Temperature

Land Surface Temperature (LST) was calculated utiliz-
ing Landsat data’s infrared band to visualize the spa-
tial distribution of surface temperature. Temperature
data were extracted from digital images by converting
the digital number within satellite imagery, accounting
for atmospheric absorption and heat emissions. The re-
sultant surface temperature values in LST calculations
were expressed in degrees Celsius (◦C). These LST val-
ues were then grouped into four distinct classes: the
first class encompassed temperatures below 20◦C, the
second class ranged from 20◦C to 25◦C, the third class
spanned temperatures between 25◦C to 30◦C, and the
final class included temperatures exceeding 30◦C (Ullah
et al., 2022). The LST is computed using Eq. 1:

LST =
TB

1 +
(
λσ TB

hc

)
ln ε

(1)

where

TB : Brightness temperature

λ: Wavelength

σ: Boltzmann constant (1.38× 10−23 J/K)

h: Planck constant (6.626× 10−34 Js)

c: Speed of light in vacuum (2.998× 108 m/s)

ε: Emissivity (0.004× Pv + 0.986)

Spatial autocorrelation analysis is used to describe
significant local clustering patterns (Gunathilaka and
Harshana, 2021). We use spatial autocorrelation
Moran’s (I) which has spatial patterns and determines
whether the pattern is scattered, clustered, or random
based on location and values. This analysis identifies
patterns by looking at the z-score and p-value of the in-
dex. A p-value greater than 0.05 implies that the data
are spatially randomly distributed. Then if the p-value
is less than 0.05 with a negative z < −2.58 then the
data set is spatially distributed. Furthermore, a p-value
of less than 0.05 and a positive z > 2.58 indicates a

clustering pattern of data that is distributed in clusters
(Kumari et al., 2019).

2.6 NDVI and NDBI Calculations

The Normalized Difference Vegetation Index (NDVI)
serves to assess vegetation cover and detect changes in
vegetation (Gandhi et al., 2015). This index is derived
from near-infrared calculations based on light reflected
by plants (Achmad et al., 2019). NDVI values range
from −1 to +1, where a value close to 0 indicates poor
vegetation cover, such as built-up areas, while a value
near +1 signifies dense vegetation, such as dense forests,
and a value close to −1 represents water bodies (Kham-
chiangta and Dhakal, 2020). NDVI is computed using
Eq. 2:

NDV I =
NIR−RED

NIR+RED
(2)

Here, NIR corresponds to Band 4 (Landsat 7)
and Band 5 (Landsat 8), while RED corresponds to
Band 3 (Landsat 7) and Band 4 (Landsat 8). NDVI
classification encompasses four classes (Nailufar, 2018):
viz. Class < 0.25 denotes sparse vegetation den-
sity, class 0.26–0.45 signifies medium vegetation density,
class 0.46–0.59 indicates dense vegetation density, class
> 0.60 represents very dense vegetation density (Ullah
et al., 2022).

The Normalized Difference Built-up Index (NDBI) is
utilized to determine the built-up areas. NDBI values
range from −1 to +1, with negative values indicating
water bodies and positive values indicating developed
areas. NDBI is calculated using Eq. 3:

NDBI =
SWIR−NIR

SWIR+NIR
(3)

It comprises four classes (Handayani et al., 2017),
namely class < −0.99 signifies rare building density,
class −0.10 to −0.75 represents medium building den-
sity, class −0.76 to −0.45 indicates dense building den-
sity, class > −0.46 denotes very dense building density.
Here, SWIR utilizes Band 5 (Landsat 7) and Band 6
(Landsat 8), while NIR utilizes Band 4 (Landsat 7) and
Band 5 (Landsat 8).

2.7 Mapping Urban Heat Island

Urban Heat Island (UHI) was obtained through a range
of LST calculation values (Ullah et al., 2022) using the
Eq. 4.

UHI =
T − Tmin

Tmin
(4)

where

T : LST raster value

Tmin: Minimum temperature value
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Table 3 shows the classification of UHI in Surabaya
City.

Table 3. Description of UHI classes in the Surabaya
City study area (Xiong et al. 2021).

UHI Clas-

sification

Class Value

2005

Value

2011

Value

2015

Value

2020

Very High Temperature

> u + std

> 0.81 > 1.01 > 0.71 > 0.42

High u + 0.5std <

Temperature ≤
u + std

0.745–

0.81

0.925–

1.01

0.65–

0.71

0.37–

0.42

Moderate u− 0.5std ≤
Temperature ≤
u + 0.5std

0.615–

0.745

0.755–

0.925

0.53–

0.65

0.27–

0.37

Low u− std ≤
Temperature <

u− 0.5std

0.8–

0.615

0.67–

0.755

0.47–

0.53

0.22–

0.27

UHI No Temperature

< u− std

< 0.8 < 0.67 < 0.47 < 0.22

Note: u denotes the mean surface temperature;

std denotes the standard deviation.

