
Mahasarakham University, Thailand
http://jit.it.msu.ac.th

Research Article

สุนทรีย์ ธรรมสุวรรณ1, นวลปราง แสงอุไร1,*, เชาวลิต ขันคำ�2

Soontaree Thumsuwan1, Nuanprang Sangurai1,*, Chouvalit Khancome2
1
	 สาขาวิชาเทคโนโลยีสารสนเทศ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏราชนครินทร์ ฉะเชิงเทรา 24000 ประเทศไทย

2
	 ภาควิชาวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์ มหาวิทยาลัยรามคำ�แหง กรุงเทพมหานคร 10240 ประเทศไทย

1
	 Major in Information Technology Department, Faculty of Science and Technology, Rajabhat Rajanagarindra University,

Chachoengsao 24000, Thailand
2
	 Computer Science Department, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand

*	 Corresponding Author: Nuanprang Sangurai, nuanprang.san@csit.rru.ac.th

บทคัดย่อ: การเปรียบคู่สายอักขระแบบประมาณเป็นหลักการสำ�คัญในการ
คน้หาข้อมลูทีอ่นญุาตใหม้ขีอ้ผิดพลาดในการสะกดคำ�หรือการพมิพผิ์ดได ้ซึง่ถกู
นำ�ไปประยกุต์ใชอ้ยา่งแพรห่ลายในงานดา้นฐานขอ้มลู ระบบสบืคน้ขอ้มลู และ
แอปพลิเคชันหรือบริการออนไลน์ต่างๆ อย่างต่อเนื่อง เพื่อเพิ่มประสิทธิภาพ
ในการค้นหาให้รวดเร็วและตรงตามวัตถุประสงค์มากยิ่งขึ้น การพัฒนา
ขัน้ตอนวธิใีหมจึ่งเปน็ความทา้ทายทีส่ำ�คญัในงานวจิยัด้านวทิยาการคอมพิวเตอร์
บทความวิจยันีน้ำ�เสนอโครงสรา้งขอ้มลูชนดิใหมส่ำ�หรบัการคน้หาแบบประมาณ
เรียกว่า รายการผกผันแบบเดี่ยว ซึ่งออกแบบมาเพื่อรองรับการกำ�หนดระดับ
ความผิดพลาดที่ยอมรับได้ในการค้นหา พร้อมทั้งพัฒนาขั้นตอนวิธีการเปรียบ
คู่สายอักขระแบบประมาณที่อิงกับโครงสร้างข้อมูลดังกล่าว ผลการวิเคราะห์
เชิงทฤษฎีแสดงให้เห็นว่า โครงสร้างข้อมูลท่ีนำ�เสนอสามารถสร้างได้ด้วย
ความซบัซอ้นเชงิเวลาในระดับเดยีวกบัความยาวของสายอักขระตน้แบบ และ
ใชพ้ืน้ทีจั่ดเกบ็ขอ้มลูเทา่กบัผลรวมของความยาวสายอักขระและจำ�นวนอกัขระที่
ปรากฏจรงิ ขัน้ตอนวธิทีีพ่ฒันาขึน้สามารถดำ�เนนิการคน้หาไดด้ว้ยความซบัซอ้น
เชิงเวลาเท่ากับผลคูณระหว่างความยาวของข้อความกับความยาวของ
สายอักขระต้นแบบ ท้ังนี้สามารถกำ�หนดระดับความผิดพลาดที่ยอมรับได้
ในการค้นหา ผลการทดลองจากการพัฒนาโปรแกรมคอมพิวเตอร์เพื่อนำ�
ไปเปรียบเทียบกับขั้นตอนวิธีที่มีชื่อเสียงในปัจจุบัน พบว่าโครงสร้างข้อมูล
ที่พัฒนาขึ้นใช้หน่วยความจำ�ในการประมวลผลน้อยที่สุด และข้ันตอนวิธีที ่
นำ�เสนอสามารถดำ�เนนิการคน้หาแบบประมาณไดอ้ยา่งมปีระสทิธภิาพ รวดเรว็
ใกล้เคียงกับขั้นตอนวิธีที่เร็วที่สุด และยังทำ�งานแบบเชิงเส้นอีกด้วย

ขั้นตอนวิธีการเปรียบคู่สายอักขระแบบประมาณโดยอาศัยรายการผกผันแบบเดี่ยว

Approximate String Matching Algorithm using Single Inverted Lists

Received:
	 29 November 2023
Revised:
	 31 January 2024
Accepted:
	 2 May 2024

คำ�สำ�คัญ:

การเปรียบคู่สายอักขระแบบ
ประมาณ, รายการผกผัน, ดัชนี
ผกผัน, การเปรียบคู่แบบ, การ
เปรยีบคูส่ายอกัขระแบบอนญุาต
ให้มีข้อผิดพลาด

Keywords:

String Matching Algorithm,
Multiple Character Inverted
Lists, Inverted Index,
Pattern Matching, Exact
String Matching

Journal of Applied Informatics and Technology, 7(2), 389-405.

วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025390Approximate String Matching Algorithm using Single Inverted Lists

Soontaree Thumsuwan, Nuanprang Sangurai, Chouvalit Khancome

1. บทนำ�

	 หลกัการการเปรยีบคูส่ายอักขระแบบประมาณ
(Approximate String Matching) หรือการเปรียบ
คู่สายอักขระแบบอนุญาตให้มีข้อผิดพลาด (String
Matching with Allowed Errors) เป็นกระบวนการ
หรือการเทคนิคในการค้นหาสตริง (String) ที่ตรงกับ
รปูแบบ (Pattern) โดยประมาณ ซึง่ขัน้ตอนวธิพียายาม
ค้นหาข้อความท่ีคล้ายคลึงกับข้อความที่กำ�หนดไว ้
โดยไมจ่ำ�เปน็ตอ้งตรงกนัท้ังหมด เพยีงตรงกบัเง่ือนไข
การอนุญาตใหผ้ดิพลาดได ้(Error Rate หรอื Distance)
หลักการนีม้ปีระโยชนม์ากโดยเฉพาะเมือ่มีการพมิพผิ์ด
สะกดคำ�ผดิ หรอืหาความคลา้ยคลงึกนัในทางตรรกะ
ทีไ่ม่จำ�เปน็ต้องตรงกนัทุกอกัขระ ถูกนำ�ไปใชใ้นหลาย
วงการคอมพวิเตอร ์เชน่ การคน้หาขอ้มลูในฐานขอ้มลู
การแกไ้ขขอ้ความท่ีผิดพลาดในเอกสาร การตรวจสอบ
การสะกดคำ� และการปรับปรุงประสิทธิภาพในการ
คน้หาขอ้มลูของระบบสบืคน้ขอ้มลู (Search Engine)
เช่น Google Search หรือแม้แต่ในเครื่องมือและ
บรกิารออนไลนท์ีใ่หบ้รกิารการจบัคู่สตรงิโดยประมาณ
เช่น Google Docs และ Grammarly เป็นต้น

	 เมื่อพิจารณาลักษณะเฉพาะของหลักการ
เปรียบคู่สายอักขระแบบประมาณ คือ การค้นหา
อักขระแบบเดี่ยว (Single Pattern String) p =
c

1
c

2
c

3
…c

m
 (โดยกำ�หนด p แทนอกัขระแบบเปา้หมาย

ที่ต้องการค้นหา ที่ c
1
c

2
c

3
…c

m
 คือ สายอักขระที่ต่อ

เนื่องกันทีละอักขระมีขนาดความยาว m) ที่ปรากฏ
ในข้อความ (Text) T = t

1
t
2
t
3
…t

n
 ใดๆ (โดยกำ�หนด

ให้ T คือข้อความหรือข้อมูลที่ประกอบด้วยอักขระ
ขนาดยาว n ตัว ท่ีต้องการนำ�อักขระแบบ p ไปค้นหา)
โดยวตัถปุระสงคเ์พือ่พจิารณา p ปรากฏ ณ ตำ�แหนง่
ใดบ้างใน T โดยอนุญาตให้มีจำ�นวนอักขระที่เปรียบ
คู่ไม่ตรงกันหรืออนุญาตให้ผิดพลาดไม่ตรงกันด้วย
ค่าตัวเลขจำ�นวนเต็ม d กลไกการแก้ปัญหาคือ
นำ�เอาอักขระ c

1
c

2
c

3
…c

m
 เก็บไว้ในโครงสร้างข้อมูล

ที่เหมาะสม เรียกว่า ส่วนเตรียมการประมวลผล
(Pre-processing) จากนัน้สรา้งขัน้ตอนวธิค้ีนหาเรยีกวา่
การค้นหาหรือแมชชิ่ง (Searching or Matching)

	 ในช่วงเวลาที่ผ่านมา นักวิชาการทางด้าน
วิทยาการคอมพิวเตอร์พัฒนาโครงสร้างข้อมูลเพื่อ
รองรับการค้นหาขึ้นมาเป็นจำ�นวนมาก ดังปรากฏใน

Abstract: Approximate string matching is a fundamental technique in data retrieval that
allows for typo errors or misspellings. It is widely applied in databases, search engines, and
various applications or online services. To enhance the speed and accuracy of data retrieval,
the development of new algorithms remains a significant challenge in computer science
research. This paper introduces a novel data structure for approximate search, called the Single
Inverted List, which supports a configurable level of error tolerance. Based on this structure,
a new approximate string matching algorithm is developed. Theoretical analysis shows that
the proposed structure can be constructed with time complexity proportional to the length
of the pattern string and requires storage space equal to the sum of the pattern length and
the number of distinct characters. The proposed algorithm achieves search performance with
time complexity proportional to the product of the text length and the pattern length, while
also supporting error-tolerant matching. Experimental results demonstrate that the proposed
structure consumes the least memory compared to well-known existing algorithms, and the
developed algorithm performs approximate searches efficiently, nearly as fast as the fastest
existing methods, while maintaining linear-time performance.

วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025391Approximate String Matching Algorithm using Single Inverted Lists

Soontaree Thumsuwan, Nuanprang Sangurai, Chouvalit Khancome

สรุปโครงสร้างขอ้มูลในคู่มอืการเปรยีบคู่ Navarro &
Raffinot (2002) เช่น ใช้ออโตเมตัน (Automaton)
ตารางการแฮช (Hashing Table) และตารางการแมช
หรือไม่แมช (Matched or Mismatched Table)
เป็นต้น ขั้นตอนวิธีค้นหาที่ใช้แก้ปัญหาน้ีที่ได้รับ
ความนิยม ได้แก่

	 1) Levenshtein Distance (Levenshtein,
1966)) เปน็ข้ันตอนวิธทีีวั่ดระยะหา่งระหวา่งสองสตรงิ
โดยพจิารณาจำ�นวนการลบ เพิม่ หรอืแทนทีต่วัอกัษร
ที่จำ�เป็นเพื่อให้สองสตริงตรงกัน

	 2) Damerau-Levenshtein Distance
เป็นขั้นตอนวิธีที่ขยาย Levenshtein Distance
โดยพิจารณาการสลับที่ตำ�แหน่งของตัวอักษรด้วย

	 3) Needleman-Wunsch Algorithm
(Needleman & Wunsch, 1970) เป็นขั้นตอน
วธิทีีค่น้หาการจบัคูส่ตริงโดยประมาณโดยใช้การคน้หา
แบบไดนามิก

	 4) Smith-Waterman Algorithm (Smith
& Waterman, 1981) เป็นขั้นตอนวิธีที่คล้ายกับ
Needleman-Wunsch Algorithm แตพิ่จารณาค่าน้ำ�
หนักของตัวอักษรแต่ละตัวในการจับคู่สตริง เป็นต้น
การศึกษาวจัิยเพ่ือพัฒนาขัน้ตอนวธิกีารเปรยีบคูแ่บบ
ประมาณ มีการศึกษามาก่อนเป็นเวลานานมาแล้ว
ท่ีนา่สนใจไดแ้ก ่ในงานวจิยัของ Levenshtein (1965),
Gusfield (1997), และ Karp & Rabin (1987) ซึ่งมี
คำ�อธบิายโดยละเอยีดปรากฎในหนงัสอืของ Navarro
& Raffinot (2002)

	 จากนั้นมีการพัฒนาเนื้อหามาโดยตลอด
จนกระทั่งถึงปัจจุบันก็ยังมีการศึกษาท่ีน่าสนใจ เช่น
แสดงใน Uhlig et al. (2023) Khan, Halim, & Baig
(2023), Faro & Scafiti (2022) และ Dondi, Mauri,
& Zoppis (2022) ซึ่งจะพบว่าโดยส่วนมากแล้ว
ขั้นตอนวิธีในปัจจุบันจะนำ�เทคนิคโครงสร้างข้อมูล
และขัน้ตอนวธิทีีพ่ฒันาไวแ้ลว้มาทำ�งานร่วมกบัรว่มกบั

ปญัญาประดษิฐ ์(Artificial Intelligence) (รายละเอยีด
แสดงในงานวจัิยของ Uhlig et al. (2023)) และเทคนคิ
ต่างๆ เช่น กราฟ (รายละเอียดแสดงในงานวิจัยของ
Khan, Halim, & Baig (2023) และ Dondi, Mauri,
& Zoppis (2022)) เพื่อเพิ่มประสิทธิภาพการค้นหา
ใหร้วดเรว็มากยิง่ขึน้ โดยงานวจิยัของ Boguszewski,
Szymański, & Draszawka, (2016) ใช้พจนานุกรม
พัฒนาต่อยอดวิธี Levenshtein Distance เพิ่มขึ้น
ในขณะที่งานวิจัยของ Abraham & Raj (2014)
พฒันาวธิ ีLongest Subsequence (LCS) เพือ่สรา้ง
การตรวจจับข้อความที่หลอกลวงต่างๆ เป็นต้น

