Improvement of Standard and Non-Standard Floating-Point Operators 19

Improvement of Standard and Non-Standard
Floating-Point Operators

Pongyupinpanich Surapong!, Francois Philipp?,

Faizal Arya Samman?, and Manfred Glesner*, Non-members

ABSTRACT

This paper presents the design and analysis of a
floating-point arithmetic accelerator in compliance
with the IEEE standard single precision floating-
point format. The accelerator can be used to ex-
tend a general-purpose processor such as Motorola
MC6820, where floating-point execution units are un-
embedded by default. It implements standard and
non-standard mathematic functions, addition/sub-
traction, multiplication, Product-of-Sum and Sum-
of-Product through a micro-instruction set supported
by both single and multi-processors systems. The
architecture of the unit is based on an instruction
pipeline which can simultaneously fetch and exe-
cute an instruction within one clock cycle. The
non-standard operations such as Product-of-Sum and
Sum-of-Product are introduced to compute three-
input operands. The algorithm complexity and hard-
ware critical delay are determined for each operator.
The synthesis results of the accelerator on a Xilinx
FPGA Virtex 5 xchbvlx110t-3ff-1136 and on Faraday
130-nm Silicon technology report that the design re-
spectively achieves 200 MHz and 1 GHz.

Keywords: Floating-Point Operators, Accelerator
Processor, Product-of-Sum, Sum-of-Product, 32-bit
IEEE Standard Single-Precision

1. INTRODUCTION

Requirements for real-time high-accuracy compu-
tation considerably increase in recent applications.
Critical applications like medical image processing
[1] or Linear Phase FIR digital filter [2] rely on
floating-point computation for accurate and efficient
processing. The majority of modern processors such
as Motorola 6840 integrates a hardware floating-
point arithmetic unit in order to fulfill these require-
ments whereas classic processors perform floating-
point arithmetic using software libraries. Although
the operations can be introduced by this method, the

Manuscript received on August 1, 2011 ; revised on January
2, 2012.

1,2.3.4The authors are with Microelectronic Systems
Research Group, Faculty of Electrical Engineering and
Information Technology, Technische Universitdt Darm-
stadt, Merckstrasse 25 64283 Darmstadt Germany., E-mail:
surapong@mes.tu-darmstadt.de, francois.philipp@mes.tu-
darmstadt.de, faizal.samman@mes.tu-darmstadt.de and
glesner@mes.tu-darmstadt.de

computation is very slow in comparison to hardware
implementation.

Several strategies for the implementation of
floating-point accelerators were reported in related
works. The first projects focused on chip design
and functionality. In 1983, Huntsman et al. [3] in-
troduced the MC68881 floating-point co-processor
used to cooperate with Motorola’s M68000 32-bit
processors family. The MIPS R3010 chip [4] speci-
fied for the R3000 RISC processor was proposed in
order to reduce design costs. It provides the ba-
sic floating-point operations, Addition/Subtraction,
Multiplication, and Division. Maurer [5] introduced
the WE32106 math accelerator, but mainly focused
on verification techniques. Nakayama et al. [6] de-
signed a 80-bit floating-point co-processor providing
24 instructions and 22 mathematic functions where
Adder/Subtractor and Multiplier were designed in
pipelining structure, but Divider was performed us-
ing the CORDIC algorithm. Kawasaki et al. [7] intro-
duced a pipelined floating-point co-processor cooper-
ating with the GMICROs processor as an intelligent
CPU for TRON architecture. The co-processor has
23 instructions to perform basic and trigonometric
operations.

Secondly, the improvement of performance and
efficiency at runtime was investigated. Darley
et al. [8] proposed the TMS390C602A floating-
point co-processor to cooperate with the SPARC
TMS390C601 integer processor. They optimized the
system performance by balancing the floating-point
execution throughput and instruction fetching. This
method demonstrated higher performance while dra-
matically cutting system costs. A 16-bit pipelin-
ing floating-point co-processor on FPGA was investi-
gated by Fritz and Valerij in [9]. Based on the SIMD
structure, the co-processor is placed in between a pro-
cessor and the main memory. When the processor
needs to execute a floating-point operation, the pro-
cessor will simultaneously send an instruction to the
co-processor and the address of the given operands to
the memory. The co-processor can thus directly fetch
the operands from the memory.

The enhancement of designs and algorithms
of basic arithmetic units was the third strategy.
Nielsen et al. [10] proposed a pipelined floating-
point addition algorithm with 4-state in packet for-
warding format, which was a redundant representa-

20 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.1 May 2012

tion of the floating-point number, in order to im-
prove the mantissa fraction. Chen et al. [11] intro-
duced the architecture of a multiplication-add fused
(MAF) unit to reduce the three-word-length addi-
tion to two-word-length for carry propagation in con-
ventional MAF. Either Leading-One/Zero-detection
or-prediction, common functions for floating-point
operations, were considered by Javier et al. [12],
Suzuki et al. [13], Hokenek et al. [14], and Schmook-
ler et al. [15].

In hard real-time computation such as digital fil-
ter application [16], time constraint is a main factor
for design consideration, where calculation has to be
finished before a new sample arrives. If the floating-
point computation units are performed by using soft-
ware library on a process, which obviously provides
longer latency than hardware, the targeting time con-
straint cannot be achieved. Clearly, modern proces-
sors where the floating-point units are embedded can
fulfill the requirement. In floating-point units, critical
delay comes from Leading-One-Detection, Shift func-
tions and integer multiplier. To reduce this delay, the
common functions have to be investigated and im-
proved. Multi-processor system can accelerate an ap-
plication’s computation. Normally, the processors ex-
ecute their floating-point tasks by their own floating-
point library which consume more resources and time.
Thus, hardware-sharing concept where one floating-
point accelerator is shared for multi-processor will not
only reduce the consumed resources, but also compu-
tation time and power consumption.

2. CONTRIBUTION

In accordance with the three aforementioned
strategies, we propose the design of a novel pipelined
floating-point accelerator to supporting the following
requirements :

e Architecture: we design a floating-point acceler-
ator providing high performance. It has to minimize
the redesign costs to cooperate with general purpose
processors which do not integrate floating-point arith-
metic units.

e Performance: we increase and balance the perfor-
mance and efficiency of the floating-point operators
on both standard (2-inputs) and non-standard (3-
inputs) when these operators are combined on a single
chip. The standard operators are Adder/Subtractor
and Multiplier. The mainly used non-standard op-
erators are Product-of-Sum operator and a Sum-of-
Product.

e Extendability: besides the standard and the non-
standard operations, we want to design a floating-
point accelerator supporting additional mathematical
functions such as trigonometric, linear and hyperbolic
functions.

In order to achieve our purposes, we have three
main contributions in this paper: 1) analysis and im-
provement of the performance and the efficiency of

the floating-point algorithms on both standard and
non-standard operators; 2) introduction of an opti-
mal floating-point unit architecture based on common
functions and a partially linear integer multiplier; 3)
introduction of a simple micro-instruction set with
instruction format and implementation for single-and
multiple-processors systems

The rest of the paper is organized as follows. The
floating-point algorithms of the standard and non-
standard operators are analyzed in Section 3. The
design and enhancement of the Leading-One/Zero-
Detection and Right/Left shifting functions as well
as a partial liner integer multiplier are introduced
in Section 4. The implementation and investiga-
tion of floating-point operators are considered in Sec-
tion 5. Section 6 details the design and architecture
of floating-point arithmetic accelerator. Finally, Sec-
tion 7 summarizes and concludes the paper.

3. ANALYSIS OF FLOATING-POINT OP-
ERATION ALGORITHMS

The algorithms of standard operators, i.e., adder/-
substractor, multiplier, and non-standard operators,
i.e.,, Product-of-Sum (PoS) operator and Sum-of-
Product (SoP) operator, are analyzed and consid-
ered to increase computation performance. The IEEE
standard single-precision floating-point representa-
tion (Fig. 1) is applied in our analysis with n = 32,
ne = 8, and nf = 23. In order to reduce the design
complexity, rounding algorithms used to approximate
an intermediate mantissa fraction are ignored.

n
«— ne ———>€«— Nf —— >

s e m
Sign Exponent Mantissa
0:+ represented in unsigned represented as a fixed-point
— integer value number

Fig.1:
tion

IEEFE standard single-precision representa-

3.1 Common Functions

The Unpacking, Comparison, and Norm functions,
which are commonly used to perform the floating-
point operation algorithms are discussed in the fol-
lowing.

