
Improvement of Standard and Non-Standard Floating-Point Operators 19

Improvement of Standard and Non-Standard
Floating-Point Operators

Pongyupinpanich Surapong1 , François Philipp2 ,

Faizal Arya Samman3 , and Manfred Glesner4 , Non-members

ABSTRACT

This paper presents the design and analysis of a
floating-point arithmetic accelerator in compliance
with the IEEE standard single precision floating-
point format. The accelerator can be used to ex-
tend a general-purpose processor such as Motorola
MC6820, where floating-point execution units are un-
embedded by default. It implements standard and
non-standard mathematic functions, addition/sub-
traction, multiplication, Product-of-Sum and Sum-
of-Product through a micro-instruction set supported
by both single and multi-processors systems. The
architecture of the unit is based on an instruction
pipeline which can simultaneously fetch and exe-
cute an instruction within one clock cycle. The
non-standard operations such as Product-of-Sum and
Sum-of-Product are introduced to compute three-
input operands. The algorithm complexity and hard-
ware critical delay are determined for each operator.
The synthesis results of the accelerator on a Xilinx
FPGA Virtex 5 xc5vlx110t-3ff-1136 and on Faraday
130-nm Silicon technology report that the design re-
spectively achieves 200 MHz and 1 GHz.

Keywords: Floating-Point Operators, Accelerator
Processor, Product-of-Sum, Sum-of-Product, 32-bit
IEEE Standard Single-Precision

1. INTRODUCTION

Requirements for real-time high-accuracy compu-
tation considerably increase in recent applications.
Critical applications like medical image processing
[1] or Linear Phase FIR digital filter [2] rely on
floating-point computation for accurate and efficient
processing. The majority of modern processors such
as Motorola 6840 integrates a hardware floating-
point arithmetic unit in order to fulfill these require-
ments whereas classic processors perform floating-
point arithmetic using software libraries. Although
the operations can be introduced by this method, the

Manuscript received on August 1, 2011 ; revised on January
2, 2012.
1,2,3,4The authors are with Microelectronic Systems

Research Group, Faculty of Electrical Engineering and
Information Technology, Technische Universität Darm-
stadt, Merckstrasse 25 64283 Darmstadt Germany., E-mail:
surapong@mes.tu-darmstadt.de, francois.philipp@mes.tu-
darmstadt.de, faizal.samman@mes.tu-darmstadt.de and
glesner@mes.tu-darmstadt.de

computation is very slow in comparison to hardware
implementation.

Several strategies for the implementation of
floating-point accelerators were reported in related
works. The first projects focused on chip design
and functionality. In 1983, Huntsman et al. [3] in-
troduced the MC68881 floating-point co-processor
used to cooperate with Motorola’s M68000 32-bit
processors family. The MIPS R3010 chip [4] speci-
fied for the R3000 RISC processor was proposed in
order to reduce design costs. It provides the ba-
sic floating-point operations, Addition/Subtraction,
Multiplication, and Division. Maurer [5] introduced
the WE32106 math accelerator, but mainly focused
on verification techniques. Nakayama et al. [6] de-
signed a 80-bit floating-point co-processor providing
24 instructions and 22 mathematic functions where
Adder/Subtractor and Multiplier were designed in
pipelining structure, but Divider was performed us-
ing the CORDIC algorithm. Kawasaki et al. [7] intro-
duced a pipelined floating-point co-processor cooper-
ating with the GMICROs processor as an intelligent
CPU for TRON architecture. The co-processor has
23 instructions to perform basic and trigonometric
operations.

Secondly, the improvement of performance and
efficiency at runtime was investigated. Darley
et al. [8] proposed the TMS390C602A floating-
point co-processor to cooperate with the SPARC
TMS390C601 integer processor. They optimized the
system performance by balancing the floating-point
execution throughput and instruction fetching. This
method demonstrated higher performance while dra-
matically cutting system costs. A 16-bit pipelin-
ing floating-point co-processor on FPGA was investi-
gated by Fritz and Valerij in [9]. Based on the SIMD
structure, the co-processor is placed in between a pro-
cessor and the main memory. When the processor
needs to execute a floating-point operation, the pro-
cessor will simultaneously send an instruction to the
co-processor and the address of the given operands to
the memory. The co-processor can thus directly fetch
the operands from the memory.

