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ABSTRACT

Design and evaluation of a CORDIC (COordinate
Rotation DIgital Computer) algorithm for a floating-
point division operation is presented in this paper. In
general, division operation based on CORDIC algo-
rithm has a limitation in term of the range of inputs
that can be processed by the CORDIC machine to
give proper convergence and precise division opera-
tion result. A hardware architecture of CORDIC al-
gorithm capable of processing broader input ranges
is implemented and presented in this paper by using
a pre-processing and a post-processing stage. The
performance as well as the calculation error statis-
tics over exhaustive sets of input tests are evaluated.
The results show that the CORDIC algorithm can
be well-convergence and gives precise division opera-
tion results with broader input ranges. The proposed
hardware architecture is modeled in VHDL and syn-
thesized on a CMOS standard-cell technology and a
FPGA device, resulting 1 GFlops on the CMOS and
210.812 MFlops on the FPGA device.

Keywords: Floating-Point Operators, Accelerator
Processor, Product-of-Sum, Sum-of-Product, 32-bit
IEEE Standard Single-Precision.

1. INTRODUCTION

In modern digital computer architecture, floating-
point arithmetic units have been important compo-
nents to improve the performance of the digital com-
puter. Arithmetic components such as adder/sub-
tractor, multiplier and divider units are generally
basic operators in a scientific computations beside
other trigonometric functions such as sine, cosine,
logarithm, exponent, etc. Compared to fixed point
arithmetic units, the floating-point arithmetic units
provides better accuracy and precision and it cov-
ers larger data ranges, which is suitable for scien-
tific computations in engineering application areas.
Compared to other arithmetic operator, designing a
divider unit requires a special attention because of

Manuscript received on July 2, 2012.
1 The author is with Ramkhamhaeng University, Fac-

ulty of Engineering, Department of Computer Engineering,
Ramkhamhaeng Road, Hua Mark, Bangkapi, Bangkok 10240,
Thailand , E-mail: surapong@riees.org
2 The author is with Universitas Hasanuddin at Makassar,

Faculty of Engineering, Department of Electrical Engineering,
Jl. Perintis Kemerdekaan Km. 10, Tamalanrea, Makassar
90245, Indonesia. , E-mail: faizalas@unhas.ac.id

the complexity to implement the operation, especially
when using floating-point data operands.

Compared to other arithmetic operator, designing
a divider unit requires a special attention because of
the complexity to implement the operation, especially
when using floating-point data operands. The special
attention opens a challenging issue for many scientists
and researchers to introduce new efficient algorithms
and methods to design the divider unit. [1]

Division operations are often used in many sci-
entific computations of image and signal processing
algorithms. Image convolution and Gaussian Filter-
ing are example computations [2] that require divider
operator as presented in Equ. (1) and Equ. (2), re-
spectively. Equ. (1) is the equation of pixel output of
a 3 × 3 convolution masks window, where wi is the
weight of the j adjacent input image pixel within the
window.

P =

∑9
i=0 piwi∑9
i=0 wi

(1)

Another important equation with division opera-
tion is presented by the 2D Gaussian distribution as
shown in Equ. (2), where x and y is the two dimen-
sional image signal and σ is the standard deviation
of the distribution. The Gaussian filtering is used to
“blur” images and remove detail and noise [2].

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (2)

In adaptive digital signal processing applications
for instance, division operations are used in a nor-
malized adaptive least-mean-square (LMS) algorithm
presented in Equ. (5) to update the parameters of an
adaptive filter. The filter output signal, Equ. (3), is
compared to the desired system model output sig-
nal (d), resulting in an error signal, Equ. (4). This
error signal is then used to drive the adaptive filter
parameters, in such a way that finally the adaptive
filter parameters (wj) will be equal (almost equal in
practice) to system model parameters. The signal di-
visor in this case (γ + x(k − j)2) is used to improve
the stability of the adaptive parameter identification
algorithm.
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y(k) =

Ntap∑
j=1

wj(k)x(k − j), ∀j ∈ Ψ (3)

e(k) = d(k)− y(k) (4)

wj(k + 1) = wj(k) +
β e(k)x(k − j)

γ + x(k − j)2
, ∀j ∈ Ψ (5)

2. STATE-OF-THE-ARTS OF DIVISION
METHODS

In this section, we will present brief descriptions
on the state-of-the-art of the methodologies or algo-
rithms to implement the binary division operation.
The methodologies are described as follows.

