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web scraping scripts and incorporated a configuration file for
customization, enabling users to extract product data from diverse

websites. The system scrapes data and displays result each time
the user enters a query, ensuring that the scraped data is up to
date. Furthermore, our system enhances the user experience by
incorporating product model datasets for product identification,
enabling specific searches based on product specifications, and
offering recommendations for similar product models. Finally, in
cases where products remain unidentified, we introduce a feature
for grouping similar products through an agglomerative clustering
method. This method utilizes product name and image features
extracted by TF-IDF and Convolutional Neural Networks (CNN),
allowing for price comparisons among similar products and
enhancing the overall shopping experience. Preliminary evaluations
show that our system successfully extracts data from target

websites with proper customizations. The evaluations of similar
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product clustering demonstrate that using
a combined feature of product names and
images significantly improves clustering
performance, surpassing the use of product
names or images alone, with a 9 percent

increase and 18 percent increase, respectively.

1. Introduction

In the current digital era, the internet
has become an integral part of our daily
lives. Its widespread accessibility has enabled
businesses and organizations worldwide to
leverage its power to improve work efficiency
and achieve better results. E-commerce, one
of the most significant benefits of the internet,
has witnessed exponential growth in recent
years. Online shopping platforms have become
increasingly popular, providing people with
a convenient and easy way to access goods
and services from the comfort of their homes
(Kemp, 2022). Despite the convenience
offered by online shopping, finding the best
deals can be a time-consuming and frustrating
process. Consumers often have to navigate
multiple websites to compare prices, which
can be inconvenient and inefficient (Asawa
et al.,, 2022; Mehak et al., 2019). To address
this issue, price comparison websites have
emerged, allowing users to compare prices
across various e-commerce platforms. In
Thailand, there are existing websites perform
price comparisons, including iPrice and Priceza.
iPrice compares products within leading
e-commerce websites like Lazada, Shopee,
and Central Online, whereas Priceza stores

product data in its database and compares

categories like mobiles, computers, electric
appliances, household goods, and fashion
items. However, these websites sometimes
encounter problems such as mismatched
product prices on the price comparison
website and the original website, or missing
product information that appears on the
price comparison website but not on the
original website. The primary reason for these
discrepancies may be the lack of regular
updates on the product data in these websites,

leading to inaccurate product comparisons.

In this paper, we propose a web
scraping-based system designed for comparing
products across multiple e-commerce websites.
Our system offers configurability, allowing users
to specify extraction rules for each selected
target website. It operates by extracting data
from the target website in real-time as the
user enters a search query, ensuring that the
displayed product information is up to date.
This design addresses issues present in prior
price comparison websites, particularly those
related to mismatched or missing product
data. To enhance the user experience, we
are developing a feature that recommends
similar products within search results. This
system utilizes product names and images
as features and employs an Agglomerative
Clustering method for grouping similar products.
Moreover, our system incorporates a product
model identification feature, enabling the
recognition and grouping of products sharing
the same model. This feature can be used
with any product dataset as a reference. The

goal is to enable consumers to make informed
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decisions when shopping online, saving both
time and money while elevating their overall

online shopping experience.

2. Related Work

2.1 Web Scraping Approaches

Web scraping stands as a prevalent
data mining technology employed for extracting
unstructured data from diverse online sources.
The acquired data can subsequently undergo
restructuring and transformation into a structured
format. The process of web scraping can
be executed through manual techniques or
automated programs. Presently, websites
are commonly categorized into two principal
formats: static and dynamic. Each of these web
formats necessitates distinct data extraction
methodologies (Lan et al., 2021).

2.1.1 Static Webpages Scraping

Static webpages have a fixed data
structure and display the same content
stored on the web server side when HTML
data is loaded on the client’s web browser.
Retrieving HTML data from a static page is
typically done by sending an HTTP request.
Subsequently, an HTML Parser is employed to
extract the pertinent information from HTML
documents, thereby constructing a hierarchical
tree structure known as the Document Object
Model (DOM Tree). Within this context, users
specify the HTML tags housing the desired
information to facilitate the data extraction

process (Lan et al., 2021).