2.8 The Urban Thermal Field Variance In-
dex

The Urban Thermal Field Variance Index (UTFVI)
serves as a tool for assessing the impact of Urban Heat
Islands (UHI) on urban areas, particularly in evaluating
their influence on the quality of life. UTFVI values are
derived from existing temperature data and are catego-
rized into five classes:

• Good: UTFV I < 0.005

• Normal: 0.005 ≤ UTFV I < 0.010

• Bad: 0.010 ≤ UTFV I < 0.015

• Worse: 0.015 ≤ UTFV I < 0.020

• Worst: UTFV I ≥ 0.020

By categorizing UTFVI into these classes, it be-
comes possible to gauge the severity of UHI impact
within urban environments, aiding in urban planning
and mitigation strategies (Ullah et al., 2022). UTFVI
is calculated using Eq. 5:

UTFV I =
Ts − Tmean

Tmean
(5)

where

Ts: LST (◦C)

Tmean: Mean LST (◦C)

2.9 Data Analysis

Pearson correlation analysis was conducted using IBM
SPSS Statistics version 22 software, with the aim of ex-
ploring the relationships between the variables in this

study, which include NDBI, UTFVI, UHI, LST, and
NDVI (Safitri, 2016). This statistical method involves
one dependent variable and one independent variable to
generate a correlation coefficient, which measures the
strength and direction of the relationship between two
variables. The correlation coefficient ranges from −1 to
1, where a value of −1 indicates a perfect negative re-
lationship, suggesting an inversely proportional connec-
tion between variables, while a value close to 1 indicates
a perfect positive relationship, signifying a directly pro-
portional connection between variables (Chung et al.,
2020).

In this study, 262 sample points were randomly col-
lected from images of the aforementioned variables, and
the Pearson correlation analysis was employed to iden-
tify and quantify relationships within the dataset. The
determination of 262 samples was performed using the
fishnet tool, which creates a grid or square net in a spe-
cific area on a map. This tool was used to support data
analysis, such as calculating averages, sums, and other
statistics.

(a)

(b)

Figure 3. Illustration of (a) land use/land cover (LULC)
map of Surabaya City and (b) land surface temperature
(LST) map of Surabaya City in 2005, 2011, 2015, and
2020.
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Table 4. Details of normalized difference of LULC, NDVI, NDBI, LST, UHI, and UTFVI from 2005 to 2020.

Classes
Area (Hectares)

2005 2011 2015 2020

LULC
Urban 18336.11

(55%)
16348.39
(49%)

23771.48
(71%)

22354.28
(66%)

Green Space 9813.25
(30%)

12639.38
(38%)

5178.09
(17%)

7830.70
(23%)

Water 4907.67
(15%)

4070.93
(12%)

4173.92
(12%)

3461.02
(10%)

NDVI

< 0.25 20837.46 24134.53 14082.62 15967.37
0.26–0.45 7183.75 8279.59 11375.89 10038.27
0.46–0.59 4054.47 1104.62 4870.43 4621.21
> 0.60 1588.80 145.69 3333.60 3035.70

NDBI

< −0.99 817.21 288.36 1728.31 1571.48
−0.10 – −0.75 13428.25 5995.69 13088.11 11309.23
−0.76 – −0.45 17228.00 25180.96 15971.53 20619.63
> −0.46 2189.39 2199.24 2875.81 162.48

LST

< 20◦C 247.7
(0.74%)

16.2
(0.05%)

59.53
(0.18%)

75.46
(0.22%)

20–25◦C 26720.25
(79.36%)

5794
(17.21%)

12181.68
(36.18%)

9864.7
(29.30%)

25–30◦C 6701.27
(19.90%)

22864.49
(67.91%)

21408.94
(63.59%)

23688.13
(70.36%)

> 30◦C 1.11
(0.00%)

4993.43
(14.83%)

18.92
(0.06%)

38.95
(0.12%)

UHI

No UHI 5223.95
(15.52%)

2373.53
(7.05%)

3861.16
(11.47%)

3037.67
(9.02%)

Low 8759.88
(26.02%)

3440.20
(10.22%)

4960.21
(14.73%)

4329.97
(12.86%)

Moderate 6833.39
(20.3%)

5469.73
(16.25%)

7390.01
(21.95%)

7778.18
(23.11%)

High 9507.40
(28.24%)

10859.55
(32.26%)

9300.40
(27.63%)

11188.13
(33.24%)

Very High 3337.26
(9.91%)

11521.07
(34.22%)

8152.14
(24.22%)

7329.42
(21.77%)

UTFVI

< 0.005 5223.95
(20.98%)

13.88
(0.04%)

4255.81
(12.64%)

3028.23
(9%)

0.005–0.010 8759.88
(35.18%)

3512.06
(10.43%)

5530.82
(16.43%)

4295.81
(12.76%)

0.010–0.015 6833.39
(27.44%)

6046.66
(17.96%)

7789.92
(23.14%)

7906.67
(23.49%)

0.015–0.020 9507.40
(38.18%)

12576.10
(37.36%)

9268.19
(27.53%)

11332.01
(33.66%)

> 0.020 3337.26
(13.40%)

11514.45
(34.20%)

6819.90
(20.26%)

7100.99
(21.09%)

3. Experimental Results

3.1 Land Use Cover and Changes Analysis

The spatially detailed map (Fig. 3a) delineates three
LULC categories, namely urban, green space, and wa-
ter, for the years 2005, 2011, 2015, and 2020. Table 4
provides the sizes of the urban area, green space, and
water bodies in hectares (Ha). Additionally, Table 4

presents the distribution of urban areas, green spaces,
and water bodies in percentage form.

