
136 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.2 November 2012

Binary Classification Tree for Multiclass
Classification with Observation-based

Clustering

Maythapolnun Athimethphat1 and Boontarika Lerteerawong2 , Non-members

ABSTRACT

Many classification techniques are originally de-
signed to solve a binary problem, but practically
many classification problems involve more than two
classes. A multiclass problem can be decomposed
into binary sub-problems, each solved by a binary
classifier. Aside from using one-against-one (OAO)
or one-against-all (OAA) decomposition scheme, an
ensemble of binary classifiers can be constructed hier-
archically. In this study, we focus in multiclass clas-
sification with a binary classification tree and pro-
pose a new approach in splitting a top-down tree by
grouping observations into two clusters with k-mean
clustering. Unlike a traditional class-clustering ap-
proach, this observation-based algorithm allows one
class to appear in two meta-classes so it can be ex-
amined in both sub-trees. A data cleaning process is
also performed to avoid insignificant tree splits. The
experiment shows how our proposed algorithm (BCT-
OB) performed on different data sets, compared with
other binary classification tree algorithms. Then ad-
vantages and disadvantages of the algorithm are dis-
cussed.

Keywords: Multiclass Classification, Support Vec-
tor Machine, Hierarchical Classification, Binary Clas-
sification Tree, Observation-Based Clustering

1. INTRODUCTION

Many robust classification techniques like Sup-
port Vector Machine are originally designed to solve
a binary problem. Nevertheless, many classifica-
tion problems practically involve more than just two
classes. They are usually handled by decomposing the
original multiclass problem into multiple binary sub-
problems. Decomposition can be achieved by sev-
eral approaches, and the most common ones are one-
against-all (OAA) and one-against-one (OAO). One-
against-all decomposition is the simplest approach,
which discriminates one class from the rest, while one-
against-one performs pairwise discrimination, consid-
ering only two classes at a time.

Manuscript received on July 15, 2012 ; revised on October
30, 2012.
1,2 The authors are with Faculty of Science and Tech-

nology, Assumption University 6th Floor, E Building,
Ramkamhaeng Soi 24 Hua Mak, Bangkok 10240, Thailand,
E-mail: maytha@scitech.au.edu and l.boontarika@gmail.com

Decomposition can be implemented in two ways,
single-call and multi-call. A single-call classifier re-
quires modifying original learning algorithms. In
Support Vector Machine, the implementation in-
volves changing its optimization formulation. Alter-
natively, a multi-call classification can be chosen in
order to avoid changing existing algorithms. Using
a one-against-all approach, k binary classifiers are
needed to discriminate each class from the remain-
ing classes. On the other hand, one-against-one re-
quires k(k − 1)/2 binary classifiers, one for each pair
of the k classes. Unlike a single-call implementation,
a multi-call classifier requires an additional decision
module to combine classification results from multi-
ple classifiers in an ensemble. Commonly, results are
determined by counting votes on each class. The win-
ning class receiving most votes is a class label of an
instance. [1]

Hierarchical classification is a newer approach to
multiclass classification. Because an ensemble of clas-
sifiers has a hierarchical structure, it requires no vot-
ing mechanism. A binary tree is a common hierarchi-
cal classification ensemble, and it can be constructed
bottom-up or top-down. In general, both approaches
could yield a tree with comparable performance. Yet,
a top-down tree is more likely to have a balanced
structure and is easier to implement. A binary clas-
sification tree like Half-Against-Half [2], Divide-by-2
[3], and SVM Binary Decision Tree [4] uses different
unsupervised clustering techniques on class centroids
to group classes into two subsets in order for a bi-
nary classifier to work on a problem. In this paper,
we propose a new approach in partitioning classes by
performing clustering on observations instead of class
means.

2. HIERARCHICAL MULTICLASS CLAS-
SIFICATION

Ambiguity can occur in a multi-call classification,
using OAA or OAO decomposition. Sometimes more
than one class receives the highest vote. More ties can
occur in OAO than in OAA because of redundancy in
pairwise classifications. Moreover, an OAO ensemble
might also give contradicting results by two or more
pairwise classifiers. In OAA, it is possible to have no
class assigned to an instance. One possible solution
to such ambiguity is to use a continuous confidence
value instead of a discrete class vote. However, this



Binary Classification Tree for Multiclass Classification with Observation-based Clustering 137

requires a classifier to estimate a confidence value.
Instead, an ensemble of classifiers can be constructed
hierarchically so that classification results in one level
will be passed on to the next in a hierarchy. The
common structure for hierarchical classification is a
binary tree, and it can be constructed bottom-up or
top-down.