2.1.2 Dynamic Webpages Scraping

Web scraping of dynamic webpages
poses challenges due to the dynamic loading
of data using JavaScript. Dynamic pages cannot
be accessed in the requested HTML of the
target webpage by simply sending an HTTP
request. To overcome this issue, the web
driver is used, which is a web automation
framework which allows user to execute
test across various browsers (Gheorghe et
al., 2018). Web scraping methodologies
incorporate the use of a web driver, enabling
the automation of actions across different
web browsers. Employing a web driver to
interact with a website enables the system
to execute JavaScript on the target webpage,
thereby ensuring the retrieval of the necessary
information. Subsequently, HTML Parser are
employed to transform the HTML documents
retrieved from the webpage into a structured
tree format, facilitating the extraction of the

desired information (Lan et al., 2021).

The researcher conducted a review
of pertinent literature concerning data
extraction methodologies applied to diverse
e-commerce websites. A study by Ambre
et al. (2019) outlined the development of
a web application for comparing product
prices across multiple websites, utilizing static
web scraping methodologies with the Python
package. This involved incorporating the
Request library for sending HTTP requests and
the Beautiful Soup 4 library for HTML parsing. In
a separate study, Alam et al. (2020) introduced

a price comparison application tailored for
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Bangladeshi e-commerce platforms, utilizing
static webpage scraping methodologies via
the Scrapy framework for website access and
automated data extraction. In contrast, Asawa
et al. (2022) engineered a price comparison
web application involved the implementation
of dynamic web scraping techniques, utilizing
Selenium as a web driver, available in various
languages including Python, and Beautiful
Soup 4 as an HTML parser. Additionally, Mehak
et al. (2019) developed a web application
for product price comparison, employing a
hybrid approach that encompassed both HTTP
request transmission using Request library
and web driver techniques using Selenium
to access various websites, with Beautiful
Soup 4 serving as the HTML parser for this

application.

The mentioned studies employed
diverse methods for data extraction, with
some focusing on static web data extraction
using tools like the Request library or Scrapy
framework, while others utilized the Selenium
library for websites with dynamic content.
However, the latter approach often incurred
longer processing times compared to tools
designed for static websites. Notably, all the
mentioned research fixed the target websites
for their web scraping systems, limiting flexibility
when users wished to search for products on
different websites. Recognizing this limitation,
the researcher identified an opportunity to
enhance the efficiency of web data extraction
by developing a system capable of customization
for scraping any desired target website. This

system is designed to select extraction tools

based on the nature of the target website,

providing increased flexibility for users.

2.2 Product Matching Approaches

The process of product matching is
accomplished through the application of machine
learning methodologies. Various studies have
addressed the Product Matching process using
distinct approaches. Li et al. (2020) developed
a method for finding products of the same
type, employing an artificial neural network
model that considers two types of product
descriptions: title and attribute. It consists of
a model for processing product title data and
a model for processing product attributes data
together. Addagarla & Amalanathan (2020)
have developed an image-based search for
similar product recommendation system by
processing product image data by performing
Principal Component Analysis (PCA) using
Singular Value Decomposition (SVD) method.
Next, the data will be grouped using the
K-means++ method to group similar product
data. The input image is then measured for
Manhattan distance to the target clusters set,
fetching the top-N similar products with low
distance measures. Kannan (2021) developed
a system to classify whether products are
identical, utilizing product name and image
information from e-commerce websites. The
model is a combination of TF-IDF for product
name data and ResNet-18, a Convolutional
Neural Networks (CNN) architecture, for

product image data.

This research aims to develop an
efficient process for grouping similar products
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without relying on high processing power,
ensuring the prompt presentation of grouping
results to users. Despite the effective
outcomes produced by the artificial neural
network model, its resurce-intensive nature
led the researchers to explore alternatives.
While the K-means++ clustering method is
robust, it requires prior determination of the
number of clusters, posing a challenge when
dealing with products of an unknown grouping
structure. Additionally, the algorithm in the
last-mentioned research focuses on classifying
whether a product is similar to others, whereas
our research aims to group similar products.
Consequently, the researchers opted for the
TF-IDF method to process product names
and a pre-trained CNN model for processing
product images, extracting features with less
processing power. These features are then
employed in an Agglomerative Clustering
approach, a hierarchical clustering algorithm.
Unlike partitioning methods like K-means++,
agglomerative clustering builds a hierarchy
of clusters without predefining the number

of clusters.