3.1.1 Function Unpacking

This function shown in Alg. 1 extracts the two in-
put operands into two groups A and B of Sign, Ex-
ponent and Mantissa fraction: Ag, A., and A,, for
group A and By, B, and B, for group B. The carry-
bit and guard-bit, b’01, are padded on the MSB of the
mantissa fraction for computation, where || denotes
concatenation operation.

For example, we assumed that op; = —100(h'C2C
80000), op, = 200(h'43480000), n = 32, ne = 8,
nf = 23. After executing the unpacking function,
its output results will be A; = b1, A. = /10000101,

Improvement of Standard and Non-Standard Floating-Point Operators 21

Alg. 1 Unpacking(op,0pe,n,ne,nf)

Alg. 2 Comparison(As,Bs,Ac,Be,Am,Bm)

: As=opi(n-1), Ac=opi1(n-2:n-ne-2);
Apm=b’01||op1 (nf-1:0);
Bs=op2(n-1), Be=op2(n-2:n-ne-2);
B =b’01||op2 (nf-1:0);

return A, Ac, Am, Bs, Be, By

A,,=b’0110010000000000000000000, Bs=b’0, B,=
b’10000110, B,,=b’0110010000000000000000000.

3.1.2 Function Comparison

The function compares the two input operands frac-
tioned into group A and B. The comparison is nor-
mally done using an If-Statement, where the two
signs, A; and By, are first compared, followed by a
comparison of the two exponents A. B, and man-
tissas A,, B,,. By means of this method, a critical
delay appears. In order to minimize the critical delay,
a parallel comparison based on combinational circuit
is introduced. The truth-Table 1 shows possible cases
of the operand A and B, where p, q, and z depend on
A., B., A, and B,,.

Table 1: Representing the relationship between
operand A and B in keeping with g. and g¢,, in truth-
table.

[case | gc | 8m || 8a>B | 8a—B |

1 p p 1 0
2 p q 1 0
3 p z 1 0
4 q p 1 0
5 q q 0 1
6 q zZ 0 0
7 Z P 0 0
8 V7 q 0 0
9 A Z 0 0

For instance, assume that g, and g, are greaten-
ing results of exponent and mantissa values of two
input operands. We define that p=b’01, q=b’11, and
z=b’00. The 2"¢ case where g.=p and g,,=q means
that A, is greater than B, and A,, is the same as B,,.
The two outputs g4~ p and ga—p are respectively set
to b’1 and b’0 where they cover the condition that
the operand A is greater than the operand B. The
5" case shows the condition that if the operand A is
equal to the operand B, then g.=q and g,,=q, where
the two outputs are set to b’0 an b’1. Alg. 2 presents
the comparison function derived from Table 1.

Form the previous computational results where
Ag=b’1, A,.=b’10000101, A,,=b’011001000000000000
0000000, Bs=b’0, B.=b’10000110, B,,=b’011001000
0000 000000000000, after the function Comparison is
executed, g.=b’00 and g,,=b’11. The output results
ga—p and g4~ g will equal to b0 and 4’0, which is the
8" case on Table 1.

1: if (A >Be)s then
2: ge=b’01;

3: else if A =B, then
4: ge=Db’11;

5: else

6: ge=Db’00;

7: end if

8: if (Ay, >Bm) then
9: gm=Db’01;

10: else if (A, =By,) then
11: gm=Db’11;

12: else

13: gm=Db’00;

14: end if

15: ga>B=((~ge(1))ge(0))-((~gm(1))+gm(0)))+(ge(0)
(~gm(1))-gm(0));

16: ga=B=8c(1)-ge(0)-gm (1)-gm(0);

17: return ga-p, g4a=B

3.1.3 Function Norm

The sign (Sign), exponent (E), and mantissa (M) are
normalized in accordance with the IEEE standard
single-precision format. The mantissa M is shifted
to the MSB depending on the given Position parame-
ter. Simultaneously, the exponent E is either added or
subtracted, according to the carry-bit and guard-bit
of the mantissa M. The sign and the adapted expo-
nent and mantissa are finally packed together. The
Norm function is illustrated in Alg. 3.

Alg. 3 Norm(Sign,E,M,Position, n, ne, nf)
X(n-1)=Sign;
if (M(nf+1:nf)=b"10)or(M(nf+1:nf)=b’11) then
X(n-2:n-ne-1)=E+1
X (nf-1:0)=M(nf:1)

X(n-2:n-ne-1)=E-Position
X (nf-1:0)=Shift(M,Position,Left)
end if

1
2
3
4:
5: else
6.
7
8
9: return X

3.1.4 Function Unpacking3

This is a common function for non-standard oper-
ators. It is similar to the Unpacking function, but
there are 3-input operands, opj, op2, and ops as
shown in Alg. 4. The output are split into three
groups of Sign, Exponent, and Mantissa fractions, A,
A., A, Bs, Be, By, Cq, Ce, and C,,, respectively.

Alg. 4 Unpacking3(op1,0p2,0p3,n,ne,nf)

As=opi(n-1), Ac=opi1(n-2:n-ne-2);
Amn=b’01||op1 (nf-1:0);

Bs=o0p2(n-1), Be=op2(n-2:n-ne-2);
Bm=Db’01||op2 (nf-1:0);

Cs=op3(n-1), Cc=0p3(n-2:n-ne-2);
Cm=b’01||op3(nf-1:0);

return Ag, Ac, Ap, Bs, Be, Bm, Cs, Ce, Ci

22 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.1 May 2012

3.2 Standard Operation

3.2.1 Floating-Point Addition/Subtraction

The floating-point addition/subtraction algo-
rithm, detailed by Alg. 5, is compounded of the com-
mon functions which are introduced in section 3.1
The algorithm is built in respect of design simplicity
and implementation in digital hardware.

Alg. 5 Floating-Point Adder/Subtractor

Require: opi, op2, n, ne, nf, sub
{Step 1: unpacking}

1: op2(n —1)=sub @ opa2(n — 1)

2: [As,Ac,Ap,Bs,Be,Bim]=Unpacking(op1,0p2,n,ne,nf)
{Step 2: comparing and Sing evaluation}

3: [gA>B: gA:B}:Comparison(AmBs7A57B67Amme)

4: Sign=(AsBs)+(As-ga>p - (~84a=p))+(Bs - (~ga>p) -
(~ga=B))
{Step 3: Exponent subtraction, mantissa swap, and shift}

5. if (ga>p =Db’l) or (ga=p =b’1l) then

6: Eadgda=Ae, Mi1 =Am, M2 =Bp,

72 Shiftlength :AefBe

8: else

9: Eqad=Be, Mj1 =Bm, M2 =Ap,

10: Shiftlength =B.—A.¢

11: end if

12: Madpzshift(Mlg,Shiftlength,Right)
{Step 4: Mantissa addition/subtraction}
13: if ((As®Bs)=b'0) then
14: Mgaa=Mi1+Madp
15: else
16: Maga=Mi1-Maap
17: end if
{Step 5: Leading-One-Detection and normalization}
18: Position=LOD(Mgq44)
19: X=Norm(Sign,E,44,Mqd4,Position, n, ne, nf)

The proposed algorithm has been split in five steps
for both addition and substraction as described by the
following points:

e Step 1 Unpacking: the sign bits of the two
operands, op; and ops, are first evaluated by a XOR
operation with the sub parameter. Afterwards, both
operands will be fractioned into 3 main triples, Sign,
Exponent, and Mantissa, by the Unpacking function,
which outputs the parameters A;, Ac, A, Bs, Be,
and B,, respectively.

e Step 2 Comparing and Sign evaluation: the partial
exponents and mantissas, A., Ay, Be, and B,,, are
compared using the Comparison function to deter-
mine the greatest value between op; and ops. Then,
the Sign is evaluated by the optimized combinational
logic.

e Step 3 Exponent subtraction and mantissa swap:
the results of the comparison g4~p and ga—_p are
used to compute the difference of the two exponents
Shiftiengtn and to swap the exponents and the man-
tissas. The Shiftiengtn will be used to adjust the
lower mantissa M5 using the Shift function.

e Step 4 Mantissa Addition/Subtraction: the ad-
dition/subtraction of the mantissas depends on the
xoring result of As and B

e Step 5 Leading-One-Detection and Normalization:
the first bit one of the addition/subtraction result
of the mantissas is searched by the LOD function,

where the detected result will be used to normalize
the final exponent and the final mantissa generated
from previous steps. The Norm function will finally
pack them together.