2.1 Bottom-up Tree

Constructing a bottom-up tree starts at the leaf
level where initially each node represents each class
(Fig. 1). Thus, there are altogether k leaf nodes. In a
filter tree [5], nodes are paired with their siblings, and
binary classification is performed on each. Winning
class labels will be considered in the next level. The
process repeats until the root node where one class
is left. For a bottom-up multi-view forest [6], it is a
merging process similar to agglomerative hierarchical
clustering. The two nodes with the closest distance
(the most similar classes) are merged to form a node
of a new meta-class, a group of classes. This method
is likely to create an unbalanced tree.

Fig.1: A bottom-up tree construction, (a) starting
at the leave level to (b) the root.

2.2 Top-down Tree

Top-down tree construction starts with k classes
at the root (Fig. 2). Classes are divided into two
meta-classes, and binary classification is performed
to classify observations accordingly, splitting the root
into two child nodes. Observations will be examined
recursively in each child node until it cannot be split
further. Unbalanced Decision Tree (UDT) [8], for ex-
ample, discriminates one class from the rest at each
level, which creates a very unbalanced tree. More-
over, using an OAA concept, UDT could suffer from
class imbalance. On contrary, balanced nested di-
chotomies [9] divide classes into two equal parts to
construct a balanced binary tree. Other algorithms
do not divide into two exact halves but focus more on
how classes are similar or different. A binary classifi-
cation tree, such as Half-Against-Half [2] and Divide-
By-2 [3], groups similar classes to the same subsets.

Fig.2: A top-down tree construction, (a) starting
at the root and (b) breaking down nodes to the leave
level.

2.3 Tree Splitting and Merging

Performance of a tree is largely influenced by how
classes or meta-classes are chosen, or how a tree splits
or merges. To improve runtime, a tree should be bal-
anced [2]. This means a top-down tree should split
equally and a bottom-up tree should merge nodes of
the same level. In [9], such tree is called a system
of balanced nested dichotomies. A tree can be con-
structed in a way that the number of classes in the
left subset is about equal to the right subset, making
the tree height bounded to log2 k. This approach cre-
ates an ensemble of class-balanced nested dichotomies
(ECBND). However, it does not guarantee that a tree
will be balanced in term of sample size because the
numbers of observations in different classes might not
be equal. By partitioning classes into two groups
with approximately equal sample size, we get data-
balanced nested dichotomies (EDBND). Similarly,
in one-against-higher-order (OAHO) [10], classes are
sorted by class sizes so the largest class is always com-
pared against the rest of the smaller classes.

On the other hand, a tree can be constructed in
a way that partition separability near the top of
the tree is higher than the bottom (Fig. 3). This
makes it easier to solve classification problems near
the root. Classification performance at the root is
especially important because when tracing a tree
downward, misclassification cannot be recovered in
the later steps. Thus, higher overall accuracy can
be achieved when more discriminative problems are
solved first. [4] [11].

To find a split, an algorithm can use one of the two
extremes, to randomly select a tree structure [12] or
to search for the optimal tree structure from all pos-
sible combinations [11]. While the former one is sim-
ple but less likely to achieve the optimal performance,
the later one is too costly, especially when the num-
ber of classes is large. Many algorithms, however,
try to group similar classes in the same subsets so
that confusing classes are kept for the later steps.
Unsupervised techniques like hierarchical clustering
and k-means are used in finding the best partition
for splitting (e.g., [2 - 4 ], [6], [13]).



138 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.2 November 2012

Fig.3: A tree tries to solve (a) a more discriminative
problem first and (b) a more difficult one later.

3. BINARY CLASSIFICATION TREE

A binary classification tree is an ensemble of clas-
sifiers, with a binary tree structure, that breaks down
an original k-class classification problem into (k − 1)
binary sub-problems when the tree is balanced. As a
result, it can effectively deal with a problem where
k is large [14]. In this section, we will focus on
constructing a top-down binary classification using
a class-based splitting technique. Then, in the next
section, our observation-based algorithm will be dis-
cussed.