	 จากการศึกษาข้างต้นพบว่า นักวิจัยพัฒนา
โครงสร้างข้อมูลรวมถึงขั้นตอนวิธีในการแก้ปัญหา
การเปรยีบคูส่ายอกัขระแบบประมาณกันอยา่งตอ่เนือ่ง
และแมว้า่จะเปน็หลักการทีไ่ดศ้กึษาพัฒนากันมาเปน็
เวลานานแล้ว แต่อย่างไรก็ตามปัญหานี้ก็ยังคงอยู่
ในความสนใจของนักวิจัยอยู่ตลอดเวลา ฉะนั้น การ
พัฒนาโครงสร้างข้อมูลและขั้นตอนวิธีการแก้ปัญหา
การเปรียบคู่สายอักขระแบบประมาณแบบใหม่
จงึยงัมคีวามจำ�เปน็และเปน็ทีต่อ้งการอยา่งยิง่ งานวิจยันี ้
อาศัยแรงบันดาลใจจากงานวิจัยของ Khancome
& Boonjing (2010) ซึ่งได้ออกแบบรายการผกผัน
(Inverted Lists) สำ�หรับแก้ปัญหาการเปรียบคู่สาย
อกัขระแบบไมอ่นญุาตใหผ้ดิได ้ซึง่ทำ�ใหเ้กดิโครงสรา้ง
ข้อมูลใหม่เพ่ือใชใ้นการสรา้งขัน้ตอนวิธกีารเปรยีบคูส่าย
อักขระแบบเดี่ยวได้อย่างมีประสิทธิภาพ

	 ดังนั้น ผู้วิจัยจึงนำ�แนวคิดโครงสร้างข้อมูล
จากงานวิจัย Khancome & Boonjing (2010)
มาพัฒนาโครงสร้างข้อมูลแบบใหม่ เพ่ือใช้สำ�หรับ
การค้นหาข้อมูลสายอักขระแบบประมาณ โดยมี
รายละเอียดดังนี้

	 1) กระบวนการพัฒนาโครงสรา้งข้อมลูแบบ
ใหม ่เรยีกว่า รายการผกผนัแบบเด่ียวเพือ่การเปรยีบ
คู่สายอักขระแบบประมาณ และ

วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025392Approximate String Matching Algorithm using Single Inverted Lists

Soontaree Thumsuwan, Nuanprang Sangurai, Chouvalit Khancome

	 2) การพัฒนาขั้นตอนวิธีการเปรียบคู่สาย
อกัขระแบบประมาณโดยใชโ้ครงสรา้งขอ้มลูชนดิใหม่
ที่พัฒนาขึ้น

	 ทัง้นี ้เปน็การพฒันาโครงสรา้งขอ้มลูแบบใหม่
ภายใตส้มมตฐิานทีว่า่ โครงสรา้งข้อมลูใหม่ท่ีพฒันาขึน้
จะมปีระสทิธภิาพทัง้ความซบัซอ้นดา้นเวลาและเนือ้ที ่
สามารถนำ�ไปปรับใช้ในสาขาวิทยาการคอมพิวเตอร์
ที่เกี่ยวข้องกับการเปรียบคู่โดยประมาณได้ รวมถึงมี
ความยืดหยุ่น รองกับการค้นหาที่รวดเร็วข้ึน ค้นหา
ข้อมูลทั้งการเปรียบคู่สายอักขระแบบโดยกำ�หนดค่า
ความผิดพลาดได้แบบยืดหยุ่น มีประสิทธิภาพ

2. แนวคิดทฤษฎีที่ใช้ในงานวิจัย

	 สำ�หรับการออกแบบงานวิจัยใหม่ครั้งนี้
คณะผู้วิจัยได้นำ�หลักการการสร้างรายการผกผัน
พืน้ฐานทีเ่กดิจากการนำ�โครงสร้างขอ้มลูที ่Khancome
& Boonjing (2010) ออกแบบไว้ นำ�มาต่อยอด
เพ่ือพัฒนาขั้นตอนวิธีใหม่ โดยอาศัยตารางการแฮช
เพือ่จัดเกบ็และเขา้ถึงขอ้มลู นำ�เสนอรายละเอยีดดงันี้

2.1 รายการผกผัน (Inverted Lists:
IVL)

	 รายการผกผัน คอืโครงสร้างขอ้มูลทีอ่อกแบบ
โดย Khancome & Boonjing (2010) ซึง่ออกแบบไว้
เพือ่ใชส้ำ�หรบัแกป้ญัหาทางด้านค้นหาสายอกัขระแบบ
ทีป่รากฏในขอ้ความ (Text) ในขัน้ตอนวธิเีปรียบคูส่าย
อกัขระแบบตรงกนัทัง้หมด (Exact String Matching
Algorithm) ด้วยการนำ�สายอักขระแบบ (Pattern
of String) มาเขียนให้อยู่ในรูปแบบตารางขนาด 2
คอลัมน์ โดยคอลัมน์แรกคือ Σ ใช้บรรจุอักขระเดี่ยว
(Single Character) ทีป่รากฏในอักขระแบบที่นำ�มา
พจิารณา สว่นคอลมันท์ีส่องชือ่ IVL ใชบ้รรจตุำ�แหนง่
ของอักขระเดี่ยวที่สอดคล้องกับคอลัมน์แรก

	 กลไกการออกแบบรายการผกผัน เริ่มต้น
จากการนำ�แนวคดิของหลกัการดชันผีกผนั (Inverted

Index) ซึง่เปน็หลกัการท่ีมปีระสทิธิภาพสงูสำ�หรบัการ
ออกแบบการจัดเก็บดัชนีของการจัดเก็บและค้นคืน
เอกสาร หลักการของดัชนีผกผันจะให้หมายเลข
แกเ่อกสาร และระบตุำ�แหนง่ของแตล่ะคำ�หรอืขอ้ความ
ทีป่รากฏในเอกสาร จากนัน้นำ�หมายคำ�ต่างๆ เหล่านัน้
มาสร้างเป็นดัชนีเพื่อให้สามารถถึงเอกสารได้เร็ว
ขึ้น เขียนโครงสร้างในรูปแบบ “<หมายเลขเอกสาร,
คำ�ทีป่รากฏ:ตำ�แหนง่ทีป่รากฏ>” เรยีกคำ�ทีป่รากฏวา่
คีย์เวิร์ดหรือคำ�ศัพท์ โดยระบุคู่กับตำ�แหน่งที่ปรากฏ
ในเอกสารที่แสดงแนวคิดการสร้างอักขระแบบให้
อยูใ่นรปูแบบดงักลา่ว โดย Khancome & Boonjing
(2010) ได้นำ�อักขระแบบเป้าหมายมาพิจารณา
และเขียนให้อยู่ในรูปแบบรายการผันด้วยการระบุ
อกัขระเด่ียวทีป่รากฏในอกัขระ โดยมรีปูแบบ “<ตำ�แหนง่
ที่ปรากฏ:สถานะเป็นตัวสุดท้ายของอักขระแบบ
หรือไม่ (0=ไม่ใช่/1=ใช่)>” นำ�เสนอตัวอย่างรายการ
ผกผันของอักขระแบบพอสังเขป ดังตัวอย่างที่ 1

	 ตัวอย่างที่ 1 กำ�หนดให้อักขระแบบ p =
CCOMZ สามารถแสดงรายการผกผันของ p ได้ดัง
ตาราง 1

ตาราง 1	 รายผกผันของอกัขระแบบ p = CCOMZ

Σ IVL
C <1:0>, <2:0>

O <3:0>

M <4:0>

Z <5:1>

	 จากตารางที่ 1 อธิบายได้ว่า อักขระแบบ
CCOMZ มีอักขระเดี่ยวที่ปรากฏในอักขระแบบคือ
C, O, M และ Z ซึ่งถูกนำ�มาเขียนบรรจุในตาราง
ดังแสดงในคอลัมน์แรก Σ จากนั้นพิจารณาตำ�แหน่ง
ทีป่รากฏของอกัขระแตล่ะตวัทีป่รากฏในอกัขระแบบ

วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025393Approximate String Matching Algorithm using Single Inverted Lists

Soontaree Thumsuwan, Nuanprang Sangurai, Chouvalit Khancome

ดังกล่าว จะพบกว่า อักขระ C ปรากฏที่ตำ�แหน่ง
1 และ 2 ส่วน O ปรากฏในตำ�แหน่งที่ 3 อักขระM
ปรากฏในตำ�แหน่งที่ 4 และ Z ปรากฏในตำ�แหน่งที่
5 พิจารณาสถานะการเป็นอักขระตัวสุดท้ายของ
อักขระแบบหรือไม่จะพบว่า C O และ M ไม่ใช่
อักขระสุดท้ายของอักขระแบบจึงกำ�หนดสถานะ
คือ 0 แต่ Z เป็นอักขระตัวสุดท้ายของอักขระแบบนี้
จึงกำ�หนดสถานะเป็น 1 อักขระทั้งหมดจึงถูกเขียน
ในรูปแบบ อักขระเดี่ยวที่ปรากฏในอักขระแบบ:
<ตำ�แหนง่ทีป่รากฏ:สถานะเป็นตวัสดุทา้ยของอกัขระ
แบบหรือไม่ (0=ไม่ใช่/1=ใช่)> ดังแสดงในตาราง
ดังกล่าวข้างต้น

2.2 ตารางการแฮช (Hashing Table)

	 หลักการแฮช (Hashing Principle) หรือ
ตารางการแฮช คอืหลักการสรา้งและออกแบบโครงสรา้ง
ขอ้มลูจดัเกบ็ในรปูแบบตารางเพือ่สนบัสนนุการคน้หา
และเขา้ถงึขอ้มลูในโครงสรา้งดว้ยคา่ความซบัซอ้น O(1)
องค์ประกอบของหลักการน้ี มี 2 ส่วนคือการสร้าง
ฟังก์ชันคีย์ เรียกว่าแฮชฟังก์ชัน (Hash Function)
และตารางเก็บข้อมูล (Bucket of Data) โดยที่ผล
การของนำ�ค่าคีย์สำ�หรับค้นหา (Data Search) นำ�
มาคำ�นวณผา่นแฮชฟงักช์นั จะไดผ้ลลพัธเ์ปน็ตำ�แหนง่
ของการจัดเก็บข้อมูล แสดงแนวคิดของโครงสร้าง
ดังกล่าว ดังภาพประกอบ 1

	 จากแนวคิดในภาพประกอบ 1 งานวิจัยนี้
ได้นำ�เสนอรูปแบบของการแสดงรายการผกผัน
(แสดงในหัวข้อ 2.1) โดยใช้ Character (Wλ) เป็น
ฟงักช์นัการแฮช เพือ่เขา้ถงึตารางการแฮชในสว่นของ
Bucket of Data ในภาพประกอบดงักลา่ว โดยที ่Wλ
คอือกัขระเดีย่วทีป่รากฏในอกัขระแบบ p ใดๆ แนวคดิ
การเข้าถึงข้อมูลและการเปรียบเทียบตัวอักขระเพื่อ
จะนำ�ไปวิเคราะห์การค้นพบ แสดงตัวอย่างการสร้าง
ตารางการแฮชของรายการผกผัน p = CCOMZ
ประกอบการเข้าถึงดว้ยข้อความ T ดงัภาพประกอบ 2

	 จากแนวคิดการสร้างตารางการแฮชแบบนี้
กับรายการผกผันที่ได้นำ�เสนอไปแล้ว ทำ�ให้สามารถ
เข้าถึงข้อมูลเพื่อเปรียบเทียบในขั้นตอนวิธีการค้นหา
สามารถทำ�ไดด้ว้ยค่าความซับซ้อน O(1) โดยใช้เนือ้ที่
จดัเก็บเปน็ O(n) ซึง่จะไดแ้สดงการพิสจูนแ์ละนำ�เสนอ
ในลำ�ดับต่อไป

	 จากแนวคิดดังกล่าว Khancome &
Boonjing (2010) ได้นำ�ไปออกแบบขั้นตอนวิธีการ
เปรียบคู่แบบตรงกัน (Exact String Matching
Algorithms) จำ�นวน 2 ขั้นตอนวิธี ทำ�งานด้วยความ
ซับซ้อนขั้นตอนวิธีแบบ Prefix Approach ค้นหา
ข้อมูล O(mn) กับขั้นตอนวิธี Suffix Approach
ค้นหาข้อมูลด้วยความซับซ้อน O(n/m) โดยขั้นตอน
วธิทีัง้สองใช้โครงสรา้งรายการผกผนัทีส่รา้งขึน้ทำ�งาน
ดว้ยคา่ความซบัซ้อน โดยพฒันาโปรแกรมเปรยีบเทียบ

 จากตารางที่ 1 อธิบายไดวา อักขระแบบ CCOMZ มีอักขระเด่ียวที่ปรากฏในอักขระแบบคือ C, O, M และ Z
ซึ่งถูกนํามาเขียนบรรจุในตาราง ดังแสดงในคอลัมนแรก ∑ จากนั้นพิจารณาตําแหนงที่ปรากฏของอักขระแตละตัวที่
ปรากฏในอักขระแบบดังกลาว จะพบกวา อักขระ C ปรากฏที่ตําแหนง 1 และ 2 สวน O ปรากฏในตําแหนงที่ 3 อักขระ
M ปรากฏในตําแหนงที่ 4 และ Z ปรากฏในตําแหนงที่ 5 พิจารณาสถานะการเปนอักขระตัวสุดทายของอักขระแบบ
หรือไมจะพบวา C O และ M ไมใชอักขระสุดทายของอักขระแบบจึงกําหนดสถานะคือ 0 แต Z เปนอักขระตัวสุดทาย
ของอักขระแบบนี้ จึงกําหนดสถานะเปน 1 อักขระทั้งหมดจึงถูกเขียนในรูปแบบ อักขระเด่ียวที่ปรากฏในอักขระ
แบบ:<ตําแหนงที่ปรากฏ:สถานะเปนตัวสุดทายของอักขระแบบหรือไม (0=ไมใช/1=ใช)> ดังแสดงในตารางดังกลาว
ขางตน