3. Materials and Methods

In this research, a web application
has been designed as the system’s form.
The system was developed using the Django
framework, implemented in the Python

programming language. Django allows
developers to create web applications quickly
by providing many pre-built components
and templates, thus reducing development
time and effort. An overview of the system
architecture is presented in Figure 1. The

proposed system comprises three main layers:

® Web Extraction Layer: This layer
focuses on extracting product data
from the target websites, initiated
by receiving search queries from

the user interface.

® Data Categorization Layer:
Following the extraction of product
data in the Web Extraction Layer,
this layer categorizes the data. It
consists of two modules: one for
product type or model identifica-
tion and another for clustering

unidentified products.

® Application Layer: This layer
provides a user interface, allowing
users to enter search queries for
their desired products, which are
then sent to the Web Extraction
Layer. Additionally, it displays the
product data generated by the
preceding layers.
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3.1 Implementation of the Web
Extraction System

The web extraction process takes
place within the Web Extraction Layer of
this system. This implementation involves
configuring extraction rules in the wrapper
configuration, providing directives to the
web wrapper for the accurate extraction of
product data from designated target websites.
When a user enters a search query in the
user interface, the web wrapper extracts
data from the target website based on
the search query and extraction rules. This
approach ensures the freshness of the extracted
data, addressing issues prevalent in existing
price comparison websites, such as missing
or mismatched information. Subsequently,
the extracted data is sent to the data
categorization layer for further processing.
The components involved in web extraction

are detailed as follows:

3.1.1 Wrapper Configuration

Wrapper configuration allows users
to customize the web wrapper in the Web
Extraction Layer. It provides rules for web
accessibility tools, offering two options:
Requests, for making HTTP requests, and
Selenium WebDriver, for automating web
browsers. In the initial step, users are tasked
with determining the dynamism of the target
webpage by disabling JavaScript. If the desired
data persists, the Requests option is used for
its faster processing time; otherwise, Selenium
is employed for dynamic pages. Subsequently,
users need to inspect the website’s HTML

structure to identify the HTML elements
containing required product data, such as titles,
prices, images, and URLs. This information
serves as a prerequisite for the configuration
of a dedicated file in subsequent steps.

The wrapper configuration file
template, as depicted in Figure 2, is formatted
in JSON. It requires users to define values
for each key. For elements requiring HTML
values, users specify the tag name, class
attribute, or ID of the HTML elements
identified during the earlier inspection. For
instance, if the product name is in “<div
class="product-name”>,” it’s defined in the
“title” key as “divlclass="product-name’]”.
Users can configure additional settings, such
as the number of pages to scrape and the
access method (sequential or parallel). An
example of the wrapper configuration for
each target website is provided in Figure 3.
Furthermore, users can customize web access
tools, including ‘Requests’ and ‘Selenium.’,
with the flexibility to customize HTTP headers
for Requests and browser actions, waiting times,
and scrolling preferences for Selenium. Users
can tailor web accessibility tools for each site,
enabling specific actions for different sites, or

use default settings if not specified.

3.1.2 Web Wrapper

Web Wrapper is responsible for
automatically extract product information
from the target website. To achieve successful
web data extraction, the system follows a
defined process. When a user enters a search
term in the user interface, the system reads
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"configs": [
{
"method": "[Specify the web access method: requests' or 'selenium'l’,
"base_url": "[Enter the domain name of the target website]",
"search_url": "[Specify the URL for embedding search queries]’,
"num_of pages": [Number of search results pages on the target website to be scraped.],
"multipage_processing_method":"[Specify method for accessing multiple pages: 'sequential’
or 'parallelT",
"items": "[Specify the HTML element containing the block of product datal",
"title": "[Specify the HTML element containing the product name]",
"price": "[Specify the HTML element containing the product price]",
"link": "[Specify the HTML element containing the product link; leave blank if not applicable]”,
"image_url": "[Specify the HTML element containing the product image URL]",
"source": "[User-defined name for the target website to be displayed in the application result
page]’
3
{[Configurations of other target websites]}
1,
"configs_request": {
"headers": {"[Specify browser HTTP headers]"}
2