3.1 Tree Construction

Building a top-down tree starts at the root node
with an initial training data set D and a set of k
classes, S. The class set S is partitioned into two dis-
joint subsets, S1 and S2, with a class partition func-
tion. Ideally, we want a partition function that is able
to balance the sizes of the two subsets and group sim-
ilar classes together into meta-class. Observations in
the training set D are relabeled according to their
meta-classes, resulting in a two-class problem. Then
a binary classifier learns from the relabeled training
set. After training, the data set D is divided into
two subsets, D1 and D2, according to the two meta-
classes. The data setD1, along with its corresponding
class set S1, is passed on to the left child node, and
so D2 and S2 to the right child node. The process
is applied recursively on each child node until a class
set of the node contains only one class. As a result, it
finally produces a binary tree of k leaf nodes, one for

each class, and at least (k − 1) internal nodes, each
of which contains an independently trained classifier.
Below summarizes a general algorithm for construct-
ing a binary classification tree. [2] [11] [14].

Algorithm BUILD TOP-DOWN BCT (D,S)
INPUT:
D = x1, . . . , xn, a data s et of n observations
S = y1, . . . , yk, a set of k class labels

IF S contains only one class
Terminate the process
RETURN the class label in S

ENDIF
Partition S into two subsets S1 and S2

Let C1 be a meta-class label for S1 and C2 for S2

FOR each x in D
Label x with a meta-class label according to its
label y

ENDFOR
Train a binary classifier f with a data set D and the
meta-class labels {C1, C2}
Divide D into two subsets, D1 and D2, according to
meta-classes
Call BUILD TOP-DOWN BCT (D1, S1)
Call BUILD TOP-DOWN BCT (D2, S2)

3.2 Class Partitioning

A popular approach in finding a class partition is
to perform unsupervised clustering to group different
classes into two clusters. A margin tree [13] algo-
rithm finds a partition by considering margins be-
tween classes in 3 ways, greedy, single linkage, and
complete linkage. A greedy approach searches for a
partition that yields the maximum margin between
the two clusters from all possible partitions. Single
linkage and complete linkage find a partition with the
minimum within-cluster margins. While single link-
age uses the shortest distance between classes, com-
plete linkage considers the largest distance.

Alternatively, other algorithms such as Half-
Against-Half (HAH) [2], SVM binary decision tree
(SVM-BDT) [4], and multi-view forest [6] measure
distance between class centroids. A centroid, or a
center, is an average point in a cluster. Thus, when
finding a class centroid, a mean value of each dimen-
sion in a particular class is calculated. An alternative
to centroids is medoids, where medians are used, as
applied in Partitioning Around Medoids (PAM). [15]
After finding class centroids, a clustering technique
like k-means and hierarchical clustering is applied on
the centroids. Usually Euclidean distance is used as a
metric in measuring a distance between two clusters.

Figure 4 shows how to find a class partition with
centroid clustering. First, a mean value of observa-
tions in each class is calculated. We obtain k class
centroids, and these data points are an input of a clus-



Binary Classification Tree for Multiclass Classification with Observation-based Clustering 139

tering algorithm. Class centroids are then grouped
into 2 clusters. Any clustering techniques can be
used. If k-means clustering is used, distances between
centroids within a group are minimized. Hence, sim-
ilar classes are grouped together to represent a meta-
class.

Fig.4: Clustering class centroids by (a) calculating
class means and then (c) grouping centroids together.

3.3 Classification

A class label of a sample can be obtained by fol-
lowing the path of the tree, from the root to the leaf,
where a class label is determined (Fig. 5). Starting at
the root, an input of unlabeled data is fed to the tree.
A classifier in the node assigns each observation into
one of the meta-classes, and so, to one of the child
nodes. When observations move on to the respective
child nodes, the process repeats until they reach the
leaf level, where observations are assigned with class
labels. In Fig. 5, examples of Class A will move to
the left child (AB) of the root and then to the leaf
node of Class A. [11]

Fig.5: An example of binary classification tree.

4. BINARY CLASSIFICATION TREE WITH
OBSERVATION-BASED CLUSTERING

In this paper, we would like to propose a different
approach in splitting a binary tree. Instead of clus-
tering class centroids, our algorithm partitions data
by clustering observations, regardless of their class la-
bels. Because the number of observations is usually
much larger than the number of classes, we will use
k-means as a clustering technique in our algorithm.
Because we cluster observations and determine meta-
classes from partitioned data points, one class is al-
lowed to appear in both clusters as illustrated in Fig.
6. Consequently, one class will be examined in both
sub-trees. This helps a tree to detect any existing
sub-patterns in a class.

Fig.6: Clustering by observations.