The enhancement of designs and algorithms
of basic arithmetic units was the third strategy.
Nielsen et al. [10] proposed a pipelined floating-
point addition algorithm with 4-state in packet for-
warding format, which was a redundant representa-

20 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.1 May 2012

tion of the floating-point number, in order to im-
prove the mantissa fraction. Chen et al. [11] intro-
duced the architecture of a multiplication-add fused
(MAF) unit to reduce the three-word-length addi-
tion to two-word-length for carry propagation in con-
ventional MAF. Either Leading-One/Zero-detection
or-prediction, common functions for floating-point
operations, were considered by Javier et al. [12],
Suzuki et al. [13], Hokenek et al. [14], and Schmook-
ler et al. [15].

In hard real-time computation such as digital fil-
ter application [16], time constraint is a main factor
for design consideration, where calculation has to be
finished before a new sample arrives. If the floating-
point computation units are performed by using soft-
ware library on a process, which obviously provides
longer latency than hardware, the targeting time con-
straint cannot be achieved. Clearly, modern proces-
sors where the floating-point units are embedded can
fulfill the requirement. In floating-point units, critical
delay comes from Leading-One-Detection, Shift func-
tions and integer multiplier. To reduce this delay, the
common functions have to be investigated and im-
proved. Multi-processor system can accelerate an ap-
plication’s computation. Normally, the processors ex-
ecute their floating-point tasks by their own floating-
point library which consume more resources and time.
Thus, hardware-sharing concept where one floating-
point accelerator is shared for multi-processor will not
only reduce the consumed resources, but also compu-
tation time and power consumption.

2. CONTRIBUTION

In accordance with the three aforementioned
strategies, we propose the design of a novel pipelined
floating-point accelerator to supporting the following
requirements :

• Architecture: we design a floating-point acceler-
ator providing high performance. It has to minimize
the redesign costs to cooperate with general purpose
processors which do not integrate floating-point arith-
metic units.
• Performance: we increase and balance the perfor-
mance and efficiency of the floating-point operators
on both standard (2-inputs) and non-standard (3-
inputs) when these operators are combined on a single
chip. The standard operators are Adder/Subtractor
and Multiplier. The mainly used non-standard op-
erators are Product-of-Sum operator and a Sum-of-
Product.
• Extendability: besides the standard and the non-
standard operations, we want to design a floating-
point accelerator supporting additional mathematical
functions such as trigonometric, linear and hyperbolic
functions.

In order to achieve our purposes, we have three
main contributions in this paper: 1) analysis and im-
provement of the performance and the efficiency of

the floating-point algorithms on both standard and
non-standard operators; 2) introduction of an opti-
mal floating-point unit architecture based on common
functions and a partially linear integer multiplier; 3)
introduction of a simple micro-instruction set with
instruction format and implementation for single-and
multiple-processors systems

The rest of the paper is organized as follows. The
floating-point algorithms of the standard and non-
standard operators are analyzed in Section 3. The
design and enhancement of the Leading-One/Zero-
Detection and Right/Left shifting functions as well
as a partial liner integer multiplier are introduced
in Section 4. The implementation and investiga-
tion of floating-point operators are considered in Sec-
tion 5. Section 6 details the design and architecture
of floating-point arithmetic accelerator. Finally, Sec-
tion 7 summarizes and concludes the paper.

3. ANALYSIS OF FLOATING-POINT OP-
ERATION ALGORITHMS

The algorithms of standard operators, i.e., adder/-
substractor, multiplier, and non-standard operators,
i.e., Product-of-Sum (PoS) operator and Sum-of-
Product (SoP) operator, are analyzed and consid-
ered to increase computation performance. The IEEE
standard single-precision floating-point representa-
tion (Fig. 1) is applied in our analysis with n = 32,
ne = 8, and nf = 23. In order to reduce the design
complexity, rounding algorithms used to approximate
an intermediate mantissa fraction are ignored.

e m

Exponent MantissaSign

0:
1:

represented in unsigned

integer value

represented as a fixed-point

number

s

n
ne nf

Fig.1: IEEE standard single-precision representa-
tion

3.1 Common Functions

The Unpacking, Comparison, and Norm functions,
which are commonly used to perform the floating-
point operation algorithms are discussed in the fol-
lowing.
3.1.1 Function Unpacking

This function shown in Alg. 1 extracts the two in-
put operands into two groups A and B of Sign, Ex-
ponent and Mantissa fraction: As, Ae, and Am for
group A and Bs, Be, and Bm for group B. The carry-
bit and guard-bit, b’01, are padded on the MSB of the
mantissa fraction for computation, where || denotes
concatenation operation.