"configs_selenium™ {

"
’

"headless": "[Specify headless browser mode: yes ('y') or no ('n")]
"wait_time": [Specify wait time before parsing HTML content (in seconds)],
"zoom":"[Apply webpage zoom: yes ('y') or no ('n')]",
"zoom_percentage": [Specify webpage zoom percentage],
"scrolling": "[Apply webpage scrolling: yes ('y') or no ('n')]",
"scrolling_setting": {
"scrolling_step": [Specify webpage scrolling step (in pixels)],
"scrolling_pause_time": [Specify webpage scrolling pause time in each step (in seconds)]
"max_step": [Specify the maximum number of steps for page scrolling, used if the page has

infinite

Figure 2. Template of Wrapper Configuration File
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Website 1 item
AW
{
“configs": [
{
“method”: “request”,
o
- “base_url": “https://www.jib.co.th",
NOTEBOOK @dall) “search_url": “https://www.jib.co.th/web/product/product_search/@?str_search={q}",
] "items": "div[class='col-md-3 col-sm-4 col-xs-6 divboxpro']",
L—, "title": "span[class="promo_name']",
———F— "price": "p[class="price_total']",
L "image_url": "div[class="row size_img center']",
"source": "JI8"
- b
Website 2 item {
( Image_url \
“search_url Ettps://w.u\-l.lazada.(o.th/(atalog/?q {q}&page={n}",
“num_of_pages": 2,
- “multipage_processing_method":"parallel”,
"items": "div[class="qmxQo']",
- . —,jititloi: ..div{(}x)ss'iR(A[)ti!r,
S_— —— | »“price™: “div[class=‘aBrpe’]",
"image_url": "div[class="_95X4G']",
o o "source": "Lazada"
H H
b
title {
B 829,900.0 Wrapper Configuration File
Target Websites

Figure 3. Example of Wrapper Configuration

the wrapper configuration file to import the
specified data extraction rules. Subsequently,
the search term is incorporated into the URL
for product searches on the target website,
and the system accesses the website using
the chosen web access tool (either Requests
or Selenium WebDriver). Once access to the
target website is established, the Beautiful
Soup 4 library is invoked to parse the HTML
content, converting it into a structured tree
for data extraction. Beautiful Soup 4 then
extracts the data based on the rules defined

in the wrapper configuration file.

3.2 Product Type Identification
Process

Once the Web Wrapper extracts data
from target websites, this extracted data is

directed into the Product Identification module

within the Data Categorization Layer. The
core concept behind this process is to utilize
product datasets as metadata, describing
the product specifications for each item, to
identify the product types or models of the
extracted items. These datasets serve as a
reference to make such identifications. To
achieve this, the system employs TF-IDF (Term
Frequency-Inverse Document Frequency) for
vectorization of product names from both the
extracted products and the product dataset.
TF-IDF is a numerical statistic that reflects
the importance of a term within a document
relative to a collection of documents. The
algorithm consists of two components:
Term Frequency (TF) and Inverse Document
Frequency (IDF). TF measures the frequency
of a term within a document, while IDF

evaluates the rarity of a term across the entire
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corpus. The computations for TF and IDF are
expressed in Equations 1 and 2, respectively.
The TF-IDF score for a term in a document is
then derived by multiplying its TF by its IDF,
as depicted in Equation 3.

