
Mahasarakham University, Thailand
http://jit.it.msu.ac.th

Research Article

Pongsin Jankaew1, Wachirawut Thamviset1,*

1	 Department of Computer Science and Information Technology, College of Computing, Khon Kaen University,  
Khon Kaen 40002, Thailand 

*	 Corresponding author: Wachirawut Thamviset, twachi@kku.ac.th

Abstract: With the booming growth of e-commerce, finding the best 
deals amid a multitude of online shopping websites has become 
a challenge. Consumers often spend a considerable amount of 
time manually sifting and comparing data, leading to uncertainty 
in decision-making. To address this issue, our research proposes a 
system that utilizes web scraping techniques to identify top deals 
from multiple e-commerce sites. We have developed Python-based  
web scraping scripts and incorporated a configuration file for  
customization, enabling users to extract product data from diverse 
websites. The system scrapes data and displays result each time 
the user enters a query, ensuring that the scraped data is up to 
date. Furthermore, our system enhances the user experience by 
incorporating product model datasets for product identification, 
enabling specific searches based on product specifications, and 
offering recommendations for similar product models. Finally, in 
cases where products remain unidentified, we introduce a feature 
for grouping similar products through an agglomerative clustering 
method. This method utilizes product name and image features 
extracted by TF-IDF and Convolutional Neural Networks (CNN),  
allowing for price comparisons among similar products and  
enhancing the overall shopping experience. Preliminary evaluations  
show that our system successfully extracts data from target 
websites with proper customizations. The evaluations of similar 

Web Scraping-based System for E-commerce Price Comparison  
and Similar Product Segmentation

Received: 
	 4 November 2023
Revised: 
	 6 April 2024
Accepted: 
	 13 April 2024

Keywords: 

Agglomerative Clustering, 
E-commerce, Product Iden-
tification, Web Scraping

Journal of Applied Informatics and Technology, 7(2), 346-362.



วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025347Web Scraping-based System for E-commerce Price Comparison...

Pongsin Jankaew and Wachirawut Thamviset

product clustering demonstrate that using  
a combined feature of product names and 
images significantly improves clustering  
performance, surpassing the use of product 
names or images alone, with a 9 percent  
increase and 18 percent increase, respectively.

1. Introduction

	 In the current digital era, the internet  
has become an integral part of our daily 
lives. Its widespread accessibility has enabled  
businesses and organizations worldwide to 
leverage its power to improve work efficiency 
and achieve better results. E-commerce, one 
of the most significant benefits of the internet, 
has witnessed exponential growth in recent 
years. Online shopping platforms have become 
increasingly popular, providing people with 
a convenient and easy way to access goods 
and services from the comfort of their homes  
(Kemp, 2022). Despite the convenience  
offered by online shopping, finding the best 
deals can be a time-consuming and frustrating 
process. Consumers often have to navigate 
multiple websites to compare prices, which 
can be inconvenient and inefficient (Asawa 
et al., 2022; Mehak et al., 2019). To address 
this issue, price comparison websites have 
emerged, allowing users to compare prices 
across various e-commerce platforms. In 
Thailand, there are existing websites perform 
price comparisons, including iPrice and Priceza. 
iPrice compares products within leading  
e-commerce websites like Lazada, Shopee, 
and Central Online, whereas Priceza stores 
product data in its database and compares 

categories like mobiles, computers, electric 
appliances, household goods, and fashion 
items. However, these websites sometimes 
encounter problems such as mismatched 
product prices on the price comparison 
website and the original website, or missing 
product information that appears on the 
price comparison website but not on the 
original website. The primary reason for these  
discrepancies may be the lack of regular  
updates on the product data in these websites, 
leading to inaccurate product comparisons.

	 In this paper, we propose a web 
scraping-based system designed for comparing  
products across multiple e-commerce websites. 
Our system offers configurability, allowing users 
to specify extraction rules for each selected 
target website. It operates by extracting data 
from the target website in real-time as the 
user enters a search query, ensuring that the 
displayed product information is up to date. 
This design addresses issues present in prior 
price comparison websites, particularly those 
related to mismatched or missing product 
data. To enhance the user experience, we 
are developing a feature that recommends 
similar products within search results. This 
system utilizes product names and images 
as features and employs an Agglomerative  
Clustering method for grouping similar products. 
Moreover, our system incorporates a product 
model identification feature, enabling the 
recognition and grouping of products sharing 
the same model. This feature can be used 
with any product dataset as a reference. The 
goal is to enable consumers to make informed 



วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025348Web Scraping-based System for E-commerce Price Comparison...

Pongsin Jankaew and Wachirawut Thamviset

decisions when shopping online, saving both 
time and money while elevating their overall 
online shopping experience.

2. Related Work

2.1 Web Scraping Approaches

	 Web scraping stands as a prevalent 
data mining technology employed for extracting  
unstructured data from diverse online sources. 
The acquired data can subsequently undergo 
restructuring and transformation into a structured  
format. The process of web scraping can 
be executed through manual techniques or 
automated programs. Presently, websites 
are commonly categorized into two principal  
formats: static and dynamic. Each of these web 
formats necessitates distinct data extraction 
methodologies (Lan et al., 2021).

2.1.1 Static Webpages Scraping

	 Static webpages have a fixed data 
structure and display the same content 
stored on the web server side when HTML 
data is loaded on the client’s web browser. 
Retrieving HTML data from a static page is 
typically done by sending an HTTP request. 
Subsequently, an HTML Parser is employed to 
extract the pertinent information from HTML 
documents, thereby constructing a hierarchical 
tree structure known as the Document Object 
Model (DOM Tree). Within this context, users 
specify the HTML tags housing the desired 
information to facilitate the data extraction 
process (Lan et al., 2021).