The details of the LOD and Shift functions have been
fully described in section 4.

3.2.2 Floating-Point Multiplication

In comparison with the floating-point addition/sub-
traction algorithm, the complexity of the floating-
point multiplication algorithm is lower as illustrated
in Alg. 6. It is also performed in five steps described
as follows:

e Step 1 Unpacking: the two operands are frac-
tioned by the Unpacking function.

e Step 2 Subtracting and comparing: the Compari-
son function is applied to compare the exponents and
the mantissa, A., B, A,,, and B,,.

e Step 3 Swap and Sign evaluation: the variable
Swap and Sign are evaluated using AND and XOR
operations. The Swap variable is then used to per-
form swapping of the two exponents and the two man-
tissas.

e Step 4 Exponent and mantissa determination: the
two exponents, Fj; and Ejo, are subtracted and added
by 127 in the signed integer form in order to output
the final exponent E,,,;. The unsigned integer mul-
tiplication is utilized to compute the final mantissa
M-

e Step 5 Leading-One-Detection and Normalization:
The process is the same as the Step 5 of the addition/-
subtraction algorithm.

Alg. 6 Floating-Point Multiplier

Require: opi, op2, n, ne, nf
{Step 1: unpacking}

1: [As,Ac¢,Am,Bs,Be,Bm]=Unpacking(op1,0p2,n,ne,nf)
{Step 2: subtracting and comparing}

2: [ga>B, ga=p]=Comparison(A¢,Be,Am,Bm)
{Step 3: Swap and Sign evaluation}

3: Swap=(~ga>B)(~gA=B)

4: Sign=S4®Sp

5: if (Swap=b’0) then

6: Enn=Aec, Ei2=Be, M1 =Am, M2 =Bn,
7. else

8 E;1=Be, Eig=Ac, M1 =Bm, M2 =An,
9: end if

{Step 4: Exponent and Mantissa determination}
10: Emul:Ell‘E12+127
118 Mppi=My1 X M2

{Step 5: Leading-One-Detection and normalization}
12: Position=LOD(M 1)
13: X=Norm(Sign,E;;4i,Mmui,Position, n, ne, nf)

3.3 Non-Standard Operation

There are non-standard arithmetic operations with
3-input operands which are being widely used in dig-
ital signal processing applications. Product-of-Sum
operator (PoS) and Sum-of-Product operator (SoP),
(A+B)x C and (AxB)+C, are frequently employed

Improvement of Standard and Non-Standard Floating-Point Operators 23

in multimedia and filtering applications [17] and [16].
These operators can be performed using basic addi-
tion and multiplication in cascade. However, in order
to improve the performance and the efficiency of the
floating-point unit, algorithms for the PoS and SoP
operators are introduced by the fusion of the floating-
point addition and multiplication algorithms.

3.3.1 Floating-Point Product-of-Sum Operation

The floating-point PoS operator, (A+B)x C, is a
combination of the floating-point adder and multi-
plier. The PoS algorithm shown in Alg. 7 is described
by the following points:

Alg. 7 Floating-Point Product-of-Sum(PoS)

Require: opi, opa, ops, n, ne, nf
{Step 1: Unpacking}

1: [AS7A€7ATYL7BS7B€7B7YL7087C€7C7?’L]:
Unpacking3(op1,0p2,0p3,n,ne,nf)

{Step 2: Comparing and Sign evaluation}

2: [gA>B7 gA:B]:Conlparison(Ae7BeyAm,Bm)
{Step 3: Exponent subtraction, Mantissa swap, and final
Sign evaluation}

3: Signpes=Sign;®Cs

4: Suby—=A,®Bs

5: if (ga>p=Db’l) or (ga=p=Db’l) then

6: Ej1=Ac-Be, Ei2=Be¢, Mj1=Am, Mi2=Bn,

7.

8

9

else
Ej1=Be-Ae¢, Eig=Ac, Mj1=Bm, Mi2=An
end if
{Step 4: Exponent and Mantissa determination}
10: if (ga>p=Db’l) then
11: Eadd:El2'06+127
12: else
13: Eqqd=Ce-Ej2+127
14: end if
15: Mpip+=b’0|[Shift(M,;2,E;1,Right)
16: if (Suby;=b'0) then
17: Mgaa=Mi1+Mgpigt
18: else
19: Mada=Mi1-Mspife
20: end if
{Step 5: Leading-One-Detection, final Exponent and
Mantissa alignment }
21: Position=LOD(My4q4)
22: if (Mggq(nf+1:nf)=b"10) or (My4q4(nf+1:nf)=b’11) then
23: Epos=Ej1+Eqda+1
24: Ma1ign=b"01||Mgaqq
25: else
26: Epos=Ej1 +Eqqq-Position
27: Maiigrn=Db’01]|[Shift(Mgqq4,Position,Left)
28: end if
{Step 6: final Mantissa determination}
29: Mpos:MalianCm
{Step T: Leading-One-Detection and normalization}
30: Position=LOD(Myos)
31: X=Norm(Signpos,Epos;Mpos,Position, n, ne, nf)

e Step 1 Unpacking: the three operands, opi, opa,
ops, are fractioned in Ay, Ae, A, Bs, Be, B, Cs,
C., and C,;, by by the Unpacking3 function.

e Step 2 Comparing and Sign evaluation: the two
exponents, A, and B, and the two mantissas, A4,,
and B,,, are sorted by th function Comparison.
Then, the sign is determined.

e Step 3 Exponent subtraction, Mantissa swap, and
final Sign evaluation: the final sign Sign,, is evalu-
ated by XORing Sign; and Cs;. Meanwhile, the sign

bit Sub; is XORed by A, and Bs;. The comparison re-
sults will be used to swap mantissas and to compute
the exponent difference.

e Step 4 Exponent and Mantissa determination: the
exponents and mantissas are computed by adding and
shifting.

e Step 5 Leading-One-Detection, final Exponent,
and Mantissa alignment: the first bit is searched by
the LDO function. The final exponent and mantissa
alignment corresponding to the addition result of the
mantissa of op; and ops are accumulated by adding
and shifting.

e Step 6 Final mantissa determination: the two
mantissas are multiplied using unsigned integer mul-
tiplication.

e Step 7 Leading-One-Detection and normalization
: operating as the step 5 of the Alg. 5

3.3.2 Floating-Point Sum-of-Product Operation

The floating-point Sum-of-Product (SoP) opera-
tion algorithm ((AxB)+C) is detailed by the follow-
ing:
e Step 1 Unpacking : operating as the step 1 of the
Alg. 7.
e Step 2 Comparing, Exponent subtraction, Man-
tissa swap, and Sign evaluation: the two exponents,
A, and B., and the two mantissas, A,, and B,,, are
compared by function Comparison. The comparison
result will be used to swap the mantissas, to compute
an intermediate exponent, and to evaluate the sign
by xoring A, and Bs.
e Step 3 Mantissa multiplication: the two mantissas
are multiplied in form of unsigned integer multiplica-
tion.
e Step 4 Leading-One-Detection, Exponent, and
Mantissa alignment: the length of shifting is deter-
mined by function LOD. The exponents are calcu-
lated and the mantissas are aligned by addiction and
shifting.
e Step 5 Comparing, final Sign evaluation, Expo-
nent subtraction, and Mantissa swap: the two expo-
nents and the two mantissas are compared and the
final sign is determined by XORing. Afterwards, the
intermediate mantissas and the intermediate expo-
nents are swapped.
e Step 6 Shift and final Mantissa determination :
the mantissa is aligned and the final mantissa M, is
determined.
e Step 7 Leading-One-Detection and normalization
: operating as the step 5 of the Alg. 5