 2.2 ตารางการแฮช (Hashing Table)
หลักการแฮช (Hashing Principle) หรือตารางการแฮช คือหลักการสรางและออกแบบโครงสรางขอมูลจัดเก็บ

ในรูปแบบตารางเพื่อสนับสนุนการคนหาและเขาถึงขอมูลในโครงสรางดวยคาความซับซอน O(1) องคประกอบของ
หลักการนี้ มี 2 สวนคือการสรางฟงกชันคีย เรียกวาแฮชฟงกชัน (Hash Function) และตารางเก็บขอมูล (Bucket of
Data) โดยที่ผลการของนําคาคียสําหรับคนหา (Data Search) นํามาคํานวณผานแฮชฟงกชัน จะไดผลลัพธเปน
ตําแหนงของการจัดเก็บขอมูล แสดงแนวคิดของโครงสรางดังกลาว ดังภาพประกอบ 1

ภาพประกอบ 1 แนวคิดการสรางตารางการแฮช

 จากแนวคิดในภาพประกอบ 1 งานวิจัยนี้ไดนําเสนอรูปแบบของการแสดงรายการผกผัน (แสดงในหัวขอ

2.1) โดยใช Character (w) เปนฟงกชันการแฮช เพื่อเขาถึงตารางการแฮชในสวนของ Bucket of Data ใน
ภาพประกอบดังกลาว โดยที่ w คืออักขระเด่ียวที่ปรากฏในอักขระแบบ p ใดๆ แนวคิดการเขาถึงขอมูลและการ
เปรียบเทียบตัวอักขระเพื่อจะนําไปวิเคราะหการคนพบ แสดงตัวอยางการสรางตารางการแฮชของรายการผกผัน p =
CCOMZ ประกอบการเขาถึงดวยขอความ T ดังภาพประกอบ 2

ภาพประกอบ 1 แนวคิดการสร้างตารางการแฮช
ภาพประกอบ 2 แนวคิดการสรางตารางการแฮชสําหรับการเปรียบคูแบบประมาณ

จากแนวคิดการสรางตารางการแฮชแบบนี้กับรายการผกผันที่ไดนําเสนอไปแลว ทําใหสามารถเขาถึงขอมูล

เพื่อเปรียบเทียบในขั้นตอนวิธีการคนหาสามารถทําไดดวยคาความซับซอน O(1) โดยใชเนื้อที่จัดเก็บเปน O(n) ซึ่งจะ
ไดแสดงการพิสูจนและนําเสนอในลําดับตอไป

จากแนวคิดดังกลาว Khancome & Boonjing (2010) ไดนําไปออกแบบขั้นตอนวิธีการเปรียบคูแบบ
ตรงกัน (Exact String Matching Algorithms) จํานวน 2 ขั้นตอนวิธี ทํางานดวยความซับซอนขั้นตอนวิธีแบบ Prefix
Approach คนหาขอมูล O(mn) กับขั้นตอนวิธี Suffix Approach คนหาขอมูลดวยความซับซอน O(n/m) โดยขั้นตอน
วิธีทั้งสองใชโครงสรางรายการผกผันที่สรางขึ้นทํางานดวยคาความซับซอน 𝑂(𝑚 + ∑) โดยพัฒนาโปรแกรม
เปรียบเทียบกับขั้นตอนวิธีการเปรียบคูแบบตรงกันทั้งหมด เชน Boyer-Moor(BM), KMP(Knuth-Morris-Pratt) และ
BruceForce(BF) ซึ่งไมสามารถรองรับการคนหาแบบประมาณดังงานวิจัยใหมนี้ได

ดังนั้น งานวิจัยใหมนี้นําหลักการดังกลาวสรางตารางการแฮชเก็บรายการผกผันดังกลาว เพื่อรองรับการคนหา
เปรียบเทียบแบบประมาณหรืออนุญาตใหมีคาความผิดพลาดในการคนหาได ทั้งนี้เพื่อใหการออกแบบและเขาถึงขอมูล
ผานตารางไดสะดวกรวดเร็วและมีประสิทธิภาพจึงออกแบบตารางดังกลาวดวยตารางการแฮช คลายกับงานวิจัย
Khancome & Boonjing (2010) เฉพาะบางสวนของตารางรายการผกผันเทานั้น แตหากขั้นตอนวิธีที่นําเสนอ
เปนขั้นตอนวิธีใหมที่ใชสําหรับการเปรียบคูคนหาแบบประมาณที่อนุญาตใหระบุคาความผิดพลาดได และไดทดลอง
เปรียบเทียบกับขั้นตอนวิธีที่มีช่ือเสียงของกลุมงานวิจัยที่เก่ียวของดานนี้เทานั้น

3. วิธีการดําเนินการวิจัย

3.1 ขั้นตอนการสรางโครงสรางขอมูล
เบ้ืองตน กําหนดให p คือสายอักขระจาก c1, c2, …, cm ที่อยูภายใต ∑ เมื่อ ∑ คือเซตของอักขระที่ปรากฏ

ใน p
นิยามท่ี 1 คําสําคัญของอักขระแบบ 𝜔 คือ p ประกอบดวยคําสําคัญ

0,1aw ,
0,2bw ,

0,3cw , …,
1,...m

w เมื่อ

0,knw หรือ
1,knw ใด ๆ คือ ck โดยที่ k คือตําแหนงที่ปรากฏอยูใน p ; 0 หรือ 1 คือสถานะที่ระบุการเปนอักขระ

สุดทายของ ck ใน p ถาไมใชอักขระสุดทายระบุ 0 หรือระบุ 1 หากเปนอักขระสุดทาย
 =

0,1aw ,
0,2bw ,

0,3cw , …,
1,...m

w (1)

ภาพประกอบ 2 แนวคิดการสร้างตารางการแฮช
สำ�หรับการเปรียบคู่แบบประมาณ

วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025394Approximate String Matching Algorithm using Single Inverted Lists

Soontaree Thumsuwan, Nuanprang Sangurai, Chouvalit Khancome

กับขั้นตอนวิธีการเปรียบคู่แบบตรงกันทั้งหมด เช่น
Boyer-Moor(BM), KMP(Knuth-Morris-Pratt) และ
BruceForce(BF) ซึง่ไมส่ามารถรองรบัการคน้หาแบบ
ประมาณดังงานวิจัยใหม่นี้ได้

	 ดังนั้น งานวิจัยใหม่นี้นำ�หลักการดังกล่าว
สร้างตารางการแฮชเก็บรายการผกผันดังกล่าว เพื่อ
รองรับการค้นหาเปรียบเทียบแบบประมาณหรือ
อนุญาตให้มีค่าความผิดพลาดในการค้นหาได้ ทั้งนี้
เพื่อให้การออกแบบและเข้าถึงข้อมูลผ่านตาราง
ได้สะดวกรวดเร็วและมีประสิทธิภาพจึงออกแบบ
ตารางดังกล่าวด้วยตารางการแฮช คล้ายกับงานวิจัย
Khancome & Boonjing (2010) เฉพาะบางส่วน
ของตารางรายการผกผันเท่าน้ัน แต่หากขั้นตอน
วธิทีีน่ำ�เสนอเปน็ขัน้ตอนวธิใีหมท่ีใ่ชส้ำ�หรบัการเปรยีบ
คูค่น้หาแบบประมาณท่ีอนุญาตให้ระบคุา่ความผดิพลาด
ได้ และได้ทดลองเปรียบเทียบกับขั้นตอนวิธีที่มี
ชื่อเสียงของกลุ่มงานวิจัยที่เกี่ยวข้องด้านนี้เท่านั้น

3. วิธีการดำ�เนินการวิจัย

3.1 ขั้นตอนการสร้างโครงสร้างข้อมูล

	 เบื้องต้น กำ�หนดให้ p คือสายอักขระจาก
c

1
, c

2
, …, c

m
 ที่อยู่ภายใต้ ∑ เมื่อ ∑ คือเซตของ

อักขระที่ปรากฏใน p

	 นิยามที่ 1 คำ�สำ�คัญของอักขระแบบ คือ
p ประกอบด้วยคำ�สำ�คัญ

0,1aw ,
0,2bw ,

0,3cw , …,

1,...m
w เมือ่

0,knw หรอื
1,knw ใดๆ คือ c

k
โดยที่ k คือ

ตำ�แหน่งท่ีปรากฏอยูใ่น p ; 0 หรือ 1 คอืสถานะท่ีระบุ
การเป็นอักขระสุดท้ายของ c

k
 ใน p ถ้าไม่ใช่อักขระ

สุดท้ายระบุ 0 หรือระบุ 1 หากเป็นอักขระสุดท้าย

	 ω =
0,1aw ,

0,2bw ,
0,3cw , …,

1,...m
w 	(1)

	 ตวัอยา่งที ่1 แสดงคำ�สำ�คัญของอกัขระแบบ
p=aabcz ซึ่งจะได้

0,1aw = a,
0,2bw = a,

0,3cw = b,

0,4dw = c และ
1,5ew = z เขยีนเปน็ในรปูแบบคำ�สำ�คัญ

ได้ดังนี้

	 ω = a
1,0

a
2,0

b
3,0

c
4,0

z
5,1

	 นิยามที่ 2 รายการผกผัน L ของ ω

เกิด

จากนำ�แต่ละ
0,ελ

w หรือ
1,ελ

w ใดๆ ที่อยู่ใน ω มา
เขียนในรูปแบบ >< 0:: ελw หรือ >< 1:ε ซึง่

	 ωL = >< 0:1:aw >< 0:2:bw ,
>< 0:3:cw ,…, >< 1::... mw 		 (2)

	 ตวัอยา่งที ่2 แสดงรายการผกผนัของอกัขระ
แบบ p=aabcz ได้ดังนี้

	 ωL = a:<1:0>, a:<2:0>, b:<3:0>, c:<4:0>,
z:<5:1>

	 นิยามที่ 3 จากนิยาม 2 ให้
0λ

I แทน
>< 0:i และ

1λ
I แทน >< 1:i ของ λw ใดๆ

ดังนั้น

	 λw :
0λ

I หรือ λw :
1λ

I 	 (3)

	 นยิามที ่4 ตารางรายการผกผนั τ คือตาราง
การแฮชทีป่ระกอบดว้ย 2 คอลัมนคื์อ λw และ

0λ
I

/
1λ

I (4)

	 ตัวอย่างที่ 3 แสดงตารางรายการผกผัน τ
ของอักขระแบบ p=aabcz

วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025395Approximate String Matching Algorithm using Single Inverted Lists

Soontaree Thumsuwan, Nuanprang Sangurai, Chouvalit Khancome

	 ทฤษฎีบท 1 การเข้าถึงรายการผกผัน
0λ

I
หรือ

1λ
I ใน τ มีความซับซ้อนด้านเวลา O(1)

	 พสิจูน ์กำ�หนด f(x) เปน็ฟงักช์นัการแฮช; ให ้

0λ
w คอื คยีเ์ขา้ถงึ

0λ
I และ

1λ
w คือ คย์ีเขา้ถงึ

1λ
I

ดงันัน้ การเขา้ถงึตารางการแฮช τ ตามคณุสมบตัขิอง
ตารางการแฮช ทำ�ให้ การเข้าถึง

0λ
I จาก f(

0λ
w)

หรือ
1λ

I จาก f(
1λ

w) มีความซับซ้อน O(1) #

	 กลไกการทำ�งานของขัน้ตอนวธิ ีเร่ิมจากสร้าง
ตาราง τ ใหส้ามารถครอบคลมุการบรรจอุกัขระทกุตวั
ทีจ่ะใชง้าน (∑) จากอา่นอกัขระทลีะอกัขระจากอกัขระ
แบบสร้าง รายการผกผัน

0λ
I หรือ

1λ
I บรรจุลง

ใน τ จนครบทุกอักขระ ขั้นตอนวิธีแสดงได้นี้

	 จากข้ันตอนวิธีใน Algorithm 1 พบว่า
มคีวามซบัซอ้นดา้นเวลาคอื O(m) พสิจูน์ไดด้งัทฤษฎ ี
บท 2 ความซับซ้อนด้านเนื้อที่เป็น O(1) เนื่องจากใช้
ตารางการแฮช ตามนิยาม 4 ที่มีจำ�นวนแถวเท่ากับ
∑ เท่านั้น

	 ทฤษฎีบท 2 สว่นเตรยีมการการประมวลผล
เพือ่สรา้งตารางรายการผกผนัสำ�หรบัการเปรยีบคูโ่ดย
ประมาณใช้เวลา O(m) ด้วยเนื้อที่ 0(∑+m)

	 พิสูจน์ จาก Algorithm 1 ที่ p=c
1
, c

2
,

c
3
, …, c

m
 ซึ่ง มีความยาว m บรรทัดที่ 1 การสร้าง

ตารางเพือ่เก็บรายการผกผนัและ บรรทดัที ่2 กำ�หนด
ตวัแปรเริม่ตน้ ตา่งทำ�ดว้ยความซบัซอ้นคา่คงที ่O(1)
ลูป While จะวนเท่ากับจำ�นวนอักขระแบบ คือ m
รอบ ซึ่งความซับซ้อนเท่ากับ O(m) บรรทัดที่ 4 เข้า
ถึงตารางเพือ่การเพิม่รายการผกผัน ซ่ึงเข้าถึงรายการ
ผกผันด้วย O(1) ตามทฤษฎีบท 1 ขณะที่บรรทัดที่
ทำ�งานที ่O(1) ซ่ึงทำ�เทา่กบั m ครัง้ภายในลปู While