1. Adder-Cell-based Method: The design of divi-
sion operator using the adder-cell-based method will
always result in a very compact divider architecture.
This method is classified as non iterative technique,
where the divider unit consists of half-adder and full-
adder cells as well as other logic gate units and sup-
porting modules [3]. A binary divider that uses carry-
save adder units is presented for example in [4].
2. Digit Recurrence Algorithm: In modern float-
ing point arithmetic units the most common algo-
rithm employed to division function is a digit recur-
rence algorithm [5] [6] [7]. The algorithm performs
both operations based on shifting and subtraction
as the fundamental operators. A combined floating-
point square-root and division operation can also be
implemented by using a subtractive SRT (Sweeney,
Robertson and Tocher) algorithm [8], which can be
classified as a digit recurrence algorithm. The sub-
tractive SRT algorithm can be extended by using
Radix-8 IDS (Interleaved Digit Set) algorithm to im-
prove the performance of the traditional digit re-
currence algorithm. Another variant of the digit-
recurrence method is svoboda algorithm. A new
Svoboda-Tung Division algorithm is for instance pro-
posed in [9].
3. Taylor’s Series Expansion Algorithm: A Tay-
lor’s Series Expansion Algorithm [10] for example can
be used to calculate division operation using a sequen-
tial series of a harmonic equation. However, the Tay-
lor’s Series Expansion algorithm is rarely used and
perform slow computation to calculate the division
operations.
4. Goldschmidt’s Algorithm: The basic idea be-
hind the Goldschmidt’s Algorithm is the iterative
parallel multiplication of the dividend and divisor by
updated factors in such as a way that the final divi-
sor will be driven to one. Thus, the final dividend
gives the quotient (the division result). Oberman et
al. for example [11] proposes a floating-point divider
and square root for AMD-K7 by using Goldschmidt’s
algorithm. The Goldschmidt’s algorithm has been
broadly used on many commercial microprocessors
and is also known as division by multiplicative nor-

malization or division by convergence [12]. The dis-
advantage of the Goldschmidt’s algorithm in term of
the area overhead is the need for two independent
parallel multiplication. As we know, a multiplier re-
quires large number of logic area, especially when it
is implemented in floating-point arithmetic.
5. Newton-Raphson Algorithm: The Newton-
Raphson division algorithm is almost similar with the
Goldschmidt’s algorithm. In the Newton-Raphson
method however, the iterative refinement is applied
only to the reciprocal value of the divisor, which will
be convergent after several iterations [13]. The divi-
sion operation of the Newton-Raphson method can
be divided into three steps, i.e. the initial estimation
of the divisor’s reciprocal, the iterative refinement of
the divisor’s reciprocal and the multiplication step be-
tween the divided and the final convergent divisor’s
reciprocal. The work in [14] has presented for ex-
ample a decimal floating-point divider using newton-
raphson iteration, where an accurate piece-wise linear
approximation is used to obtain an initial estimate of
a divisor’s reciprocal.
6. CORDIC Algorithm: Beside the aforemen-
tioned method to implement the division operation,
there is also another powerful algorithm to implement
the divider unit called CORDIC (COrdinate Rotation
DIgital Computer) algorithm [15]. Like digit recur-
rence method, CORDIC is also classified into iter-
ative method. The main powerful characteristic of
the CORDIC algorithm is the capability to imple-
ment several trigonometric function [16], [15], phase
and magnitude functions [17], and hyperbolic func-
tions [18] as well as linear operational function such
as multiplication and division functions.
By using CORDIC algorithms, we can also easily im-
plement all the function in a single CORDIC hard-
ware architecture [19]. Some basic standard and
non-standard operators such as sum-of-product and
product-of-sum [20], which can be used to accelerate
floating-point operations, can also be implemented by
using CORDIC algorithm. The work in [21] presents
for example a flexible FPGA implementation of a pa-
rameterizable floating-point library allowing to com-
pute the sine, cosine or arctangent functions. The
CORDIC algorithm can also even be used to solve
problematic operation in a fuzzy logic controller cir-
cuit [22]. Moreover, the CORDIC algorithm can
be used to implement a unified frequency analysis
or transformations functions such as DFT (Discrete-
Fourier Transform), DHT (Discrete Hartley Trans-
form), DCT (Discrete Cosine Transform) and DST
(Discrete Sine Transform) [23].