Table 4 illustrates that changes in the urban area
from 2005 to 2020 were relatively insignificant. Notably,
from 2005 to 2011, there was a decrease in the urban
area from 18,336.11 ha to 16,348.39 ha. Conversely, be-
tween 2011 and 2015, the urban area expanded from
16,348.39 ha to 23,771.48 ha, followed by a subsequent
reduction from 23,771.48 ha to 22,354.28 ha between
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2015 and 2020. Similarly, the changes in green space
area were not notably significant. From 2005 to 2011,
there was an increase in green space area from 9,813.25
ha to 12,639.38 ha. However, between 2011 and 2015,
there was a decrease in green space area from 12,639.38
ha to 5,178.09 ha, followed by an increase from 5,178.09
ha to 7,830.70 ha thereafter. Finally, changes in water
area from 2015 to 2020 were also deemed insignificant.
Specifically, from 2005 to 2011, the water area decreased
from 4,907.67 ha to 4,070.93 ha. Subsequently, between
2011 and 2015, there was an increase in water area from
4,070.93 ha to 4,173.92 ha, followed by a decrease from
4,173.92 ha to 3,461.02 ha between 2015 and 2020.

Table 4 depicts the changes in area between the pe-
riods of 2005-2011, 2011-2015, and 2015-2020. Specifi-
cally, in the urban areas, there was a decrease in area of
1,987.72 ha from 2005-2011, followed by an increase of
7,423.09 ha from 2011-2015, and a subsequent decrease
of 1,417.20 ha from 2015-2020. For green space areas,
there was an increase in land area of 2,826.13 ha from
2005-2011, a decrease of 7,461.29 ha from 2011-2015,
and a subsequent increase of 2,652.61 ha from 2015-
2020. Lastly, in water areas, there was a decrease in
area of 836.74 ha from 2005-2011, an increase of 102.99
ha from 2011-2015, and a subsequent decrease of 712.99
ha from 2015-2020.

Urbanization and economic development are factors
of land change that occurred in Surabaya City from
2005 to 2020. This is due to population growth which
causes increased demand for housing and public facili-
ties (Kusuma et al., 2020). An example of a develop-
ment case caused by population growth is the expansion
of housing in the West Surabaya and East Surabaya ar-
eas, which causes land change (Setyawati et al., 2022).
In addition, infrastructure development that took place
in Surabaya such as the construction of the Surabaya
Mojokerto Toll Road in 2007 also played a major role in
land change from agricultural areas to road access (Han-
dayani et al., 2017). The construction of the Suramadu
bridge is also a cause of land change, namely the reduc-
tion of forest and vegetation by 8,130 ha from 45,924
ha to 37,794 ha (Sugiarto and Kebumian, 2018). This
accelerated access to public transportation, resulting in
an increase in economic activity in Surabaya City. In
addition, the development of new industrial areas has
caused land conversion from agricultural areas to in-
dustrial areas. The local government made changes to
spatial policies that regulate industrial and commercial
zones, which led to peripheral areas becoming new eco-
nomic centers. The expansion of economic areas due
to several combined factors is the main cause of land
change (Saputra et al., 2023).

Kappa serves as a comparison between the overall
accuracy value and the total accuracy expected (ex-
pected accuracy) (Wafdan, 2020). The kappa coefficient
value ranges from 0.1 to 1.0, where a value closer to 1
signifies a higher level of similarity or more accurate
classification of the classification results (Kushardono,

2017). In this study, the kappa coefficients for the land
use classifications were calculated to be approximately
0.87%, 0.84%, 0.84%, and 0.84%, respectively (Table
5). Notably, all three classified images exhibited kappa
coefficient values greater than 0.80%, indicating the ac-
curacy of the classification estimates.

Clustering analysis is a statistical technique used to
group objects or data into homogeneous groups based
on the similarity of certain characteristics or attributes.
Clustering analysis consists of z-score and p-value. Z-
score in clustering analysis assesses how far the data
values in a dataset differ from the average or random
pattern. A larger z-score indicates a more significant
clustering pattern. P -value in the context of clustering
analysis is used to assess the statistical significance of
the clustering results. With p-value equal to 0.00, the
z-score values in 2005, 2011, 2015, and 2020 are 9.38,
9.43, 7.2, and 8.35, respectively (see Table 5).

Table 5. Assessment of LULC accuracy and clustering
analysis.

Year LULC Accuracy Clustering Analysis

Overall
Accuracy

Kappa
Accuracy

z-score p-value

2005 0.93 0.87 9.38 0.00
2011 0.91 0.84 9.43 0.00
2015 0.92 0.84 7.20 0.00
2020 0.92 0.84 8.35 0.00

3.2 Land Surface Temperature

The spatial distribution of LST in the city of Surabaya
for the years 2005, 2011, 2015, and 2020 is depicted
in Fig. 3b. LST values are classified into four cate-
gories: (i) below 20◦C; (ii) 20–25◦C; (iii) 25–30◦C; and
(iv) above 30◦C (Ullah et al., 2022). It is important to
note that there is no fixed class division for LST due to
the variability in LST across different regions and time
spans (Mansourmoghaddam et al., 2023). Therefore, for
ease of analysis and to capture the differences in LST
levels in Surabaya, the class divisions are determined
based on the data obtained.

The estimated total area with temperatures below
25◦C is approximately 247.70 ha in 2005, 16.20 ha in
2011, 59.53 ha in 2015, and 75.46 ha in 2020. In
the temperature range of 20-25°C, the total estimated
area is around 26,720.25 ha in 2005, 5,794 ha in 2011,
12,181.68 ha in 2015, and 9,864.7 ha in 2020. Similarly,
for the temperature range of 25–30◦C, the estimated to-
tal area is approximately 6,701.27 ha in 2005, 22,864.49
ha in 2011, 21,408.94 ha in 2015, and 23,688.13 ha
in 2020. Additionally, areas with temperatures above
30◦C are estimated to cover approximately 1.11 ha in
2005, 4,993.43 ha in 2011, 18.92 ha in 2015, and 38.95
ha in 2020.
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3.3 Normalize Difference of Vegetation
(NDVI) and Build-Up Index (NDBI)

NDVI values were categorized into four classes: (i)
< 0.25; (ii) 0.26− 0.45; (iii) 0.46− 0.59; and (iv) > 0.6
to evaluate the vegetation index in the study area (see
Fig. 4a).