Numberoftimestermtappearsindocumentd

TF(t.d) = Totalnumberoftermsindocumentd ( 1 )
_ TotalnumberofdocumentsinthecorpusD

IDF(t, D) = log( Numberofdocumentscontainingtermt ) (2)

TF — IDF(t,d,D) = TF(t,d) x IDF(t,D)  (3)

The vectorization process involves
converting textual data, in this case, product
names, into numerical vectors. Specifically,
TF-IDF assigns weightings to each term based
on its frequency within the product name and
its rarity across the entire dataset. The system
then evaluates which product models in the
dataset exhibit the highest cosine similarity
values to the extracted products. The cosine
similarity is a measure of the cosine of the
angle between two vectors. In the context
of TF-IDF vectors, it indicates how closely
aligned the vectors are in the high-dimensional
space defined by the terms. The formula for
cosine similarity between two vectors A and
B is given by:

A-B

AB)=———
cos(,B) = 1< 1B]

where A-B is the dot product of vectors
Aand B. [lAll and 1Bl are the magnitude
of vectors A and B, respectively. The result

is a value between -1 and 1. A value of 1

indicates perfect similarity, O indicates no
similarity, and -1 indicates perfect dissimilarity.
In this scenario, the model in the dataset with
the highest similarity to the scraped product
under consideration is identified, but if the
maximum cosine similarity value does not
meet the specified threshold (defaulting to
0.5, adjustable in the dataset configuration
file), the system does not identify the model
for the scraped product, considering that the
model is not in the dataset. Subsequently,
the system checks for any extracted products
identified as the same model, grouping
them into the same product category, and
prepares to transmit the results to the user
interface. Finally, the unidentified products are
forwarded to the Product Clustering module
for the grouping of similar products in the

subsequent step.

3.2.1 Configuring the Import
of Product Datasets

Users have the option to import a
product dataset into the system. This dataset
can be obtained from various online sources
or extracted from specific websites. The
imported dataset essentially acts as a guide
to assist in the identification of product types
or models from the target website’s data.
Users can configure dataset imports through
the system’s JSON-formatted configuration
file, with a provided template, as shown in
Figure 4. In the context of this research, two
datasets have been incorporated into the
system, one focusing on laptop computers

extracted from www.notebookspec.com and



Web Scraping-based System for E-commerce Price Comparison... MImTIensasaunALasmalulagussgnd, 7(2): 2568

Pongsin Jankaew and Wachirawut Thamviset 356 Journal of Applied Informatics and Technology, 7(2): 2025

another on mobile phones extracted from  product titles to ensure correct processing.
www.specphone.com. These datasets were  Other settings allow users to customize the
created through web data extraction by the  display of product properties on the search
researcher using the Scrapy Framework, which  results page. For instance, users can choose
is proficient in swiftly extracting numerous  to display information such as Central
static webpages containing detailed product ~ Processing Unit (CPU), Graphics Processing
specifications. An example of a laptop dataset ~ Unit (GPU), Random Access Memory (RAM),
used in this system is shown in Figure 5. A and Solid State Drive (SSD) storage sizes,
crucial step involves specifying trigger words, ~ enhancing the convenience of product
which serve as keywords to match against the  searches. The example result of product type
user’s search queries. The system will import  identification is presented in Figure 6.

and process the dataset if any of these trigger
3.2.2 Filtering Products Using

Specification Data

words are found in the user’s search term.
For example, if the dataset pertains to laptop
computers, the user can define trigger words Once the entire process is complete,
like “Notebook” or “Laptop.” If the user’s  users can filter products on the web applica-
search query includes any of these words,  tion’s results page using product specification
e.g., “Laptop for Students”, the system will  data, utilizing the product dataset as metadata
import the corresponding laptop dataset for  for filtering. For instance, when employing a
further processing. laptop computer dataset, users may search
for specific laptop models with particular CPU

Additionally, the user must indicate the

name of the column in the dataset containing or GPU types, as illustrated in Figure 7.