There are two main issues, in which CORDIC al-
gorithm is preferable to design of the floating-point
division operator i.e.,

1. The benefit of CORDIC Algorithm: The
CORDIC algorithm provides advantages in the per-
formability of fundamental function for scientific and
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engineering, the low algorithmic complexity, and the
simplicity for VLSI implementation. The VLSI im-
plementation is simple because it uses only shift and
add operations. The area cost of the CORDIC al-
gorithm is certainly lower than the Newton-Raphson
Algorithm, Goldschmidt’s Algorithm and Taylor’s Se-
ries Expansion Algorithm, which require multiply and
add operations. Compared to the Digit-Recurrence
algorithm, CORDIC algorithm is slightly simpler.
2. Design alternative: From the previous works,
there is few research dealing with design and inves-
tigation of a divider based on CORDIC algorithm.
Therefore, this paper proposes the algorithm, design,
and architecture of the floating-point divider based
on CORDIC algorithm and the analysis and investi-
gation on its error characteristics.

The CORDIC algorithm is however lack in compu-
tational latency and convergence range. These disad-
vantage can be alleviated by the techniques proposed
in [15]. The convergence of the CORDIC algorithm
can be accelerated by duplicate and triplicate the mi-
cro (angle) rotation on each stage of the CORDIC
iterative algorithm.

The rest of the paper is organized as follows. Sec-
tion 3.shows the architecture of a CORDIC algorithm
especially used for division operations. The main rea-
sons why we propose a modification of CORDIC al-
gorithm are also presented in this Section. Section 4.
describes the performance analysis of the CORDIC
divider by giving a wide range of inputs. The con-
vergence and calculation errors are presented in this
section. Synthesis results of the CORDIC divider core
modeled in VHDL by using 130-nm CMOS standard-
cell technology and by using an FPGA device are pre-
sented in this section.

3. CORDIC-BASED DIVIDER ARCHITEC-
TURE

There are two basic reasons why a new CORDIC
algorithm is proposed in this paper.

1. The CORDIC algorithm gives correct convergence
when the expected division results are located in the
following ranges: −0.9647 ≤ Q = Y

X ≤ 2.9647 (based
on our Matlab simulation results). The values outside
the range will tend to saturate at unexpected division
operation results. Please see the experimental result
shown in Fig. 1.
2. We cannot identify, whether the division results
are in the aforementioned range or not, unless the
division has been made.

Now let us see the divergence problem as presented
in Fig. 1, which is obtained from our simple experi-
mental. Two curves are presented in the figure, i.e.
the ideal (MATLAB) output and the division results
using CORDIC algorithm. The figure presents the
θ-axis and the Y/X-ordinat, where Y = sin θ and
X = cos θ, θ in radian unit. The simulation results
present that the division operations cannot move to a
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Fig.1:: The CORDIC divergence problem.

convergence value, when the division results are out-
side the following ranges, i.e. −0.9647 ≤ Y

X ≤ 2.9647.
Based on the above mentioned facts, we propose

a solution to improve the range of inputs that can
guarantee the precision and the convergence of the
CORDIC algorithm to perform a floating-point divi-
sion operation. Firstly, we will introduce the basic of
the CORDIC algorithm as described in the following.

3.1 Basic Radix-2 CORDIC Division Algo-
rithm

The basic radix-2 CORDIC iteration algorithm
can be written as follows [19].

Xi+1 = Xi −m · µi · Yi · δm,i

Yi+1 = Yi + µi ·Xi · δm,i

Zi+1 = Zi − µi · δm,i (6)

The CORDIC implementation for Divider function
can be performed by configuring the CORDIC algo-
rithm into linear mode of operation (linear modus),
i.e. by setting m = 0 in the Equ. (6) and δm,i = 2−i.
Hence, the CORDIC iterative equation for the Divi-
sion operator is shown in Equ. (7).

Xi+1 = Xi

Yi+1 = Yi + µi ·Xi · 2−i

Zi+1 = Zi − µi · 2−i (7)

The set of µi values is µi = {−1,+1}, which depends
on the value of Yi as shown in Equ. (8).