(a)

(b)

Figure 4. Illustration of (a) NDVI map in Surabaya
during 2005, 2011, 2015, and 2020 and (b) NDBI map
in Surabaya during 2005, 2011, 2015, and 2020.

The total area included in the < 0.25 class was esti-
mated to be around 20837.46 ha, 24134.53 ha, 14082.62
ha, and 15967.37 ha during 2005-2020 (see Table 4).
In the (0.26 − 0.45) class, the area was estimated to
be around 7,183.75 ha, 8,279.59 ha, 11,375.89 ha, and
10,038.27 ha. For the (0.46 − 0.59) class, it was esti-
mated to have an area of around 4,054.47 ha, 1,104.62
ha, 4,870.43 ha, and 4,621.21 ha. Meanwhile, the class
> 0.60 was estimated to have an area of around 1,588.80
ha, 145.69 ha, 3,333.60 ha, and 3,035.70 ha across the
years 2005, 2011, 2015, and 2020, respectively.

NDBI values were classified into four classes: (i)
< −0.99; (ii) −0.10 to −0.75; (iii) −0.76 to −0.45; and

(iv) > −0.46 (see Fig. 4b). The total area encompassed
in the < −0.99 class was estimated to be around 817.21
ha, 288.36 ha, 1,728.31 ha, and 1,571.48 ha during the
years 2005, 2011, 2015, and 2020 (see Table 4). The
area in the second class (−0.10 to −0.75) was estimated
at around 13,428.25 ha, 5,995.69 ha, 13,088.11 ha, and
11,309.23 ha. Meanwhile, the area for the third class
(−0.76 to −0.45) was estimated to be approximately
17,228.00 ha, 25,180.96 ha, 15,971.53 ha, and 20,619.63
ha. Similarly, the > −0.46 class was estimated to have
an area of around 2,189.39 ha, 2,199.24 ha, 2,875.81 ha,
and 162.48 ha during the years 2005, 2011, 2015, and
2020.

3.4 Determination of Urban Heat Island

The UHI category was divided into five, namely (i) No
UHI, (ii) Low, (iii) Medium, (iv) High, and (v) Very
High (Dutta et al., 2021). The UHI levels in the city of
Surabaya continued to change (see Fig. 5a). Changes in
the level of Urban Heat Island in the City of Surabaya in
2005, 2011, 2015, and 2020 could be observed in Table
4. The land area in the No UHI category in the City of
Surabaya from 2005 to 2020 was 5,223.95 ha, 2,373.53
ha, 3,861.16 ha, and 3,037.67 ha, respectively (see Table
4). In 2005, the land area with the No UHI category
was the highest compared to other years. In the low cat-
egory, the areas ranged from 8,759.88 ha, 24,440.2 ha,
4,960.21 ha, and 4,329.97 ha from 2005 to 2020. 2005
still recorded the highest Low UHI category among the
years. Then, in the moderate category, the land area
ranged from 6,833.39 ha in 2005, 5,469.73 ha in 2011,
7,390.01 ha in 2015, to 7,778.18 ha in 2020. Urban heat
islands in the low category experienced a decrease in
land area in 2011 and a significant increase in 2015 and
2020, surpassing the area in 2005. At the high cate-
gory, urban heat islands covered areas of 9,507.40 ha,
10,859.55 ha, 9,300.40 ha, and 11,188.13 ha from 2005
to 2020. Meanwhile, the very high UHI category cov-
ered an area of 3,337.26 ha in 2005, 11,521.07 ha in 2011,
8,152.14 ha in 2015, and 7,329.42 ha in 2020. The UHI
level in Surabaya City in 2011 showed a rapid increase
from 2005, with 34.22% of Surabaya City classified as
in the very high UHI category. Afterward, the city of
Surabaya experienced a decrease in its urban heat island
by 10% in several areas in 2015 and another decrease of
2.34% in 2020.

3.5 Evaluation of Urban Thermal Field Vari-
ance Index

The evaluation of the UTFVI was divided into five cate-
gories: (i) < 0.005, (ii) 0.005−0.010, (iii) 0.010−0.015,
(iv) 0.015− 0.020, and (v) > 0.020 (Singh et al., 2017).
The UTFVI value indicated the Ecological Evaluation
Index (EEI) value (Omali, 2020), and it was further
classified into five categories, namely: (i) good, (ii) nor-
mal, (iii) bad, (iv) worse, and (v) worst (see Fig. 5b).
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If the UTFVI value of a land was high, it would have a
significant impact on the ecological evaluation. Land in
Surabaya City with a UTFVI value < 0.005 or having a
good ecological evaluation impact experienced changes
in land area, totaling 5,223.95 ha, 13.88 ha, 4,255.81
ha, and 3,028.23 ha from 2005 to 2020. Land with a
UTFVI value of 0.005 − 0.010 or having a normal eco-
logical evaluation impact covered an area ranging from
8,759.88 ha, 3,512.06 ha, 5,530.82 ha, to 4,195.81 ha
from 2005 to 2020.

(a)

(b)

Figure 5. Illustration of (a) urban heat island (UHI)
and (b) represent the Surabaya area’s urban thermal
variance index (UTFVI) maps during 2005, 2011, 2015,
and 2020.