	 ดังนั้น ความซับซ้อนด้านเวลาสำ�หรับสร้าง
รายการผกผันบรรจลุง

0λ
I และ

1λ
I จงึเทา่กบั O(m)

สำ�หรับความซับซ้อนด้านเนื้อที่จะต้องมี 2 คอลัมน์
∑ ในขณะที่รายการผกผันที่สร้างข้ึนมีค่าเท่ากับ
m รายการ ซึ่งทำ�ให้ความซับซ้อนด้านเน้ือที่คือ
0(∑+m)#

ตาราง 2	 ตารางรายผกผันของอักขระแบบ p = aabcz

Character (λw) Inverted Lists (
0λ

I /
1λ

I)

a <1:0>,<2:0>

b <3:0>

c <4:0>

z <5:1>

Algorithm 1: Inverted-List Table (p = c1, c2, c3, ..., cm)
1:	 Create table for all alphabet over ∑
2:	 j = 1
3:	 While (j ≤ m) Do
4:		 Create inverted list of char (Cj) and add to at suitable field

0λ
I or

 1λ
I

5:		 j ← j + 1
6:	 End of While

วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025396Approximate String Matching Algorithm using Single Inverted Lists

Soontaree Thumsuwan, Nuanprang Sangurai, Chouvalit Khancome

3.2 ขั้นตอนวิธีการค้นหาแบบประมาณ

	 เนือ้สว่นนีน้ำ�เสนอสว่นสำ�คญักอ่นพจิารณา
ขัน้ตอนวธิกีารเปรยีบคูแ่บบประมาณทีส่รา้งขึน้จำ�เป็น
ต้องแสดงการพิสูจน์บทแทรก และกำ�หนดนิยามที่
เกี่ยวข้องเพื่อให้การอธิบายขั้นตอนวิธีและตัวอย่าง
การค้นหาได้อย่างกระจ่างมากยิ่งขึ้น ดังนี้

	 บทแทรก 1 กำ�หนดให้ IVL คือตารางการ
แฮชยอ่ยทีม่ ี

0λ
w และ

1λ
w เปน็คยีเ์ขา้ถงึ

0λ
I และ

1λ
I ซ่ึงการเขา้ถงึ

0λ
I และ

1λ
I ใน IVL ดว้ยฟงัก์ชนั

f(
0λ

w) หรือ f(
1λ

w) มีความซับซ้อน O(1)

	 พิสูจน์ กำ�หนด IVL เป็นตารางการแฮช ใน
นิยามที่ 4 และทฤษฎีบท 1 ซึ่งมีคีย์

0λ
w และ

1λ
w

ดงันัน้จะใช ้f(
0λ

w) และ f(
1λ

w) เพือ่เขา้ถึง
0λ

I และ

1λ
I ด้วยความซับซ้อน O(1) ตามทฤษฎีบท 1 #

	 บทแทรก 2 การนำ�รายการผกผนัจาก τ ที่
ตรงกับรายการผกผัน text[N] ลง IVL ใดๆ ใช้ความ
ซับซ้อน O(1)	

	 พิสูจน์ กำ�หนดให้ text[N] คือ อักขระจาก
ขอ้ความ T ท่ีแปลงเป็นเป็นคย์ีได้

0,pos
wλ และ

1,pos
wλ

	 ดังนั้น เมื่อเข้าถึง
0,pos

Iλ และ
1,pos

Iλ ใน
ตาราง τ จึงใช้ความซับซ้อน O(1) ตามทฤษฎีบท 1
และนำ�

0,pos
Iλ และ

1,pos
Iλ ลง IVL ด้วย O(1) ตาม

บทแทรก 1 #

	 นิยามที่ 5 การดำ�เนินการ (operate) คือ
การหาความต่อเนื่องของ

0,1ελqI และ/หรือ
1,1ελqI

ใน IVL1 ต่อเนื่องไปยัง
0,2ελbI และ/หรือ

1,2ελbI
ใน IVL2 โดยพิจารณาตำ�แหน่ง 2ε ที่ต่อเนื่องมาจาก

1ε ซึ่งจะได้ผลการดำ�เนินการเป็น
0,2ελbI และ/หรือ

1,2ελbI 	

Algorithm 2: Inverted-List-Approximate-Search p = c1, c2, c3, ..., cm, T = t1, t2, ... , tn, d
Preprocessing:
 Create Inverted-List-Table (p)
Searching:
 1:	 N=1, SearchWindow=1, pos=1, IVL1=φ , IVL2=φ , f=0
 2:		 While (N<=n-d) Do
 3:			 Store all member of row(text[N])

0,pos
Iλ /

1,pos
Iλ in τ to IVL1

 4:			 While (f<d and pos<=m)
 5:				 If IVL1 =φ and f<=d
 6:					 IVL1 = <pos:0> if pos<m or IVL1=<pos:1> if pos=m
 7:					 N=N+1, pos=pos+1
 8:				 Else
 9:					 Keep only <pos:0> in IVL1
10:				 N=N+1, pos=pos+1
11:				 Store all member of row(text[N])

0,pos
Iλ /

1,pos
Iλ in τ to IVL2

12:				 Analyze continuity of IVL1 and IVL2 and keep it into IVL1 set f=f+1 if non-continuity
13:				 Report result of matching if IVL1 exist <pos:1> and pos=m
14:			 End of If
15:			 Report result of matching if IVL1 exist <pos:1> and pos=m or f<=d and pos=m
16:		 End of While
17:			 SearchWindow=SearchWindow+1
18:			 N=SearchWindow, pos=1
19:		 End of While

วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025397Approximate String Matching Algorithm using Single Inverted Lists

Soontaree Thumsuwan, Nuanprang Sangurai, Chouvalit Khancome

	 ตัวอย่างที่ 5 ถ้ากำ�หนดให้ IVL1={<2:0>}
และ IVL2={<1:0>,<3:0>} การหาความต่อเน่ืองจาก
ตำ�แหน่งที่ 2 ไป 3 จะได้ว่า <3:0> ต่อเนื่องมาจาก
<2:0> และมีรายการผกผันใหม่คือ <1:0> ซึ่งจะได้
IVL1 ={<1:0>,<3:0>} เป็นต้น

	 บทแทรก 3 การดำ�เนินการระหว่าง IVL1
และ IVL2 ใช้ความซับซ้อน O(1)

	 พิสูจน์ กำ�หนดให้ IVL1 และ IVL2 คือ IVL
ตามบทแทรก 1 โดยที่ IVL1 บรรจุ

0,1ελ
I และ/หรือ

1,1ελ
I , IVL2 บรรจุ

0,2ελ
I และ/หรือ

1,2ελ
I การเข้า

ถงึเพือ่นำ�
0,1ελ

I ,
1,1ελ

I ,
0,2ελ

I และ
1,2ελ

I มาเปรยีบ
เทยีบสำ�หรบัการดำ�เนนิการ ตามนยิามที ่5 จะใช้ O(1)
เป็นไปตามบทแทรก 1#

	 การทำ�งานของขั้นตอน เริ่มการเปรียบคู่
จากตัวแรกของหน้าต่าง (Search Window) เก็บ
รายการผกผัน

0λ
I ไว้ใน IVL1 โดยให้ตัวแปร N ไป

ชี้ยังตำ�แหน่งที่ต้องการเปรียบเทียบ ข้ันตอนต่อไป
อ่านและเปรียบคู่อักขระในข้อความจากซ้ายไปขวา
ทีละอักขระ ซึ่งแต่ละครั้งของการเปรียบคู่ ใช้วิธีเก็บ
ผลลัพธ์ของรายการผกผันไว้ใน IVL1 และ IVL2 แล้ว
นำ�รายการผกผนัดงักลา่วมาหาความตอ่เนือ่งและผล
การเปรียบคู่สำ�เร็จไปพร้อมๆ กัน แสดงขั้นตอนวิธี
ดัง Algorithm 2 สำ�หรับค่าความผิดพลาดที่อนุญาต
ให้การเปรียบคู่ไม่ตรงกันได้ กำ�หนดให้เป็นค่า d
นอกจากนั้นมีตัวแปรพิเศษคือ f คือ ค่าจดจำ�ครั้ง
ของการผิดพลาดเม่ือทำ�การเปรียบคู่แต่ละหน้าต่าง

ตวัแปร pos คือตำ�แหน่งรายการผกผันทีต่อ้งการนำ�มา
เปรียบคู ่ขัน้ตอนวธิกีารคน้หาเปรยีบคูแ่บบประมาณ
ที่พัฒนาขึ้น แสดงดัง Algorithm 2

	 ตัวอย่างที่ 6 แสดงการค้นหาแบบประมาณ
ด้วย Algorithm 2 เมื่อ T = axbczaabczaabmk
และ p=aabcz กำ�หนดค่า d = 2

	 หน้าต่างค้นหาที่ 1 : SearchWindow = 1

	

19: End of While

ตัวอยางที่ 6 แสดงการคนหาแบบประมาณดวย Algorithm 2 เมื่อ T = axbczaabczaabmk และ p=aabcz
กําหนดคา d = 2

ตาราง 3 รายการผกผัน  ของอักขระแบบ p=aabcz

หนาตางคนหาที่ 1 : SearchWindow = 1

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <1:0>,<2:0>, N=1, มีขอมูล text[N] คือ a ใน  , N=N+1, f=0, pos=1

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <1:0>,<2:0>, IVL2=<> N=2, pos=2 ไมพบขอมูลของ text[N] คือ x กําหนด f=f+1=1 ซึ่งแสดงวาเปรียบคู
อักขระไมตรงกัน แตคา f<= d จึงสามารถเปรียบคูตอไปไปไดตามหลักของขั้นตอนวิธี เก็บคา ความตอเนื่องของอักขระ
จาก IVL1 = <1:0>, pos=1 เปลี่ยนไปเปน 2 ได โดยเก็บคา IVL1= <pos:0>=<2:0> แลวคนหาตอไป

 T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <2:0>, IVL2=<3:0> N=3, pos=3 พบขอมูลของ text[N] คือ b กําหนด f= 1 วิเคราะหความตอเนื่อง IVL1 =
<2:0>, IVL2=<3:0> เก็บผลไวใน IVL1 = =<3:0> ซึ่งแสดงวาเปรียบคูอักขระตรงกัน แต pos<=m แลวคนหาตอไป

T = a x b c z a a b c z a a b m k
p = a a b c z

Character (w) Inverted Lists (
0

I /
1

I)
a <1:0>,<2:0>

b <3:0>

c <4:0>
z <5:1>

	 IVL1 = <1:0>,<2:0>, N=1, มข้ีอมูล text[N]
คือ a ใน τ , N=N+1, f=0, pos=1

	

19: End of While

ตัวอยางที่ 6 แสดงการคนหาแบบประมาณดวย Algorithm 2 เมื่อ T = axbczaabczaabmk และ p=aabcz
กําหนดคา d = 2

ตาราง 3 รายการผกผัน  ของอักขระแบบ p=aabcz

หนาตางคนหาที่ 1 : SearchWindow = 1

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <1:0>,<2:0>, N=1, มีขอมูล text[N] คือ a ใน  , N=N+1, f=0, pos=1

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <1:0>,<2:0>, IVL2=<> N=2, pos=2 ไมพบขอมูลของ text[N] คือ x กําหนด f=f+1=1 ซึ่งแสดงวาเปรียบคู
อักขระไมตรงกัน แตคา f<= d จึงสามารถเปรียบคูตอไปไปไดตามหลักของขั้นตอนวิธี เก็บคา ความตอเนื่องของอักขระ
จาก IVL1 = <1:0>, pos=1 เปลี่ยนไปเปน 2 ได โดยเก็บคา IVL1= <pos:0>=<2:0> แลวคนหาตอไป

 T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <2:0>, IVL2=<3:0> N=3, pos=3 พบขอมูลของ text[N] คือ b กําหนด f= 1 วิเคราะหความตอเนื่อง IVL1 =
<2:0>, IVL2=<3:0> เก็บผลไวใน IVL1 = =<3:0> ซึ่งแสดงวาเปรียบคูอักขระตรงกัน แต pos<=m แลวคนหาตอไป

T = a x b c z a a b c z a a b m k
p = a a b c z

Character (w) Inverted Lists (
0

I /
1

I)
a <1:0>,<2:0>

b <3:0>

c <4:0>
z <5:1>

	 IVL1 = <1:0>,<2:0>, IVL2=<> N=2,
pos=2 ไม่พบข้อมูลของ text[N] คือ x กำ�หนด
f=f+1=1 ซึ่งแสดงว่าเปรียบคู่อักขระไม่ตรงกัน แต่
ค่า f<= d จึงสามารถเปรียบคู่ต่อไปไปได้ตามหลัก
ของขั้นตอนวิธี เก็บค่า ความต่อเนื่องของอักขระ
จาก IVL1 = <1:0>, pos=1 เปลี่ยนไปเป็น 2 ได้
โดยเกบ็คา่ IVL1= <pos:0>=<2:0> แลว้คน้หาตอ่ไป

	

19: End of While

ตัวอยางที่ 6 แสดงการคนหาแบบประมาณดวย Algorithm 2 เมื่อ T = axbczaabczaabmk และ p=aabcz
กําหนดคา d = 2

ตาราง 3 รายการผกผัน  ของอักขระแบบ p=aabcz

หนาตางคนหาที่ 1 : SearchWindow = 1

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <1:0>,<2:0>, N=1, มีขอมูล text[N] คือ a ใน  , N=N+1, f=0, pos=1