By considering the algorithms of the four floating-
point operations described in Alg. 5-8, it can be no-
ticed that common functions and basic mathematical
operation used are Right/Left Shifting and Leading-
One-Detection (LOD) functions as well as signed in-
teger addition/subtraction and multiplication. These
functions and operations have a significant impact on
the performance and efficiency of the floating-point
units. The critical delays of the LOD and Right/Left

24 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.1 May 2012

Algorithm 8 Floating-Point Sum-of-Product(SoP)

Require: opi, opa, ops, n, ne, nf
{Step 1: Unpacking}

1: [As:Ae:Am»Bs:Be,Bm>Cs’Ce’Cm]:
Unpacking3(op1,0p2,0p3,n,ne,nf)
{Step 2: Comparing, Exponent subtraction, Mantissa
swap, and Sign evaluation}

2: [gla>p, gla=p|=Comparison(Ac,Be,Am,Bm)
3: if (glas>p=Db’l) or (gla—p=Db’l) then

4: My1=Anm, Mj2=Bm, Ejg=Be-Ac+127

5: else

6: M;1=Bm, Mja=Am, Ejp=Be-Ac+127

7: end if

8:

Signmu=As® Bs

{Step 3: Mantissa multiplication}

9: My =M1 X M2
{Step 4: Leading-One-Detection, Exponent and Mantissa
alignment}

10: Position=LOD (M)

11: if (Mt (2:nf+1:2-0nf)=b"11) or
(M1 (2-nf+1:2:nf)=b’10) then

12: Emw=Ei2+1, Malign:b701”Mmul

13: else if (M;,q(2-nf)=b’1) then

14: Emuw=Ei2, Malign:Mmul

15: else

16: E,ui=E2-Position,

Maiign=Db’01||Shift(M,,;,Position)

17: end if
{Step 5: Comparing, final Sign evaluation, Exponent sub-
traction and Mantissa swap}

18: [g2A>B’ g2A:B}:Conlpa’re(Emul7CeyMal7Lgnvcm)

19: Signsop=>SigNm1BCs

20: if (g24>p=Db’1) or (g24=p=Db’1) then

21: Madd”:Malign7 Maddm:Cm
22: Esop:Emul7 Eaddu:Emul'Ce
23: else

24: Madd;; =Cm; Madd;s =Matign
25: Esop:Ce7 Eaddm:Ce‘Emul
26: end if

{Step 6: shift and final Mantissa determination}
27: Mgpip¢=b’0|[Shift(Madd;, ,Eadd,, Right)
28: if (Signsop=Db’0) then
29: Msop=Madd;; +Mshift
30: else
31: Msop:Madd“'Mshift
32: end if
{Step T7: Leading-One-Detection and normalization}
33: Position=LOD(M0p)
34: X=Norm(Signsop,Esop,Msop,Position,n,ne,nf)

Shifting functions with For-Loop method and nor-
mal shifting method are approximately 10 ns and 6.2
ns at 32-bit data-width. The normal integer mul-
tiplier has the critical delay 9.781 ns at 32-bit data-
width. Thus, design and analysis of Right /Left Shift-
ing and Leading-One-Detection (LOD) functions as
well as the integer multiplication operations are then
discussed in Section 4.

4. DESIGN AND ENHANCEMENT OF
THE FUNCTION AND OPERATION

4.1 Leading-One-Detection based on Binary-
Tree Algorithm

Leading-One-Detection (LOD) is a function used
to detect the first bit one from MSB to LSB or vice
versa. Normally, LOD is performed by the compari-
son of two adjacent bits by any Loop statement. By

means of this method, the critical delay is propor-
tional to the length of a considered bit string. In order
to reduce this critical delay, a binary-tree searching
algorithm has been applied instead. The depth of
this structure is determined by logs(IN), where N is
the size of any input binary string. The Binary-Tree
structure is illustrated in Fig. 3.

Table 2 represents the truth table of the Binary-
Tree Cell (BT-Cell), where X, C, N,,_pq € {0,1} and
D, ¢, Nioc—pq € {(), % — 1}. Assuming that p, ¢ are
a coordinate in XY plan, where p is a position on
the X axis and ¢ is a position on the Y axis (depth).
Thus, BT-Cell01 is Binary-Tree located in the depth
level 0 in the column 1. Xy _1.0 is an input binary
vector and C' determines the direction of the search
(either MSB to LSB or LSB to MSB). Njpc—pg is a
selected location corresponding to the coordinates p
and g. IV,,_pq is the bit value of the selected location.
For instance, in the 6" case, Xn, Xny_1, and C are
equal to b’101, meaning that the BT-Cell searches
the fist bit one from MSB to LSB. Afterwards, N,_pq
is set to b’l and Njpc—pq is equal to N.

Table 2: Binary selection algorithm [18] for the
BT-Cell.
Case | Xy | Xy—1 | C || Node-loc. | Node-Value
(Nlocqu) (Nvqu)
1 0 0 0 N 0
2 0 0 1 N-1 0
3 0 1 0 N-1 1
4 0 1 1 N-1 1
5 1 0 0 N 1
6 1 0 1 N 1
7 1 1 0 N 1
8 1 1 1 N-1 1

The corresponding optimized combinational logic
is described by Egs. (1) and (2). Fig. 2 illustrates
the design and architecture of the Binary-Tree Cell,
where ® is AND gate and @ is OR gate.

N, if Xy (Xn_1+C)+
Nioe—pg = (Xn_1-O) is true (1)
N — 1, otherwise

Ny—pg=XN+ XN (2)

Improvement of Standard and Non-Standard Floating-Point Operators 25

N\oc»pq Nv-

Binary-Tree Cell
BT-Cell pq

[BT-Cell] N xv N1 xn1C [Node-Index and
Nloc-pq """"""" ' Nv-pq
S DR S
Node-Value] N N-1 Xy Xua G Xy Xy

Fig.2: Binary-Tree Cell and internal logical archi-
tecture

Nioc- 410 [Nv-H10
BT-Cell30

Nioc-20 | Nv-20

BT-Cell20

eee
Nioc-20 | Nv-20

BT-Cell20

(B'i'-CeIVH 1)(BT'-CenH 0)
P

Nioc-§ 20[Nv-5-20

BT-Cell21

L
N N
Nioc-25¢| Nv-2

BT-Cell2¥

Ny-13

(BT-Cell12)(BT-Cell1¥) ese
o

Nioc-15-1 | Ny-1-1

4.2 Function Right/Left Shift

The function is normally performed by a sequen-
tial shift-register where the shifting length and the
shifting direction are configurable. Similarly to the
critical delay analysis of LOD, the critical delay of the
sequential shift-register is proportional to the maxi-
mum shifting length of a mantissa faction. In order to
alleviate this critical delay, a multiplexer-based shift-
register is proposed. Assuming that n is the maxi-
mum shifting length of the registers A and B, m is
a location of the LOD in the register A and B. sel
is an intermediate shifting length where the shifting
length is greater or equal to n—1. The number of uti-
lized multiplexers is equal to n. Thus, the Right Shift
(RMux) function and the Left Shift (LMux) function
can be described by Egs. (3) and (4).

N Xy N-1Xe, N2 XuN-3 X 3 X 2 X 1% 0 X
Fig.3: Binary-Tree structure
14
- © - For-Loop _-- 2
12 —s—Bjnary-tree e 1
10} o-""
g S
E 8r /I
S ¥4
1 ’
§ 6 [o/ ‘
= .-
S 4l oo o
2r I'/ﬂ/ﬂkﬁfs‘ir:;;precision
0

0 10 20 30 40 50 60
A number of bits (N)

Fig.4: Performance comparison between For-loop
method and Binary-Tree method

Fig. 4 depicts the performance of LOD performed
by the For-Loop method compared to the Binary-Tree
method, where the length of the input binary string
(N) varies from 5 to 64. The graph shows that when
the N increases , the critical delay of the For-Loop
method dramatically increases. On the other hand,
the critical delay of the Binary-Tree increases only
slightly. Therefore, LOD based on the Binary-Tree
architecture improves the performance of the floating-
point unit.

a(0) sel =0
a(l) sel =1
b(m) = RMux, = :
aln—1) sel=n—-m-—1
0 sel >n—m—1
3)
a(m) sel =0
a(m—1) sel =1
b(m) = LMuzx, =

aln—m—1) sel=m—1

0 sel >m —1

(4)

Fig. 5 shows the performance of the multiplexer-
based shift function when the shifting length varies
from 5 to 64 bits. The critical delay of the sequen-
tial shift-register is comprised between 4.5 ns to 6.2
ns whereas the Multiplexer-based one maintains the
critical delay between 4 ns and 4.5 ns. Thus, the
Multiplexer-based shift-register achieves a higher per-
formance than the the sequential shifting method.