Meanwhile, land in the city of Surabaya from 2005
to 2020 with a UTFVI value of 0.010−0.015 or having a
poor ecological evaluation impact had an area of around
6,833.39 ha, 6,046.66 ha, 7,789.92 ha, and 7,900.67 ha.
On land with a UTFVI value of 0.015 − 0.020 or hav-
ing a worse ecological evaluation impact, there was a
significant increase and decrease in land area, totaling
9,507.40 ha in 2005, 12,576.10 ha in 2011, 9,268.19 ha
in 2015, and 11,332.01 ha in 2020. Lastly, the land

area of Surabaya City from 2005 to 2020, which had
the worst ecological evaluation impact with a UTFVI
value > 0.020, amounted to 3,337.26 ha, 11,514.45 ha,
6,819.90 ha, and 7,100.99 ha.

In 2005, UTFVI with a value of 0.010 − 0.015 or
having a worse ecological evaluation impact covered the
largest land area, approximately 38.18%. In 2011, the
UTFVI value for the largest land area was 0.015−0.020,
comprising around 37.26% of the land. Then, in 2015
and 2020, UTFVI with a value of 0.015 − 0.020 also
dominated the largest land area, accounting for 27.53%
and 33.66%, respectively. It can be concluded that from
2005 to 2020, UTFVI with a value of 0.015 − 0.020 or
having a worse ecological evaluation impact dominated
the land in the city of Surabaya.

3.6 Statistical Analysis

Pearson correlation analysis was utilized in this study
was used to examine the relationships between the vari-
ables using IBM Statistics SPSS version 22 software
(Kafle, 2019).

Table 6. Pearson correlation values between variables
in 2005.

NDBI UTFVI UHI LST NDVI

NDBI 1 0.765** 0.439** 0.053 -0.133*
0.000 0.000 0.392 0.031

UTFVI 0.765** 1 0.612** 0.160** -0.082
0.000 0.000 0.010 0.183

UHI 0.439** 0.612** 1 0.114 -0.095
0.000 0.000 0.064 0.127

LST 0.053 0.160** 0.114 1 0.080
0.392 0.010 0.064 0.197

NDVI -0.133* -0.082 -0.095 0.080 1
0.031 0.183 0.127 0.197

Note: * Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

In the 2005 Pearson correlation analysis, it was ob-
served that the correlation between NDBI and UTFVI
exhibited a positive correlation, indicating a relation-
ship between the two variables (see Table 6). Addition-
ally, the analysis revealed positive Pearson correlations
between NDBI and UHI, UTFVI and UHI, as well as
UTFVI and LST (Kurniati and Nitivattananon, 2016).
The positive correlation between NDBI and UTFVI
suggested that higher building density corresponded to
a greater impact on ecological evaluation, with higher
UTFVI values indicating worse ecological impact. Sim-
ilarly, the positive correlation between NDBI and UHI
implied that increased building density led to higher
surface temperatures in Surabaya. Moreover, the pos-
itive relationship between UTFVI and UHI, as well as
UTFVI and LST, suggested that elevated surface tem-
peratures corresponded to a heightened impact on eco-
logical evaluation. This positive correlation indicated
that urban areas like Surabaya experienced warmer cli-
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mates due to extensive infrastructure development, re-
sulting in a greater ecological impact. Conversely, a
negative relationship was observed in the Pearson cor-
relation between NDBI and NDVI, indicating an in-
verse proportionality where increased building density
in Surabaya corresponded to lower vegetation density
(Isnaeni and Prasetyo, 2022).

Pearson analysis conducted in 2011 revealed a pos-
itive correlation among various variables, including
NDBI and UTFVI, NDBI and UHI, NDBI and LST,
UTFVI and UHI, UTFVI and LST, as well as UHI and
LST. This positive correlation indicated a directly pro-
portional relationship between each variable (Ermawati
et al., 2022). For instance, the correlation between
NDBI and UTFVI suggested that higher building den-
sity corresponded to a greater ecological impact evalua-
tion (see Table 7). The correlation value between NDBI
and UTFVI in 2011 was smaller than in 2005. Moreover,
the positive Pearson correlation between NDBI and UHI
(Melati et al., 2020) and LST (Singh et al., 2023) indi-
cated that increased building density in Surabaya led to
higher surface temperatures in the area. Similarly, the
positive relationship between the UTFVI variable and
UHI and LST suggested that elevated surface tempera-
tures in Surabaya City corresponded to a higher impact
on ecological evaluation.

Table 7. Pearson correlation values between variables
in 2011.

NDBI UTFVI UHI LST NDVI

NDBI 1 0.638** 0.176** 0.053 -0.071
0.000 0.000 0.004 0.254

UTFVI 0.638** 1 0.449** 0.251** 0.052
0.000 0.000 0.000 0.339

UHI 0.269** 0.449** 1 0.334 0.004
0.000 0.000 0.000 0.843

LST 0.176** 0.251** 0.334** 1 -0.008
0.004 0.000 0.000 0.893

NDVI -0.071 0.052 0.004 -0.008 1
0.254 0.399 0.943 0.893

Note: ** Correlation is significant at the 0.01 level (2-tailed).