For example, we assumed that op1 = −100(h′C2C
80000), op2 = 200(h′43480000), n = 32, ne = 8,
nf = 23. After executing the unpacking function,
its output results will be As = b′1, Ae = b′10000101,

Improvement of Standard and Non-Standard Floating-Point Operators 21

Alg. 1 Unpacking(op1,op2,n,ne,nf)

1: As=op1(n-1), Ae=op1(n-2:n-ne-2);
2: Am=b’01||op1(nf-1:0);
3: Bs=op2(n-1), Be=op2(n-2:n-ne-2);
4: Bm=b’01||op2(nf-1:0);
5: return As, Ae, Am, Bs, Be, Bm

Am=b’0110010000000000000000000, Bs=b’0, Be=
b’10000110, Bm=b’0110010000000000000000000.

3.1.2 Function Comparison
The function compares the two input operands frac-
tioned into group A and B. The comparison is nor-
mally done using an If-Statement, where the two
signs, As and Bs, are first compared, followed by a
comparison of the two exponents Ae Be and man-
tissas Am Bm. By means of this method, a critical
delay appears. In order to minimize the critical delay,
a parallel comparison based on combinational circuit
is introduced. The truth-Table 1 shows possible cases
of the operand A and B, where p, q, and z depend on
Ae, Be, Am, and Bm.

Table 1: Representing the relationship between
operand A and B in keeping with ge and gm in truth-
table.

case ge gm gA>B gA=B

1 p p 1 0
2 p q 1 0
3 p z 1 0
4 q p 1 0
5 q q 0 1
6 q z 0 0
7 z p 0 0
8 z q 0 0
9 z z 0 0

For instance, assume that ge and gm are greaten-
ing results of exponent and mantissa values of two
input operands. We define that p=b’01, q=b’11, and
z=b’00. The 2nd case where ge=p and gm=q means
that Ae is greater than Be and Am is the same as Bm.
The two outputs gA>B and gA=B are respectively set
to b’1 and b’0 where they cover the condition that
the operand A is greater than the operand B. The
5th case shows the condition that if the operand A is
equal to the operand B, then ge=q and gm=q, where
the two outputs are set to b’0 an b’1. Alg. 2 presents
the comparison function derived from Table 1.

Form the previous computational results where
As=b’1, Ae=b’10000101, Am=b’011001000000000000
0000000, Bs=b’0, Be=b’10000110, Bm=b’011001000
0000 000000000000, after the function Comparison is
executed, ge=b’00 and gm=b’11. The output results
gA=B and gA>B will equal to b′0 and b′0, which is the
8th case on Table 1.

Alg. 2 Comparison(As,Bs,Ae,Be,Am,Bm)

1: if (Ae >Be)s then
2: ge=b’01;
3: else if Ae =Be then
4: ge=b’11;
5: else
6: ge=b’00;
7: end if
8: if (Am >Bm) then
9: gm=b’01;
10: else if (Am =Bm) then
11: gm=b’11;
12: else
13: gm=b’00;
14: end if
15: gA>B=((∼ge(1))·ge(0))·((∼gm(1))+gm(0)))+(ge(0) ·

(∼gm(1))·gm(0));
16: gA=B=ge(1)·ge(0)·gm(1)·gm(0);
17: return gA>B , gA=B

3.1.3 Function Norm
The sign (Sign), exponent (E), and mantissa (M) are
normalized in accordance with the IEEE standard
single-precision format. The mantissa M is shifted
to the MSB depending on the given Position parame-
ter. Simultaneously, the exponent E is either added or
subtracted, according to the carry-bit and guard-bit
of the mantissa M. The sign and the adapted expo-
nent and mantissa are finally packed together. The
Norm function is illustrated in Alg. 3.

Alg. 3 Norm(Sign,E,M,Position, n, ne, nf)

1: X(n-1)=Sign;
2: if (M(nf+1:nf)=b’10)or(M(nf+1:nf)=b’11) then
3: X(n-2:n-ne-1)=E+1
4: X(nf-1:0)=M(nf:1)
5: else
6: X(n-2:n-ne-1)=E-Position
7: X(nf-1:0)=Shift(M,Position,Left)
8: end if
9: return X

3.1.4 Function Unpacking3
This is a common function for non-standard oper-
ators. It is similar to the Unpacking function, but
there are 3-input operands, op1, op2, and op3 as
shown in Alg. 4. The output are split into three
groups of Sign, Exponent, and Mantissa fractions, As,
Ae, Am, Bs, Be, Bm, Cs, Ce, and Cm respectively.