µi =

{
+1 : Yi < 0

−1 : Yi ≥ 0
(8)

3.2 The Proposed CORDIC Division Algo-
rithm

Based on our experience, the domain of well-
convergence of the CORDIC inversion function is
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Fig.2:: The floating-point divider architecture.

shown in Equ. (9). If the domain is written in the
IEEE binary floating-point standard, the domain can
be described in Equ. (10) as well as Equ. (11) and
Equ. (12) present the exponent and mantissa faction.

0.5 ≤ X < 1.5 (9)

1.0× 2126 ≤ X < 1.5× 2127 (10)

1.0 ≤ MX ≤ 1.5 (11)

126 ≤ EX ≤ 127 (12)

The complete division operation Q = Y
X and its

hardware architecture are proposed in this paper,
where Q is the division operation result, Y is the
dividend and X is the divisor, The hardware archi-
tecture is classified into four main stages as presented
in Fig. 2. The description of the floating-point hard-
ware architecture is described as follows.
1. Divisor’s Exponent Detection: In this first stage,
a credit exponent EC and e new exponent EX0 for X
are computed by using Alg. 1.
2. Divisor Inversion: In this second stage the inverse
value of the new input divisor Xnew = (−1)SX×MX×
2EX0 is computed by using CORDIC algorithm pre-
sented in Alg. 2 to obtain the variable Z.
3. Alignment: In this third stage, ZA is computed
from the Z variable (computed from Alg. 2) whose
exponent is aligned by using the credit exponent EC

(computed from Alg. 1). By using a formal floating
point equation, then we have ZA = (−1)SZ ×1.MZ ×
2EZ−EC , where SZ = SX .
4. Multiplication: Finally we will have the complete
division result as Q = Y × ZA.

Example: If we have decimal numbers Xd = 180
and Yd = 500 then the CORDIC divider should give

Algorithm 1 [EC , EX0]=DivisorDetect(X), where
X ≥ 1

1: Yo=1, Zo=0, Xo=X, S0=-1 {Initialization}
2: EX = Exponent of the Input Divisor X
3: if EX < 126 then
4: EC = 126− EX

5: EX0 = 126
6: else if EX > 127 then
7: EC = EX − 127
8: EX0 = 127
9: else
10: EC = 0
11: EX0 = EX

12: end if
13: return EC , EX0

Algorithm 2 Z=Inverting(X, I), where X ≥ 1

1: Y0=1, Z0=0, X0=Xnew, S0=-1 {Initialization}
2: for i = 0 to I − 1 do
3: Xi+1 = Xi

4: Yi+1 = Yi + (Xi × Si × 2−i)
5: Zi+1 = Zi − (Si × 2−i)
6: if Y < 0 then
7: Si+1=+1
8: else
9: Si+1=-1
10: end if
11: end for
12: return Z

Qd = Yd

Xd
= 2.77778. The floating point formats of

the input signals are Xfp = 1.40625 × 2134, where
SX = 0, MX = 1.40625 and EX = 134, meanwhile
Yd = 1.38889 × 2128, where SY = 0, MY = 1.38889
and EY = 128. The step-by-step computations made
by using our proposed algorithm is as follows:
1. Divisor’s Exponent Detection: By using Alg. 1,
the credit exponent is obtained as EC = EX − 127 =
134− 127 = 7.
2. Divisor Inversion: By using Alg. 2, inversion re-
sult gives Z = 1

Xnew
= 1

1.40625×2127 = 1.42222× 2126.
3. Alignment: In this third stage, we have ZA =
1.42222 × 2EZ+EC = 1.42222 × 2126−7 = 1.42222 ×
2119.
4. Multiplication: Finally the division result is Q =
Y × ZA = 1.9531250 × 1.42222 × 2135+119−127 =
2.77778 × 2127 or according to the normalized IEEE
binary floating-point standard, Q = 1.38889×2128 as
expected.

4. PERFORMANCE ANALYSIS

The CORDIC Division function has been evalu-
ated by feeding input signals ranging for low mag-
nitude until high magnitude. Fig. 3 shows how the
Divider Hardware unit gives output signals Q by in-
verting input signals X (Q = 1

X , where Dividend Y 1
is set 1). The input signals are incremented linearly
from X = 0.1 until X = 33. The figure shows also
the comparison of the Divider Hardware and Matlab
Output (Real calculated output) as presented in the
upper diagram of Fig. 3. The absolute calculation
errors are shown in the bottom diagram of Fig. 3.
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Fig.3:: Measurements of the CORDIC Division with
unit Dividend (Q = 1

X ) and the calculation errors by
testing of the 33 sets of inputs X.
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X ) and the calculation errors by incre-
menting both input operands.