We applied a similar concept of tree construction
by the class-based approach but modified the way a
tree splits. We named our algorithm a binary classifi-
cation tree with observation-based clustering (BCT-
OB), and its algorithm is provided as follow:

Algorithm BUILD BCT-OB (D,S, ths)
INPUT:
D = {x1, . . . , xn}, a data set of n observations
S = {y1, . . . , yk}, a set of k class labels
ths = a threshold of value between 0 and 1

IF S contains only one class
Terminate the process and return the class label
in S

ENDIF
PartitionD into two clustersD1 andD2 with k-means
algorithm

FOR each Di, where i = {1, 2}
Let Si be a set of distinct class labels y correspond-
ing to each x in Di

ENDFOR
Let C1 be a meta-class label for S1 and C2 for S2

Label each x in D1 as C1 and D2 as C2

FOR each y in Si, where i = {1, 2}
Let pyi = (no. of samples of class y in Si) / (no.



140 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.2 November 2012

of samples of y)
IF pyi < ths

Delete all samples in Di labeled with class y
Delete the corresponding y4 from Si

ENDIF
ENDFOR
Train a binary classifier with data set (D1 ∪D2) to
classify samples into two meta-class {C1, C2}

Call BUILD BCT-OB (D1, S1, ths)
Call BUILD BCT-OB (D2, S − 2, ths)

Starting at the root, k-means is used in grouping
observations from the original data set D into two
clusters D1 and D2. Unique class labels of all sam-
ples in a cluster are included in a class subset (S1 or
S2) of the corresponding cluster. From Fig. 6, the
first subset S1 contains Class A and C because obser-
vations in the first cluster D1 are from Class A and
C, and so the second subset S2 = {A, B, C}. Next,
samples in each cluster are relabeled with their re-
spective meta-class label. All observations in D1 are
relabeled as Meta-class C1, where C1 represents Class
A and C, and observations in D2 as C2, which rep-
resents Class A, B, and C. Then, a binary classifier
is trained to classify data into two meta-classes. The
process continues recursively on the node’s left child
and right child with the corresponding data subsets
Di and class subsets Si. It terminates at the leaf level
when only one class is left in a class subset. This la-
bel determines a class of an observation reaching this
node in the classification phrase.

During splitting, a data cleaning process also takes
place. After a data set is partitioned, a proportion of
a class appearing in each cluster is calculated. Obser-
vations of a class in a cluster with a proportion less
than a given threshold (ths) will be removed from
the cluster. For example, in Fig. 6, Class A appears
in both clusters, 98 percent of Class A in D1 and
the remaining two percent in D2. If the threshold
is set to 0.025, observations of Class A in D2 will
be deleted because its proportion (0.020) is smaller
than ths (0.025). On the other hand, observations
of Class C are allowed to be in both clusters because
their proportions in D1 and D2 are above the thresh-
old. This cleaning process prevents the algorithm to
further learn from an insignificantly small subgroup
which deviates from the majority to improve compu-
tational time (avoid nodes to split when not neces-
sary) and avoid overfitting.

Figure 7 illustrates how a BCT-OB can be con-
structed. Classification started at the root with a 3-
class problem. Observations were clustered into two
groups, and a binary classifier was trained to differ-
entiate between the two. The first cluster, which was
examined on the left child node, contained observa-
tions from only one class, so the node did not split
further.

Fig.7: An example of BCT-OB and cleaning pro-
cess. (a) An insignificant split of a class is deleted.
(b) Clustering is performed on the clean data; the pro-
cess continues.

On the other hand, the right child node, which had
three classes, required the algorithm to continue par-
titioning observations. In Fig. 7 (a), the algorithm
detected a class partition of Class A having a propor-
tion less than the threshold. Therefore, it was deleted
before the algorithm performed clustering on the re-
maining observations again as in Fig. 7 (b). The tree
construction is performed recursively until no more
nodes can be split.

Regarding the complexity, our technique does not
split the same way a traditional balanced binary tree
does. Because our algorithm allows redundancy (one
class can be in two child nodes), time complexity is
expected to be higher than a balanced tree. In the



Binary Classification Tree for Multiclass Classification with Observation-based Clustering 141

worst case, the height of the tree could be very skew,
O(k), where k = no. of classes. We have a threshold
to avoid insignificant split, which can help decreas-
ing an experimental runtime, but the height of the
tree is still bound to the number of classes. The ac-
tual runtime also depends on clustering algorithm,
unlike most traditional methods that divide classes
into halves. Our goal is not to reduce the runtime,
but to introduce ‘redundancy’ to the algorithm so we
can handle data set with fuzziness.

