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ABSTRACT

Nowadays, most real-world optimization problems
consist of many and often conflicting objectives to
be optimized simultaneously. Although, many cur-
rent Multi-Objective optimization algorithms can ef-
ficiently solve problems with 3 or less objectives, their
performance deteriorates proportionally with the in-
creasing of the objectives number. Furthermore, in
many situations the decision maker (DM) is not in-
terested in all trade-off solutions obtained but rather
interested in a single optimum solution or a small set
of those trade-offs. Therefore, determining an opti-
mum solution or a small set of trade-off solutions is
a difficult task. However, an interesting method for
finding such solutions is identifying solutions in the
Knee region. Solutions in the Knee region can be
considered the best obtained solution in the obtained
trade-off set especially if there is no preference or
equally important objectives. In this paper, a prun-
ing strategy was used to find solutions in the Knee
region of Pareto optimal fronts for some benchmark
problems obtained by NSGA-II, MOEA /D-DE and
a promising new Multi-Objective optimization algo-
rithm NSGA-III. Lastly, those knee solutions found
were compared and evaluated using a generational
distance performance metric, computation time and
a statistical one-way ANOVA test.

Keywords: Decision making, Many-Objective opti-
mization, Multi-Objective optimization, Knee-based
MOEAs

1. INTRODUCTION

Multi-Objective optimization problems, known as
MOP, are optimization problems with two or more in-
commensurable objective functions, often conflicted,
and need to be optimized simultaneously. Simi-
larly, Many-Objective optimization problems, known
as MaOP, are optimization problems with more than
three objectives [1]. In general, Multi-Objective op-
timization does not have a single optimum solution
but rather there is a set of alternative trade-off so-
lutions, generally known as Pareto optimal solutions.
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These solutions are optimal in the sense that no other
solutions in the search space are superior to them
when all objectives are considered [24]. An exam-
ple of a Many-Objective optimization problem is a
power plant expansion problem. The objectives of
such problem may include minimizing cost and green-
house gas emissions while maximizing system reliabil-
ity and capacity. Fig.1 illustrates this example.
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Fig.1: Power plant expansion problem.

Multi-Objective Evolutionary Algorithms, well-
known as MOEA, have been proven to be quite ef-
ficient in solving problems with two or three objec-
tives, but that is not the case with Many-Objective
optimization problems. Recent studies [1, 4, 25] and
have shown that MOPs face many difficulties when
tackling problems involving a larger number of ob-
jectives.

In general, both MaOP and MOP Evolutionary
Algorithms (EA) yield numerous Pareto optimal so-
lutions. However, the Decision Maker (DM) is not
interested in all Pareto optimal solutions but rather
interested in a single optimum solution or a preferred
region of the Pareto Front (PF) [6].

The optimization and the decision process are of-
ten combined in the literature [26], and therefore
Multi-Objective optimization approaches can be gen-
erally classified into three types:

1. Decision making before search: is often described
as a Priori technique where the objectives of the
MOP are aggregated into a single objective which
implicitly comprises the preference information
given by the DM.

2. Search before decision making: is often described
as a Posteriori technique. The optimization is per-
formed without any preference information where
the search process yields a set of (ideally Pareto-
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optimal) solutions from which the DM must choose
a solution.

3. Decision making during search: is often described
as an Interactive technique where the DM can ar-
ticulate preferences during the optimization pro-
cess to guide the search. After each iteration or
number of iterations, several Pareto optimal solu-
tions are presented to the DM. Then, the DM fur-
ther specifies more preference information to guide
the search until the DM is satisfied.
Consequently, many methods have been proposed

and used to deal with the decision making in the opti-

mization problems. One of the most interesting meth-
ods is finding solutions in the “Knee” region. A Knee
region can be described as the “bulge” in the Pareto
front as illustrated in Fig.2 [3]. Knee solutions are
defined as a subset of Pareto optimal solutions for
which an improvement in one objective will result in

a deterioration in at least another one. In general,

the MOP solutions in the knee region of the Pareto

front are logically preferred to the DM if there is no

user-specific or problem specific preferences [2-3].

B/

Fig.2: Knee region [3].

These issues have been and will continue to be a
very active research area in the field of Evolutionary
Computing and its applications. Therefore, the main
goal of this paper in summary is to find knee solutions
from the obtained Pareto optimal fronts by pruning
Algorithm, called Angle-based with Specific bias pa-
rameter (ASA), and then evaluate and compare the
the found knee solutions with the generational dis-
tance (GD) metric, one-way ANOVA statistical sig-
nificance and the overall computation time for each
algorithm. Also, different number of objectives, and
number of knee regions were considered.

The rest of this paper is organized as follows: sec-
tion 2 presents a literature review, a background
study and a description of the Many-Objective evo-
lutionary algorithms. Section 3 defines the research
framework, the benchmark problems, the perfor-
mance metrics and the parameter settings. Section
4 presents and discusses the obtained results. Fi-

nally, section 5 summarizes the paper and presents
a conclusion and recommendations.

2. LITERATURE REVIEW AND BACK-
GROUND

The first implementation of a MOEA was in the
mid-80s. Since then, several methods of MOEASs have
been introduced in the literature and gradually been
improved in both effectiveness and efficiency to solve
MOPs. However, most of these algorithms have been
applied to problems with only two or three objectives
[1]. While many real-world problems have more than
three objectives which may make some of these algo-
rithms inefficient when dealing with Many-Objective
optimization problems.