2.1.2 Dynamic Webpages Scraping

	 Web scraping of dynamic webpages 
poses challenges due to the dynamic loading  
of data using JavaScript. Dynamic pages cannot 
be accessed in the requested HTML of the 
target webpage by simply sending an HTTP 
request. To overcome this issue, the web 
driver is used, which is a web automation  
framework which allows user to execute 
test across various browsers (Gheorghe et 
al., 2018). Web scraping methodologies  
incorporate the use of a web driver, enabling 
the automation of actions across different 
web browsers. Employing a web driver to 
interact with a website enables the system 
to execute JavaScript on the target webpage, 
thereby ensuring the retrieval of the necessary 
information. Subsequently, HTML Parser are 
employed to transform the HTML documents 
retrieved from the webpage into a structured 
tree format, facilitating the extraction of the 
desired information (Lan et al., 2021).

	 The researcher conducted a review 
of pertinent literature concerning data  
extraction methodologies applied to diverse 
e-commerce websites. A study by Ambre  
et al. (2019) outlined the development of  
a web application for comparing product 
prices across multiple websites, utilizing static 
web scraping methodologies with the Python  
package. This involved incorporating the  
Request library for sending HTTP requests and 
the Beautiful Soup 4 library for HTML parsing. In 
a separate study, Alam et al. (2020) introduced 
a price comparison application tailored for 



วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025349Web Scraping-based System for E-commerce Price Comparison...

Pongsin Jankaew and Wachirawut Thamviset

Bangladeshi e-commerce platforms, utilizing 
static webpage scraping methodologies via 
the Scrapy framework for website access and 
automated data extraction. In contrast, Asawa 
et al. (2022) engineered a price comparison 
web application involved the implementation 
of dynamic web scraping techniques, utilizing 
Selenium as a web driver, available in various 
languages including Python, and Beautiful 
Soup 4 as an HTML parser. Additionally, Mehak 
et al. (2019) developed a web application 
for product price comparison, employing a  
hybrid approach that encompassed both HTTP 
request transmission using Request library 
and web driver techniques using Selenium 
to access various websites, with Beautiful 
Soup 4 serving as the HTML parser for this 
application.			

	 The mentioned studies employed 
diverse methods for data extraction, with 
some focusing on static web data extraction 
using tools like the Request library or Scrapy 
framework, while others utilized the Selenium 
library for websites with dynamic content. 
However, the latter approach often incurred 
longer processing times compared to tools 
designed for static websites. Notably, all the 
mentioned research fixed the target websites 
for their web scraping systems, limiting flexibility 
when users wished to search for products on 
different websites. Recognizing this limitation, 
the researcher identified an opportunity to 
enhance the efficiency of web data extraction  
by developing a system capable of customization  
for scraping any desired target website. This 
system is designed to select extraction tools 

based on the nature of the target website, 
providing increased flexibility for users.

2.2 Product Matching Approaches

	 The process of product matching is  
accomplished through the application of machine 
learning methodologies. Various studies have 
addressed the Product Matching process using 
distinct approaches. Li et al. (2020) developed 
a method for finding products of the same 
type, employing an artificial neural network 
model that considers two types of product 
descriptions: title and attribute. It consists of  
a model for processing product title data and 
a model for processing product attributes data 
together. Addagarla & Amalanathan (2020) 
have developed an image-based search for 
similar product recommendation system by 
processing product image data by performing  
Principal Component Analysis (PCA) using 
Singular Value Decomposition (SVD) method. 
Next, the data will be grouped using the  
K-means++ method to group similar product 
data. The input image is then measured for 
Manhattan distance to the target clusters set, 
fetching the top-N similar products with low 
distance measures. Kannan (2021) developed 
a system to classify whether products are 
identical, utilizing product name and image 
information from e-commerce websites. The 
model is a combination of TF-IDF for product 
name data and ResNet-18, a Convolutional 
Neural Networks (CNN) architecture, for  
product image data.

	 This research aims to develop an  
efficient process for grouping similar products 



วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025350Web Scraping-based System for E-commerce Price Comparison...

Pongsin Jankaew and Wachirawut Thamviset

without relying on high processing power, 
ensuring the prompt presentation of grouping  
results to users. Despite the effective  
outcomes produced by the artificial neural 
network model, its resurce-intensive nature 
led the researchers to explore alternatives. 
While the K-means++ clustering method is 
robust, it requires prior determination of the 
number of clusters, posing a challenge when 
dealing with products of an unknown grouping 
structure. Additionally, the algorithm in the 
last-mentioned research focuses on classifying 
whether a product is similar to others, whereas 
our research aims to group similar products. 
Consequently, the researchers opted for the 
TF-IDF method to process product names 
and a pre-trained CNN model for processing 
product images, extracting features with less 
processing power. These features are then 
employed in an Agglomerative Clustering 
approach, a hierarchical clustering algorithm. 
Unlike partitioning methods like K-means++, 
agglomerative clustering builds a hierarchy 
of clusters without predefining the number 
of clusters.

3. Materials and Methods

	 In this research, a web application 
has been designed as the system’s form. 
The system was developed using the Django 
framework, implemented in the Python  

programming language. Django allows  
developers to create web applications quickly 
by providing many pre-built components 
and templates, thus reducing development 
time and effort. An overview of the system  
architecture is presented in Figure 1. The 
proposed system comprises three main layers:

	 •	 Web Extraction Layer: This layer 
focuses on extracting product data 
from the target websites, initiated 
by receiving search queries from 
the user interface.

	 •	 Data Categorization Layer:  
Following the extraction of product  
data in the Web Extraction Layer, 
this layer categorizes the data. It 
consists of two modules: one for 
product type or model identifica-
tion and another for clustering 
unidentified products.

	 •	 Application Layer: This layer  
provides a user interface, allowing 
users to enter search queries for 
their desired products, which are 
then sent to the Web Extraction 
Layer. Additionally, it displays the 
product data generated by the 
preceding layers.



วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025351Web Scraping-based System for E-commerce Price Comparison...

Pongsin Jankaew and Wachirawut Thamviset 5 

 

 
Figure 1. System Architecture 

3.1 Implementation of the Web Extraction System 
 The web extraction process takes place within the Web Extraction Layer of this system. This implementation 
involves configuring extraction rules in the wrapper configuration, providing directives to the web wrapper for the 

Figure 1. System Architecture



วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025352Web Scraping-based System for E-commerce Price Comparison...