26 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.1 May 2012

6.5
D ©
6r 2
‘,\
e 4" -0~ Normal Shifting
> 551 N4 —&— Multiplex—based Shifting
3 L
S ?
© 1
g s
S 1
! single precision
o :'_./._.,—/__._/—u

4 i i i i
0 10 20 30 40 50 60
A number of bits (N)

Fig.5: Performance comparison between the
Multiplezer-based and Sequential method for the Shift
function

4.3 Partial Linear Integer Multiplier based on
a pipelined Architecture

Since the main critical delay of the floating-point
multiplier, the floating-point PoS, and the floating-
point SoP comes from an integer multiplier, improv-
ing this delay also becomes the objective of this sec-
tion. The partial linear integer multiplier technique
is applied to the multiplier’s nominator. The pipeline
architecture is utilized to improve the performance of
the multiplier based on the amount of pipeline states.
n and m are denominated as the number of bits of
the denominator and the number of partition. The
partial linear integer multiplier based on the pipeline
architecture is illustrated in Fig. 6 with m = 3. The
minimum number of pipeline states is equal to m+ 1.
Carry-Ripple-Adders (CRA) are employed to add the
results from each partial multiplier generated by the
previous state.

op4(n-1:0) op,(3par-1:2par) op,(2par-1:par) 0...0 ||opy(par-1:0)
[] [[0.0 | [0..0] [o..0] [0.0] |
n-1 0 n1 0 n-1 0 n-1 0

X(2n-1:0)

Fig.6: A 3-partition linear integer multiplier

Table 3: Synthesis results of the partial linear in-
teger multiplier on Xilinx Virtex 5 XC5VLX100t-

SFF1136.

Resources m=1 m=2 m=3 m=4
Slice Reg. 83 146 316 466
Slice LUT's 886 894 893 905
Critical Delay(ns) 9.781 | 5.529 | 4.503 | 4.412
Max. Frequency(MHz)| 102.23 | 180.86 | 222.08 | 226.63

As reported in Table 3, the pipelined partial linear
integer multiplier is synthesized in order to illustrate
the relationship of the consumed resources and the
critical delay.

5. IMPLEMENTATION AND INVESTIGA-
TION OF FLOATING-POINT OPERA-
TORS

In this section, the implementation and accuracy
analysis of the floating-point operational algorithms
proposed in Alg. 5-8 are illustrated. Based on a
pipelined architecture, the synthesis results on Xil-
inx Virtex 5 FPGA and 130-nm silicon technology
are reported in Table 11-14. The details of partition-
ing states used for consideration on each operators is
explained below:

5.1 Synthesis Result corresponding to state
Numbers

5.1.1 FP-Adder

From Alg. 5 having 5 steps, performance and effi-
ciency in architecture point of view by merging or sep-
arating the steps are analyzed, where the FP-Adder
is investigated in 4-, 5-, and 6-state respectively. In
4-state, the step 1 and 2 of Alg. 5 are merged to-
gether. In 6-state, LOD and normalization on step 5
are separated.

5.1.2 FP-Multiplier

From Alg. 6, there are 3 cases for evaluation which
are 4-,5-, and 6-state. For all cases, the step 1-3 have
been grouped because their total complexity is lower
than the integer multiplier’s one. Thus, the 3-state
FP-Multiplier becomes an initial model. To improve
its performance, the integer multiplier is split as 2-
and 3-state.

5.1.3 FP-PoS

From Alg. 7 which provides 7 steps, since the 1%¢
to 37¢ steps are grouped together, the 5-state FP-SoP
becomes an initial model for consideration. As an
integer multiplier generates the longest critical path,
the multiplier is partitioned by two and three. Thus,
there are 3 cases for evaluation 5-, 6-, and 7-state.

5.1.4 FP-SoP
Like FP-PoS, the 1°¢ to 3" steps are grouped to-
gether Alg.8 and an integer multiplier is partitioned

Improvement of Standard and Non-Standard Floating-Point Operators 27

by two and three. There are also 3 cases for evalua-
tion 5-, 6-, and 7-state.

5.2 Comparison and Statistical Analysis in
Accuracy

In this section the proposed 5-state FP-Adder
method (Alg. 5) is implemented by using VHDL and
then synthesized based on Xilinx Virtex ITP xc2vp30-
7896 FPGA technology. The synthesis result is com-
pared with 5-state FP-Adder corresponding to the
methods in [19] and [20]. As illustrated in Table 4,
the proposed FP-Adder provides better area and time
efficiency than the two existing FP-Adder methods.

Table 4: Area & Time efficiency of a 5-state FP-
Adder.

Clock speed Area
Module
(MHz) (Slices)
Xilinx IP [?] 120 510
FP-Adder [?] 127 394
Proposed FP-Adder 140 326

In addition, area and time efficiency of the pro-
posed LOD method are compared with the LOD
methods in [20]. The comparison result is shown in
Table 5, where the proposed LOD based on binary-
tree method presents better efficiency than the cur-
rent LOD method proposed in [20].

Table 5: Area & Time efficiency of LOD.

Critical Delay Area
Module
(ns) (Slices)
LOD [?] 8.32 14
Proposed LOD 5.726 147

To compare with the 3-state FP-Adder method
proposed by [21], our FP-Adder method can also pro-
vide the 3-state FP-Adder by merging step 1 to 3 of
Alg. 5. However, since the FP-Adder method in [21]
is designed based on Leading-Zero-Anticipator (LZA)
and implemented in 0.5 ygm CMOS technology which
is relative older, it is not convenient for comparison
with our proposed FP-Adder method.

Table 6: Statistical error comparison of hardware
float-point simulation and Matlab/Simulink, where all
input operands are varied from —1038-532 ¢o 1038:532,
Max. € Min. € |&] o(e)

1.0571E-6|3.7213E-12 | 1.6678E-7 | 1.6528E-7
1.4687E-6 | 3.8625E-15 | 1.5056E-7 | 1.9464E-7
1.3892E-3|7.9421E-13 | 1.7340E-4 | 2.0198E-4
3.5168E-4 | 6.8965E-10 | 4.6439E-5 | 4.4634E-5

Operator

FP-Adder

FP-Mult.
FP-PoS
FP-SoP

For the computation precision analysis, the
floating-point arithmetic units is implemented in

VHDL conforming to the proposed Alg. 5-8. The re-
sults from the hardware VHDL simulation are com-
pared the ideal results from Matlab/Simulink. The
computation errors are considered and reported in
statistical terms. The maximum error (Max. ¢), the
minimum error (Min. ¢), the absolute error (|2]), and
the standard deviation (o(g)) are listed in Table 6.
For the testing environment, the value of three input
operands 1 varied from —1038-532 to 1038-532,

6. DESIGN AND ARCHITECTURE OF
FLOATING-POINT ARITHMETIC AC-
CELERATOR

The floating-point operators, FP-Adder, FP-
Multiplier, FP-PoS, and FP-SoP, which have been
designed and analyzed in the previous sections are
combined into a floating-point accelerator. The archi-
tecture of the accelerator is illustrated in Fig. 7. The
integration of the accelerator into a multi-processor
system is depicted in Fig. 8.