2.1 Multi-Objective Optimization Problems

A Multi-Objective optimization problem can be
defined as follows:
Minimize f(z) = [f1(z), f2(z) ... fr(z)]T
subject to x € D where
f(x) a k-vector of objective functions
x = (x1,22...x,) decision vector
X C R™ feasible decision space
f(D) feasible objective space (solution space)
R™ might be restricted with constraints of the fol-
lowing types to form D:
g(z) > 0 inequality type constraints
h(z) = 0 equality type constraints

A solution x that satisfies all constraints and vari-
able bounds is a feasible solution. Otherwise, it is
an infeasible solution. Also, a feasible space is a set
of all feasible solutions. The objective function f(x)
defines a multidimensional objective space [1-2].

2.2 Many-Objective Optimization Problems

MaOPs are defined as problems with four or more
objectives where the resulting Pareto front cannot
be visualized by conventional graphical means [4].
Deb and Jain [4] argued that the current state-of-the-
art EMO algorithms that work under the concept of
“dominance” face many difficulties. Deb et al. [4]
summarized these difficulties as follows:

1. A large fraction of population is non-dominated
2. Evaluation of diversity measures are computation-
ally expensive

. Recombination operation may be inefficient

4. Representation and visualization of the Pareto
fronts are difficult

5. Performance metrics are computationally expen-
sive

w

These difficulties have been and will continue to be
a very active research area in the field of Evolutionary
Computing and its applications.
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2.3 Pareto-optimality

In Multi-Objective optimization problems, the no-
tion of “dominance” is used to determine if a solution
is better than others. A solution xz dominates solu-
tion y if: (i) x is no worse than y in all objectives
and (ii) = is better than y in at least one objective.
Specifically, y is said to be “dominated” by z, or al-
ternatively, x is “non-dominated” by y. Therefore,
the non-dominance relationship defines the Pareto
optimality concept. This concept of dominance is
exemplified in a two-objective minimization example
shown in Fig.3.

Moreover, a solution is Pareto optimal if it is not
dominated by any other solution. In other words, an
improvement in one solution cannot be achieved with-
out losing quality in another objective. Furthermore,
the set of all Pareto-optimal solutions is called the
Pareto set (PS). Also, the objective values of the
Pareto set in the objective space define the Pareto
front (PF) [1-2].
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Fig.3: Pareto dominance example [6].

2.4 Knee Region

MOEAs in general yield numerous Pareto opti-
mal solutions. However, in the real-world problems,
the Decision Maker (DM) is not interested in the
whole Pareto optimal solutions but rather interested
in a single optimum solution or a preferred region of
the Pareto Front (PF). Such preferred region is the
“Knee” region. In practice, given the Pareto front
for a MOP, the DM usually picks a point ’in the mid-
dle’ of the front where the Pareto surface “bulges out
the most” [3]. Das [3] took advantage of this real-
ization and proposed a method based on the Normal-
Boundary Intersection (NBI) to locate the knee of the
PF. Das characterized the knee solutions in terms of
the Convex Hull of Individual Minima (CHIM). Ba-
sically, the knee regions could be recognized by the
furthest point from the CHIM. However, this tech-
nique requires a prior approximation of the extreme
solutions for each objective. In Fig.2, the knee of the
PF corresponds to the furthest point from the ex-

treme line L*. The extreme line is the line defined by
the extreme solutions s and s3.

2.5 Knee-based MOEAs

MOEAs that use the word “Knee” in them can be
classified as Kneed-based algorithms or Knee-driven
algorithms. Knee-based algorithms can be described
as a decision-making tool such as in [2, 6]. Knee-
driven algorithms can be described as an optimization
search strategy such as in [8, 9, 25, 27]. This paper
focuses only on the Knee-based algorithms.

NSGA-II is one of the most used and cited evolu-
tionary algorithms for MOPs in the literature. Since
Deb et al. [7] proposed NSGA-IT in 2002, researchers
continued to improve and propose variants of the al-
gorithm such as [6, 8, 9]. NSGA-II extensive use was
due to its low computational complexity, elitist ap-
proach and method of diversity [8].

Bechikh et al. [8] proposed a knee-based version
of R-NSGA-IT [11] which was a modified version of
the NSGA-II that focused the search on the region
of interest (ROIs) based on a user-provided refer-
ence points set. The reference points in KR-NSGA-II
are chosen from the first non-dominated front auto-
matically by an updating strategy in each generation.
This strategy is called Mobile Reference Points Up-
dating Strategy (MRPUS).

Bechikh et al. [9] proposed a new version of
KR-NSGA-II. KR-NSGA-ITI had a main disadvantage
which was the need of considering the extreme solu-
tions as mobile reference points for estimating the
CHIM line [9]. Therefore, the algorithm results de-
pended on the success of discovering the Pareto op-
timal extreme solutions, which was not an easy task
when estimating the nadir point [9]. TKR-NSGA-
IT differs from the original KR-NSGA-II by modify-
ing the MRPUS strategy to avoid stagnation in local
optima. This modified strategy is called Trade-off-
based Mobile Reference Point Updating Strategy (T-
MRPUS). T-MRPUS assigns a trade-off worth value
to each solution from the best front FF instead of the
distance as in the original MRPUS.

Sudeng and Wattanapongsakorn [6] proposed a
knee-based version with a pruning strategy to the
NSGA-II. The pruning strategy was called Angle-
based with Specific bias parameter pruning Algorithm
(ASA). The k-ASA-NSGA-II basically consisted of
two steps. First, it approximated a rough set of
Pareto-optimal solutions using a NSGA-II algorithm.
Then, the k-ASA algorithm was applied to eliminate
non-preferred solutions.

In general, the k-ASA algorithm calculates an an-
gle (0) of each pair of solutions. Then, the angle (#)
is compared to a threshold angle (§). If the angle (6)
between solutions ¢ and j is smaller than the thresh-
old (6), solution 7 is kept and solution j is discarded.
The threshold angle (§) can be adjusted using a user
defined parameter called 7 which is used to give the
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DM the ability to prioritize the objectives. The value
of 7 is between 0 and 1. The number of the knee
solutions that can be found can be increased by de-
creasing the value of 7 and decreased by increasing
the value of 7.