Fig. 4 presents also another simulation result with
different input ranges, i.e. from X = 100 until
X = 133. The simulation results shown in Fig. 3 and
Fig. 4 are presented in this case to show the evalua-
tion result of the inversion step in the CORDIC-based
division operation. The evaluation of the division op-
erations itself will be presented in the next figure.

Fig. 5 presents a simulations result of division op-
erations, i.e. Q = Y

X , where the input signal X as
the divisor and input signal Y as the dividend are
shown in the first and second lines of the diagrams
shown in the figure. Both input signals are incre-
mented to evaluate the CORDIC division operations
in different input ranges. The third and the fourth
lines of the diagrams are the calculation results of the
floating-point-based CORDIC Divider implemented
using VHDL model and the ideal Matlab output, re-
spectively. The diagram in the bottom line is the ab-
solute calculation errors between the CORDIC Hard-
ware and the Matlab output.

Another simulation result is presented in Fig. 6
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Table 1:: Statistical error of CORDIC-based and traditional inverse calculation algorithm varied, where X
and Y are varied from 0.1 to 500.

Iter. Max. Min. Abs. Mean Std. Deviation

8 3.9030 -15.6220 3.6760×10−2 0.2999
16 0.0152 -0.0610 1.5841×10−4 1.4705×10−3

32 1.0×10−4 -4.4680×10−5 6.1798×10−7 3.3635×10−6

64 1.0×10−4 -4.4680×10−5 6.1798×10−7 3.3635×10−6

128 1.0694×10−6 -8.0123×10−7 1.1888×10−7 1.9968×10−7
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Fig.6:: Evaluation of the CORDIC Division oper-
ation (Q = Y

X ) and the calculation errors by incre-
menting the divisorX and decrementing the dividend
Y .

and Fig. 7. In the simulation result as presented in
Fig. 6, the input divisorX is ramp up, while the input
dividend Y is decremented. About 4500 sets of input
pairs are presented in the figure. As shown in the fig-
ure, the division results of both the CORDIC hard-
ware and the matlab simulation tend to decrease ex-
ponentially, and the absolute calculation errors tends
also to decrease.

Fig. 7 shows another simulation, where the input
divisor X is decremented, while the input dividend

Input X

Input Y

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  500  1000  1500  2000C
or

di
c 

D
iv

is
io

n 
O

ut
pu

t Q

Set Number of Input Signal (X,Y)

CORDIC Matlab Output Signal

Matlab Output

 0

 5e−06

 1e−05

 1.5e−05

 2e−05

 2.5e−05

 3e−05

 0  500  1000  1500  2000C
or

di
c 

E
rr

or
 C

al
cu

la
tio

ns

Set Number of Input Signal (X,Y)

CORDIC Error Calculation Signal

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  500  1000  1500  2000C
or

di
c 

D
iv

is
io

n 
O

ut
pu

t Q

Set Number of Input Signal (X,Y)

CORDIC Hardware Output Signal

Hardware Output

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0  500  1000  1500  2000

In
pu

t S
ig

na
l X

, Y

Set Number of Input Signal (X,Y)

Input Signal X, Y

Fig.7:: Evaluation of the CORDIC Division oper-
ation (Q = Y

X ) and the calculation errors by decre-
menting the divisor X and incrementing the dividend
Y .

Y is incremented. As shown in the figure, the divi-
sion result of the CORDIC hardware tends to increase
exponentially, which in accordance with the matlab
simulation result. However, in this test case scenario,
the calculation errors tend to increase.

Table 1 shows the statistical analysis results of
the CORDIC hardware over the computational er-
rors compared to MATLAB simulation results. At
each number of iteration, the maximum, the mini-
mum and the absolute average errors as well as the
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standard-deviation of the errors are evaluated over
5000 sets of input samples. It seems that the calcu-
lation errors decrease as the number of iterations is
increased.

5. SILICON-AND FPGA-BASED SYNTHE-
SIZED RESULT AND COMPARISON

The synthesis result of the floating-point CORDIC
Divider by using a 130-nm CMOS standard-cell tech-
nology library from Faraday Technology Corporation
is presented in Table 2. The synthesis result is made
by using target frequency of 500 MHz, resulting in
a slack-time of about 1.92 ns. The performance can
be still improved by using a newest and faster CMOS
standard-cell technology.