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <1:0>,<2:0>, IVL2=<> N=2, pos=2 ไมพบขอมูลของ text[N] คือ x กําหนด f=f+1=1 ซึ่งแสดงวาเปรียบคู
อักขระไมตรงกัน แตคา f<= d จึงสามารถเปรียบคูตอไปไปไดตามหลักของขั้นตอนวิธี เก็บคา ความตอเนื่องของอักขระ
จาก IVL1 = <1:0>, pos=1 เปลี่ยนไปเปน 2 ได โดยเก็บคา IVL1= <pos:0>=<2:0> แลวคนหาตอไป

 T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <2:0>, IVL2=<3:0> N=3, pos=3 พบขอมูลของ text[N] คือ b กําหนด f= 1 วิเคราะหความตอเนื่อง IVL1 =
<2:0>, IVL2=<3:0> เก็บผลไวใน IVL1 = =<3:0> ซึ่งแสดงวาเปรียบคูอักขระตรงกัน แต pos<=m แลวคนหาตอไป

T = a x b c z a a b c z a a b m k
p = a a b c z

Character (w) Inverted Lists (
0

I /
1

I)
a <1:0>,<2:0>

b <3:0>

c <4:0>
z <5:1>

ตาราง 3	 รายการผกผัน τ ของอักขระแบบ p=aabcz

Character (λw) Inverted Lists (
0λ

I /
1λ

I)

a <1:0>,<2:0>

b <3:0>

c <4:0>

z <5:1>

วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025398Approximate String Matching Algorithm using Single Inverted Lists

Soontaree Thumsuwan, Nuanprang Sangurai, Chouvalit Khancome

	 IVL1 = <2:0>, IVL2=<3:0> N=3, pos=3
พบข้อมูลของ text[N] คือ b กำ�หนด f= 1 วิเคราะห์
ความต่อเนื่อง IVL1 = <2:0>, IVL2=<3:0> เก็บผล
ไวใ้น IVL1 = =<3:0> ซ่ึงแสดงว่าเปรียบคูอ่กัขระตรง
กัน แต่ pos<=m แล้วค้นหาต่อไป

	

19: End of While

ตัวอยางที่ 6 แสดงการคนหาแบบประมาณดวย Algorithm 2 เมื่อ T = axbczaabczaabmk และ p=aabcz
กําหนดคา d = 2

ตาราง 3 รายการผกผัน  ของอักขระแบบ p=aabcz

หนาตางคนหาที่ 1 : SearchWindow = 1

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <1:0>,<2:0>, N=1, มีขอมูล text[N] คือ a ใน  , N=N+1, f=0, pos=1

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <1:0>,<2:0>, IVL2=<> N=2, pos=2 ไมพบขอมูลของ text[N] คือ x กําหนด f=f+1=1 ซึ่งแสดงวาเปรียบคู
อักขระไมตรงกัน แตคา f<= d จึงสามารถเปรียบคูตอไปไปไดตามหลักของขั้นตอนวิธี เก็บคา ความตอเนื่องของอักขระ
จาก IVL1 = <1:0>, pos=1 เปลี่ยนไปเปน 2 ได โดยเก็บคา IVL1= <pos:0>=<2:0> แลวคนหาตอไป

 T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <2:0>, IVL2=<3:0> N=3, pos=3 พบขอมูลของ text[N] คือ b กําหนด f= 1 วิเคราะหความตอเนื่อง IVL1 =
<2:0>, IVL2=<3:0> เก็บผลไวใน IVL1 = =<3:0> ซึ่งแสดงวาเปรียบคูอักขระตรงกัน แต pos<=m แลวคนหาตอไป

T = a x b c z a a b c z a a b m k
p = a a b c z

Character (w) Inverted Lists (
0

I /
1

I)
a <1:0>,<2:0>

b <3:0>

c <4:0>
z <5:1>

	 IVL1 = <3:0>, IVL2=<4:0> N=4, pos=4
พบข้อมูลของ text[N] คือ c กำ�หนด f= 1 วิเคราะห์
ความต่อเนื่อง IVL1 = <3:0>, IVL2=<4:0> เก็บผล
ไว้ใน IVL1 = =<4:0> ซึ่งแสดงว่าเปรียบคู่อักขระ
ตรงกัน แต่ pos<=m แล้วค้นต่อไป

	

IVL1 = <3:0>, IVL2=<4:0> N=4, pos=4 พบขอมูลของ text[N] คือ c กําหนด f= 1 วิเคราะหความตอเนื่อง IVL1 =
<3:0>, IVL2=<4:0> เก็บผลไวใน IVL1 = =<4:0> ซึ่งแสดงวาเปรียบคูอักขระตรงกัน แต pos<=m แลวคนตอไป

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <4:0>, IVL2=<5:1> N=5, pos=5 พบขอมูลของ text[N] คือ z กําหนด f= 1 วิเคราะหความตอเนื่อง IVL1 =
<4:0>, IVL2=<5:1> วิเคราะหการเปรียบคูอักขระแบบสําเร็จที่ ตําแหนงของ text[N] คือ z ดวยความผิดพลาด คือ 1
ตําแหนงอักขระ เปนตน pos=5 ซึ่งเทากับ m จบหนาตางคนหาที่ 1 เลื่อนหนาตางคนหา

หนาตางคนหาที่ 2 : SearchWindow = 2

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <>, N=1, ไมมีขอมูล text[2] คือ x ใน  , N=N+1, f=1, pos=1 แตเก็บ IVL1=<1:0> ตามขั้นตอนวิธี

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <1:0>, IVL2=<> N=2, pos=2 ไมพบขอมูลของ text[N] คือ b กําหนด f=f+1=2 แตคา f<= d จึงสามารถเปรียบ
คูตอไปไดตามหลักของขั้นตอนวิธี เก็บคา ความตอเนื่องของอักขระจาก IVL1 = <2:0>, pos=1 เปลี่ยนไปเปน 2 ได
โดยเก็บคา IVL1= <pos:0>=<2:0> แลวคนตอไป

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <2:0>, IVL2=<4:0> N=3, pos=3 พบขอมูลตอเนื่องของ text[N] คือ c กําหนด f= 3 วิเคราะหความตอเนื่อง
และการเปรียบคู คา f>d แสดงวาการเปรียบคูไมสําเร็จ เลื่อนเปนหนาตางการคนหาใหม SearchWindow 3 ตอไป
 สําหรับ หนาตางคนหาที่ 3-5 จะเกิดการเปรียบคูไมสําเร็จดังหนาตางที่ 2 คือ คา f>d จะตรงกันอีกครั้งที่
หนาตางคนหาที่ 6 แตกรณีนี้คา f=0 ซึ่งเปนการเปรียบคูสําเร็จแบบตรงกันทุกตัวอักขระ นอกจากนั้น ในหนาตางคนหา
ที่ 11 ในขณะที่หนาตางที่ 7-10, 12 จะเปรียบคูไมสําเร็จดวยคา f>d แสดงหนาตางที่คนพบดังนี้

T = a x b c z a a b c z a a b m k
p = a a b c z

 c z a a b
 a a b c z
 c z a a b

	 IVL1 = <4:0>, IVL2=<5:1> N=5, pos=5
พบข้อมูลของ text[N] คือ z กำ�หนด f= 1 วิเคราะห์
ความตอ่เนือ่ง IVL1 = <4:0>, IVL2=<5:1> วเิคราะห์
การเปรยีบคูอ่กัขระแบบสำ�เรจ็ที ่ตำ�แหนง่ของ text[N]
คือ z ด้วยความผิดพลาด คือ 1 ตำ�แหน่งอักขระ
เป็นต้น pos=5 ซึ่งเท่ากับ m จบหน้าต่างค้นหาที่ 1
เลื่อนหน้าต่างค้นหา

	 หน้าต่างค้นหาที่ 2 : SearchWindow = 2

	

IVL1 = <3:0>, IVL2=<4:0> N=4, pos=4 พบขอมูลของ text[N] คือ c กําหนด f= 1 วิเคราะหความตอเนื่อง IVL1 =
<3:0>, IVL2=<4:0> เก็บผลไวใน IVL1 = =<4:0> ซึ่งแสดงวาเปรียบคูอักขระตรงกัน แต pos<=m แลวคนตอไป

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <4:0>, IVL2=<5:1> N=5, pos=5 พบขอมูลของ text[N] คือ z กําหนด f= 1 วิเคราะหความตอเนื่อง IVL1 =
<4:0>, IVL2=<5:1> วิเคราะหการเปรียบคูอักขระแบบสําเร็จที่ ตําแหนงของ text[N] คือ z ดวยความผิดพลาด คือ 1
ตําแหนงอักขระ เปนตน pos=5 ซึ่งเทากับ m จบหนาตางคนหาที่ 1 เลื่อนหนาตางคนหา

หนาตางคนหาที่ 2 : SearchWindow = 2

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <>, N=1, ไมมีขอมูล text[2] คือ x ใน  , N=N+1, f=1, pos=1 แตเก็บ IVL1=<1:0> ตามขั้นตอนวิธี

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <1:0>, IVL2=<> N=2, pos=2 ไมพบขอมูลของ text[N] คือ b กําหนด f=f+1=2 แตคา f<= d จึงสามารถเปรียบ
คูตอไปไดตามหลักของขั้นตอนวิธี เก็บคา ความตอเนื่องของอักขระจาก IVL1 = <2:0>, pos=1 เปลี่ยนไปเปน 2 ได
โดยเก็บคา IVL1= <pos:0>=<2:0> แลวคนตอไป

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <2:0>, IVL2=<4:0> N=3, pos=3 พบขอมูลตอเนื่องของ text[N] คือ c กําหนด f= 3 วิเคราะหความตอเนื่อง
และการเปรียบคู คา f>d แสดงวาการเปรียบคูไมสําเร็จ เลื่อนเปนหนาตางการคนหาใหม SearchWindow 3 ตอไป
 สําหรับ หนาตางคนหาที่ 3-5 จะเกิดการเปรียบคูไมสําเร็จดังหนาตางที่ 2 คือ คา f>d จะตรงกันอีกครั้งที่
หนาตางคนหาที่ 6 แตกรณีนี้คา f=0 ซึ่งเปนการเปรียบคูสําเร็จแบบตรงกันทุกตัวอักขระ นอกจากนั้น ในหนาตางคนหา
ที่ 11 ในขณะที่หนาตางที่ 7-10, 12 จะเปรียบคูไมสําเร็จดวยคา f>d แสดงหนาตางที่คนพบดังนี้

T = a x b c z a a b c z a a b m k
p = a a b c z

 c z a a b
 a a b c z
 c z a a b

	 VL1 = <>, N=1, ไม่มีข้อมูล text[2] คือ x
ใน τ , N=N+1, f=1, pos=1 แต่เก็บ IVL1=<1:0>
ตามขั้นตอนวิธี

	

IVL1 = <3:0>, IVL2=<4:0> N=4, pos=4 พบขอมูลของ text[N] คือ c กําหนด f= 1 วิเคราะหความตอเนื่อง IVL1 =
<3:0>, IVL2=<4:0> เก็บผลไวใน IVL1 = =<4:0> ซึ่งแสดงวาเปรียบคูอักขระตรงกัน แต pos<=m แลวคนตอไป

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <4:0>, IVL2=<5:1> N=5, pos=5 พบขอมูลของ text[N] คือ z กําหนด f= 1 วิเคราะหความตอเนื่อง IVL1 =
<4:0>, IVL2=<5:1> วิเคราะหการเปรียบคูอักขระแบบสําเร็จที่ ตําแหนงของ text[N] คือ z ดวยความผิดพลาด คือ 1
ตําแหนงอักขระ เปนตน pos=5 ซึ่งเทากับ m จบหนาตางคนหาที่ 1 เลื่อนหนาตางคนหา

หนาตางคนหาที่ 2 : SearchWindow = 2

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <>, N=1, ไมมีขอมูล text[2] คือ x ใน  , N=N+1, f=1, pos=1 แตเก็บ IVL1=<1:0> ตามขั้นตอนวิธี

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <1:0>, IVL2=<> N=2, pos=2 ไมพบขอมูลของ text[N] คือ b กําหนด f=f+1=2 แตคา f<= d จึงสามารถเปรียบ
คูตอไปไดตามหลักของขั้นตอนวิธี เก็บคา ความตอเนื่องของอักขระจาก IVL1 = <2:0>, pos=1 เปลี่ยนไปเปน 2 ได
โดยเก็บคา IVL1= <pos:0>=<2:0> แลวคนตอไป

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <2:0>, IVL2=<4:0> N=3, pos=3 พบขอมูลตอเนื่องของ text[N] คือ c กําหนด f= 3 วิเคราะหความตอเนื่อง
และการเปรียบคู คา f>d แสดงวาการเปรียบคูไมสําเร็จ เลื่อนเปนหนาตางการคนหาใหม SearchWindow 3 ตอไป
 สําหรับ หนาตางคนหาที่ 3-5 จะเกิดการเปรียบคูไมสําเร็จดังหนาตางที่ 2 คือ คา f>d จะตรงกันอีกครั้งที่
หนาตางคนหาที่ 6 แตกรณีนี้คา f=0 ซึ่งเปนการเปรียบคูสําเร็จแบบตรงกันทุกตัวอักขระ นอกจากนั้น ในหนาตางคนหา
ที่ 11 ในขณะที่หนาตางที่ 7-10, 12 จะเปรียบคูไมสําเร็จดวยคา f>d แสดงหนาตางที่คนพบดังนี้

T = a x b c z a a b c z a a b m k
p = a a b c z

 c z a a b
 a a b c z
 c z a a b

	 VL1 = <1:0>, IVL2=<> N=2, pos=2
ไม่พบข้อมูลของ text[N] คือ b กำ�หนด f=f+1=2
แต่ค่า f<= d จึงสามารถเปรียบคู่ต่อไปได้ตามหลัก
ของขั้นตอนวิธี เก็บค่า ความต่อเนื่องของอักขระ
จาก IVL1 = <2:0>, pos=1 เปลี่ยนไปเป็น 2 ได้
โดยเก็บค่า IVL1= <pos:0>=<2:0> แล้วค้นต่อไป