Fig.4: ASA concept [6].

The angle between two non-dominated solutions
is calculated using the following equation. The ge-
ometric angle is denoted by #,, where n is the nth
objective. For the minimizing objective context, 6,
is given by:

VS (B )
Afn

0,, = tan™

where N denotes the number of objectives and n de-
notes the nth objective function. Af, denotes the
difference between the nth objective values of the two
non-dominated solutions.

The threshold angle §,, of each objective value can
be calculated as follows:

o= o (125

where n is the objective number and 7 is bias intensity
of each objective, ranging from 0.0 - 1.0. The IQS,
is the inter-quartile range of sorted data of each ob-
jective and AV, is the average distance of the nth ob-
jective value between two consecutive non-dominated
solutions.

2.6 Knee-based MOEA /D-DE

Sudeng and Wattanapongsakorn [2] proposed a
knee-based Multi-Objective Evolutionary Algorithm
Based on Decomposition with Differential Evolution
kE-MOEA/D-DE. Generally, MOEA/D-DE used the
concept of neighbourhood to maintain population di-
versity which consumed high computation effort to
evaluate neighbourhood for every individual [2].

The k-MOEA/D-DE calculates only the portion
of solutions located at a specific region and does not

need neighborhood relationship. Thus, a lot of com-
puting effort can be eliminated. Moreover, the num-
ber of function evaluations (FFs) of individuals is
eliminated because the population size is decreased
when the algorithm runs along the optimization pro-
cess. The k-MOEA/D-DE algorithm works as fol-
lows: First, an initial population is generated ran-
domly. Then, a reference point z is initialized using
the Tchebychev method where the minimum value
for each objective is identified. Then, each single ob-
jective function and population are evaluated. After
that, the knee-center is identified. Next, the max-
imum distance between individuals and weight vec-
tors is found. When the problem has more than one
knee to discover, the multi_knees algorithm is in-
voked. The density of each knee region is controlled
by the r parameter. Lastly, the reference point z is
updated before repeating the loop.

2.7 NSGA-III

In 2014, Deb and Jain [4] proposed a new ver-
sion of the famous NSGA denoted as NSGA-III. The
main motivation of the new algorithm was to deal
with Many-Objective optimization problems. The
main principle behind NSGA-IIT was that, instead of
searching the entire search space for Pareto-optimal
solutions, multiple predefined targeted searches can
be used. The basic framework of NSGA-III was like
the original NSGA-IT algorithm with changes in its se-
lection operator. Also, the maintenance of diversity
among population members in NSGA-III was aided
by providing and adaptively updating several well-
spread reference points. Instead of using a crowding
distance strategy as in NSGA-II, NSGA-IIT applied
five strategies as follows:

1— Classification of Population into Non-Dominated
Levels

2— Determination of Reference Points on a Hyper-
Plan

3— Adaptive Normalization of Population Members

4— Association Operation

5— Niche-Preservation Operation

3. RESEARCH METHODOLOGY

The framework of this research is basically first ex-
tending the ASA algorithm to work with MOEA /D-
DE and NSGA-III, and then evaluating and compar-
ing the selected MOEA algorithms using well-known
benchmark problems. The used MOEAs are taken
from the literature.

3.1 Benchmark Problems

Since the beginning of MOEAs, several benchmark
problems were proposed to challenge MOEA capabil-
ities of approximating the Pareto front. Two of the
most cited benchmark problem suites were DTLZ and
WFG suites. Deb et al. [12] and Huband et al. [13]



Comparative Study of Knee-Based Algorithms for Many-Objective Optimization Problems 11

introduced the Scalable Multi-Objective Optimiza-
tion Test Problems to challenge MOEAs to demon-
strate their ability to solve Multi-Objective problems
efficiently and effectively. DTLZ and WFG suites
both distinguished themselves by their scalability.
This feature has enabled the recent research on Many-
Objective problems. Generally, seven test problems
were included in each test suite [12, 13]. However, in
this research few test problems are considered.

Problems WFG1 and WFG2 were taken from the
WFG test suite. WFG1 was chosen because the
Pareto front is continuous and has a convex shape.
On the other hand, WFG2 has a discontinuous Pareto
front with a convex shape. The DTLZ problems were
modified based on Branke et al. in [14]. The mod-
ified DTLZ problems are henceforward denoted as
DEB(M)DK_K, where M indicates the number of
objectives and K indicates the number of knees. The
DEB(M)DK-K problems were designed specifically
to have a knee region in the Pareto front based on
the parameter K, and were chosen for that feature.
The number of the objectives for each problem varied
as 3, 5, 10 and 15.

3.2 Performance Metrics

Generally, there are two goals in Multi-Objective
optimization: 1) convergence to the true Pareto op-
timal front and 2) maintenance of diversity in solu-
tions of the Pareto-optimal front. However, these two
goals cannot be measured reasonably with one perfor-
mance metric. Many performance metrics have been
suggested in the literature [7].

The general performance measures for the Multi-
Objective optimization algorithms can be classified
into three main categories: convergence, coverage,
and success metrics. The first class of the metrics
measures the closeness of the solutions obtained to
the true Pareto front, and the second class of the met-
rics defines how well the solutions obtained “cover”
the range of each of the objectives.

However, not all the above-mentioned metrics can
be used in this research. That is because the used
MOEAs in this research yield a small number of so-
lutions obtained from the knee region of the Pareto
front. Therefore, only the generational distance (GD)
can be used for measuring the convergence of the so-
lution. Thus, the GD was used to measure the perfor-
mance of the used MOEAs with addition of one-way
ANOVA and computation time.

Simply, GD measures the distance of the obtained
Pareto optimal solutions from a selected reference set
of the true Pareto optimal front.