The logic cell area of components in the CORDIC
Hardware Divider is presented in Table 3. The to-
tal area of the CORDIC divider is 40612 µm2. Most
of logic area is occupied by the multiplier and align-
ment units. The rest 5% logic-cell area is occupied
by combinatorial blocks. Since two parallel floating-
point operations are performed by CORDIC core, the
CORDIC has about 2×500 MHz = 1 GFlops (Giga
floating-point operation per second).

Table 4 shows the synthesis result of the floating-
point CORDIC Divider on an FPGA device from Xil-
inx Corporation. By using the Virtex-2 FPGA de-
vice, the maximum data frequency of the CORDIC
core is slower than the synthesis result on CMOS
standard-cell technology. The maximum performance
of the CORDIC on the Virtex-2 FPGA is about
2× 105.406 MHz = 210.812 MFlops.

A brief survey of several floating-point division im-
plementations in published articles is summarized in
Table 5. It is difficult to compare the designs and ar-
chitectures where different design methodologies were
applied, such as full custom and standard cell silicon
technology approach. However, the iterative archi-
tectural comparison based on the number of basic
floating-point operators and computational latency

Table 2:: Synthesis results using 130-nm CMOS
standard-cell technology library with target fre-
quency of 500 MHz.

Measurements Synth. result

Total logic cell area 0.0406 mm2

Slack time (critical path) 1.92 ns

Switching power (1.32V) 2.178 mW

Internal power (1.32V) 5.994 mW

Table 3:: Logic cell area of the components.

Component Cell area Percent.

(µm2) (%).

Top Module 40612 100.0

Inversion Module 14264 35.0

Multiplier+Alignment 24222 59.6

Table 4:: Synthesis result using Virtex-2 FPGA de-
vice (2vp30ff896-7) from Xilinx Corporation.

Utilization % of Total

Number of slice 1254 of 13696 9%

Number of MULT18X18 4 of 136 2%

blocks

Minimum Delay 9.487 ns

Maximum Frequency 105.406 MHz)

can be used for performance and efficiency evaluation
in top-level design. The proposed floating-point di-
vision based on CORDIC method is compared with
Goldschmit’s [11] and Taylor-Series Expansion [10]
methods. The computational latency includes the
time to form the initial approximation and the appro-
priate number of iterations. The latency of the pro-
posed method is higher than Taylor-Series Expansion
method, but lower than Goldschmit’s method. When
the number of basic floating-point operators are con-
sidered, the proposed CORDIC-based method applies
#1FPMUL and #2FPADD/SUB, where as Taylor-
Series Expansion method and Goldschmit’s method
consume #2FPMUL, #1FPADD/SUB, and #2FP-
MUL, respectively.
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Table 5:: Floating-Point Division comparison of published literatures in single-precision.

Methodology Latency Basic FP Operator Speed CMOS Technology size

Goldschmit’s [11] 16/13 #2FPMUL 2.3 GHz 65 nm

Taylor-Series Expansion [10] 12/5 #2FPMUL+#1FPADD/SUB 500 MHz 65 nm

The proposed CORDIC-based 14/8 #1FPMUL+#2FPADD/SUB 500 MHz 130 nm

FPMUL : Floating-Point MULtiplier, FPFPADD/SUB : Floating-Point ADDer/SUBtractor

6. CONCLUSIONS AND FUTURE WORKS

A CORDIC core implementing a floating-point di-
vider operation has been presented in this paper. The
new algorithm is proposed to solve the limited input
domains of the input ranges that can be solved with
well convergence by the traditional CORDIC algo-
rithms to implement the division operations. The
CORDIC operation is basically divided into four
stages, i.e. divider exponent detection, divisor inver-
sion, inversion result alignment and multiplication.
The proposed algorithm shows that the CORDIC can
increase the input ranges that can guarantee the con-
vergence of the CORDIC algorithm. In future work,
the core will be integrated within a streaming proces-
sor [24]. Due to the reconfigurability of the CORDIC
core, the implementations of many trigonometric and
logarithmic functions, including the division opera-
tion on top of a single programmable/reconfigurable
CORDIC core will be helpful to reduce area of the
processor arithmetic units.
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