5. EXPERIMENTS

5.1 Experimental Setup

Eight data sets from UCI Machine Learning
Repository [16] were used in the experiment. Data
description and thresholds used in different data set
are summarized in Table 1.

In this study, BCT-OB was compared with class-
based algorithms, HAH and SVM-BDT, and two
balanced nested dichotomies systems, ECBND and
EDBND. All techniques were implemented in R sta-
tistical package, version 2.13.1. The package ‘e1071’
provides an interface to SVM implementation ’lib-
svm’ [7], which was used in constructing a base classi-
fier. SVM’s parameters were obtained by parameter
tuning (the ’tune’ function in ’e1071’) with 10-fold
cross validation. A threshold value required by the
proposed algorithm is determined empirically. Selec-
tion of classes in the two meta-classes in ECBND and
EDBND were determined randomly as described in
the original paper [9].

Table 1: A summary of data description.

Random sub-sampling validation was applied to
evaluate classification performance on each data
set by each classification tree, except for Pendig-
its dataset which was used as given by the source.
Pendigits is composed of 7,494 samples for training
and 3,498 for testing. For other data sets, each data
set was divided into two parts, training and test sets.
For Iris and Wine, sample sizes of training and test

sets are equal. The rest was divided into 70 percent
for training and 30 for testing. Ten different training
and test sets were used for evaluating performance on
each data set. Observations in each training and test
set are determined with a simple random sampling
process.

5.2 Experimental Results

Table 2 summarizes classification average accuracy
(in percent) and standard deviation by BCT-OB,
SVM-BDT, HAH, ECBND, and EDBND. A t-test
was used to test if performance by one technique is
significantly different from the others. An asterisk
marked in front of the highest value for each data set
indicates that it is significantly different with 95%
confidence.

Table 2: Classification performance of BCT-OB
and other binary classification tree algorithms.

From the Table 2, there was no difference in perfor-
mance on Iris and Ecoli by BCT-OB, SVM-BDT, and
HAH, but performance by the three method was sig-
nificantly higher than balanced nested dichotomies.
BCT-OB outperformed the two class-based tech-
niques in Glass and Pendigits and performed as accu-
rately as ECBND. The average accuracy of BCT-OB
was higher than SVM-BDT and ECBND in Pendigits
but not statistically significant. In addition, most of
the time, classification performance by ECBND and
EDBND was comparable. Though, there were few
cases that ECBND performs better than EDBND.

Note that variances in performance by the two bal-
anced nested dichotomies were high in Iris and Glass
data sets. For Iris, this might due to a small training
sample size. For Glass, where there are 6 classes and
class imbalance is present, class partitioning might
have a strong influence in classification performance.
Together with the randomizing process of class selec-
tion, accuracy in each run could vary greatly.

Since BCT-OB relies on how well observations are
partitioned into two clusters, its performance is in-



142 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.2 November 2012

fluenced by unsupervised clustering algorithm, which
is k-means in this case, and performance of k-means
also depends on the number of clusters and the ini-
tial clusters. Inappropriate choices could lead to less
optimal performance. The threshold in BCT-OB also
influences tree construction and classification perfor-
mance. Setting the threshold too low would result in
a larger tree, especially when data cannot be parti-
tioned well, and overfitting might also occur. How-
ever, setting the threshold too high would possibly de-
grade classification accuracy due to information loss.
The ensemble would not gain the advantage of redun-
dancy occurs when a class can appear in more than
one cluster. The experiments suggest a threshold be-
low 0.025.

6. CONCLUSION

A binary classification tree is an ensemble of clas-
sifiers that performs hierarchical classification by
breaking down an original k-class problem into two-
class problems. In each internal node, classes are
partitioned into two meta-classes, and there are sev-
eral approaches to class partitioning. Some algo-
rithms like balanced nested dichotomies concern the
algorithm’s runtime while some seek a tree structure
that optimizes classification accuracy. Algorithms
like HAH and SVM-BDT group similar classes to-
gether based on distances between class centroids so
that difficult classification problems would be solved
later in the tree.

In this study, we have proposed a new approach
to tree splitting. Unlike other class-based approach,
we split a tree by performing clustering on observa-
tions instead of class centroids. Thus, samples of the
same class can be split, allowing sub-classes to be con-
sidered in different sub-trees. The experiment shows
that our proposed BCT-OB performs comparably to
other binary classification trees. There is still room
for improvement, such as employing different clus-
tering algorithm, handling overlapping clusters, and
dealing with class imbalance. We would like to leave
this for the future study.