Alg. 4 Unpacking3(op1,op2,op3,n,ne,nf)

1: As=op1(n-1), Ae=op1(n-2:n-ne-2);
2: Am=b’01||op1(nf-1:0);
3: Bs=op2(n-1), Be=op2(n-2:n-ne-2);
4: Bm=b’01||op2(nf-1:0);
5: Cs=op3(n-1), Ce=op3(n-2:n-ne-2);
6: Cm=b’01||op3(nf-1:0);
7: return As, Ae, Am, Bs, Be, Bm, Cs, Ce, Cm

22 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.1 May 2012

3.2 Standard Operation

3.2.1 Floating-Point Addition/Subtraction
The floating-point addition/subtraction algo-

rithm, detailed by Alg. 5, is compounded of the com-
mon functions which are introduced in section 3.1.
The algorithm is built in respect of design simplicity
and implementation in digital hardware.

Alg. 5 Floating-Point Adder/Subtractor
Require: op1, op2, n, ne, nf, sub
{Step 1: unpacking}

1: op2(n− 1)=sub ⊕ op2(n− 1)
2: [As,Ae,Am,Bs,Be,Bm]=Unpacking(op1,op2,n,ne,nf)
{Step 2: comparing and Sing evaluation}

3: [gA>B , gA=B]=Comparison(As,Bs,Ae,Be,Am,Bm)
4: Sign=(As·Bs)+(As·gA>B · (∼gA=B))+(Bs · (∼gA>B) ·

(∼gA=B))
{Step 3: Exponent subtraction, mantissa swap, and shift}

5: if (gA>B =b’1) or (gA=B =b’1) then
6: Eadd=Ae, Ml1 =Am, Ml2 =Bm

7: Shiftlength =Ae−Be

8: else
9: Eadd=Be, Ml1 =Bm, Ml2 =Am

10: Shiftlength =Be−Ae

11: end if
12: Madp=Shift(Ml2,Shiftlength,Right)
{Step 4: Mantissa addition/subtraction}

13: if ((As⊕Bs)=b’0) then
14: Madd=Ml1+Madp

15: else
16: Madd=Ml1-Madp

17: end if
{Step 5: Leading-One-Detection and normalization}

18: Position=LOD(Madd)
19: X=Norm(Sign,Eadd,Madd,Position, n, ne, nf)

The proposed algorithm has been split in five steps
for both addition and substraction as described by the
following points:
• Step 1 Unpacking: the sign bits of the two
operands, op1 and op2, are first evaluated by a XOR
operation with the sub parameter. Afterwards, both
operands will be fractioned into 3 main triples, Sign,
Exponent, and Mantissa, by the Unpacking function,
which outputs the parameters As, Ae, Am, Bs, Be,
and Bm respectively.
• Step 2 Comparing and Sign evaluation: the partial
exponents and mantissas, Ae, Am, Be, and Bm, are
compared using the Comparison function to deter-
mine the greatest value between op1 and op2. Then,
the Sign is evaluated by the optimized combinational
logic.
• Step 3 Exponent subtraction and mantissa swap:
the results of the comparison gA>B and gA=B are
used to compute the difference of the two exponents
Shiftlength and to swap the exponents and the man-
tissas. The Shiftlength will be used to adjust the
lower mantissa Ml2 using the Shift function.
• Step 4 Mantissa Addition/Subtraction: the ad-
dition/subtraction of the mantissas depends on the
xoring result of As and Bs

• Step 5 Leading-One-Detection and Normalization:
the first bit one of the addition/subtraction result
of the mantissas is searched by the LOD function,

where the detected result will be used to normalize
the final exponent and the final mantissa generated
from previous steps. The Norm function will finally
pack them together.
The details of the LOD and Shift functions have been
fully described in section 4..