The 2015 Pearson correlation analysis results re-
vealed both positive and negative relationships among
variables (see Table 8). Positive correlations were ob-
served between NDBI and UTFVI, NDBI and UHI,
NDBI and LST, UTFVI and UHI, UTFVI and LST, as
well as UHI and LST. The positive correlation between
NDBI and UTFVI, consistent with previous years, in-
dicated a direct relationship (Hadibasyir and Firdaus,
2023); higher building density in Surabaya corresponded
to increased ecological impact. Additionally, the posi-
tive Pearson correlation between NDBI and UHI vari-
ables showed higher values compared to 2011 and 2005,
indicating that greater building density in Surabaya re-
sulted in higher surface temperatures in the area. Sim-
ilarly, the positive correlation between NDBI and LST,
albeit with a smaller correlation value in 2015 than

in 2011, suggested a direct relationship Florim et al.
(2021); higher building density corresponded to higher
surface temperatures. This relationship stemmed from
surfaces like buildings and roads absorbing more so-
lar radiation heat than vegetation (Estoque and Mu-
rayama, 2017). Furthermore, the positive Pearson cor-
relation between UTFVI and LST, as well as UT-
FVI and UHI, indicated that higher surface temper-
atures in Surabaya corresponded to increased ecologi-
cal impact. The positive correlation between UHI and
LST suggested that higher surface temperatures in an
area led to higher resulting temperatures (Prasetyo and
Nurtyawan, 2023). On the other hand, negative cor-
relations were observed between NDBI and NDVI, as
well as UTFVI and NDVI. The negative relationship
between NDBI and NDVI indicated an inverse relation-
ship; higher building density corresponded to lower veg-
etation levels in Surabaya. Similarly, the negative corre-
lation between UTFVI and NDVI suggested that lower
vegetation density corresponded to increased ecological
impact (Hadibasyir and Firdaus, 2023).

Table 8. Pearson correlation values between variables
in 2015.

NDBI UTFVI UHI LST NDVI

NDBI 1 0.682** 0.474** 0.144* -0.341*
0.000 0.000 0.019 0.000

UTFVI 0.682** 1 0.563** 0.143* -0.170**
0.000 0.000 0.020 0.006

UHI 0.474** 0.563** 1 0.140* -0.108
0.000 0.000 0.023 0.081

LST 0.144* 0.143* 0.140** 1 -0.037
0.019 0.020 0.023 0.552

NDVI -0.341** -0.170** -0.108 -0.037 1
0.000 0.006 0.081 0.552

Note: * Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

In the 2020 Pearson correlation analysis, positive re-
lationships were observed among the variables NDBI
and UTFVI, NDBI and UHI, NDBI and LST, UTFVI
and UHI, UTFVI and LST, and UHI and LST (Mokar-
ram et al., 2023; Pratiwi and Jaelani, 2021) (see Table
9). The positive correlation between NDBI and UTFVI
indicated that higher building density corresponded to a
greater ecological impact. Additionally, the positive re-
lationship between NDBI and UHI, as well as NDBI and
LST, suggested that higher building density was associ-
ated with elevated surface temperatures. The Pearson
correlation values for NDBI with UHI and LST were
the highest compared to previous years, signifying an
increasing influence on surface temperature due to the
growing amount of built-up land in Surabaya, resulting
in a warmer climate (Achmad et al., 2019). Further-
more, the positive Pearson correlation between UTFVI
with UHI and LST suggested that higher surface tem-
peratures in Surabaya City were associated with an in-
creased ecological impact. The positive relationship be-
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tween UHI and LST indicated a directly proportional
relationship, implying that higher surface temperatures
resulted in higher overall temperatures. The Pearson
correlation value for the UHI variable with LST was
higher compared to 2015, suggesting an increasing rela-
tionship in 2020, potentially due to changes in the ur-
ban climate resulting from the use of environmentally
unfriendly building materials.

Table 9. Pearson correlation values between variables
in 2020.

NDBI UTFVI UHI LST NDVI

NDBI 1 0.682** 0.557** 0.220* -0.366*
0.000 0.000 0.000 0.000

UTFVI 0.725** 1 0.698** 0.300* -0.182**
0.000 0.000 0.000 0.003

UHI 0.557** 0.563** 1 0.250** -0.121*
0.000 0.000 0.000 0.050

LST 0.220** 0.143* 0.250** 1 0.007
0.019 0.020 0.000 0.910

NDVI -0.341** -0.170** -0.121* 0.007 1
0.000 0.006 0.050 0.910

Note: * Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

Conversely, negative relationships were observed be-
tween NDBI and NDVI, UTFVI and NDVI, as well as
UHI and NDVI. The negative correlation between NDBI
and NDVI indicated an inverse relationship, with higher
building density corresponding to lower vegetation den-
sity in Surabaya (Hadibasyir and Firdaus, 2023). Fur-
thermore, the negative relationship between UTFVI
and NDVI suggested that higher vegetation density led
to a lower ecological impact. Therefore, increasing veg-
etation density and minimizing the area of built-up land
are necessary to foster good and sustainable urban eco-
logical conditions. Lastly, the negative relationship be-
tween UHI and NDVI indicated that lower vegetation
density resulted in higher surface temperatures due to
reduced vegetation, which contributed to a warmer cli-
mate. Vegetation plays a crucial role in cooling surface
temperatures on land, while built-up areas tend to ex-
acerbate the Urban Heat Island effect (Tran et al., 2017;
Kumari et al., 2019).