The One-way Analysis of Variance (ANOVA) is
a procedure for testing if the means of K groups
are equal, where K > 2. The One-way ANOVA is
also called a single factor analysis of variance because
there is only one independent variable or factor. Nor-
mally, in a one-way ANOVA, there is one measure-

ment variable and one nominal variable (independent
variable). The one-way ANOVA only determines if
there is a statistical significant difference between the
groups or not. It does not indicate which group dif-
fers from the rest if there is a significant difference
among the groups. To find out which group or groups
differ, a further analysis is required. Such analysis is
called a post hoc test. There are many choices of post
hoc tests to perform this analysis. In this research,
Tukey’s HSD (honest significant difference) test or
simply Tukey test is used. The main idea of this test
is to compare all possible pairs of means. Tukey test
is based on a studentized range distribution (q) which
is like the distribution of t from the t-test. The main
advantage of Tukey test is that it performs all pair-
wise comparisons to determine which group or groups
are significantly different from the rest.

3.3 Parameters Settings

A set of 10 runs was conducted on each test prob-
lem for each different number of objectives. Table
1 shows the parameter settings for the used MOEAs.
The population size used for each problem was set the
same to evaluate how each MOEA performed under
the same conditions. The number of the knees and
the number of the objectives for each problem were
varied. Table 2 shows the number of generations for
each algorithm. The number of the generations in
NSGA-III differed from the other algorithms due to
its high computation time. Finally, the parameter 7
in the ASA algorithm was set to 0.9.

Table 1: Parameter settings

Number of | Number of Population

Problem Objectives Knees pu
M K size
3 92
5 . 212
WFG1 0 Not specified 76
15 136
3 92
5 . 212
WFG2 0 Not specified 76
15 136
DEB3DK 3 1,23 92
DEBSDK 5 1,23 212
DEB10DK 10 1,2, 3 276
DEB20DK 15 1,23 136

The main source code used for this research was
jMetal 5.2. The jMetal is an object-oriented Java-
based framework for Multi-Objective optimization
with metaheuristics [21]. jMetal stands for Meta-
heuristic Algorithms in Java. The source code can
be obtained from [22].

4. SIMULATION RESULTS AND DISCUS-
SION

A set of 10 runs was conducted on each algorithm
for each benchmark problem. Then, the obtained
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Table 2: Number of generations for each algorithm

Table 4: Average CPU time.

Number of Objectives Number of Generations
M INSGA-ITMOEA /D-DENSGA-III
3 25000 25000 1000
5 50000 50000 2000
10 100000 100000 3000
15 200000 200000 5000

Pareto front from each run was normalized to be pro-
cessed by the ASA algorithm to find knee solutions.
Those knee solutions were then restored to their orig-
inal values. After the restoration, the GD values were
calculated using the true optimal Pareto fronts. Fi-
nally, the average GD was calculated and recorded.

4.1 Experimental Results

The average GD values of the benchmark problems
used are shown in Table 3. An algorithm is considered
better than another when the GD value of the former
is less than that of the latter.

Table 3: Average GD results.

Problem M Average GD

NSGA-II MOEA/D-DE NSGA-IIT
3 2.84619E-01 4.88330E-01 1.04097E-01
WFG1 5 5.14531E-01 1.28926E+00 9.05657E-02
10 1.80275E400 1.69497E+00 3.62081E-01
15 1.57569E4-00 3.24465E+00 6.36703E-01
3 1.24186E-01 2.85894E-01 1.16036E-01
WFG2 5 4.75537E-01 1.36280E+-00 2.25697E-01

10

1.35677E+00

1.16552E+00

7.20268E-01

15

1.94309E+00

9.65733E-01

5.16299E-01

DEB(M)DK-1

3

3.85781E+00

7.91808E4-00

4.17352E+400

5

3.36091E+00

4.20733E+00

2.17500EF00

10

2.29637E+00

1.64340E4-00

1.08051E+F00

15

7.39517E+00

3.94963E-100

7.09684E-+00

3

3.36609E+00

3.86440E+00

4.30687E+00

5 2.51543E400
10| 6.59197E400
15 1.58030E4-01
3 3.74577TE+00
5 2.94950E+00
10| 4.64778E+00
15 1.17285E401

2.75106E+00
1.33181E4-01
4.20668E-100
2.82260E-+400
2.18837E+00
4.34024E+00
8.89294E+00

1.30590E+00
4.27732E+00
4.27510E+00
3.57990E+00
1.47039E+00
2.30016E400
2.63049E400

DEB(M)DK_2

DEB(M)DK_3

In general, results obtained by NSGA-IIT had the
lowest or near lowest GD values and hence are con-
sidered the best in terms of the convergence metric.
However, it could not be said the same in terms of
the CPU time. NSGA-III is computationally expen-
sive comparing to other algorithms as shown in Table
4. Also, the results showed that NSGA-III performed
almost better when the objectives were more than
3 objectives. In other words, NSGA-III was better
dealing with Many-Objective problems.

According to Table 4, MOEA /D-DE had the low-
est computation complexity and therefore was the
fastest running time. In contrast, NSGA-III had the
slowest running time due to its computation complex-
ity which was in the worst-case scenario has a com-
plexity of O(N?1log" 2 N) or O(N?M), whichever is
larger [4].