2, Flow of 11 and 13 Flow of 12
:;3 (- b el : 2
valid-i)
=| Tready-1 | | [T, Fetch | ggatadin
o S S 2 3 PR b
E — !q_) ack-in_
Llla|l» o Decode g
B = e} o)
Fll2|ld]|d]| ¢
f=
af & a L TR i 4
Qo
< L Write |« lack-out
| iyt ke il P =
i = e —— 1Back | _falaog
g \/ 32-bit data-o -
= Result collision event
Fig.7: The architecture of the floating-point accel-
erator
BusA 32-bit data-in
valid-in
ack-in[1:0]
5
% Main FIO?:L?g_p‘.O'm Processor| ,,, |Processor
8| [processor arthmetic 2 32
s accelerator
a
] l l Tat:k-outH:Ol] l I l
| __valid-out | |
32-bit data-out
L_1BusB
Fig.8: A multi-processor system integrating the

floating-point accelerator

6.1 Design and Architecture

In Fig. 7, a 32-bit pipelined instruction architec-
ture is employed for the design of the floating-point
accelerator in order to fetch and execute an inter-
mediate instruction at every clock cycle. The de-
sign is comprised of three states : Fetch/Decode,
Execute and Writeback. The signals data — in/out,
valid —in/out and ack — in/out are defined as exter-
nal inputs and outputs connected to BusA and BusB.
The 2-bit ack — in/out signal is used to notify the re-
ceived status to a source module, where b’00 shows

28 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.1 May 2012

the status that the destination is in ready state ; b’01,
b’10, and b’11, inform that the 1%¢, 2", and 3" words
respectively are accepted by the destination. The in-
ternal ready—i/o signal indicates that the destination
is in the ready state. Similarly to the handshaking
protocol, a 1-word signal, data — in/out, coming si-
multaneously with a valid signal, valid—in/out signal
as the timing in Fig. 11 and 12. Fig. 8 shows the di-
agram where the proposed floating-point accelerator
is applied to multi-processor system. The processors
can send and receive data to and from the accelerator
via a bus-system, Bus A and Bus B. A bus controller
is used to handle any requests to the two buses at
runtime.

The proposed floating-point accelerator is targeted
to operate at the maximum frequency on Xilinx Vir-
tex 5 FPGA (200 Mhz) and at 1 GHz using the
130-nm Silicon technology. Consequently, the corre-
sponding number of states employed in the design of
FP-Adder, FP-Multiplier, FP-PoS, and FP-SoP are
5-state, b-state, 7-state, and 7-state respectively, in
accordance to the synthesis results given in Table 11-
14

6.2 Micro-Instruction and Timing Diagram

The micro-instruction pattern and the timing of
the accelerator are designed in such away that it will
be easily adapted to any general purpose processors.
From the proposed floating-point operators, three
types of instruction format, short and long (#F1 and
#F2) and write-back (#R1), are introduced (Fig 9).
The short and long instruction formats are respec-
tively 3 and 4 words long. The 1%¢ word consists of a
16-bit command (cmd), 8-bit instruction ID(I;4) and
5-bit processor ID (P;4). Up to 32 processors can be
thus supported. The 2"¢ to 4** words are the three
operands of the floating-point operation. There are 2
words for the reply format #R1 where the 1%¢ word
is composed of 8-bit instruction ID (I;4) and 5-bit
processor ID (P;4). The last word is an intermediate
result performed by the floating-point units. Table 7
represents the four micro-instruction table to be used
by any general purpose processors.

#F1 cmd] lg [Pu]n/a] opi] op, |
0 1516 2324 25 32 63 64 95
#F2[cmd] lg [Pu]n/a]l ops | op, | ops |
0 1516 2324 25 32 63 64 9596 127
#R1[Iy [Pa] nfa] resutt |
0 78 12 32 63

Fig.9: Instruction format #F1, #F2 and Reply for-
mat #R1 of the accelerator

2 |3 |4 |5 |6 |7 |89 |10][11[12 |13 |14
FD|FD|FD|EX|EX|EX|EX|EX =W

FD|FD|FD|FD[EX|EX|EX|EX|EX|EX|EX \W/=4W=
FD|FD[FD|EX|EX|EX|EX|EXYWH0E

1516 |17 | 18 | 19

FD|FD|FodSTlEX |EX[EX|EX|EX [IEINE
_stalling

Fig.10: Result collision when either FPPoS32 or
FPSoP32 instruction are first required and followed
by either FPADD32 or FPMULS32, FD, EX, and WB
are Fetch&Decode cycle, Fxecution cycle, and Write-
back cycle.

Fig. 10 shows the result of a collision event at the
internal output-bus when a long instruction is ahead
of a short instruction. FPADD32, FPPoS32, and FP-
MUL32 are called in sequence starting from the 27¢
clock cycle. The result collision event happens in the
17t clock cycle, where two word results performed
by FPPoS32 and FPMUL32 have been written back
simultaneously. In order to alleviate this problem, a
simple pattern instruction format detection is intro-
duced into the Fetch&Decode module. If the previous
instruction is a long instruction and the current in-
struction is a short instruction, a stalling state (ST)
is used. The resulting timing diagram using the ST
state is illustrated in Fig. 10, where the 15! and 2"¢
WB generated from the FPMUL32 are presented at
the 18" and 19" clock cycle.

Fetch & Decode cycle Fetch & Decode cycle

il 7 10 11

_ |
data-in[31:0] Y ins Jopt Y op2 f ins [opt [op2) op3 f'ins [opt op2f |

ackint0)_0 Y 0 L 1 [2 oY1) 2Y3fo)1)f2])o o

«Instruction 1(11) »<— Instruction 2(12) —»<«Instruction 3(13) »
#F1 #F2 #F1

Fetch & Decode cycle

Clk

valid-in

Fig.11: The timing diagram shows the handling of
three instructions by the FetchéDecode module

Writeback Writeback Writeback
cycle cycle cycle
10 11 12 16 17 18 19 0
Clk

ready-o

walido [\ [\ [\

data-o[31:0] X resuit X X resuit Y X resut X

valid-out _/—_,l_/ | S—

data-out[31:0] X info. Y resuit) X info. X resuit Y Info. X result X

ack-out[1:0] o X o X 1 X 0 X o X+ X o X ¢ X:
- K] > - 12 > 13 >

Fig.12: The timing diagram of the personal infor-
mation and the computation result of 11, 12, and I3
on their Writeback cycle.

The timing diagram in Fig. 11 shows the execution
of 3 instructions, I1, 12, and I3 which are FPADD32,
FPPoS32, and FPMUL32 respectively. Each word
presented by the data-in signal will be validated by
the valid-in signal. Whenever destination has already
received the computation result, the 2-bit ack — in

Improvement of Standard and Non-Standard Floating-Point Operators 29

Table 7: The micro-instruction of the proposed floating-point accelerator available for any general purpose

pProcessors.

Cmd Mnemonic | Operand Operation Description #Clock
x’0001 | FPADD32 | 14, P;4, op1, op2, R R<—op1 + op2 32-bit floating-point addition 10
x’0002 | FPMUL32 | 14, P;4, op1, op2, R R<—op1 X op2 32-bit floating-point multiplication 10
x’0003 | FPPoS32 14, Pi4, op1, op2, ops, R | R« (op1+op2)x ops 32-bit floating-point Product-of-Sum 13
x’0004 | FPSoP32 14, Pig, op1, op2, op3, R | R« (op1x op2) + ops | 32-bit floating-point Sum-of-Product 13

signal will by incremented. It is then reset when the
result is completely received.

The timing diagram in Fig. 12 shows the Write-
back cycle of the personal information (Info.) and
the computation result generated by I1, 12, and I3.
With always active the ready — o signal, the compu-
tation result and its validation are presented on the
data—o signal and on the valid—o signal at 10", 16",
and 18" clock cycle. Considering at 10" clock cycle,
as soon as, the valid — o signal is active, the personal
information of I1 is written to the data — out signal,
connected to the 32-bit data — out signal on Bus B.
It is followed by the computation result on the next
clock cycle, where the valid — o signal is also active
for two clock cycle. In common with the writeback
cycle of 11, the personal Info. and the computation
result of I2 and I3 are presented at the 16" and 18"
clock cycle.