4. Discussion

4.1 LULC, Impervious & Green Space vs
Temperature

Changes in land use have been increasing due to urban-
ization (Saha et al., 2021). Urbanization leads to exten-
sive development and infrastructure creation, resulting
in a reduction in land cover. The shift in land use to-
wards residential areas is driven by the growing demand
for land (Adawiyah, 2021). Such changes in land cover
and use due to development have a notable impact on
increasing LST (Das and Angadi, 2020). This indicates

a positive or harmonious relationship, wherein higher
NDBI values correspond to higher LST (Sarif et al.,
2020). The decrease in vegetation resulting from land
use changes has repercussions on biodiversity, hydrol-
ogy, and temperature. Reduced vegetation leads to an
increase in temperature, contributing to the UHI phe-
nomenon (Silva et al., 2018).

The condition of green space in Surabaya has un-
dergone significant changes from 2005 to 2020. In 2020,
green space in Surabaya accounted for only 23% of the
area, falling short of the specified target. Conversely,
built-up land in Surabaya constituted almost 50% of the
area. Previous research has demonstrated an inverse re-
lationship between NDVI and LST (Putra et al., 2018),
indicating that decreased vegetation leads to increased
land surface temperature. The rise in land surface tem-
peratures is a key factor in the Urban Heat Island phe-
nomenon (Pratiwi and Jaelani, 2021). Urban areas ex-
perience higher temperatures compared to rural areas
(Yao et al., 2019), with Surabaya’s temperatures rising
due to low vegetation cover and a high concentration of
buildings. The relatively high UHI value in Surabaya is
evident from the majority of areas falling into the very
high UHI class.

In summary, changes in LULC are primarily driven
by human activities, particularly urban expansion. The
transformation and expansion of cities significantly con-
tribute to LST, with heat flow density or the intensity of
uneven heat flow rates also playing a role in UHI. Con-
verting green areas into built-up spaces poses significant
risks, as the proportion of vegetation, agricultural land,
and forest areas plays a crucial role in the ecosystem
and urban environment (Mia et al., 2017). Green areas
serve as absorbers of excess heat from urban emissions.
Therefore, LULC has a profound impact on both LST
and the UHI effect.

4.2 LULC, Impervious & Green Space vs
UTFVI

Increasing the area of vegetation cover and green space
in the urban environment has a significant influence on
the thermal conditions of cities and the development
of UHI (Bokaie et al., 2016). Poor temperature condi-
tions typically resulted from the dominance of imper-
meable land surfaces and intense anthropogenic activi-
ties carried out in urban areas (Hadibasyir et al., 2020).
Infrastructure development, such as buildings, roads,
and industries, contributed to water-impermeable land
cover, absorbing incoming short-wave solar radiation
while reducing outgoing long-wave terrestrial emissions,
thus directly impacting the Earth’s surface temperature
(Alademomi et al., 2022). This condition created areas
known as UHI, with the strongest UHI areas directly re-
lated to more critical environments and characterized by
building densification, as evidenced by the strong corre-
lation between UTFVI and NDBI (Putra et al., 2023).
UTFVI, a surface UHI measure, referred to measuring
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the ecology and health of residents in urban areas (Go-
hain et al., 2023). It was widely used for the ecologi-
cal evaluation of urban environments and was related
to the Earth’s surface temperature (Tepanosyan et al.,
2021). The UTFVI value in urban areas accumulated
higher compared to rural areas with green spaces due to
the rapid pace of unplanned urban development (Kafy
et al., 2021). The greater the UTFVI value, the worse
the condition of urban ecological degradation and the
greater the intensity of UHI, and vice versa (Hadibasyir
and Firdaus, 2023). Proper planning of land cover dis-
tribution could reduce the impacts of UHI and UTFVI,
promote sustainable urban development, protect ecosys-
tem services, and improve daily life (AlDousari et al.,
2022). Spatial-temporal analysis from UTFVI could be
used to formulate policies and strategies for sustainable
urban planning and management, mitigation and adap-
tation to climate change, as well as public health inter-
ventions (Kikon et al., 2023).

UTFVI, describing the urban ecological conditions
of the Surabaya region, could be seen in Fig. 5a). UT-
FVI values were categorized into 5 classes, namely good,
normal, bad, worse, and worst (Singh et al., 2017) as
shown in Table 4. UTFVI values were positively cor-
related with UHI so that the higher the UTFVI value,
the higher the UHI intensity and vice versa (Hadibasyir
et al., 2020). Low UTFVI values of less than 0.005 were
generally distributed in areas of water bodies and green
space, indicating relatively good urban ecological qual-
ity due to the presence of mangrove vegetation (Syamsu
et al., 2018). Based on the quantitative ecological as-
sessment in the study area, namely Surabaya City (see
Table 4) during 2005, 2011, 2015, and 2020, it was ob-
served that the Surabaya area was classified in the worst
category with a UTFVI value of 0.015− 0.020. UTFVI
occurred most often in the central study area because
it experienced the most urbanization and had an urban
structure (Omali, 2020).

4.3 NDVI, NDBI, Impervious & Green
Space vs Temperature

The temperature that describes the condition of the
Surabaya area can be seen in Fig. 3b). Temperature
values are categorized into 4 classes, namely< 20◦C, 20-
25◦C, 25-30◦C, and > 30◦C which can be seen in Table
4. The NDVI value has an inverse relationship, which
means that if the vegetation density is low, the temper-
ature conditions will increase (Izah et al., 2023). Mean-
while, NDBI has a positive relationship with temper-
ature where built-up areas produce many temperature
variations that tend to increase and are a major contrib-
utor to urban heat island (Malik et al., 2019). Based
on the quantitative ecological assessment of the study
area (see Table 4) during 2005, 2011, 2015, and 2020,
the Surabaya area is classified as rather high, which has
a temperature between 25-30◦C. As in Prayogo (2021),
the Surabaya area has an average temperature above

28◦C.