The one-way ANOVA analysis was conducted on
the GD results to determine if there was a statistical
significant difference between the results. The one-
way ANOVA is a relatively robust procedure against
violations of the normality assumption [23]. Further-
more, it is not very sensitive to heteroscedasticity

Average CPU time (milliseconds
Problem M | NSGAIT| MOEA D-(DE NSGA)-III
3 420.20 222.00 1804.10
5 T491.10 556.70 17108.20
WFG1 0 5338.90 1632.90 59861.50
5 9812.40 701550 71244.50
3 318.70 137.60 1544.80
5 1386.80 360.00 16341.10
WFG2 10 1618.30 1167.10 58645.70
5 7498.10 2814.80 39252.30
3 274.60 92.70 1245.00
5 T122.60 271.90 T5127.40
0 1015.70 863.00 54000.90
15 6189.50 1718.30 33011.50
3 266.50 92.70 1238.20
5 1118.80 269.40 15164.90
DEB(M)DK-2 — 1491.70 §38.10 53013.60
15 7007.60 1642.20 39920.80
3 354.50 93.70 1326.90
5 1115.00 269.80 14943.80
DEB(M)DK.-3 — 1476.30 814.20 51494.60
15 7077.70 1732.30 30344.40

when we have a balanced design, meaning that the
number of the observations is the same in each group
[23]. In this research, each group had 10 observations
(or 10 GD values specifically). Therefore, it could
be concluded that both assumptions were met in this
research.

The null hypothesis of this test was that there was
no significant difference between the means of the
groups. Otherwise, it could be concluded that there
was at least 1 difference between groups’ means. The
significant level was set to be 5%. The null hypothesis
was rejected if:

Sig. < p —wvalue or F > Fiitical

Also, a post hoc test was conducted in each case of
the rejected null hypothesis. The post hoc test was
conducted to find which algorithm performed better
than the others. The post hoc test used here was
Tukey’s honestly significant difference (HSD) or sim-
ply Tukey test. The same null hypothesis was as-
sumed here also. The null hypothesis was rejected if
Sig. < p —value. If the null hypothesis was rejected
in the Tukey test, a negative mean difference between
the pairs indicated that the value of the first variable
was lower than the second variable, and therefore the
first variable was the best. Table 5 shows the F o itical
value obtained from the F-distribution table based
on the degree of freedom between groups and within
groups.

Table 5: Significance level and critical value.

df (degree of freedom) | Fcritical | p-value

Between Groups 3.354 0.05
Within Groups 27 - -
Total 29 - -

Table 6 summarizes the one-way ANOVA test re-
sults. The test was conducted on each problem for
each case of the number of the objectives. The null
hypothesis was rejected in almost every case except
for a 10 objective WFG2 problem and DEB3DK_2.
In these two cases, the null hypothesis was accepted,
and it could be concluded that there was no signifi-
cant difference among the 3 algorithms.

In case of a rejected null hypothesis in the one-way
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Table 6: Summary of one-way ANOVA test.
F

Problem M Sig. Reject H,
3 86.863 | 1.731E-12 Yos
5 65.033 | 4.746E-11 Yes
WFG1 T0 | 28.595 5. I50E-7 Yes
T5 | 69.938 | 2.095E.1T Yos
3 16.214 2.36985 Yos
5 [ 217.951 | 2.188E-17 Yos
WFG2 0 3.084 0.062 No
15 | 11.770 0.0002 Yeos
3 36.750 T.960E-8 Yos
5 16.664 T.034E5 Yes
DEB(M)DK-1 —G——55 573 | 2.513E-10 Yes
T5 [ 12.460 0.000T Yos
3 1,826 0.180 No
5 8.368 920856 Yes
DEB(M)DK-2 | —5——39600 9.347E-9 Yos
5 | 29.122 TRISE7 Yos
3 6.459 5.005 Yos
5 14.882 139955 Yos
DEB(M)DK-3 5135531 153058 Yes
15 | 30.877 T.054E-7 Yes

ANOVA test, a post hoc test was performed for a pair
of the algorithms to determine the difference between
the algorithms (average of the results). Table 7 shows
the Tukey test result of the rejected null hypothesis
in Table 6.

4.2 Discussion

In terms of the GD performance metric, NSGA-
IIT clearly performed better according to Table 8. A
lower score (number between parentheses) meant a
higher rank. For each benchmark problem, the score
values were the sum of the ranks of each algorithm
in each designated number of objectives. For exam-
ple, NSGA-IIT in WFGI1 problem ranked first in 3, 5,
10 and 15 numbers of objectives respectively. Obvi-
ously, NSGA-III had the lower scores in all simulation
cases and therefore had the highest ranking. In prob-
lem WFG1, NSGA-III ranked first in each case of the
number of objectives while MOEA /D-DE ranked last
in all 4 cases.

In problem WFG2, NSGA-III ranked first in the
cases of 3, 5 and 15 objectives and came in second af-
ter MOEA /D-DE in the case of 10 objectives. NSGA-
IIT did not perform very well in the case of 10 objec-
tives. This was perhaps due to the discontinuity of
the Pareto front in WFG2.

In problem DEB(M)DK_1, NSGA-III ranked first
in 5 and 10 objective cases while coming in second
in the remaining cases. In general, all DEB(M)DK
problems had complex Pareto fronts. This complex-
ity in the Pareto fronts might cause a slight shortfall
in the NSGA-III performance because of the reference
points strategy used in NSGA-III to find uniformly
distributed solutions. NSGA-II and MOEA/D-DE
had the same score and therefore ranked second to-
gether.

In problem DEB(M)DK_2, NSGA-IIT ranked first
in 5 and 10 objective cases while coming in third
and second in 3 and 15 objective cases respectively.
NSGA-III slightly underperformed in this problem,
which might be due to the complexity of the Pareto
front. MOEA/D-DE ranked last in this problem al-
though it came first in the case of 15 objectives.
The underperformance of MOEA /D-DE could be at-

tributed to the weakness of the Tchebycheff approach.

Lastly, NSGA-III ranked first in DEB(M)DK_3
problem. It came first in 5, 10 and 15 objective cases
and ranked second in 3 objective case. MOEA /D-DE
ranked second in general and came first in 3 objective
case.