Pongsin Jankaew and Wachirawut Thamviset

3.1 Implementation of the Web 
Extraction System

	 The web extraction process takes 
place within the Web Extraction Layer of 
this system. This implementation involves 
configuring extraction rules in the wrapper 
configuration, providing directives to the 
web wrapper for the accurate extraction of 
product data from designated target websites.  
When a user enters a search query in the 
user interface, the web wrapper extracts 
data from the target website based on 
the search query and extraction rules. This  
approach ensures the freshness of the extracted 
data, addressing issues prevalent in existing 
price comparison websites, such as missing 
or mismatched information. Subsequently,  
the extracted data is sent to the data  
categorization layer for further processing. 
The components involved in web extraction 
are detailed as follows: 

3.1.1 Wrapper Configuration

	 Wrapper configuration allows users 
to customize the web wrapper in the Web 
Extraction Layer. It provides rules for web  
accessibility tools, offering two options: 
Requests, for making HTTP requests, and 
Selenium WebDriver, for automating web 
browsers. In the initial step, users are tasked 
with determining the dynamism of the target  
webpage by disabling JavaScript. If the desired 
data persists, the Requests option is used for 
its faster processing time; otherwise, Selenium 
is employed for dynamic pages. Subsequently, 
users need to inspect the website’s HTML 

structure to identify the HTML elements  
containing required product data, such as titles, 
prices, images, and URLs. This information 
serves as a prerequisite for the configuration 
of a dedicated file in subsequent steps.

	 The wrapper configuration file  
template, as depicted in Figure 2, is formatted  
in JSON. It requires users to define values 
for each key. For elements requiring HTML 
values, users specify the tag name, class  
attribute, or ID of the HTML elements 
identified during the earlier inspection. For 
instance, if the product name is in “<div 
class=”product-name”>,” it’s defined in the 
“title” key as “div[class=’product-name’]”. 
Users can configure additional settings, such 
as the number of pages to scrape and the 
access method (sequential or parallel). An 
example of the wrapper configuration for 
each target website is provided in Figure 3. 
Furthermore, users can customize web access 
tools, including ‘Requests’ and ‘Selenium.’, 
with the flexibility to customize HTTP headers  
for Requests and browser actions, waiting times, 
and scrolling preferences for Selenium. Users 
can tailor web accessibility tools for each site, 
enabling specific actions for different sites, or 
use default settings if not specified.

3.1.2 Web Wrapper

	 Web Wrapper is responsible for  
automatically extract product information 
from the target website. To achieve successful  
web data extraction, the system follows a 
defined process. When a user enters a search 
term in the user interface, the system reads 



วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025353Web Scraping-based System for E-commerce Price Comparison...

Pongsin Jankaew and Wachirawut Thamviset

    "configs": [

        {

            "method": "[Specify the web access method: 'requests' or 'selenium']",

            "base_url": "[Enter the domain name of the target website]",

            "search_url": "[Specify the URL for embedding search queries]",

            "num_of_pages": [Number of search results pages on the target website to be scraped.],

            "multipage_processing_method":"[Specify method for accessing multiple pages: 'sequential' 

or 'parallel']",

            "items": "[Specify the HTML element containing the block of product data]",

            "title": "[Specify the HTML element containing the product name]",

            "price": "[Specify the HTML element containing the product price]",

	 "link": "[Specify the HTML element containing the product link; leave blank if not applicable]",

            "image_url": "[Specify the HTML element containing the product image URL]",

            "source": "[User-defined name for the target website to be displayed in the application result 

page]"

       },

       {[Configurations of other target websites]}

    ],

    "configs_request": {

        "headers": {"[Specify browser HTTP headers]"}

    },

    "configs_selenium": {

        "headless": "[Specify headless browser mode: yes ('y') or no ('n')]",

        "wait_time": [Specify wait time before parsing HTML content (in seconds)],

        "zoom":"[Apply webpage zoom: yes ('y') or no ('n')]",

        "zoom_percentage": [Specify webpage zoom percentage],

        "scrolling": "[Apply webpage scrolling: yes ('y') or no ('n')]",

        "scrolling_setting": {

            "scrolling_step": [Specify webpage scrolling step (in pixels)],

            "scrolling_pause_time": [Specify webpage scrolling pause time in each step (in seconds)]

            "max_step": [Specify the maximum number of steps for page scrolling, used if the page has 

infinite 

Figure 2. Template of Wrapper Configuration File



วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025354Web Scraping-based System for E-commerce Price Comparison...

Pongsin Jankaew and Wachirawut Thamviset

the wrapper configuration file to import the 
specified data extraction rules. Subsequently, 
the search term is incorporated into the URL 
for product searches on the target website, 
and the system accesses the website using 
the chosen web access tool (either Requests 
or Selenium WebDriver). Once access to the 
target website is established, the Beautiful 
Soup 4 library is invoked to parse the HTML 
content, converting it into a structured tree 
for data extraction. Beautiful Soup 4 then 
extracts the data based on the rules defined 
in the wrapper configuration file.

3.2 Product Type Identification 
Process 

	 Once the Web Wrapper extracts data 
from target websites, this extracted data is 
directed into the Product Identification module  

within the Data Categorization Layer. The 
core concept behind this process is to utilize 
product datasets as metadata, describing 
the product specifications for each item, to 
identify the product types or models of the 
extracted items. These datasets serve as a 
reference to make such identifications. To 
achieve this, the system employs TF-IDF (Term 
Frequency-Inverse Document Frequency) for 
vectorization of product names from both the 
extracted products and the product dataset. 
TF-IDF is a numerical statistic that reflects 
the importance of a term within a document  
relative to a collection of documents. The 
algorithm consists of two components: 
Term Frequency (TF) and Inverse Document  
Frequency (IDF). TF measures the frequency 
of a term within a document, while IDF  
evaluates the rarity of a term across the entire 

8 

 

 
Figure 3. Example of Wrapper Configuration 

3.2 Product Type Identification Process  

 Once the Web Wrapper extracts data from target websites, this extracted data is directed into the Product 
Identification module within the Data Categorization Layer. The core concept behind this process is to utilize product 
datasets as metadata, describing the product specifications for each item, to identify the product types or models of 
the extracted items. These datasets serve as a reference to make such identifications. To achieve this, the system 
employs TF-IDF (Term Frequency-Inverse Document Frequency) for vectorization of product names from both the 
extracted products and the product dataset. TF-IDF is a numerical statistic that reflects the importance of a term within 
a document relative to a collection of documents. The algorithm consists of two components: Term Frequency (TF) 
and Inverse Document Frequency (IDF). TF measures the frequency of a term within a document, while IDF evaluates 
the rarity of a term across the entire corpus. The computations for TF and IDF are expressed in Equations 1 and 2, 
respectively. The TF-IDF score for a term in a document is then derived by multiplying its TF by its IDF, as depicted 
in Equation 3. 