3.2.2 Floating-Point Multiplication
In comparison with the floating-point addition/sub-
traction algorithm, the complexity of the floating-
point multiplication algorithm is lower as illustrated
in Alg. 6. It is also performed in five steps described
as follows:
• Step 1 Unpacking: the two operands are frac-
tioned by the Unpacking function.
• Step 2 Subtracting and comparing: the Compari-
son function is applied to compare the exponents and
the mantissa, Ae, Be, Am, and Bm.
• Step 3 Swap and Sign evaluation: the variable
Swap and Sign are evaluated using AND and XOR
operations. The Swap variable is then used to per-
form swapping of the two exponents and the two man-
tissas.
• Step 4 Exponent and mantissa determination: the
two exponents, El1 and El2, are subtracted and added
by 127 in the signed integer form in order to output
the final exponent Emul. The unsigned integer mul-
tiplication is utilized to compute the final mantissa
Mmul.
• Step 5 Leading-One-Detection and Normalization:
The process is the same as the Step 5 of the addition/-
subtraction algorithm.

Alg. 6 Floating-Point Multiplier
Require: op1, op2, n, ne, nf
{Step 1: unpacking}

1: [As,Ae,Am,Bs,Be,Bm]=Unpacking(op1,op2,n,ne,nf)
{Step 2: subtracting and comparing}

2: [gA>B , gA=B]=Comparison(Ae,Be,Am,Bm)
{Step 3: Swap and Sign evaluation}

3: Swap=(∼gA>B)·(∼gA=B)
4: Sign=SA⊕SB
5: if (Swap=b’0) then
6: El1=Ae, El2=Be, Ml1 =Am, Ml2 =Bm

7: else
8: El1=Be, El2=Ae, Ml1 =Bm, Ml2 =Am

9: end if
{Step 4: Exponent and Mantissa determination}

10: Emul=El1-El2+127
11: Mmul=Ml1× Ml2

{Step 5: Leading-One-Detection and normalization}
12: Position=LOD(Mmul)
13: X=Norm(Sign,Emul,Mmul,Position, n, ne, nf)

3.3 Non-Standard Operation

There are non-standard arithmetic operations with
3-input operands which are being widely used in dig-
ital signal processing applications. Product-of-Sum
operator (PoS) and Sum-of-Product operator (SoP),
(A+B)× C and (A×B)+C, are frequently employed

Improvement of Standard and Non-Standard Floating-Point Operators 23

in multimedia and filtering applications [17] and [16].
These operators can be performed using basic addi-
tion and multiplication in cascade. However, in order
to improve the performance and the efficiency of the
floating-point unit, algorithms for the PoS and SoP
operators are introduced by the fusion of the floating-
point addition and multiplication algorithms.

3.3.1 Floating-Point Product-of-Sum Operation
The floating-point PoS operator, (A+B)× C, is a

combination of the floating-point adder and multi-
plier. The PoS algorithm shown in Alg. 7 is described
by the following points:

Alg. 7 Floating-Point Product-of-Sum(PoS)
Require: op1, op2, op3, n, ne, nf
{Step 1: Unpacking}

1: [As,Ae,Am,Bs,Be,Bm,Cs,Ce,Cm]=
Unpacking3(op1,op2,op3,n,ne,nf)
{Step 2: Comparing and Sign evaluation}

2: [gA>B , gA=B]=Comparison(Ae,Be,Am,Bm)
{Step 3: Exponent subtraction, Mantissa swap, and final
Sign evaluation}

3: Signpos=Signl⊕Cs

4: Subl1=As⊕Bs

5: if (gA>B=b’1) or (gA=B=b’1) then
6: El1=Ae-Be, El2=Be, Ml1=Am, Ml2=Bm

7: else
8: El1=Be-Ae, El2=Ae, Ml1=Bm, Ml2=Am

9: end if
{Step 4: Exponent and Mantissa determination}

10: if (gA>B=b’1) then
11: Eadd=El2-Ce+127
12: else
13: Eadd=Ce-El2+127
14: end if
15: Mshift=b’0||Shift(Ml2,El1,Right)
16: if (Subl1=b’0) then
17: Madd=Ml1+Mshift

18: else
19: Madd=Ml1-Mshift

20: end if
{Step 5: Leading-One-Detection, final Exponent and
Mantissa alignment}

21: Position=LOD(Madd)
22: if (Madd(nf+1:nf)=b’10) or (Madd(nf+1:nf)=b’11) then
23: Epos=El1+Eadd+1
24: Malign=b’01||Madd

25: else
26: Epos=El1+Eadd-Position
27: Malign=b’01||Shift(Madd,Position,Left)
28: end if
{Step 6: final Mantissa determination}