References

[1] G. Ou, Y.L. Murphey, and L. Feldkamp, “Mul-
ticlass Pattern Classification Using Neural Net-
works,” in ICPR’04, vol. 4, Cambridge, UK,
2004, pp. 585–588.

[2] H. Lei and V. Govindaraju, “Half-Against-Half
Multi-class Support Vector Machines,” in Multi-
ple Classifier Systems, vol. 3541, 2005, pp. 156–
164.

[3] V. Vural and J.G. Dy, “A Hierarchical Method
for Multi-Class Support Vector Machines,” Pro-
ceedings of the Twenty-First International Con-
ference on Machine Learning, pp. 105, 2004.

[4] G. Madzarov, D. Gjorgjevikj, and I. Chorbev,
“A Multi-class SVM Classifier Utilizing Binary

Decision Tree,” Informatica, vol. 33, no. 2, pp.
233–241, 2008.

[5] A. Beygelzimer, J. Langford, and P. Ravikumar.
(2007, June) Multiclass Classification with Filter
Trees. [Online]. http://hunch.net/∼jl/projects/
reductions/mc to b/invertedTree.pdf

[6] M.F.A. Hady, F. Schwenker, and G. Palm,
“Multi-View Forest: A New Ensemble Method
based on Dempster-Shafer Evidence Theory,”
IJAMAS, vol. 22, no. S11, pp. 2–19, 2011.

[7] C.-C. Chang and C.-J. Lin. (2001) LIBSVM:
a library for support vector machines. [Online].
http://www.csie.ntu.edu.tw/ cjlin/libsvm

[8] A. Ramanan, S. Suppharangsan, and M. Niran-
jan, “Unbalanced Decision Trees for Multi-class
Classification,” in ICIIS 2007, Penadeniya, Sri
Lanka, 2007, pp. 291–294.

[9] L. Dong, E. Frank, and S. Kramer, “Ensembles
of Balanced Nested Dichotomies for Multi-Class
Problems,” in 9th European Conference on Prin-
ciples and Practice of Knowledge Discovery in
Databases, vol. 3721, Porto, Portugal, 2005, pp.
84–95.

[10] Y.L. Murphey, H. Wang, G. Ou, and L.A.
Feldkamp, “OAHO: an Effective Algorithm for
Multi-Class Learning from Imbalanced Data,” in
International Joint Conference on Neural Net-
works, 2007, Orlando, FL, 2007, pp. 406–411.

[11] J.-S. Lee and I.-S. Oh, “Binary Classification
Trees for Multi-class Classification Problems,” in
The Seventh International Conference on Docu-
ment Analysis and Recognition, vol. 2, 2003, pp.
770–774.

[12] E. Frank and S. Kramer, “Ensembles of
Nested Dichotomies for Multi-Class Problems,”
in ICML2004, vol. 382, Montreal, Quebec, 2004,
pp. 305–312.

[13] R. Tibshirani and T. Hastie, “Margin Trees for
High-dimensional Classification,” Journal of Ma-
chine Learning Research 8, pp. 637-652, 2007.

[14] S. Kumar, J. Ghosh, and M.M. Crawford, “Hi-
erarchical Fusion of Multiple Classifiers for Hy-
perspectral Data Analysis,” Pattern Analysis &
Applications, vol. 5, no. 2, pp. 210–220, 2002.

[15] L. Kaufman and P. Rousseeuw, “Clustering by
Means of Medoids,” in Statistical Data Analy-
sis Based on the L1-Norm and Related Methods,
Yadolah Dodge, Ed. New York, NY: Birkhauser,
1987, pp. 405-416.

[16] A. Frank and A. Asuncion. (2010) UCI
Machine Learning Repository. [Online].
http://archive.ics. uci.edu/ml



Binary Classification Tree for Multiclass Classification with Observation-based Clustering 143

Maythapolnun Athimethphat re-
ceived his BSc degree in Computer Sci-
ence from Assumption University in
Thailand and the MSc degree in Opera-
tion Research from The National Insti-
tute of Development Administration in
Thailand. Currently he has worked as a
lecturer and researcher at Faculty of sci-
ence and technology, Assumption Uni-
versity, Thailand for over 14 years. His
research area included image processing,

data mining, imbalance data, and multiclass classification.

Boontarika Lerteerawong achieved
Bachelor degree (BS) with distinction in
Applied Statistics at Assumption Uni-
versity in 2008. Her past researches fo-
cus on data mining, classification, and
rare-class classification. Currently, she
is working in the multinational corpora-
tion in the telecommunication industry.