“dataset_configs”: [
{
“trigger_words”: [“Specify a set of trigger words for dataset importation”],
“file_path”: “Specify the file path of the dataset”,
“title_column_name”: “Specify the column name in the dataset containing product model
names”,
“columns_to_be shown”: [“Specify names of columns in the dataset with specification data
to display in the result page”],
“similarity_threshold”: “Specify the minimum cosine similarity threshold to consider a product
match (default is 0.5)”
2

{“Additional configurations for other dataset importations”}

]

Figure 4. Template of Dataset Configuration File
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8 GB DDR4 2400Mhz

Sulsa: JIB

12,990.00 uvn

IGaln Acer Aspire 3 A315-59-34T3 Pure Silver

5ulsd: Banana IT

12,990.00 un

Products with the same type or model

12 GB SSD PCle M2

fievi produ same |
model from other vendors __|™

Figure 6. Example of Product Identification Result
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Search Result for “laptop”

v | ryzen7 " Apply Search Filter

AMD Ryzen 7 7840@HS (380 GHz up to 510 GHz, 16 MB L3 Cache)

cpu: CPU

AMD Ryzen 7 7730U (200 GHz up to 45@ GHz, 16MB L3 Cache)
AMD Ryzen 7 5800H (320 GHz up to 440 GHz, 16 MB L3 Cache)
AMD Ryzen 7 57@QU (180 GHz up to 430 GHz, 8 MB L3 Cache)
AMD Ryzen 7 68@0H (32@ GHz up to 47@ GHz, 16 MB L3 Cache)
AMD Ryzen 7 7735HS (320 GHz 16MB L3 Cache up to 475 GHz)

AMD Ryzen 7 7840QU (330 GHz up to 51@ GHz, 16MB L3 Cache)

AMD Ryzen 7 68Q0@HS (32@ GHz up to 470 GHz, 16 MB L3 Cache)

Idada 14 (> 1920X1080 Laptop notebook ASUS Gaming_Laptop 156 Inch Laptop

| r 4 Factory New AMD Ryzen 5 3500U RAM:
/. Window: Auf w /; : /1TB Fingerprint
laptop computer lock Suus:AundoUSadows

5ulsé: Lazada 5ulsd: Lazada

6,369.00 un 15,86410 un

NOTEBOOK (Ttiadin) MICROSOFT SURFACE
LAPTOP S 15" i7/8/256 (PLATINUM)

SURFACE Laptop Go 2 (124", Intel Core i5,
RAM 8GB, 128GB)
5ulud: JIB 15Ul Power Buy

45,900.00 vn 23,000.00 vn

Figure 7. Search Filtering

3.3 Similar Product Grouping
Process

This phase, executed within the Data
Categorization Layer similar to the previous
process, categorizes unclassified data from
either the Product Identification module or
directly from the Web Wrapper in instances
where dataset importation is not performed.
The Agglomerative Clustering method is em-
ployed, utilizing product names and images as
features for grouping. Agglomerative Clustering
is a hierarchical clustering algorithm used for
grouping similar data points into clusters. The
process starts with each data point considered
as an individual cluster and, in each iteration,
merges the closest pair of clusters until only
one cluster remains. The key idea is to build
a hierarchy of clusters, represented as a tree
or dendrogram, where the leaves of the tree
are the individual data points, and the root
is the ultimate single cluster containing all

data points.

Initially, product name data undergoes
preprocessing, including punctuation removal,
tokenization, and stop-word elimination.
Then, the data is vectorized using TF-IDF. For
the product images, features are extracted
using a Convolutional Neural Network (CNN)
model. Image features represent patterns,
shapes, and structures within images, providing
numerical representations of content. The
CNN model, pretrained on the ImageNet-1k
dataset containing 1,281,167 categorized im-
ages (Russakovsky et al., 2015), learns filters
and patterns useful for discriminating between
objects or features within images. This process
is facilitated by the PyTorch library, providing
image preprocessing tools such as resizing,
central cropping, and normalization. After
extracting both product name and image
features, the system concatenates these
features and employs them for data grouping
via Agglomerative Clustering, utilizing the
scikit-learn library and the “cosine” metric
for grouping. This process requires defining
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a Distance Threshold, determining when the
system combines groups based on cosine
distance, which can be specified in the product
grouping configuration file. Subsequently,
all erouped product data is collected and
transmitted to the frontend system, allowing
users to search for similar products, as
illustrated in Figure 8. Furthermore, the system
stores feature data extracted from product
images in its cache to expedite future searches
for the same products. Since image feature
extraction is computationally intensive and
time-consuming, cached feature data enables
quicker processing. This optimization reduces

overall processing time.