The statistical one-way ANOVA test indicated
that NSGA-IIT ranked first in all cases according to
Table 9 and therefore was the best algorithm. NSGA-
IIT ranked first in all cases of problems WFG1, WFG2
and DEB(M)DK_2.

NSGA-III ranked first in all cases of problem
DEB(M)DK_1 except in 15 objective case. That was
expected because MOEA /D-DE had the lower aver-
age GD values in this case. NSGA-III did not perform
better than the MOEA /D-DE in this case.

In problem DEB(M)DK_3, NSGA-III ranked first
in all cases except in 3 objective case. This was
also expected because MOEA /D-DE performed bet-
ter than NSGA-III based on the average GD results.

MOEA/D-DE and NSGA-II almost performed
equally based on this statistical test. In general, it
could be concluded that there was no significant dif-
ference between them.

5. CONCLUSION

In most real-world problems, the number of objec-
tives is often higher than 3 objectives, and therefore
the problems can be identified as a Many-Objective
optimization problems (MaOP). Moreover, the objec-
tives of these problems are often in conflict and need
to be optimized simultaneously. While the current
state-of-the-art Multi-Objective optimization evolu-
tionary algorithms (MOEAs) can efficiently solve
Multi-Objective problems, their performance deterio-
rates when dealing with Many-Objective ones. Addi-
tionally, the decision maker (DM) is not interested in
all obtained trade-off solutions. Thus, an interesting
concept for identifying solutions in the Knee region is
used to find few solutions that are near optimum and
are significant for the decision maker. Solutions in the
Knee region can be considered the best obtained solu-
tion in the obtained trade-off set, especially if there is
no preference or equally important objectives. In this
research, a newly introduced and promising Multi-
Objective optimization algorithm NSGA-IIT was used
where the obtained Pareto-optimal front was pruned
to find Knee solutions. Also, the same pruning tech-
nique was used on Pareto-optimal Pareto fronts ob-
tained by NSGA-IT and MOEA /D-DE.

In general, NSGA-III performed very well in terms
of the generational distance metric (GD) in almost
all problems. Also, MOEA/D-DE slightly performed
better than NSGA-II. In general, it was evident from
the average GD results that both MOEA-DE and
NSGA-II struggled in dealing with Many-Objective
optimization problems. Although NSGA-IIT outper-
formed the other algorithms in terms of the GD, it
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Table 7: Summary of Tukey post hoc test.
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Problem M Pair Mean Difference Sig. Reject H,
NSGA-III MOEA/D-DE -3.842E-01 5.114E-9 Yes
3 NSGA-III NSGA-II -1.805E-01 3.778E-6 Yes
MOEA/D-DE NSGA-II 2.037E-01 4.935E-7 Yes
NSGA-III MOEA/D-DE -1.199E+00 5.145E-9 Yes
5 NSGA-III NSGA-II -4.240E-01 0.001 Yes
WFG1 MOEA /D-DE NSGA-II 7.747E-01 2.442E-7 Yes
NSGA-III MOEA/D-DE -1.333E4-00 2.976E-6 Yes
10 NSGA-III NSGA-II -1.441E+00 8.073E-7 Yes
MOEA/D-DE NSGA-II -1.078E-01 0.868 No
NSGA-III MOEA/D-DE -2.608E+00 5.127E-9 Yes
15 NSGA-IIT NSGA-II -9.390E-01 0.001 Yes
MOEA/D-DE NSGA-II 1.669E+00 1.492E-7 Yes
NSGA-III MOEA/D-DE -1.699E-01 7.734E-5 Yes
3 NSGA-III NSGA-II -8.150E-03 0.968 No
MOEA/D-DE NSGA-II 1.617E-01 0.0001 Yes
NSGA-III MOEA/D-DE -1.137E+00 5.113E-9 Yes
5 NSGA-IIT NSGA-II -2.498E-01 0.0005 Yes
WFG2 MOEA /D-DE NSGA-II 8.873E-01 5.113E-9 Yes
NSGA-III MOEA/D-DE
10 NSGA-III NSGA-II No Post hoc test
MOEA/D-DE NSGA-IT
NSGA-III MOEA /D-DE -4.494E-01 0.3093 Yes
15 NSGA-IIT NSGA-II -1.427E~+00 0.0002 Yes
MOEA/D-DE NSGA-II -9.774E-01 0.0084 Yes
NSGA-III MOEA/D-DE -3.745E+00 3.631E-7 Yes
3 NSGA-III NSGA-II 3.157E-01 0.822 No
MOEA/D-DE NSGA-II 4.060E+00 8.616E-8 Yes
NSGA-III MOEA/D-DE -2.032E+00 1.207E-5 Yes
5 NSGA-III NSGA-II -1.186E+00 0.007 Yes
MOEA /D-DE NSGA-II 8.464E-01 0.060 No
DEB(M)DK-1 NSGA-IIT MOEA/D-DE -5.629E-01 0.0001 Yes
10 NSGA-III NSGA-II -1.216E4-00 5.240E-9 Yes
MOEA/D-DE NSGA-II -6.530E-01 1.463E-5 Yes
NSGA-III MOEA/D-DE 3.147E+00 0.0009 Yes
15 NSGA-IIT NSGA-II -2.983E-01 0.9198 No
MOEA /D-DE NSGA-II -3.446E+00 0.0003 Yes
NSGA-III MOEA/D—DE
3 NSGA-IIT NSGA-II No Post hoc test
MOEA/D-DE NSGA-II
NSGA-III MOEA/D-DE -1.445E+00 1.564E-5 Yes
5 NSGA-III NSGA-II -1.210E+00 0.0002 Yes
MOEA /D-DE NSGA-II 2.356E-01 0.632 No
DEB(M)DK-2 NSGA-III MOEA /D-DE -9.041E+00 1.552E-8 Yes
10 NSGA-III NSGA-II -2.315E4-00 0.091 No
MOEA/D-DE NSGA-II 6.726E400 2.342E-6 Yes
NSGA-III MOEA/D-DE 6.842E-02 0.999 No
15 NSGA-IIT NSGA-II -1.153E+01 1.340E-6 Yes
MOEA /D-DE NSGA-II -1.160E+01 1.212E-6 Yes
NSGA-IIT MOEA/D-DE 7.573E-01 0.027 Yes
3 NSGA-III NSGA-II -1.659E-01 0.818 No
DEB(M)DK.3 MOEA/D-DE | NSGA-II -9.232E-01 0.006 Yes
NSGA-III MOEA/D-DE -7.180E-01 0.035 Yes
5 NSGA-III NSGA-II -1.479E+00 2.616E-5 Yes
MOEA /D-DE NSGA-II -7.611E-01 0.024 Yes
NSGA-IIT MOEA /D-DE -2.040E+00 4.530E-7 Yes
10 NSGA-IIT NSGA-II -2.348E4-00 3.824E-8 Yes
MOEA/D-DE NSGA-II -3.075E-01 0.548 No
NSGA-III MOEA/D-DE -6.262E+00 4.105E-5 Yes
15 NSGA-IIT NSGA-II -9.098E+00 9.170E-8 Yes
MOEA /D-DE NSGA-II -2.836 E+00 0.060 No
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Table 8: Ranking based on average GD values.