𝑇𝐹(𝑡, 𝑑) =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑟𝑚𝑡𝑎𝑝𝑝𝑒𝑎𝑟𝑠𝑖𝑛𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑑

𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑡𝑒𝑟𝑚𝑠𝑖𝑛𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑑  (1) 

𝐼𝐷𝐹(𝑡, 𝐷) = 𝑙𝑜𝑔 �
𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠𝑖𝑛𝑡ℎ𝑒𝑐𝑜𝑟𝑝𝑢𝑠𝐷
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔𝑡𝑒𝑟𝑚𝑡 � (2) 

Figure 3. Example of Wrapper Configuration



วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025355Web Scraping-based System for E-commerce Price Comparison...

Pongsin Jankaew and Wachirawut Thamviset

corpus. The computations for TF and IDF are 
expressed in Equations 1 and 2, respectively. 
The TF-IDF score for a term in a document is 
then derived by multiplying its TF by its IDF, 
as depicted in Equation 3.

	

8 

 

 
Figure 3. Example of Wrapper Configuration 

3.2 Product Type Identification Process  

 Once the Web Wrapper extracts data from target websites, this extracted data is directed into the Product 
Identification module within the Data Categorization Layer. The core concept behind this process is to utilize product 
datasets as metadata, describing the product specifications for each item, to identify the product types or models of 
the extracted items. These datasets serve as a reference to make such identifications. To achieve this, the system 
employs TF-IDF (Term Frequency-Inverse Document Frequency) for vectorization of product names from both the 
extracted products and the product dataset. TF-IDF is a numerical statistic that reflects the importance of a term within 
a document relative to a collection of documents. The algorithm consists of two components: Term Frequency (TF) 
and Inverse Document Frequency (IDF). TF measures the frequency of a term within a document, while IDF evaluates 
the rarity of a term across the entire corpus. The computations for TF and IDF are expressed in Equations 1 and 2, 
respectively. The TF-IDF score for a term in a document is then derived by multiplying its TF by its IDF, as depicted 
in Equation 3. 

𝑇𝐹(𝑡, 𝑑) =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑟𝑚𝑡𝑎𝑝𝑝𝑒𝑎𝑟𝑠𝑖𝑛𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑑

𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑡𝑒𝑟𝑚𝑠𝑖𝑛𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑑  (1) 

𝐼𝐷𝐹(𝑡, 𝐷) = 𝑙𝑜𝑔 �
𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠𝑖𝑛𝑡ℎ𝑒𝑐𝑜𝑟𝑝𝑢𝑠𝐷
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔𝑡𝑒𝑟𝑚𝑡 � (2) 

 (1)

	

8 

 

 
Figure 3. Example of Wrapper Configuration 

3.2 Product Type Identification Process  

 Once the Web Wrapper extracts data from target websites, this extracted data is directed into the Product 
Identification module within the Data Categorization Layer. The core concept behind this process is to utilize product 
datasets as metadata, describing the product specifications for each item, to identify the product types or models of 
the extracted items. These datasets serve as a reference to make such identifications. To achieve this, the system 
employs TF-IDF (Term Frequency-Inverse Document Frequency) for vectorization of product names from both the 
extracted products and the product dataset. TF-IDF is a numerical statistic that reflects the importance of a term within 
a document relative to a collection of documents. The algorithm consists of two components: Term Frequency (TF) 
and Inverse Document Frequency (IDF). TF measures the frequency of a term within a document, while IDF evaluates 
the rarity of a term across the entire corpus. The computations for TF and IDF are expressed in Equations 1 and 2, 
respectively. The TF-IDF score for a term in a document is then derived by multiplying its TF by its IDF, as depicted 
in Equation 3. 

𝑇𝐹(𝑡, 𝑑) =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑟𝑚𝑡𝑎𝑝𝑝𝑒𝑎𝑟𝑠𝑖𝑛𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑑

𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑡𝑒𝑟𝑚𝑠𝑖𝑛𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑑  (1) 

𝐼𝐷𝐹(𝑡, 𝐷) = 𝑙𝑜𝑔 �
𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠𝑖𝑛𝑡ℎ𝑒𝑐𝑜𝑟𝑝𝑢𝑠𝐷
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔𝑡𝑒𝑟𝑚𝑡 � (2)  (2)

	

9 

 

𝑇𝐹 − 𝐼𝐷𝐹(𝑡,𝑑,𝐷) = 𝑇𝐹(𝑡,𝑑) × 𝐼𝐷𝐹(𝑡,𝐷) (3) 

 

 

 The vectorization process involves converting textual data, in this case, product names, into numerical 
vectors. Specifically, TF-IDF assigns weightings to each term based on its frequency within the product name and its 
rarity across the entire dataset. The system then evaluates which product models in the dataset exhibit the highest 
cosine similarity values to the extracted products. The cosine similarity is a measure of the cosine of the angle between 
two vectors. In the context of TF-IDF vectors, it indicates how closely aligned the vectors are in the high-dimensional 
space defined by the terms. The formula for cosine similarity between two vectors A and B is given by: 

𝑐𝑜𝑠(𝐴,𝐵) =
𝐴 ∙ 𝐵

‖𝐴‖ × ‖𝐵‖
 (4) 

 

where A⋅B is the dot product of vectors A and B. ∥A∥ and ∥B∥ are the magnitude of vectors A and B, respectively. 
The result is a value between -1 and 1. A value of 1 indicates perfect similarity, 0 indicates no similarity, and -1 
indicates perfect dissimilarity. In this scenario, the model in the dataset with the highest similarity to the scraped 
product under consideration is identified, but if the maximum cosine similarity value does not meet the specified 
threshold (defaulting to 0.5, adjustable in the dataset configuration file), the system does not identify the model for the 
scraped product, considering that the model is not in the dataset. Subsequently, the system checks for any extracted 
products identified as the same model, grouping them into the same product category, and prepares to transmit the 
results to the user interface. Finally, the unidentified products are forwarded to the Product Clustering module for the 
grouping of similar products in the subsequent step. 