6.3 Performance Analysis

The performance of the proposed floating-point ac-
celerator can be evaluated by Fetch Instruction Rate
(instr./s) and Throughput in number of floating-point
operations per sec (FLOPS). f is denoted the max-
imum operating frequency of the design. The Fetch
Instruction Rate (FR) means a number of floating-
point instructions that can be fetched and decoded in
a certain period. Obviously, the FR depends on ac-
celerator’s architecture, where if system data-width
equals to the defined data-word, the FR will equal to
f. However, in our design the accelerator has 32 bits
data-width, where 1 data-word is 32 bits. There are
two types of input instruction formats #F1 and #F2
which provide 3 and 4 data-words for one floating-
point operation. Thus, the maximum and minimum
FR are determined by f/3 and f/4.

Table 8 shows the Fetch Instruction Rate and the
Throughput of the proposed design based on FPGA
and 130-nm silicon technology. The table shows that
by selecting 5-state FP-Adder and FP-Multiplier as
well as 7-state FP-PoS and FP-SoP, the input rate
and output rate of the accelerator are similar.

Table 8: Performance definition and evaluation on
Xilint FPGA and 130-nm silicon technology

Measurement FPGA | Silicon
Max. Fetch Rate (Minstr./s) f/3 66.67 | 333.33
Min. Fetch Rate (Minstr./s) f/a 50 250
Max. Throughput (MFLOPS)|Max. FR| 66.67 | 333.33
Min. Throughput (MFLOPS) | Min. FR 50 250

Table 9 and 10 summarizes the consumed resources
and areas of the floating-point accelerator when syn-
thesized on a Xilinx xcHvlx110t-3f-1136 FPGA and
on a 130-nm Silicon technology targeting at 200 MHz
and at 1 GHz respectively.

Table 9: Synthesis results on a Xilinz Virtex 5 de-
vice xchulrl10t-3ff-1136.

Utilization | % of Total
Slice registers 1973 2%
Slice LUTs 4946 7%
Slice LUT-FF 1374 24%
BUFG/BUFGCTRLs 32 3%
Critical Delay 5 ns
Maximum Frequency 200 MHz

Table 10: Synthesis result on 130-nm silicon tech-
nology.

Utilization
Area(um) 189513
Power(mW) 60.607
Critical Delay 1 ns
Maximum Frequency 1 GHz)

7. SUMMARY AND CONCLUSION

This paper proposes the design and analysis of
floating-point operators and accelerator architecture
in compliance to the IEEE standard 32-bit single-
precision format. The operators are considered in
their algorithmic form for hardware simplification.
The standard and non-standard floating-point opera-
tors, i.e., FP-Adder, FP-Multiplier, FP-PoS, and FP-
SoP are analyzed in order to increase their perfor-
mance and efficiency. The PoS and SoP algorithms
are also introduced by the fusion of the floating-point
addition/subtration and multiplication algorithms.
The Leading-One-Detection based on Binary-Tree ar-
chitecture and the multiplexer-based Right/Left Shift
method are proposed to alleviate the restriction de-
rived from the maximum critical delay corresponding

30 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.1 May 2012

to the longest critical path. The partial architecture
of integer multiplier is introduced and analyzed in or-
der to improve the performance. The floating-point
algorithms are implemented, synthesized, and simu-
lated based on the hardware models in VHDL. Their
computation accuracy are statistically compared with
the ideal results from Matlab/Simulink. The results
show that the proposed operators provide a high per-
formance and high accuracy.

Moreover, the floating-point accelerator is de-
signed by grouping the introduced floating-point op-
erators. The maximum operating frequency at 200
MHz on Xilinx FPGA Virtex 5 xc5vlx110t-3ff-1136
and 1 GHz on 130-nm Silicon technology become the
design constraint. In order to simplify for any general
purpose processors, the micro-instruction set is intro-
duced, where its maximum and minimum clock delay
at 10 and 13 clock cycles for the short instruction for-
mat #F1 and the long instruction format #F2 are re-
ported. From evaluation results, the accelerator pro-
vides the maximum and minimum instruction rate at
66.67 and at 50 Minstr. /s on FPGA and at 333.33 and
at 250 Minstr./s on Silicon. Its maximum and mini-
mum throughput are at 66.67 and at 50 MFLOPS on
FPGA and at 333.33 and at 250 MFLOPS on silicon-
based technology.

References

[1] J. Gray, F. Grenzow, and M. Siedband, “Apply-
ing a PC accelerator board for medical imaging,”
IEEFE Engineering in Medicine and Biology Mag-
azine, vol. 9, pp. 61-63, 1990.

[2] B. Bomar and B. Winkleman, “A method for
accelerating the design of optimal linear-phase
FIR digital filters,” IEEE Transactions on Signal
Processing, vol. 39, no. 6, pp. 1419-1421, June
1991.

[3] C.Huntsman and D. Cawthron, “The MC68881
Floating-point Coprocessor,” IEEE Micro, vol.
3, pp- 44-54, 1983.

[4] C. Rowen, M. Johnson, and P. Ries, “The MIPS
R3010 floating-point coprocessor,” IEEE Micro,
vol. 8, pp. 53-63, June 1985.

[5] P. Maurer, “Design verification of the WE 32106
math accelerator unit,” IEEE Design & Test of
Computers, vol. 5, pp. 11-21, 1988.

[6] T.Nakayama, H. Harigai, S. Kojima, H. Kaneko,
H. Igarashi, T. Toba, Y. Yamagami, and Y.
Yano, “A 6.7-MFLOPS floating-point copro-
cessor with vector/matrix instructions,” IEEE
Journal of Solid-State Circuits, vol. 24, no. 5,
pp- 1324-1330, October 1989.

[7] S. Kawasaki, M. Watabe, and S. Morinaga, “A
floating-point VLSI chip for the TRON architec-
ture: an architecture for reliable numerical pro-
gramming,” IEEFE Micro, vol. 9, pp. 26-44, 1989.

[8] M. Darley, B. Kronlage, D. Bural, B. Churchill,
D. Pulling, P. Wang, R. Iwamoto, and L. Yang,

[10]

[11]

[15]

[16]

[19]

[20]

“The TMS390C602A floating-point coprocessor
for Sparc systems,” IEEE Micro, pp. 36-47, 1990.
F. Mayer-Lindenberg and V. Beller, “An FP-
GAbased floating-point processor array support-
ing a high-precision dot product,” in IEEE In-
ternational Conference on Field Programmable
Technology, pp. 317-320, 2006.

A. Nielsen, D. Matula, C. Lyu, and G. Even,
“An TEEE compliant floating-point adder that
conforms with the pipeline packet-forwarding
paradigm,” IEEE Transactions on Computers,
vol. 49, no. 1, pp. 33-47, January 2000.

C. Chen, L.-A. Chen, and J.-R. Cheng, “Ar-
chitectureal design of a fast floating-point
multiplication-add fused unit using signed-digit
addition,” IEFE Proceedings - Computers and
Digital Techniques, vol. 149, no. 4, pp. 113-120,
July 2002.

J. Bruguera and T. Lang, “Leading-one predic-
tion with concurrent position correction,” IFEE
Transactions on Computers, vol. 48, no. 10,
pp.1083-1097, October 1999.

H. Suzuki, H. Morinake, H. Makino, Y. Nakase,
K. Mashiko, and T. Sumi, “Leading-Zero An-
ticipatory Logic for High Speed Floating-Point
Addition,” IEEE Journal of Solid-State Circuits,
vol. 31, no. 8, pp. 1157-1164, 1996.

E. Hokenek and R. Montoye, “Leading-Zero An-
ticipator (LZA) in the IBM RISC System/6000
Floating-Point Execution Unit,” IBM Journal of
Research and Development, pp. 71-77, 1990.

M. S. Schmookler and K. J. Nowka, “Leading
Zero Anticipation and Detection A Comparison
of Methods,” in Proceedings. 15th IEEE Sympo-
sium on Computer Arithmetic, pp. 7-12, 2001.
P. Surapong, M. Glesner, and H. Klingbeil, “Im-
plementation of realtime pipeline-folding 64-tap
filter on FPGA,” in PhD-Forum: PhD Research
in Microelectronics and Electronics (PRIME),
pp- 1-4, 2010.

K. Donghyun and K. Lee-Sup, “A Floating-
Point Unit for 4D Vector Inner Product with
Reduced Latency,” IEEE Transactions on Com-
puters, vol. 58, no. 7, pp. 890-901, July 2009.