	

IVL1 = <3:0>, IVL2=<4:0> N=4, pos=4 พบขอมูลของ text[N] คือ c กําหนด f= 1 วิเคราะหความตอเนื่อง IVL1 =
<3:0>, IVL2=<4:0> เก็บผลไวใน IVL1 = =<4:0> ซึ่งแสดงวาเปรียบคูอักขระตรงกัน แต pos<=m แลวคนตอไป

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <4:0>, IVL2=<5:1> N=5, pos=5 พบขอมูลของ text[N] คือ z กําหนด f= 1 วิเคราะหความตอเนื่อง IVL1 =
<4:0>, IVL2=<5:1> วิเคราะหการเปรียบคูอักขระแบบสําเร็จที่ ตําแหนงของ text[N] คือ z ดวยความผิดพลาด คือ 1
ตําแหนงอักขระ เปนตน pos=5 ซึ่งเทากับ m จบหนาตางคนหาที่ 1 เลื่อนหนาตางคนหา

หนาตางคนหาที่ 2 : SearchWindow = 2

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <>, N=1, ไมมีขอมูล text[2] คือ x ใน  , N=N+1, f=1, pos=1 แตเก็บ IVL1=<1:0> ตามขั้นตอนวิธี

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <1:0>, IVL2=<> N=2, pos=2 ไมพบขอมูลของ text[N] คือ b กําหนด f=f+1=2 แตคา f<= d จึงสามารถเปรียบ
คูตอไปไดตามหลักของขั้นตอนวิธี เก็บคา ความตอเนื่องของอักขระจาก IVL1 = <2:0>, pos=1 เปลี่ยนไปเปน 2 ได
โดยเก็บคา IVL1= <pos:0>=<2:0> แลวคนตอไป

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <2:0>, IVL2=<4:0> N=3, pos=3 พบขอมูลตอเนื่องของ text[N] คือ c กําหนด f= 3 วิเคราะหความตอเนื่อง
และการเปรียบคู คา f>d แสดงวาการเปรียบคูไมสําเร็จ เลื่อนเปนหนาตางการคนหาใหม SearchWindow 3 ตอไป
 สําหรับ หนาตางคนหาที่ 3-5 จะเกิดการเปรียบคูไมสําเร็จดังหนาตางที่ 2 คือ คา f>d จะตรงกันอีกครั้งที่
หนาตางคนหาที่ 6 แตกรณีนี้คา f=0 ซึ่งเปนการเปรียบคูสําเร็จแบบตรงกันทุกตัวอักขระ นอกจากนั้น ในหนาตางคนหา
ที่ 11 ในขณะที่หนาตางที่ 7-10, 12 จะเปรียบคูไมสําเร็จดวยคา f>d แสดงหนาตางที่คนพบดังนี้

T = a x b c z a a b c z a a b m k
p = a a b c z

 c z a a b
 a a b c z
 c z a a b

	 IVL1 = <2:0>, IVL2=<4:0> N=3, pos=3
พบข้อมูลต่อเนื่องของ text[N] คือ c กำ�หนด f= 3
วเิคราะหค์วามตอ่เนือ่งและการเปรยีบคู ่คา่ f>d แสดง
วา่การเปรียบคู่ไม่สำ�เร็จ เลือ่นเป็นหน้าต่างการค้นหา
ใหม่ SearchWindow 3 ต่อไป

	 สำ�หรับ หน้าต่างค้นหาที่ 3-5 จะเกิดการ
เปรียบคู่ไม่สำ�เร็จดังหน้าต่างที่ 2 คือ ค่า f>d จะตรง
กันอีกครั้งที่หน้าต่างค้นหาที่ 6 แต่กรณีนี้ค่า f=0
ซึ่งเป็นการเปรียบคู่สำ�เร็จแบบตรงกันทุกตัวอักขระ
นอกจากนัน้ ในหนา้ตา่งคน้หาที ่11 ในขณะทีห่นา้ตา่ง
ที่ 7-10, 12 จะเปรียบคู่ไม่สำ�เร็จด้วยค่า f>d แสดง
หน้าต่างที่ค้นพบดังนี้

	

 a a b m k
 ทฤษฎีบท 3 ขั้นตอนวิธีการเปรียบคูสายอักขระแบบประมาณ มีความซับซอนดานเวลากรณีเฉลี่ย O((m-

k)n) กรณีดีที่สุด O(kn) เมื่อคา k คือคาที่กําหนดใหผิดพลาดในการคนหาได m คือความยาวของอักขระแบบ n คือ
ความยาวของขอความที่นํามาใชคนหา

 พิสูจน กําหนด n คือความยาวของขอความ T ซึ่ง T=t1t2t3…tn อักขระแบบยาว m กําหนดคา k คือคาที่
อนุญาตใหผิดพลาดได (ในที่นี้คือ d ใน Algorithm 2) พิจารณาความซับซอนเริ่มจากอธิบายการวนลูปจากลูปของการ
เปรียบเทียบแตละหนาตาง (ลูป While บรรทัดที่ 4-16) จากนั้นอธิบายสวนลูปภายนอกที่ควบคุมการกวาดเพื่อ
เปรียบเทียบไปทีละหนาตาง

 พิจารณาลูป While ภายใน (บรรทัดที่ 4-16) คือลูปของการเปรียบเทียบดวยความยาวมากที่สุดคือ m ครั้ง
เปรียบเทียบนอยที่สุดเทากับ m-d ซึ่งคือ (m-k) นั้นเอง ในขณะที่ในแตละบรรทัดของการดําเนินการทําดวยความ
ซับซอน O(1) ตามบทแทรกที่ 1, 2 และ 3

 สําหรับลูป While นอกสุด วนทํางานมากที่สุด n ครั้ง หรือนอยที่ สุดคือ n-(d+1) ครั้งเทานั้น ดังนั้นหาก
พิจารณาลําดับการวนเพื่อเปรียบเทียบทั้งหมด (เฉลี่ย) จะเทากับ (m-d)xn หรือกรณีนอยที่สดุของการกวาด คือ (m-d)x
n-(d+1) ซึ่งไมวาการทํางานจะเปนกรณีใด ก็จะนําไปสูความซับซอน O((m-k)n) #
 กรณีที่ดีที่สุดของการคนหาจะเปนกรณีที่เปรียบเทียบที่ไมตรงกันดวยจํานวนครั้งของการทํางานที่ตรวจไมพบ
ที่ เปรียบเทียบเทากับ d ครั้งในแตละหนาตาง ซึ่งคือคา k ทําใหความซับซอนดีที่สุดคือ O(kn)#

4. ผลการทดลอง

การทดลองพัฒนาโปรแกรมการเปรียบคูแบบประมาณ ดวยโปรแกรมภาษาจาวา (jdk 21), Netbeans 20
ทดลองดวยเครื่องคอมพิวเตอร Dell Vostro 5400, Windows 10 Pro, Intel(R) Core(TM) i7-7700HQ RAM 16.0 GB
โดยพัฒนาโปรแกรมโครงสรางขอมูลและขั้นตอนวิธีที่ออกแบบใหม กําหนดใหช่ือ IVLApproximate หลังจากนั้นนํา
โปรแกรมที่พัฒนาขึ้นทดลองโดยอาศัยขอมูลทั้งขอมูลที่โปรแกรมคอมพิวเตอรสุมขึ้นและขอมูลจริงมาตรฐาน เปรียบกับ
ขั้นตอนวิธีที่มีประสิทธิภาพที่มีมากอน ไดแก Levenshtein (จาก https://www.baeldung.com/java-levenshtein-
distance), Neesleman (จาก https://github.com/Aqcurate/Needleman- Wunsch/blob/master/ NeedlemanWunsch
.java), SmithWaterman (จาก https://github.com/JayakrishnaThota/Sequence-Alignment/blob/master
/SmithWaterman.java) ทดลองใน 4 ประเด็น ดังนี้

1) เขียนโปรแกรมสุมตัวอักขระแบบดวยความยาวระหวาง 5-50 อักขระ และวัดหนวยความจําที่ใชระหวาง
ประมวลผลเพื่อจัดเตรียมสําหรับการคนหา แสดงดังภาพประกอบ 3 (วัดในหนวยเมกะไบต)

IVL1 = <3:0>, IVL2=<4:0> N=4, pos=4 พบขอมูลของ text[N] คือ c กําหนด f= 1 วิเคราะหความตอเนื่อง IVL1 =
<3:0>, IVL2=<4:0> เก็บผลไวใน IVL1 = =<4:0> ซึ่งแสดงวาเปรียบคูอักขระตรงกัน แต pos<=m แลวคนตอไป

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <4:0>, IVL2=<5:1> N=5, pos=5 พบขอมูลของ text[N] คือ z กําหนด f= 1 วิเคราะหความตอเนื่อง IVL1 =
<4:0>, IVL2=<5:1> วิเคราะหการเปรียบคูอักขระแบบสําเร็จที่ ตําแหนงของ text[N] คือ z ดวยความผิดพลาด คือ 1
ตําแหนงอักขระ เปนตน pos=5 ซึ่งเทากับ m จบหนาตางคนหาที่ 1 เลื่อนหนาตางคนหา

หนาตางคนหาที่ 2 : SearchWindow = 2

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <>, N=1, ไมมีขอมูล text[2] คือ x ใน  , N=N+1, f=1, pos=1 แตเก็บ IVL1=<1:0> ตามขั้นตอนวิธี

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <1:0>, IVL2=<> N=2, pos=2 ไมพบขอมูลของ text[N] คือ b กําหนด f=f+1=2 แตคา f<= d จึงสามารถเปรียบ
คูตอไปไดตามหลักของขั้นตอนวิธี เก็บคา ความตอเนื่องของอักขระจาก IVL1 = <2:0>, pos=1 เปลี่ยนไปเปน 2 ได
โดยเก็บคา IVL1= <pos:0>=<2:0> แลวคนตอไป

T = a x b c z a a b c z a a b m k
p = a a b c z

IVL1 = <2:0>, IVL2=<4:0> N=3, pos=3 พบขอมูลตอเนื่องของ text[N] คือ c กําหนด f= 3 วิเคราะหความตอเนื่อง
และการเปรียบคู คา f>d แสดงวาการเปรียบคูไมสําเร็จ เลื่อนเปนหนาตางการคนหาใหม SearchWindow 3 ตอไป
 สําหรับ หนาตางคนหาที่ 3-5 จะเกิดการเปรียบคูไมสําเร็จดังหนาตางที่ 2 คือ คา f>d จะตรงกันอีกครั้งที่
หนาตางคนหาที่ 6 แตกรณีนี้คา f=0 ซึ่งเปนการเปรียบคูสําเร็จแบบตรงกันทุกตัวอักขระ นอกจากนั้น ในหนาตางคนหา
ที่ 11 ในขณะที่หนาตางที่ 7-10, 12 จะเปรียบคูไมสําเร็จดวยคา f>d แสดงหนาตางที่คนพบดังนี้

T = a x b c z a a b c z a a b m k
p = a a b c z

 c z a a b
 a a b c z
 c z a a b

วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025399Approximate String Matching Algorithm using Single Inverted Lists

Soontaree Thumsuwan, Nuanprang Sangurai, Chouvalit Khancome

	 ทฤษฎีบท 3 ขั้นตอนวิธีการเปรียบคู่สาย
อักขระแบบประมาณ มีความซับซ้อนด้านเวลากรณี
เฉลี่ย O((m-k)n) กรณีดีที่สุด O(kn) เมื่อค่า k คือ
ค่าที่กำ�หนดให้ผิดพลาดในการค้นหาได้ m คือความ
ยาวของอักขระแบบ n คือ ความยาวของข้อความ
ที่นำ�มาใช้ค้นหา

	 พสิจูน ์กำ�หนด n คอืความยาวของขอ้ความ
T ซึ่ง T=t

1
t
2
t
3
…t

n
 อักขระแบบยาว m กำ�หนดค่า

k คือค่าที่อนุญาตให้ผิดพลาดได้ (ในที่นี้คือ d ใน
Algorithm 2) พิจารณาความซบัซอ้นเริม่จากอธบิาย
การวนลปูจากลปูของการเปรียบเทยีบแตล่ะหนา้ตา่ง
(ลูป While บรรทัดที่ 4-16) จากนั้นอธิบายส่วนลูป
ภายนอกที่ควบคุมการกวาดเพื่อเปรียบเทียบไปทีละ
หน้าต่าง

	 พจิารณาลปู While ภายใน (บรรทัดท่ี 4-16)
คือลูปของการเปรียบเทียบด้วยความยาวมากที่สุด
คือ m ครั้ง เปรียบเทียบน้อยที่สุดเท่ากับ m-d
ซึ่งคือ (m-k) นั้นเอง ในขณะที่ในแต่ละบรรทัดของ
การดำ�เนินการทำ�ด้วยความซับซ้อน O(1) ตาม
บทแทรกที่ 1, 2 และ 3

	 สำ�หรับลูป While นอกสุด วนทำ�งานมาก
ที่สุด n ครั้ง หรือน้อยที่สุดคือ n-(d+1) ครั้งเท่านั้น
ดังนั้นหากพิจารณาลำ�ดับการวนเพื่อเปรียบเทียบ
ทั้งหมด (เฉล่ีย) จะเท่ากับ (m-d)xn หรือกรณี
น้อยที่สุดของการกวาด คือ (m-d)x n-(d+1) ซึ่งไม่
วา่การทำ�งานจะเปน็กรณใีด กจ็ะนำ�ไปสูค่วามซบัซอ้น
O((m-k)n) #