3.2.1 Configuring the Import of Product Datasets 
 Users have the option to import a product dataset into the system. This dataset can be obtained from 
various online sources or extracted from specific websites. The imported dataset essentially acts as a guide to assist 
in the identification of product types or models from the target website's data. Users can configure dataset imports 
through the system's JSON-formatted configuration file, with a provided template, as shown in Figure 4. In the context 
of this research, two datasets have been incorporated into the system, one focusing on laptop computers extracted 
from www.notebookspec.com and another on mobile phones extracted from www.specphone.com. These datasets 
were created through web data extraction by the researcher using the Scrapy Framework, which is proficient in swiftly 
extracting numerous static webpages containing detailed product specifications.  An example of a laptop dataset used 
in this system is shown in Figure 5. A crucial step involves specifying trigger words, which serve as keywords to match 
against the user's search queries. The system will import and process the dataset if any of these trigger words are 
found in the user's search term. For example, if the dataset pertains to laptop computers, the user can define trigger 

	   (3)

	 The vectorization process involves 
converting textual data, in this case, product 
names, into numerical vectors. Specifically, 
TF-IDF assigns weightings to each term based 
on its frequency within the product name and 
its rarity across the entire dataset. The system 
then evaluates which product models in the 
dataset exhibit the highest cosine similarity 
values to the extracted products. The cosine 
similarity is a measure of the cosine of the 
angle between two vectors. In the context 
of TF-IDF vectors, it indicates how closely 
aligned the vectors are in the high-dimensional 
space defined by the terms. The formula for 
cosine similarity between two vectors A and 
B is given by:

	

9 

 

𝑇𝐹 − 𝐼𝐷𝐹(𝑡,𝑑,𝐷) = 𝑇𝐹(𝑡,𝑑) × 𝐼𝐷𝐹(𝑡,𝐷) (3) 

 

 

 The vectorization process involves converting textual data, in this case, product names, into numerical 
vectors. Specifically, TF-IDF assigns weightings to each term based on its frequency within the product name and its 
rarity across the entire dataset. The system then evaluates which product models in the dataset exhibit the highest 
cosine similarity values to the extracted products. The cosine similarity is a measure of the cosine of the angle between 
two vectors. In the context of TF-IDF vectors, it indicates how closely aligned the vectors are in the high-dimensional 
space defined by the terms. The formula for cosine similarity between two vectors A and B is given by: 

𝑐𝑜𝑠(𝐴,𝐵) =
𝐴 ∙ 𝐵

‖𝐴‖ × ‖𝐵‖
 (4) 

 

where A⋅B is the dot product of vectors A and B. ∥A∥ and ∥B∥ are the magnitude of vectors A and B, respectively. 
The result is a value between -1 and 1. A value of 1 indicates perfect similarity, 0 indicates no similarity, and -1 
indicates perfect dissimilarity. In this scenario, the model in the dataset with the highest similarity to the scraped 
product under consideration is identified, but if the maximum cosine similarity value does not meet the specified 
threshold (defaulting to 0.5, adjustable in the dataset configuration file), the system does not identify the model for the 
scraped product, considering that the model is not in the dataset. Subsequently, the system checks for any extracted 
products identified as the same model, grouping them into the same product category, and prepares to transmit the 
results to the user interface. Finally, the unidentified products are forwarded to the Product Clustering module for the 
grouping of similar products in the subsequent step. 

3.2.1 Configuring the Import of Product Datasets 
 Users have the option to import a product dataset into the system. This dataset can be obtained from 
various online sources or extracted from specific websites. The imported dataset essentially acts as a guide to assist 
in the identification of product types or models from the target website's data. Users can configure dataset imports 
through the system's JSON-formatted configuration file, with a provided template, as shown in Figure 4. In the context 
of this research, two datasets have been incorporated into the system, one focusing on laptop computers extracted 
from www.notebookspec.com and another on mobile phones extracted from www.specphone.com. These datasets 
were created through web data extraction by the researcher using the Scrapy Framework, which is proficient in swiftly 
extracting numerous static webpages containing detailed product specifications.  An example of a laptop dataset used 
in this system is shown in Figure 5. A crucial step involves specifying trigger words, which serve as keywords to match 
against the user's search queries. The system will import and process the dataset if any of these trigger words are 
found in the user's search term. For example, if the dataset pertains to laptop computers, the user can define trigger 

		    (4)

	 where A•B is the dot product of vectors 
A and B. ׀׀A׀׀ and ׀׀B׀׀ are the magnitude 
of vectors A and B, respectively. The result 
is a value between -1 and 1. A value of 1 

indicates perfect similarity, 0 indicates no 
similarity, and -1 indicates perfect dissimilarity. 
In this scenario, the model in the dataset with 
the highest similarity to the scraped product 
under consideration is identified, but if the 
maximum cosine similarity value does not 
meet the specified threshold (defaulting to 
0.5, adjustable in the dataset configuration 
file), the system does not identify the model 
for the scraped product, considering that the 
model is not in the dataset. Subsequently, 
the system checks for any extracted products  
identified as the same model, grouping 
them into the same product category, and 
prepares to transmit the results to the user 
interface. Finally, the unidentified products are  
forwarded to the Product Clustering module 
for the grouping of similar products in the 
subsequent step.