The natural phenomena of El Nino and La Nina have
an impact on fluctuations in agriculture production. In
2011, agriculture production decreased due to the El
Nino event (Mulyaqin, 2020). Conversely, La Nina re-
sulted in an increase in rice production and a decrease
in corn production (Mulyaqin, 2020). The NDVI re-
sults in 2011 had a lower density compared to other
years, namely 2005, 2011, 2015, 2020 because they were
influenced by the acquisition of Landsat imagery dur-
ing the El Nino phenomenon. In addition, the tem-
perature results in 2011 also showed higher than other
years, namely temperatures > 30◦C as much as 14.83%
while other years were less than 1%. The El Nino phe-
nomenon causes sea surface temperatures to increase,
resulting in dry weather conditions in Indonesia. This
has an impact on several areas experiencing drought,
inhibiting vegetation growth and crop yields. The cli-
mate conditions that occurred in September 2011 had
an impact on the acquisition of land images and the
difficulty of NDVI classification.

4.4 Current Research Trends in UHI Mitiga-
tion and Adaptation

The rise in temperature attributed to global warm-
ing necessitates careful consideration. Vegetation-based
green spaces play a crucial role in maintaining equilib-
rium on the Earth’s surface temperature. Insufficient
green open spaces in Indonesian, also known as Ruang
Terbuka Hijau (RTH), can lead to heightened surface
temperatures, resulting in discomfort (Marsitha Barung
et al., 2021). This temperature increase exacerbates
UHI effects, underscoring the need for mitigation and
adaptation efforts. Mitigation efforts are primarily con-
centrated in transportation, building, industrial, energy,
and governance sectors, while adaptation strategies fo-
cus on water and green infrastructure sectors in land
use planning (Alizadeh and Sharifi, 2020). Utilizing
green infrastructure, such as green roofs and parks, of-
fers ecosystem benefits by mitigating UHI-induced hot
climates. Green spaces, like parks, should be integrated
into urban landscapes to curb rising surface tempera-
tures. Expanding green open spaces directly reduces
urban density, while tree planting provides shade dur-
ing dry seasons and diminishes the sun’s radiation ef-
fects, consequently mitigating UHI (Demuzere et al.,
2014). Sustainable development initiatives should pri-
oritize policies aimed at expanding green spaces with
adequate vegetation, which absorb solar radiation and
air pollutants. Converting vegetation areas into built-
up land intensifies evapotranspiration (Achmad et al.,
2019). The form of green spaces should adapt to ex-
isting land conditions; for instance, narrow land parcels
can be tarnsformed into urban forest strips, while large
tracts can be developed into clustered urban forests
(Rushayati et al., 2016).

Green space planning extends beyond city centers to
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encompass all directions of urban expansion, ensuring
equitable regional growth. Additionally, green infras-
tructure implementation, complemented by blue infras-
tructure, strategically manages water usage (Almaaitah
et al., 2021). Integrating water elements with sustain-
able maintenance practices, such as evapotranspiration,
helps cool the environment, thus addressing UHI exac-
erbated by drought conditions (Leal Filho et al., 2018).
Effective urban governance is pivotal in UHI mitiga-
tion; retro-reflective materials deflect solar radiation
away from cities (O’Malley et al., 2015). Proper urban
planning dictates that buildings in urban areas facilitate
unimpeded wind passage and airflow, enhancing natu-
ral cooling mechanisms (Kurniati and Nitivattananon,
2016). Balancing environmental concerns with urban
development presents a challenge to city planners and
governments striving to minimize UHI impacts. Urban
planning should not only prioritize economic factors but
also optimize city layouts to mitigate UHI effects (Kur-
niati and Nitivattananon, 2016).

Additional mitigation measures involve reducing air
conditioning and electrical energy consumption, which
can exacerbate greenhouse gas effects.Strategies needed
to reduce the increase in urban climate due to increased
urban activity include providing green open space which
can help reduce the heat island effect by providing ar-
eas that absorb and evaporate moisture (Park et al.,
2022). Apart from that, cross ventilation is provided
which aims to reduce heat absorption by the building
(Cuce et al., 2019). There are also educational and pro-
motional strategies for the public to preserve the en-
vironment, such as using public transportation to re-
duce air pollution, implementing green infrastructure,
etc. (Kumari et al., 2019).

5. Conclusion

This study demonstrated a satellite-based method for
observing Urban Heat Island (UHI) phenomena. The
study showcases how satellite imagery can be utilized
to estimate UHI occurrences during the years 2005,
2011, 2015, and 2020. It was observed that land use
changes from green spaces to urban areas were a pri-
mary driver of increased Land Surface Temperature
(LST). The rise in LST was found to be positively corre-
lated with Normalized Difference Built-up Index, Urban
Thermal Field Variance Index, and UHI. Conversely, an
increase in LST exhibited a negative correlation with
Normalized Difference Vegetation Index. This negative
correlation stems from the inverse relationship between
building density and vegetation density, leading to el-
evated urban temperatures and subsequent ecological
impacts. Therefore, implementing mitigation and adap-
tation strategies, such as green and blue infrastructure,
is imperative to counteract rising temperatures and re-
store equilibrium to the Earth’s surface temperature.
For future studies, it is recommended to use imagery

with higher resolution analysis to enable improvements
in classification and prediction of Land Use Land Cover
and UHI both at regional and global scales. In addi-
tion, future research is also recommended to integrate
open source engines to be accessible such as viewing the
condition of the community environment in real time.
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