	 กรณีที่ดีที่สุดของการค้นหาจะเป็นกรณี
ที่เปรียบเทียบท่ีไม่ตรงกันด้วยจำ�นวนครั้งของการ
ทำ�งานที่ตรวจไม่พบที่ เปรียบเทียบเท่ากับ d ครั้งใน
แต่ละหน้าต่าง ซึ่งคือค่า k ทำ�ให้ความซับซ้อนดีที่สุด
คือ O(kn)#

4. ผลการทดลอง

	 การทดลองพัฒนาโปรแกรมการเปรียบคู่
แบบประมาณ ด้วยโปรแกรมภาษาจาวา (jdk 21),
Netbeans 20 ทดลองด้วยเครื่องคอมพิวเตอร์
Dell Vostro 5400, Windows 10 Pro, Intel(R)
Core(TM) i7-7700HQ RAM 16.0 GB โดยพัฒนา
โปรแกรมโครงสร้างข้อมูลและขั้นตอนวิธีที่ออกแบบ
ใหม่ กำ�หนดให้ชื่อ IVLApproximate หลังจากนั้น
นำ�โปรแกรมท่ีพัฒนาขึ้นทดลองโดยอาศัยข้อมูลทั้ง
ข้อมูลที่โปรแกรมคอมพิวเตอร์สุ่มข้ึนและข้อมูลจริง
มาตรฐาน เปรียบกับขั้นตอนวิธีที่มีประสิทธิภาพ
ทีม่มีากอ่น ไดแ้ก ่Levenshtein (จาก https://www.
baeldung.com/java-levenshtein-distance),
Neesleman (จาก https://github.com/Aqcurate/
Needleman-Wunsch/blob/master/Needle-
manWunsch

	 .java), SmithWaterman (จาก https://
github.com/JayakrishnaThota/Sequence-
Alignment/blob/master/SmithWaterman.java)
ทดลองใน 4 ประเด็น ดังนี้

	 เขยีนโปรแกรมสุม่ตวัอกัขระแบบดว้ยความ
ยาวระหวา่ง 5-50 อกัขระ และวดัหนว่ยความจำ�ท่ีใช้
ระหว่างประมวลผลเพื่อจัดเตรียมสำ�หรับการค้นหา
แสดงดังภาพประกอบ 3 (วัดในหน่วยเมกะไบต์)

	 จากภาพประกอบ 3 แสดงให้เห็นว่า
การสร้างโครงสร้างสำ�หรับจัดการอักขระแบบของ
IVLApproximate ซึ่งเป็นโครงสร้างในงานวิจัยนี้ใช้
เนื้อท่ีในการสร้างต่ำ�สุด โดยเป็นเชิงเส้นอยู่ไม่เกิน
2 MB ในหน่วยความจำ�ขณะที่ขั้นตอนวิธีที่นำ�มา
เปรียบเทยีบจำ�เปน็ตอ้งใช้เนือ้ทีห่นว่ยความจำ�มากกว่า
ดังแสดงในภาพประกอบ 3 ดังกล่าว

วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025400Approximate String Matching Algorithm using Single Inverted Lists

Soontaree Thumsuwan, Nuanprang Sangurai, Chouvalit Khancome

ภาพประกอบ 3 เนื้อที่สําหรับสรางโครงสรางขอมูลสําหรับคนหา

จากภาพประกอบ 3 แสดงใหเห็นวาการสรางโครงสรางสําหรับจัดการอักขระแบบของ IVLApproximate ซึ่ง
เปนโครงสรางในงานวิจัยนี้ใชเนื้อที่ในการสรางต่ําสุด โดยเปนเชิงเสนอยูไมเกิน 2 MB ในหนวยความจําขณะที่ขั้นตอน
วิธีที่นํามาเปรียบเทียบจําเปนตองใชเนื้อที่หนวยความจํามากกวาดังแสดงในภาพประกอบ 3 ดังกลาว

2) การสุมคําอักขระภาษาอังกฤษทั้งตัวพิมพเล็กและพิมพใหญ และเขียนโปรแกรมเพื่อเปรียบกับขั้นตอนวิธีที่
มีประสิทธิภาพไดแก Levenshtein, Neesleman และ SmithWaterman โดยสุมอักขระที่ความยาว 10 ตัวอักษร และ
เขียนทดสอบวัดเวลาโดยใหอัตราการเปรียบคูไมตรงกัน (Distance Ratio) ระหวาง 0.1-1.0 ของความยาวอักขระ
ทดลองแตละรายการจํานวน 10 ครั้งหลังจากนั้นหาคาเฉลี่ย ไดผลการทดลองดังภาพประกอบ 4 ความเร็วในอัตราการ
d (Mismatch) ระหวาง 0.1 ถึง 1.0 แสดงดังกราฟดังรูปภาพที่ mismatch

ภาพประกอบ 3 เนื้อที่สำ�หรับสร้างโครงสร้างข้อมูลสำ�หรับค้นหา

ภาพประกอบ 4 แสดงอัตราการอนุญาตใหผิดพลาดได (Distance-ratio)

 เมื่อเปรียบเทียบโดยพิจารณาคาการอนุญาตใหผิดพลาดไดระหวาง 0.1-1.0 ดังภาพประกอบ 4 แสดงใหเห็น
วาขั้นตอนวิธีใหมที่นําเสนอในงานวิจัยนี้ คนหาเปรียบเทียบโดยใชเวลาต่ํากวาขั้นตอนวิธี Levenshtein และ
Neesleman แตใชเวลาคนหาใกลเคียงและมากกวาขั้นตอนวิธี SmithWaterman

3) การสุมคําอักขระภาษาอังกฤษทั้งตัวพิมพเล็กและพิมพใหญ จํานวน 1 กิโลไบต และเขียนโปรแกรม
ทดสอบเมื่อกําหนดอักขระแบบที่ไดจากการสุมของโปรแกรมคอมพิวเตอร และสุมอัตราการประมาณ (Distance
Ration) โดยวัดจากความยาวอักขระแบบ 5-50 ตัวอักษร เขียนโปรแกรมเพื่อเปรียบกับขั้นตอนวิธีที่มีประสิทธิภาพ
ไดแก Levenshtein, Neesleman และ SmithWaterman การทดลองแตละรายการจํานวน 10 ครั้งหลังจากนั้นหา
คาเฉลี่ย นํามาเขียนผลการทดลองดังภาพประกอบ 5

ภาพประกอบ 4 แสดงอัตราการอนุญาตให้ผิดพลาดได้ (Distance-ratio)

วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025401Approximate String Matching Algorithm using Single Inverted Lists

Soontaree Thumsuwan, Nuanprang Sangurai, Chouvalit Khancome

	 การสุ่มคำ�อักขระภาษาอังกฤษทั้งตัวพิมพ์
เล็กและพิมพ์ใหญ่ และเขียนโปรแกรมเพื่อเปรียบ
กับขั้นตอนวิธีที่มีประสิทธิภาพได้แก่ Levenshtein,
Neesleman และ SmithWaterman โดยสุ่มอกัขระ
ที่ความยาว 10 ตัวอักษร และเขียนทดสอบวัดเวลา
โดยให้อัตราการเปรยีบคูไ่มต่รงกัน (Distance Ratio)
ระหว่าง 0.1-1.0 ของความยาวอักขระ ทดลอง
แตล่ะรายการจำ�นวน 10 ครั้งหลังจากนัน้หาคา่เฉลีย่
ได้ผลการทดลองดังภาพประกอบ 4 ความเร็วใน
อัตราการ d (Mismatch) ระหว่าง 0.1 ถึง 1.0 แสดง
ดังกราฟดังรูปภาพที่ mismatch

	 เมือ่เปรยีบเทยีบโดยพจิารณาคา่การอนญุาต
ให้ผิดพลาดได้ระหว่าง 0.1-1.0 ดังภาพประกอบ 4
แสดงให้เห็นว่าขั้นตอนวิธีใหม่ที่นำ�เสนอในงานวิจัย
นี้ ค้นหาเปรียบเทียบโดยใช้เวลาต่ำ�กว่าขั้นตอนวิธี
Levenshtein และ Neesleman แต่ใช้เวลาค้นหา
ใกล้เคียงและมากกว่าขั้นตอนวิธี SmithWaterman

	 การสุ่มคำ�อักขระภาษาอังกฤษทั้งตัวพิมพ์
เล็กและพิมพ์ใหญ่ จำ�นวน 1 กิโลไบต์ และเขียน

โปรแกรมทดสอบเม่ือกำ�หนดอักขระแบบที่ได้จาก
การสุ่มของโปรแกรมคอมพิวเตอร์ และสุ่มอัตรา
การประมาณ (Distance Ration) โดยวัดจากความ
ยาวอักขระแบบ 5-50 ตัวอักษร เขียนโปรแกรม
เพื่อเปรียบกับขั้นตอนวิธีที่มีประสิทธิภาพได้แก่
Levenshtein, Neesleman และ SmithWaterman
การทดลองแตล่ะรายการจำ�นวน 10 ครัง้หลงัจากนัน้
หาคา่เฉลีย่ นำ�มาเขยีนผลการทดลองดงัภาพประกอบ 5

	 จากภาพประกอบ 5 เมื่อค้นหาด้วยการสุ่ม
ขอ้มลูทัง้อกัขระแบบและขอ้ความเพือ่คน้หา ยงัไดผ้ล
การทดลองที่ ข้ันตอนวิธีใหม่ที่นำ�เสนอในงานวิจัยนี้
ค้นหาเปรียบเทียบโดยใช้เวลาต่ำ�กว่าขั้นตอนวิธี
Levenshtein และ Neesleman แต่ใช้เวลาค้นหา
ใกล้เคียงและมากกว่าขั้นตอนวิธี SmithWaterman

	 นำ�เข้าข้อมูลจริงจาก แฟ้มข้อมูลจริง
(anage_data.txt---ขนาด 768 KB) ของ The
Human Ageing Genomic Resources (HAGR), จาก
https://genomics.senescence.info/download.
html เขยีนโปรแกรมสุม่อกัขระแบบในแฟม้ดงักลา่ว

ภาพประกอบ 5 เปรียบความเร็วการคนหาเมื่อขอความและอักขระแบบสุมจากโปรแกรมคอมพิวเตอร

 จากภาพประกอบ 5 เมื่อคนหาดวยการสุมขอมูลทั้งอักขระแบบและขอความเพื่อคนหา ยังไดผลการทดลองที่
ขั้นตอนวิธีใหมที่นําเสนอในงานวิจัยนี้ คนหาเปรียบเทียบโดยใชเวลาต่ํากวาขั้นตอนวิธี Levenshtein และ Neesleman
แตใชเวลาคนหาใกลเคียงและมากกวาขั้นตอนวิธี SmithWaterman

4) นําเขาขอมูลจริงจาก แฟมขอมูลจริง (anage_data.txt---ขนาด 768 KB) ของ The Human Ageing
Genomic Resources (HAGR), จาก https://genomics.senescence.info/download.html เขียนโปรแกรมสุมอักขระ
แบบในแฟมดังกลาวดวยความยาวแตกตางกัน และเปรียบกับขั้นตอนวิธีที่มีประสิทธิภาพไดแก Levenshtein,
Neesleman และ SmithWaterman การทดลองแตละรายการจํานวน 10 ครั้งหลังจากนั้นหาคาเฉลี่ย นํามาเขียนผลการ
ทดลองดังภาพประกอบ 6

ภาพประกอบ 5 เปรียบความเร็วการค้นหาเมื่อข้อความและอักขระแบบสุ่มจากโปรแกรมคอมพิวเตอร์

วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025402Approximate String Matching Algorithm using Single Inverted Lists

Soontaree Thumsuwan, Nuanprang Sangurai, Chouvalit Khancome

ภาพประกอบ 6 เปรียบความเร็วการคนหาจากขอมูลจริง ของ The Human Ageing Genomic Resources (HAGR)

5) นําเขาขอมูล DNA ดวยแฟมขอมูลจริง (gbbct107.seq---ขนาดตนฉบับ 240,865 KB) ของ GenBank,

National Center for Biotechnology Information, National Library of Medicine, จ า ก
http://biomirror.aarnet.edu.au/biomirror/genbank/GBBCT107.SEQ เขียนโปรแกรมสุมอักขระแบบจากแฟมดังกลาว
ดวยความยาวแตกตางกัน และเปรียบกับขั้นตอนวิธีที่ มีประสิทธิภาพ ไดแก Levenshtein, Neesleman และ
SmithWaterman การทดลองแตละรายการจํานวน 10 ครั้งหลังจากนั้นหาคาเฉลี่ย นํามาเขียนผลการทดลองดัง
ภาพประกอบ 7

ภาพประกอบ 7 เปรียบความเร็วการคนหาจากขอมูลจริงของดีเอ็นเอ

ภาพประกอบ 6 เปรียบความเร็วการคนหาจากขอมูลจริง ของ The Human Ageing Genomic Resources (HAGR)

5) นําเขาขอมูล DNA ดวยแฟมขอมูลจริง (gbbct107.seq---ขนาดตนฉบับ 240,865 KB) ของ GenBank,

National Center for Biotechnology Information, National Library of Medicine, จ า ก
http://biomirror.aarnet.edu.au/biomirror/genbank/GBBCT107.SEQ เขียนโปรแกรมสุมอักขระแบบจากแฟมดังกลาว
ดวยความยาวแตกตางกัน และเปรียบกับขั้นตอนวิธีที่ มีประสิทธิภาพ ไดแก Levenshtein, Neesleman และ
SmithWaterman การทดลองแตละรายการจํานวน 10 ครั้งหลังจากนั้นหาคาเฉลี่ย นํามาเขียนผลการทดลองดัง
ภาพประกอบ 7