3.2.1 Configuring the Import 
of Product Datasets

	 Users have the option to import a 
product dataset into the system. This dataset 
can be obtained from various online sources 
or extracted from specific websites. The  
imported dataset essentially acts as a guide 
to assist in the identification of product types 
or models from the target website’s data. 
Users can configure dataset imports through 
the system’s JSON-formatted configuration 
file, with a provided template, as shown in 
Figure 4. In the context of this research, two 
datasets have been incorporated into the 
system, one focusing on laptop computers 
extracted from www.notebookspec.com and 



วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025356Web Scraping-based System for E-commerce Price Comparison...

Pongsin Jankaew and Wachirawut Thamviset

another on mobile phones extracted from 
www.specphone.com. These datasets were 
created through web data extraction by the 
researcher using the Scrapy Framework, which 
is proficient in swiftly extracting numerous 
static webpages containing detailed product 
specifications. An example of a laptop dataset 
used in this system is shown in Figure 5. A 
crucial step involves specifying trigger words, 
which serve as keywords to match against the 
user’s search queries. The system will import 
and process the dataset if any of these trigger 
words are found in the user’s search term. 
For example, if the dataset pertains to laptop 
computers, the user can define trigger words 
like “Notebook” or “Laptop.” If the user’s 
search query includes any of these words, 
e.g., “Laptop for Students”, the system will 
import the corresponding laptop dataset for 
further processing.

	 Additionally, the user must indicate the 
name of the column in the dataset containing 

product titles to ensure correct processing. 
Other settings allow users to customize the 
display of product properties on the search 
results page. For instance, users can choose 
to display information such as Central  
Processing Unit (CPU), Graphics Processing 
Unit (GPU), Random Access Memory (RAM), 
and Solid State Drive (SSD) storage sizes,  
enhancing the convenience of product 
searches. The example result of product type 
identification is presented in Figure 6.

3.2.2 Filtering Products Using 
Specification Data

	 Once the entire process is complete, 
users can filter products on the web applica-
tion’s results page using product specification 
data, utilizing the product dataset as metadata 
for filtering. For instance, when employing a 
laptop computer dataset, users may search 
for specific laptop models with particular CPU 
or GPU types, as illustrated in Figure 7.

 “dataset_configs”: [
     {
	 “trigger_words”: [“Specify a set of trigger words for dataset importation”],
	 “file_path”: “Specify the file path of the dataset”,
	 “title_column_name”: “Specify the column name in the dataset containing product model 
names”,
	 “columns_to_be_shown”: [“Specify names of columns in the dataset with specification data 
to display in the result page”],
	 “similarity_threshold”: “Specify the minimum cosine similarity threshold to consider a product 
match (default is 0.5)”
     },
     {“Additional configurations for other dataset importations”}
     ]

Figure 4. Template of Dataset Configuration File



วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025357Web Scraping-based System for E-commerce Price Comparison...

Pongsin Jankaew and Wachirawut Thamviset

11 

 

  
Figure 5. Example of Laptop Dataset 

 

 
Figure 6. Example of Product Identification Result 

 
 

11 

 

  
Figure 5. Example of Laptop Dataset 

 

 
Figure 6. Example of Product Identification Result 

 
 

Figure 5. Example of Laptop Dataset

Figure 6. Example of Product Identification Result



วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025358Web Scraping-based System for E-commerce Price Comparison...

Pongsin Jankaew and Wachirawut Thamviset

12 

 

 

Figure 7. Search Filtering 

3.3 Similar Product Grouping Process 
 This phase, executed within the Data Categorization Layer similar to the previous process, categorizes 
unclassified data from either the Product Identification module or directly from the Web Wrapper in instances where 
dataset importation is not performed. The Agglomerative Clustering method is employed, utilizing product names and 
images as features for grouping. Agglomerative Clustering is a hierarchical clustering algorithm used for grouping 
similar data points into clusters. The process starts with each data point considered as an individual cluster and, in 
each iteration, merges the closest pair of clusters until only one cluster remains. The key idea is to build a hierarchy 
of clusters, represented as a tree or dendrogram, where the leaves of the tree are the individual data points, and the 
root is the ultimate single cluster containing all data points.  

 Initially, product name data undergoes preprocessing, including punctuation removal, tokenization, and stop-
word elimination. Then, the data is vectorized using TF-IDF. For the product images, features are extracted using a 
Convolutional Neural Network (CNN) model. Image features represent patterns, shapes, and structures within images, 
providing numerical representations of content. The CNN model, pretrained on the ImageNet-1k dataset containing 
1,281,167 categorized images (Russakovsky et al., 2015), learns filters and patterns useful for discriminating between 
objects or features within images. This process is facilitated by the PyTorch library, providing image preprocessing 
tools such as resizing, central cropping, and normalization. After extracting both product name and image features, 
the system concatenates these features and employs them for data grouping via Agglomerative Clustering, utilizing 
the scikit-learn library and the "cosine" metric for grouping. This process requires defining a Distance Threshold, 
determining when the system combines groups based on cosine distance, which can be specified in the product 
grouping configuration file. Subsequently, all grouped product data is collected and transmitted to the frontend system, 
allowing users to search for similar products, as illustrated in Figure 8. Furthermore, the system stores feature data 
extracted from product images in its cache to expedite future searches for the same products. Since image feature 
extraction is computationally intensive and time-consuming, cached feature data enables quicker processing. This 
optimization reduces overall processing time. 

3.3 Similar Product Grouping 
Process

	 This phase, executed within the Data 
Categorization Layer similar to the previous 
process, categorizes unclassified data from 
either the Product Identification module or 
directly from the Web Wrapper in instances 
where dataset importation is not performed. 
The Agglomerative Clustering method is em-
ployed, utilizing product names and images as 
features for grouping. Agglomerative Clustering 
is a hierarchical clustering algorithm used for 
grouping similar data points into clusters. The 
process starts with each data point considered 
as an individual cluster and, in each iteration, 
merges the closest pair of clusters until only 
one cluster remains. The key idea is to build 
a hierarchy of clusters, represented as a tree 
or dendrogram, where the leaves of the tree 
are the individual data points, and the root 
is the ultimate single cluster containing all 
data points. 