4. Results and Discussion

We conducted a preliminary evaluation
of our system in two aspects. Firstly, the
web extraction system underwent evaluation
through experiments involving the extraction
of product data from various e-commerce

websites. These experiments aimed to

verify whether the extracted results correctly
contained the product data from the target
websites. Specifically, we selected Lazada
(lazada.co.th), Power Buy (powerbuy.co.th),
Banana IT (bnn.in.th), and JIB (jib.co.th) as target
websites. The web extraction experiments
encompassed ten different search queries.
The results presented in Table 1 demonstrate
that our system, with a correctly configured
Web Wrapper, achieved a 100 percent
accuracy rate in extracting product data
from target websites. This indicates that our
system extracted data without any missing

or mismatched information.

The second aspect of our evaluation
focused on the performance of our similar
products grouping system. Given the avail-
ability of numerous CNN models, researchers
conducted experiments to determine the most
suitable model for extracting features from
images and classifying them using Agglom-
erative Clustering. The experiments utilized
product dataset sourced from the Shopee

TEFAL 1anSquro (1200 3ad)_su FS2622

Sulua: Power Buy

47900 uin

130 tefal Ion3aury Sy FS2622 didolw 1200 Sad duoo

15ulud: Lazada

32000 un

TEFAL inSauro FS2622 (12900 Jaq) Suus:iu 2 U
15ulud: Lazada

29000 uin

View similar products |«

Similar Products

Figure 8. Example of Similar Product Grouping Result
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website, specifically a dataset designed for a
similar product classification competition on
www.kaggle.com. This dataset encompasses
specifications for various types of products,
including fashion items, electronics, and
consumer goods. The dataset, comprising
product name and image information necessary
for the product grouping process, was
downloaded from www.kaggle.com and
imported into the system for experimentation.
To assess the efficiency of these models, the
researchers calculated the F1 score for each
product and subsequently averaged these
scores. This process determined the distance
threshold value that yielded the highest F1
score, guiding model selection.

Researchers opted for several CNN
models that are computationally efficient,
pretrained on the ImageNet dataset. To
expedite the research, a subset of 1,000
products was employed in the experiments.
The results, presented in Table 2, demonstrated
that the EfficientNet-BO model (Tan & Le,
2019) outperformed other models without
significantly increasing processing time for
feature extraction and product groupins.
Consequently, this model was selected as the
default for extracting image features within
our system. Subsequently, when the features
obtained from TF-IDF were combined with
features from EfficientNet-BO for clustering,
they exhibited superior performance compared
to using TF-IDF features or the EfficientNet-B0

model in isolation.

Table 1.  Web extraction experimental result
Target Website  Extracting Method Total Product Data . Total Valid Product Data
Appeared on the Website Extracted
Lazada Dynamic 487 487
Power Buy Static 287 287
Banana IT Static 377 377
JIB Static 604 604
Table 2. Products grouping experimental result
Method F1 Score Processing Time (second) Best Distance Threshold
MobileNetV3-Small 0.7862 6.046 0.23
MobileNetV3-Large 0.7643 6.512 0.33
Resnet18 0.7503 6.9090 0.18
EfficientNet-BO 0.7990 8.1388 0.48
TF-IDF 0.8631 0.5142 0.82
TF-IDF + EfficientNet-BO 0.9428 8.6026 0.68
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5. Conclusion

In this study, we have introduced a
Data Scraping-based System designed to ex-
tract product data from various E-commerce
websites. This system incorporates features
for product identification and grouping of
similar products, enhancing the browsing
experience for users. Users can customize
the system by defining extraction rules for
web scraping and importing data for product
identification. The effectiveness of the system
is underlined by its ability to provide updated
and tailored search results to users, reducing
data mismatch and missing issues and thereby
improving their online shopping experience.
We anticipate continuous improvements to
our system, focusing on optimizing product
data feature extraction, enhancing clustering
methods, and refining the data scraping pro-
cess. By continually refining and expanding
the system’s capabilities, we aim to bridge
the gap between consumers and e-commerce
platforms, making online shopping a more
streamlined and rewarding experience for

all parties involved.
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