Problem Rank (Score)
NSGA-II]MOEA /D-DE[NSGA-IIT
WFG1 2 (9) 3 (11) )
WFG2 2 (10) 2 (10) 1 (4)
DEB(M)DK_1| 2 (9) 2 (9) 1 (6)
DEB(MDK_2| 3 (9) 2(8) 1(7)
DEB(MDK_3| 3 (12) 2(7) 1(5)

Table 9: Ranking based on average GD values.

Problem Rank (Score)
NSGA-IIJ]MOEA /D-DE[NSGA-IIT
WFG1 2 (8) 3 (10) )
WFG2 2 (7) 3 (8) 1 (4)
DEB(MDK_1| 3 (8) 2(7) 1(5)
DEB(M)DK_2| 2 (6) 2 (6) 14
DEB(M)DK_3| 3 (11) 2 (7) 1(5)

was the most computationally expensive algorithm in
all cases due to its computational complexity. In con-
trast, MOEA /D-DE was the fastest algorithm due to
its decomposition strategy. This decomposition strat-
egy significantly reduced the computation complexity
and therefore lowered the CPU time.

In dealing with Many-Objective optimization
problems, NSGA-III is clearly the better choice if
the computation time is acceptable. A machine with
high processing power is recommended to be used
when running NSGA-III especially when the number
of objectives is higher than 5. On the other hand,
MEAD/D-DE is the second choice when the process-
ing power is low or when the results are needed very
fast.

The population sizes in this research were re-
stricted by the number of reference points used in
NSGA-IIIL. For any other algorithm, a bigger popu-
lation size and a higher number of generations are
recommended to have a better chance of finding a
good near-optimum solution.

References

[1] A. L. Jaimes and C. A. C. Coello, 2015, “Many-
Objective Problems: Challenges and Methods,”
Springer Handbook of Computational Intelli-
gence, Springer, pp. 1033-1046.

[2] S. Sudeng and N. Wattanapongsakorn, 2016,
“A Decomposition-based Approach for Knee So-
lution Approximation in Multi-Objective Opti-
mization,” 2016 IEEE Congress on Fvolutionary
Computation (CEC), Vancouver, BC, July 24 -
29, 2016.

[3] I. Das, 1999, “On Characterizing the ‘Knee’ of
the Pareto Curve Based on Normal-Boundary
Intersection,” Structural Optimization, Vol. 18,
No. 2-3, pp. 107-115.

[4] K. Deb and H. Jain, 2014, “An Evolutionary
Many-Objective Optimization Algorithm Us-
ing Reference-point-based Nondominated Sort-
ing Approach, Part I: Solving Problems with Box

[13]

[14]

[15]

Constraints,” IEEE Transactions on Evolution-
ary Computation, Vol. 18, No. 4, pp. 577-601.
Q. Zhang and H. Li, 2007, “MOEA/D: A Multi-
Objective Evolutionary Algorithm Based on De-
composition,” IEFE Transactions on Fvolution-
ary Computation, Vol. 11, No. 6, pp. 712-731.
S. Sudeng and N. Wattanapongsakorn, 2015, “A
Knee-based Multi-Objective Evolutionary Algo-
rithm: An Extension to Network System Opti-
mization Design Problem,” Cluster Computing,
Vol. 19, No. 1, pp. 411-425.

K. Deb, A. Pratap, S. Agarwal, and T. Meyari-
van, 2002, “A Fast and Elitist Multi-Objective
Genetic Algorithm: NSGA-I1,” IEEE Transac-
tions on FEwvolutionary Computation, Vol. 6, No.
2, pp. 182-197.

S. Bechikh, L. Ben Said, and K. Ghdira, 2010,
“Searching for Knee Regions in Multi-Objective
Optimization Using Mobile Reference Points,”
Proceedings of the 2010 ACM Symposium on Ap-
plied Computing, Sierre, Switzerland, March 22
- 26, 2010, pp. 1118-1125.

S. Bechikh, L. B. Said, and K. Ghdira, 2011,
“Searching for Knee Regions of the Pareto Front
Using Mobile Reference Points,” Soft Comput-
ing, Vol. 15, No. 9, pp. 1807-1823.

H. Li and Q. Zhang, 2009, “Multi-Objective Op-
timization Problems with Complicated Pareto
Sets, MOEA /D and NSGA-I1,” IEEE Transac-
tions on Evolutionary Computation, Vol. 13, No.
2, pp. 284-302.