	 Initially, product name data undergoes 
preprocessing, including punctuation removal, 
tokenization, and stop-word elimination. 
Then, the data is vectorized using TF-IDF. For 
the product images, features are extracted 
using a Convolutional Neural Network (CNN) 
model. Image features represent patterns, 
shapes, and structures within images, providing  
numerical representations of content. The 
CNN model, pretrained on the ImageNet-1k 
dataset containing 1,281,167 categorized im-
ages (Russakovsky et al., 2015), learns filters 
and patterns useful for discriminating between 
objects or features within images. This process 
is facilitated by the PyTorch library, providing 
image preprocessing tools such as resizing, 
central cropping, and normalization. After 
extracting both product name and image 
features, the system concatenates these 
features and employs them for data grouping  
via Agglomerative Clustering, utilizing the 
scikit-learn library and the “cosine” metric 
for grouping. This process requires defining 

Figure 7. Search Filtering



วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025359Web Scraping-based System for E-commerce Price Comparison...

Pongsin Jankaew and Wachirawut Thamviset

a Distance Threshold, determining when the 
system combines groups based on cosine  
distance, which can be specified in the product  
grouping configuration file. Subsequently, 
all grouped product data is collected and  
transmitted to the frontend system, allowing  
users to search for similar products, as  
illustrated in Figure 8. Furthermore, the system 
stores feature data extracted from product 
images in its cache to expedite future searches 
for the same products. Since image feature 
extraction is computationally intensive and 
time-consuming, cached feature data enables 
quicker processing. This optimization reduces 
overall processing time.

4. Results and Discussion

	 We conducted a preliminary evaluation  
of our system in two aspects. Firstly, the 
web extraction system underwent evaluation 
through experiments involving the extraction 
of product data from various e-commerce 
websites. These experiments aimed to 

verify whether the extracted results correctly 
contained the product data from the target 
websites. Specifically, we selected Lazada 
(lazada.co.th), Power Buy (powerbuy.co.th), 
Banana IT (bnn.in.th), and JIB (jib.co.th) as target 
websites. The web extraction experiments 
encompassed ten different search queries. 
The results presented in Table 1 demonstrate 
that our system, with a correctly configured 
Web Wrapper, achieved a 100 percent  
accuracy rate in extracting product data 
from target websites. This indicates that our 
system extracted data without any missing 
or mismatched information.

	 The second aspect of our evaluation 
focused on the performance of our similar 
products grouping system. Given the avail-
ability of numerous CNN models, researchers 
conducted experiments to determine the most 
suitable model for extracting features from 
images and classifying them using Agglom-
erative Clustering. The experiments utilized 
product dataset sourced from the Shopee 

13 

 

4. Results and Discussion 
   We conducted a preliminary evaluation of our system in two aspects. Firstly, the web extraction system 
underwent evaluation through experiments involving the extraction of product data from various e-commerce websites. 
These experiments aimed to verify whether the extracted results correctly contained the product data from the target 
websites. Specifically, we selected Lazada (lazada.co.th), Power Buy (powerbuy.co.th), Banana IT (bnn.in.th), and JIB 
(jib.co.th) as target websites. The web extraction experiments encompassed ten different search queries. The results 
presented in Table 1 demonstrate that our system, with a correctly configured Web Wrapper, achieved a 100 percent 
accuracy rate in extracting product data from target websites. This indicates that our system extracted data without 
any missing or mismatched information. 
 

 
Figure 8. Example of Similar Product Grouping Result 

 The second aspect of our evaluation focused on the performance of our similar products grouping system. 
Given the availability of numerous CNN models, researchers conducted experiments to determine the most suitable 
model for extracting features from images and classifying them using Agglomerative Clustering. The experiments 
utilized product dataset sourced from the Shopee website, specifically a dataset designed for a similar product 
classification competition on www.kaggle.com. This dataset encompasses specifications for various types of products, 
including fashion items, electronics, and consumer goods. The dataset, comprising product name and image 
information necessary for the product grouping process, was downloaded from www.kaggle.com and imported into the 
system for experimentation. To assess the efficiency of these models, the researchers calculated the F1 score for 
each product and subsequently averaged these scores. This process determined the distance threshold value that 
yielded the highest F1 score, guiding model selection. 

 Researchers opted for several CNN models that are computationally efficient, pretrained on the ImageNet 
dataset. To expedite the research, a subset of 1,000 products was employed in the experiments. The results, presented 
in Table 2, demonstrated that the EfficientNet-B0 model (Tan & Le, 2019) outperformed other models without 
significantly increasing processing time for feature extraction and product grouping. Consequently, this model was 
selected as the default for extracting image features within our system. Subsequently, when the features obtained from 
TF-IDF were combined with features from EfficientNet-B0 for clustering, they exhibited superior performance compared 
to using TF-IDF features or the EfficientNet-B0 model in isolation.  

 

Figure 8. Example of Similar Product Grouping Result



วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025360Web Scraping-based System for E-commerce Price Comparison...

Pongsin Jankaew and Wachirawut Thamviset

website, specifically a dataset designed for a 
similar product classification competition on 
www.kaggle.com. This dataset encompasses 
specifications for various types of products, 
including fashion items, electronics, and  
consumer goods. The dataset, comprising 
product name and image information necessary  
for the product grouping process, was  
downloaded from www.kaggle.com and  
imported into the system for experimentation. 
To assess the efficiency of these models, the 
researchers calculated the F1 score for each 
product and subsequently averaged these 
scores. This process determined the distance 
threshold value that yielded the highest F1 
score, guiding model selection.

	 Researchers opted for several CNN 
models that are computationally efficient, 
pretrained on the ImageNet dataset. To  
expedite the research, a subset of 1,000  
products was employed in the experiments. 
The results, presented in Table 2, demonstrated  
that the EfficientNet-B0 model (Tan & Le, 
2019) outperformed other models without 
significantly increasing processing time for 
feature extraction and product grouping. 
Consequently, this model was selected as the 
default for extracting image features within 
our system. Subsequently, when the features 
obtained from TF-IDF were combined with 
features from EfficientNet-B0 for clustering, 
they exhibited superior performance compared 
to using TF-IDF features or the EfficientNet-B0 
model in isolation. 