P. Surapong and M. Glesner, “On-chip efficient
Round-Robin scheduler for high-speed intercon-
nection,” in 22nd IEEFE International Sympo-
sium on Rapid System Prototyping, pp. 199-202,
2011.

W. Ligon, S. McMillan, G. Monn, F. Stivers, and
K. Underwood, “A revaluation of the practicality
of floating-point operations on FPGAs,” in [EEE
Symp. FPGAs for Custom Computing Machines,
pp- 206215, April 1998.

A. Malik, D. Chen, Y. Choi, M. H. Lee, and S.B.
Ko, “Design tradeoff analysis of floating-point
adders in FPGAs,” Canadian Journal of Elec-
trical and Computer Engineering, vol. 33, pp.

Improvement of Standard and Non-Standard Floating-Point Operators 31

Table 11: Hardware synthesis results of FP-Adder and FP-Multiplier on Vertex 5 XC5VLX100t-3FF1136.

Operator FP-Adder FP-Multiplier
Resources 4-state | b-state | G-state | 4-state | 5-state | 6-state
Slice Reg. 200 241 290 332 395 599
Slice LUTs 442 483 488 1,132 1,159 1,155
LUT-FF pairs 187 200 255 209 253 282
Critical Delay(ns) | 4.375 3.605 3.168 5.620 4503 | 4.412
Max. Freq.(MHz) 228.60 | 277.40 | 315.63 | 177.95 | 222.09 | 226.63

Table 12:

Hardware synthesis results of FP-PoS and FP-SoP on Vertex 5§ XC5VLX100t-3FF1136.

Operator FP-Product-of-Sum FP-Sum-of-Product
Resources H-state | 6-state | 7-state | 5-state | G-state | 7-state
Slice Reg. 317 435 500 430 492 783
Slice LUTs 1642 1438 1463 1,574 1669 1634
LUT-FF pairs 260 306 337 297 325 422
Critical Delay(ns) | 6.827 5.620 4.95 5.962 5.662 4.937
Max. Freq.(MHz) 146.48 | 177.95 | 202.23 | 167.73 | 177.95 | 202.54

Table 13:

Hardware synthesis results of FP-Adder and FP-Multiplier on 130-nm silicon technology.

Operator FP-Adder FP-Multiplier
Resources 4-state | 5-state | 6-state | 4-state | H-state | 6-state
Area(um). 16,747 | 18,226 | 19,396 | 39,487 | 40,413 | 47,900
Power(mW) 8.5772 | 10.318 | 18.791 | 14.5492 | 16.377 | 21.783
Critical Delay(ns) | 0.82 0.8 0.48 0.95 0.9 0.83
Max. Freq.(GHz) 1.22 1.25 2.083 1.05 1.11 1.20

Table 14: Hardware synthesis results of FP-PoS and FP-SoP on 130-nm silicon technology.

Operator FP-Product-of-Sum FP-Sum-of-Product
Resources 5-state | 6-state | T-state | 5-state | 6-state | 7-state
Area(um). 44,807 | 52,104 | 54,897 | 49,114 | 53,470 | 63,799
Power(mW) 16.99 | 24.923 | 25.716 | 14.692 | 15.510 | 26.193
Critical Delay(ns) 1.12 0.9 0.85 1.41 1.2 0.95
Max. Freq.(GHz) 0.89 1.11 1.18 0.71 0.83 1.05

169-175, 2008.

[21] A. Beaumont-Smith, N. Burgess, S. Lefrere, and
C. Lim, “Reduced latency IEEE floating-point
standard adder architectures,” in 14th IEEE
Symposium on Computer Arithmetic Proceed-
ings, pp. 35-42, 1999.

Pongyupinpanich Surapong was born
in Prachinburi, Thailand. He received
his Bachelor and Master of Engineering
degree in Electrical Engineering from
King Mongkut’s Institute of Technol-
ogy Ladkrabang (KMITL), Thailand in
1998 and 2002. Currently, he is work-
ing toward the PhD degree in Microelec-
tronic Systems Research Group, Tech-
nische Universitdt Darmstadt, Darm-
stadt, Germany. His research interests
include computer-aided VLSI design, design optimization al-
gorithm, circuit simulation, digital signal processing, system-
on-chip, all in the context of field-programmable gate-array
devices and VLSI technology.

Francois Philipp was born in For-
bach, France. In 2009, he received
a double degree from the Ecole Na-
tionale Supérieure de I’Electronique et
de ses Applications (ENSEA), Cergy,
France and from the Technische Univer-
g sitdt Darmstadt, Germany in the field of
computer engineering. Since 2009, he is
a Ph.D. candidate in the Microelectronic
Systems Research Group at Technische
Universitdt Darmstadt. He is working
in the LOEWE-Zentrum AdRIA (Adaptronik-Research, Inno-
vation, Application) and in the EU FP7 project MoDe (Main-
tenance on Demand). His research interests include acoustic
signal processing, wireless sensor networks and reconfigurable
hardware.

32 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.1 May 2012

Faizal Arya Samman was born in
Makassar, Indonesia. In 1999, he re-
ceived his Bachelor of Engineering de-
gree from Universitas Gadjah Mada, in
Yogyakarta, Indonesia. In 2002, he re-
ceived his Master of Engineering degree
from Institute Teknologi Bandung, in
Indonesia with Scholarship Award from
Indonesian Ministry of National Educa-
tion. In 2002, he was appointed to be a
research and teaching staff at Universi-
tas Hasanuddin, in Makassar, Indonesia. He received his PhD
degree in 2010 at Technische Universitdt Darmstadt, in Ger-
many with scholarship award from Deutscher Akademischer
Austausch-Dienst (DAAD, German Academic Exchange Ser-
vice). He is now working as a postdoctoral fellow in LOEWE-
Zentrum AdRIA (Adaptronik-Research, Innovation, Applica-
tion) within the research cooperation framework between Tech-
nische Universitdt Darmstadt and Fraunhofer Institute LBF
in Darmstadt. His research interests include network-on-chip
(NoC) microarchitecture, NoC-based multiprocessor system-
on-chip, design and implementation of analog and digital elec-
tronic circuits for control system applications on FPGA/ASIC
as well as energy harvesting systems and wireless sensor net-
works.

Manfred Glesner received the diploma
degree and the Ph.D. degree from Uni-
versitdt des Saarlandes, Saarbriicken,
Germany, in 1969 and 1975, respec-
tively. His doctoral research was based
on the application of nonlinear opti-
mization techniques in computer-aided
design of electronic circuits. He re-
ceived three Doctor Honoris Causa de-
grees from Tallinn Technical University,
Tallinn, Estonia, in 1996, Poly-technical
University of Bucharest, Bucharest, Romania, in 1997, and
Mongolian Technical University, Ulan Bator, Mongolia, in
2006. Between 1969 and 1971, he has researched work
in radar signal development for the Fraunhofer Institute in
Werthoven/Bonn, Germany. From 1975 to 1981, he was a Lec-
turer in the areas of electronics and CAD with Saarland Uni-
versity. In 1981, he was appointed as an Associate Professor in
electrical engineering with the Darmstadt University of Tech-
nology, Darmstadt, Germany, where, in 1989, he was appointed
as a Full Professor for microelectronic system design. His cur-
rent research interests include advanced design and CAD for
micro- and nanoelectronic circuits, reconfigurable computing
systems and architectures, organic circuit design, RFID design,
mixed-signal circuit design, and process variations robust cir-
cuit design. With the EU-based TEMPUS initiative, he built
up several microelectronic design centers in Eastern Europe.
Between 1990 and 2006, he acted as a speaker of two DFG-
funded graduate schools. Dr. Glesner is a member of several
technical societies and he is active in organizing international
conferences. Since 2003, he has been the vice-president of the
German Information Technology Society (ITS) in VDE and
also a member of the DFG decision board for electronic semi-
conductors, components, and integrated systems. He was a
recipient of the honor/decoration of “Palmes Academiques” in
the order of Chevalier by the French Minister of National Ed-
ucation (Paris) for distinguished work in the field of education
in 2007/2008.