K. Deb and J. Sundar, 2006, “Reference Point
Based Multi-Objective Optimization Using Evo-
lutionary Algorithms,” Proceedings of the Sth
Annual Conference on Genetic and Evolution-
ary Computation, Seattle, WA, USA, July 08 -
12, 2006, pp. 635-642.

K. Deb, L. Thiele, M. Laumanns, and E. Zit-
zler, 2002, “Scalable Multi-Objective Optimiza-
tion Test Problems,” 2002 IEEE Congress on
Evolutionary Computation (CEC 2002), Hon-
olulu, HI, USA, May 12-17, 2002, pp. 825-830.
S. Huband, P. Hingston, L. Barone, and L.
While, 2006, “A Review of Multi-Objective Test
Problems and A Scalable Test Problem Toolkit,”
IEEE Transactions on Evolutionary Computa-
tion, Vol. 10, No. 5, pp. 477-506.

J. Branke, K. Deb, H. Dierolf, and M. Oss-
wald, 2004, “Finding Knees in Multi-Objective
Optimization,” Proceedings of the Sth Interna-
tional Conference on Parallel Problem Solving
from Nature - PPSN VIII, Birmingham, UK,
September 18-22, 2004, pp. 722-731.

L. Bradstreet, L. Barone, L. While, S. Huband,
and P. Hingston, 2007, “Use of the WFG Toolkit
and PISA for Comparison of MOEAs,” IEEFE
Symposium on Computational Intelligence in
Multicriteria Decision Making, Honolulu, HI,



16

[16]

ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.12, NO.1 May 2018

USA, April 01 - 05, 2007, pp. 382-389.

C. A. C. Coello, G. B. Lamont, and D. A. V.
Veldhuizen, Eds., 2007, “MOEA Test Suites,”
in Fvolutionary Algorithms for Solving Multi-
Objective Problems: Second Edition, Boston,
MA: Springer US, pp. 175-232.

S. Mirjalili and A. Lewis, 2015, “Novel Perfor-
mance Metrics for Robust Multi-Objective Opti-
mization Algorithms,” Swarm and Evolutionary
Computation, Vol. 21, pp. 1-23.

J. J. Durillo and A. J. Nebro, 2011, “jMetal: A
Java Framework for Multi-Objective Optimiza-
tion,” Advances in Engineering Software, Vol.
42, No. 10, pp. 760-771, Oct. 2011.

H. Seada and K. Deb, 2015, “U-NSGA-III: A
Unified Evolutionary Algorithm for Single, Mul-
tiple, and Many-Objective Optimization,” COIN
Report, No. 2014022.

K. Li, Research Projects [Online], Avail-
able: http://www.cs.bham.ac.uk/~1likw/
projects.html. [22-Jun-2017].

A. J. Nebro, J. J. Durillo, and M. Vergne, “Re-
designing the jMetal Multi-Objective optimiza-
tion framework,” Proceedings of the Companion
Publication of the 2015 Annual Conference on
Genetic and Evolutionary Computation, Madrid,
Spain, July 11 - 15, 2015, pp. 1093-1100.

A. J. Nebro, J. J. Durillo, and M. Vergne,
jMetal 5 Web site [Online]. Available: https://
jmetal.github.io/jMetal/. [07-Aug-2017].
J. H. McDonald, “One-way anova,” Hand-
book of Biological Statistics. [Online]. Avail-
able: http://www.biostathandbook.com/
onewayanova.html. [07-Aug-2017].

E. Zitzler and L. Thiele, “Multiobjective Evolu-
tionary Algorithms: A Comparative Case Study
and the Strength Pareto Approach,” IEEFE
Transactions on Evolutionary Computation, vol.
3, no. 4, pp. 257-271, Nov. 1999.

[25] J. Maltese, B. M. Ombuki-Berman, and A.
P. Engelbrecht, “Pareto-based many-objective
optimization using knee points,” 2016 IFEE
Congress on Evolutionary Computation (CEC),
pp- 3678-3686. November 2016.

[26] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Sug-
anthan, and Q. Zhang, “Multiobjective evolu-
tionary algorithms: A survey of the state of the
art,” Swarm and FEvolutionary Computation, vol.
1, no. 1, pp. 32-49, 2011.

[27) X. Zhang, Y. Tian and Y. Jin, “A Knee
Point-Driven Evolutionary Algorithm for Many-
Objective Optimization,” IEEE Transactions on
Evolutionary Computation, vol. 19, no. 6, pp.
761-776, December 2015.

Saad M. Alzahrani received his Bach-
elor of Science degree in Mechanical
Engineering from King Fahd University
of Petroleum and Minerals (KFUPM),
Saudi Arabia, and is currently a mas-
ter degree student at the Department of
Computer Engineering, Faculty of En-
gineering, King Mongkut’s University of
\ Technology Thonburi (KMUTT), Thai-
“‘ { . land. His research interests include
: ¢ Multi-Objective and Many-Objective
optimization and Evolutionary Algorithms.

Naruemon Wattanapongsakorn re-
ceived her Ph.D. in Computer Engi-
neering from University of Pittsburgh,
Pennsylvania, USA in 2000. She re-
ceived her M.S. and B.S. in Computer
Engineering from The George Wash-
ington University, Washington D.C.,
USA. Currently, she is an Associate
s! Professor and Ph.D. Program Chair
at Computer Engineering Department,

& King Mongkut’s University of Technol-
ogy Thonburi, Bangkok, Thailand. Her research areas are
multi-objective optimization, computational intelligence, and
network security. Dr. Wattanapongsakorn serves as editorial
board and reviewer for several outstanding international jour-
nals, steering committee and technical program committee for
many IEEE international conferences.