Table 1.	 Web extraction experimental result

Target Website Extracting Method
Total Product Data  

Appeared on the Website
Total Valid Product Data 

Extracted

Lazada Dynamic 487 487

Power Buy Static 287 287

Banana IT Static 377 377

JIB Static 604 604

Table 2.	 Products grouping experimental result

Method F1 Score Processing Time (second) Best Distance Threshold

MobileNetV3-Small 0.7862 6.046 0.23

MobileNetV3-Large 0.7643 6.512 0.33

Resnet18 0.7503 6.9090 0.18

EfficientNet-B0 0.7990 8.1388 0.48

TF-IDF 0.8631 0.5142 0.82

TF-IDF + EfficientNet-B0 0.9428 8.6026 0.68



วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025361Web Scraping-based System for E-commerce Price Comparison...

Pongsin Jankaew and Wachirawut Thamviset

5. Conclusion

	 In this study, we have introduced a 
Data Scraping-based System designed to ex-
tract product data from various E-commerce 
websites. This system incorporates features 
for product identification and grouping of 
similar products, enhancing the browsing 
experience for users. Users can customize 
the system by defining extraction rules for 
web scraping and importing data for product 
identification. The effectiveness of the system 
is underlined by its ability to provide updated 
and tailored search results to users, reducing 
data mismatch and missing issues and thereby 
improving their online shopping experience. 
We anticipate continuous improvements to 
our system, focusing on optimizing product 
data feature extraction, enhancing clustering 
methods, and refining the data scraping pro-
cess. By continually refining and expanding 
the system’s capabilities, we aim to bridge 
the gap between consumers and e-commerce 
platforms, making online shopping a more 
streamlined and rewarding experience for 
all parties involved.

Reference

Addagarla, S. K., & Amalanathan, A. (2020). 
Probabilistic unsupervised machine 
learning approach for a similar image 
recommender system for E-commerce. 
Symmetry, 12(11), 1783. https://doi.
org/10.3390/sym12111783

Alam, A., Anjum, A. A., Tasin, F. S., Reyad, 
M. R., Sinthee, S. A., & Hossain, N. 
(2020). Upoma: A dynamic online 
price comparison tool for Bangladeshi 
E-commerce websites. 2020 IEEE 
Region 10 Symposium (TENSYMP), 
194–197. https://doi.org/10.1109/
tensymp50017.2020.9230862

Ambre, A., Gaikwad, P., Pawar, K., & Patil, V. 
(2019). Web and android applica-
tion for comparison of E-commerce 
products. International Journal of 
Advanced Engineering, Management 
and Science, 5(4), 266–268. https://
doi.org/10.22161/ijaems.5.4.5

Asawa, A., Dabre, S., Rahise, S., Bansode, 
M., Talele, K. T., & Chimurkar, P. 
(2022). Co-Mart - A daily necessity 
price comparison application. 2022  
International Conference on Applied 
Artificial Intelligence and Comput-
ing (ICAAIC), 1076–1080. https://doi.
org/10.1109/icaaic53929.2022.9792935

Gheorghe, M., Mihai, F.-C., & Dârdală, M. (2018). 
Modern techniques of web scraping  
for data scientists. International  
Journal of User-System Interaction, 
11(1), 63–75. https://rochi.utcluj.ro/
rrioc/articole/RRIOC-11-1-Gheorghe.pdf

Kannan, H. K. (2021). E-commerce product 
similarity match detection using 
product text and images [Master’s 
thesis, National College of Ireland]. 
https://norma.ncirl.ie/5171/ 



วารสารวิทยาการสารสนเทศและเทคโนโลยีประยุกต์, 7(2): 2568
Journal of Applied Informatics and Technology, 7(2): 2025362Web Scraping-based System for E-commerce Price Comparison...

Pongsin Jankaew and Wachirawut Thamviset

Kemp, S. (2022). Digital 2022: Another year 
of bumper growth. We are social.  
Retrieved August 24, 2023, from https://
wearesocial.com/us/blog/2022/01/
digital-2022-another-year-of-bumper-
growth-2/

Lan, H., Sha, D., Malarvizhi, A. S., Liu, Y., Li, Y., 
Meister, N., Liu, Q., Wang, Z., Yang, J., 
& Yang, C. P. (2021). COVID-Scraper:  
An open-source toolset for  
automatically scraping and processing 
global multi-scale spatiotemporal 
COVID-19 records. IEEE Access, 9, 
84783–84798. https://doi.org/10.1109/
access.2021.3085682

Li, J., Dou, Z., Zhu, Y., Zuo, X., & Wen, J.-R. 
(2019). Deep cross-platform product 
matching in E-commerce. Information 
Retrieval Journal, 23(2), 136–158. 
https://doi.org/10.1007/s10791-019-
09360-1

Mehak, S., Zafar, R., Aslam, S., & Bhatti, S. M. 
(2019). Exploiting filtering approach 
with web scrapping for smart online  
shopping : Penny Wise: A wise 
tool for online shopping. 2019 2nd  
International Conference on  
Computing, Mathematics and  
Engineering Technologies (ICoMET), 
1–5. https://doi.org/10.1109/ 
icomet.2019.8673399

Russakovsky, O., Deng, J., Su, H., Krause, J., 
Satheesh, S., Ma, S., Huang, Z., Karpathy, 
A., Khosla, A., Bernstein, M., Berg, A. 
C., & Fei-Fei, L. (2015). ImageNet large 
scale visual recognition challenge. 
International Journal of Computer 
Vision, 115(3), 211–252. https://doi.
org/10.1007/s11263-015-0816-y

Tan, M., & Le, Q. (2019). EfficientNet: Rethinking  
model scaling for convolutional 
neural networks. Proceedings of 
the 36th International Conference 
on Machine Learning  (Vol. 97), 
6105–6114. https://proceedings.mlr.
press/v97/tan19a.html