ภาพประกอบ 7 เปรียบความเร็วการคนหาจากขอมูลจริงของดีเอ็นเอ

ภาพประกอบ 6 เปรียบความเร็วการค้นหาจากข้อมูลจริง
ของ The Human Ageing Genomic Resources (HAGR)

ภาพประกอบ 7 เปรียบความเร็วการค้นหาจากข้อมูลจริงของดีเอ็นเอ

วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025403Approximate String Matching Algorithm using Single Inverted Lists

Soontaree Thumsuwan, Nuanprang Sangurai, Chouvalit Khancome

ดว้ยความยาวแตกตา่งกนั และเปรยีบกบัขัน้ตอนวธิทีี่
มีประสิทธิภาพได้แก่ Levenshtein, Neesleman
และ SmithWaterman การทดลองแต่ละรายการ
จำ�นวน 10 ครั้งหลังจากนั้นหาค่าเฉลี่ย นำ�มาเขียน
ผลการทดลองดังภาพประกอบ 6

	 นำ�เข้าข้อมูล DNA ด้วยแฟ้มข้อมูลจริง
(gbbct107.seq---ขนาดต้นฉบับ 240,865 KB) ของ
GenBank, National Center for Biotechnology
Information, National Library of Medicine,
จาก http://biomirror.aarnet.edu.au/biomirror/
genbank/GBBCT107.SEQ เขยีนโปรแกรมสุม่อักขระ
แบบจากแฟ้มดังกล่าวด้วยความยาวแตกต่างกัน
และเปรียบกับขั้นตอนวิธีที่มีประสิทธิภาพ ได้แก่
Levenshtein, Neesleman และ SmithWaterman
การทดลองแตล่ะรายการจำ�นวน 10 ครัง้หลงัจากนัน้
หาค่าเฉลี่ย นำ�มาเขียนผลการทดลองดัง
ภาพประกอบ 7

	 จากภาพประกอบ 6-7 ยนืยนัผลการทดลอง
ค้นหากับข้อมูลจริงที่ได้นำ�มาเปรียบเทียบ พบว่า
แสดงขั้นตอนวิธีใหม่ท่ีนำ�เสนอในงานวิจัยน้ี ค้นหา
เปรียบเทยีบโดยใชเ้วลาต่ำ�กวา่ข้ันตอนวธิ ีLevenshtein
และ Neesleman แต่ใช้เวลาค้นหาใกล้เคียงและ
มากกวา่ข้ันตอนวธิ ีSmithWaterman ซ่ึงการทำ�งาน
ของขั้นตอนวิธีใหม่ ทำ�งานอยู่ในระดับความเร็วสูง
เชน่เดยีวกับ ขัน้ตอนวธิ ีSmithWaterman แตอ่ยา่งไร
กต็ามหากมกีารปรบัปรงุใหด้ขีึน้ นา่จะทำ�ใหส้ามารถ
ทำ�งานได้รวดเร็วกว่าที่แสดงไว้นี้ก็อาจเป็นได้

5. อภิปรายผลและข้อเสนอแนะ

	 พจิารณาการทำ�งานในเชงิทฤษฎีของข้ันตอน
วธิทีีม่กีารสรา้งโครงสรา้งใชเ้วลา O(m) ใชเ้นือ้ที ่เมือ่
m คือ ความยาวของอักขระแบบ คือ จำ�นวนอักขระ
แบบ เมือ่นำ�มาเขียนโปรแกรมทดลองสรา้งโครงสรา้ง
พบว่าใช้เน้ือท่ีบรรจุโครงสร้างในหน่วยความจำ�
คอมพิวเตอร์น้อยกว่าขั้นตอนวิธีที่เคยมีมาก่อนอย่าง
มีนัยสำ�คัญ

	 สำ�หรับขั้นตอนวิธีการเปรียบคู่สายอักขระ
แบบประมาณท่ีพฒันาขึน้ คน้หาขอ้มลูด้วยกรณีความ
ซับซ้อนมากสุด O((m-k)n) กรณีค้นหาดีที่สุด O(kn)
เมื่อ n คือ ความยาวของสายสตริงเท็กซ์ที่ต้องการ
คน้หา k เมือ่นำ�มาพฒันาโปรแกรมคอมพวิเตอรค์น้หา
ทั้งข้อมูลการสุ่มและข้อมูลจริงทำ�ให้ได้เห็นผลการ
ทดลองทีด่กีว่าข้ันตอนวิธี Levenshtein, Neesleman
ในทุกกรณี ในขณะท่ีทำ�งานได้ใกล้เคียงกับข้ันตอน
วิธี SmithWaterman ในบางกรณี ทั้งน้ีเน่ืองจาก
ระหว่างการค้นหาขั้นตอนวิธีใหม่จะมีดำ�เนินการหา
ความแตกตา่งและการเปรยีบเทยีบขอ้มลูเพือ่ตรวจสอบ
ผลการค้นหาพบในทุกๆ คร้ังของการวนค้นหาใน
แตล่ะหนา้ตา่งคน้หา แตใ่นขัน้ตอนวธิ ีSmithWaterman
ดำ�เนินการเพียงหาค่าความแตกตา่งของอักขระแบบ
เท่าน้ัน ดังนั้นในกรณีน้ีจึงทำ�ให้ขั้นตอนวิธีดังกล่าว
มีความรวดเร็วกว่าในการค้นหา อย่างไรก็ตาม
ขั้นตอนวิธีใหม่สามารถพัฒนาต่อยอดเพื่อทำ�ให้มี
ประสิทธิภาพได้มากยิ่งขึ้นได้ ดังนี้

	 สามารถพัฒนาข้ันตอนวิธีให้สามารถมี
ความซบัซอ้น O(n) แบบสมบรูณ์ไดโ้ดยการวเิคราะห์
รายการผกผันท่ีเก็บวิเคราะห์ในแต่คร้ังท่ีการเข้าถึง
ตารางผกผัน โดยไม่ต้องมีการกวาดซ้ำ�เหมือนใน
Algorithm 2 ได้

	 สามารถพฒันาขัน้ตอนการคน้หาแบบขนาน
ได้ด้วยการเขียนโปรแกรมแบบใช้เทรดได้อีกด้วย

	 สามารถพฒันาการเลือ่นหนา้ตา่งคน้หาใหม้ ี
ตารางการเลื่อน (Shift Table) เพื่อใช้เลื่อนหน้าต่าง
สำ�หรับการกวาดตรวจการค้นพบ เช่น ขั้นตอนของ
Boyer-Moor หรือ KMP จะทำ�ให้มกีารคน้หาทีร่วดเร็ว
และมคีวามซับซ้อนน้อยลงกวา่ทีน่ำ�เสนอในงานวจัิยน้ี
ได้

	 สามารถพัฒนาเป็นขั้นตอนการเปรียบคู่
สายอกัขระพหแุบบแบบประมาณ (Multiple String
Pattern Matching with Allow Error) ได้ด้วยการ
สร้างตารางรายการผกผันแบบพหุแบบ (Multiple
String Pattern)

วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025404Approximate String Matching Algorithm using Single Inverted Lists

Soontaree Thumsuwan, Nuanprang Sangurai, Chouvalit Khancome

	 สามารถนำ�เอาเทคนิคของปัญญาประดิษฐ์
มาร่วมสำ�หรับการวิเคราะห์หรือทำ�นายคำ�เหมือน
และแตกต่างได้ในแต่ละพยางค์ของการค้นหาเพื่อ
เพ่ิมประสิทธิภาพให้รวดเร็วขึ้น ในทางตรงกันข้าม
หากนำ�ขั้นตอนวิธีที่พัฒนาขึ้นนี้สู่กลไกภายในของ
ปัญญาประดิษฐ์ก็สามารถดำ�เนินการได้เช่นกัน

6. สรุปผลการวิจัย

	 บทความงานวิจัยน้ีนำ�เสนอโครงสร้างขอ้มูล
ใหม่เพื่อใช้สำ�หรับการออกแบบขั้นตอนวิธีเปรียบคู่
สายอกัขระแบบประมาณ โครงสร้างขอ้มลูใหมพ่ฒันา
ตอ่ยอดจากรายการผกผนัแบบเดีย่วของ Khancome
& Boonjing (2010) นำ�มาออกแบบใหจ้ดัเกบ็อกัขระ
แบบอาศัยตารางการแฮชจัดเก็บรายการผกผันจาก
อักขระแบบเดี่ยว เพื่อให้รองรับการวิเคราะห์ผล
การเปรียบคู่สำ�เร็จได้แบบประมาณท่ีอนุญาตให้มี
คา่ความผดิพลาดทีไ่มต่รงกนัของตวัอกัขระในระหวา่ง
การคน้หาได ้จากนัน้พฒันาขัน้ตอนวธิกีารเปรียบคูส่าย
อักขระแบบประมาณใหม่โดยโครงสร้างข้อมูลชนิด
ใหมท่ี่พฒันาขึน้ ผลการวิจัยทางทฤษฎพีบว่า ขัน้ตอน
วิธีที่พัฒนาขึ้นใหม่ มีความซับซ้อนต่ำ� สามารถ
ทำ�งานแบบเชิงเส้นอันเป็นลักษณะของการค้นหา
ทีมี่ประสทิธิภาพ โดยการสรา้งโครงสรา้งขอ้มลูใชเ้วลา
เท่ากับจำ�นวนอักขระแบบที่นำ�มาใช้เพื่อค้นหา และ
ความซับซ้อนด้านเนื้อที่จัดเก็บเท่ากับจำ�นวนอักขระ
แบบที่ใช้ในอักขระแบบรวมกับขนาดอักขระแบบ
ที่ใช้ ขณะที่ความซับซ้อนด้านเวลาในการค้นหามี
ค่าดีที่สุดเท่ากับความยาวของข้อความที่ค้นคูณกับ
ความยาวของอกัขระแบบ ผลการทดลองดว้ยการเขยีน
โปรแกรมคอมพวิเตอรว์ดัผลกบัขัน้ตอนวธิทีีม่ชีือ่เสยีง
พบว่า ขั้นตอนวิธีใหม่ใช้เนื้อที่สำ�หรับสร้างโครงสร้าง
ด้วยหน่วยความจำ�ที่ต่ำ�กว่าขั้นตอนวิธีที่นำ�มาเปรียบ
เทียบ และสามารถค้นหาได้ดีเป็นลักษณะเชิงเส้น
ที่ใช้เวลาในการค้นหาได้รวดเร็วเท่าๆ กับข้ันตอน
วิธีที่ค้นหาได้รวดเร็วที่สุดที่นำ�มาเปรียบเทียบ

เอกสารอ้างอิง

Abraham, D., & Raj, N. S. (2014). Approximate
string matching algorithm for phishing
detection. 2014 International
Conference on Advances in Computing,
Communications and Informatics
(ICACCI), 2285–2290. https://doi.
org/10.1109/icacci.2014.6968578

Boguszewski, A., Szymański, J., & Draszawka, K.
(2016). Towards increasing F-measure
of approximate string matching in O(1)
complexity. Proceedings of the 2016
Federated Conference on Computer
Science and Information Systems
(FedCSIS), 8, 527–532. https://doi.
org/10.15439/2016f311

Dondi, R., Mauri, G., & Zoppis, I. (2022). On
the complexity of approximately
matching a string to a directed graph.
Information and Computation, 288,
104748. https://doi.org/10.1016/j.
ic.2021.104748

Faro, S., & Scafiti, S. (2022). A weak approach to
suffix automata simulation for exact
and approximate string matching.
Theoretical Computer Science, 933,
88–103. https://doi.org/10.1016/j.
tcs.2022.08.028

Gusfield, D. (1997). Algorithms on strings,
trees, and sequences: Computer
science and computational biology.
Cambridge University Press.

วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025405Approximate String Matching Algorithm using Single Inverted Lists

Soontaree Thumsuwan, Nuanprang Sangurai, Chouvalit Khancome

Karp, R. M., & Rabin, M. O. (1987). Efficient
randomized pattern-matching
algorithms. IBM Journal of Research
and Development, 31(2), 249–260.
https://doi.org/10.1147/rd.312.0249

Khan, M. G., Halim, Z., & Baig, A. R. (2023). An
efficient approach for faster matching
of approximate patterns in graphs.
Knowledge-Based Systems, 276,
110770. https://doi.org/10.1016/j.
knosys.2023.110770

Khancome, C., & Boonjing, V. (2010). Inverted
Lists String Matching Algorithms.
International Journal of Computer
Theory and Engineering, 352–357.
https://doi.org/10.7763/ijcte.2010.
v2.166

Levenshtein, V. (1965). Binary codes capable
of correcting spurious insertions
and deletions of ones. Problems of
Information Transmission, 1(1), 8-17.

Levenshtein, V. I. (1966) Binary codes of cor-
recting deletions, insertions, and
reversals. Soviet Physics-Doklady,
10(8), 707-710.

Navarro, G., & Raffinot, M. (2002). Flexible
pattern matching in strings: Practical
on-line search algorithms for texts
and biological sequences. Cambridge
University Press.

Needleman, S. B., & Wunsch, C. D. (1970).
A general method applicable to the
search for similarities in the amino
acid sequence of two proteins.
Journal of Molecular Biology, 48(3),
443–453. https://doi.org/10.1016/0022-
2836(70)90057-4

Smith, T. F., & Waterman, M. S. (1981).
Identification of common molecular
subsequences. Journal of Molecular
Biology, 147(1), 195–197. https://doi.
org/10.1016/0022-2836(81)90087-5

Uhlig, F., Struppek, L., Hintersdorf, D., Göbel,
T., Baier, H., & Kersting, K. (2023).
Combining AI and AM – Improving
approximate matching through
transformer networks. Forensic Science
International: Digital Investigation,
45, 301570