29: Mpos=Malign×Cm

{Step 7: Leading-One-Detection and normalization}
30: Position=LOD(Mpos)
31: X=Norm(Signpos,Epos,Mpos,Position, n, ne, nf)

• Step 1 Unpacking: the three operands, op1, op2,
op3, are fractioned in As, Ae, Am, Bs, Be, Bm, Cs,
Ce, and Cm by by the Unpacking3 function.
• Step 2 Comparing and Sign evaluation: the two
exponents, Ae and Be, and the two mantissas, Am

and Bm, are sorted by th function Comparison.
Then, the sign is determined.
• Step 3 Exponent subtraction, Mantissa swap, and
final Sign evaluation: the final sign Signpos is evalu-
ated by XORing Signl and Cs. Meanwhile, the sign

bit Subl is XORed by As and Bs. The comparison re-
sults will be used to swap mantissas and to compute
the exponent difference.
• Step 4 Exponent and Mantissa determination: the
exponents and mantissas are computed by adding and
shifting.
• Step 5 Leading-One-Detection, final Exponent,
and Mantissa alignment: the first bit is searched by
the LDO function. The final exponent and mantissa
alignment corresponding to the addition result of the
mantissa of op1 and op2 are accumulated by adding
and shifting.
• Step 6 Final mantissa determination: the two
mantissas are multiplied using unsigned integer mul-
tiplication.
• Step 7 Leading-One-Detection and normalization
: operating as the step 5 of the Alg. 5

3.3.2 Floating-Point Sum-of-Product Operation
The floating-point Sum-of-Product (SoP) opera-

tion algorithm ((A×B)+C) is detailed by the follow-
ing:
• Step 1 Unpacking : operating as the step 1 of the
Alg. 7.
• Step 2 Comparing, Exponent subtraction, Man-
tissa swap, and Sign evaluation: the two exponents,
Ae and Be, and the two mantissas, Am and Bm, are
compared by function Comparison. The comparison
result will be used to swap the mantissas, to compute
an intermediate exponent, and to evaluate the sign
by xoring As and Bs.
• Step 3 Mantissa multiplication: the two mantissas
are multiplied in form of unsigned integer multiplica-
tion.
• Step 4 Leading-One-Detection, Exponent, and
Mantissa alignment: the length of shifting is deter-
mined by function LOD. The exponents are calcu-
lated and the mantissas are aligned by addiction and
shifting.
• Step 5 Comparing, final Sign evaluation, Expo-
nent subtraction, and Mantissa swap: the two expo-
nents and the two mantissas are compared and the
final sign is determined by XORing. Afterwards, the
intermediate mantissas and the intermediate expo-
nents are swapped.
• Step 6 Shift and final Mantissa determination :
the mantissa is aligned and the final mantissa Mop is
determined.
• Step 7 Leading-One-Detection and normalization
: operating as the step 5 of the Alg. 5

By considering the algorithms of the four floating-
point operations described in Alg. 5-8, it can be no-
ticed that common functions and basic mathematical
operation used are Right/Left Shifting and Leading-
One-Detection (LOD) functions as well as signed in-
teger addition/subtraction and multiplication. These
functions and operations have a significant impact on
the performance and efficiency of the floating-point
units. The critical delays of the LOD and Right/Left

24 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.1 May 2012

Algorithm 8 Floating-Point Sum-of-Product(SoP)
Require: op1, op2, op3, n, ne, nf
{Step 1: Unpacking}

1: [As,Ae,Am,Bs,Be,Bm,Cs,Ce,Cm]=
Unpacking3(op1,op2,op3,n,ne,nf)
{Step 2: Comparing, Exponent subtraction, Mantissa
swap, and Sign evaluation}

2: [g1A>B , g1A=B]=Comparison(Ae,Be,Am,Bm)
3: if (g1A>B=b’1) or (g1A=B=b’1) then
4: Ml1=Am, Ml2=Bm, El2=Be-Ae+127
5: else
6: Ml1=Bm, Ml2=Am, El2=Be-Ae+127
7: end if
8: Signmul=As⊕ Bs

{Step 3: Mantissa multiplication}
9: Mmul=Ml1× Ml2

{Step 4: Leading-One-Detection, Exponent and Mantissa
alignment}

10: Position=LOD(Mmul)
11: if (Mmul(2·nf+1:2·nf)=b’11) or

(Mmul(2·nf+1:2·nf)=b’10) then
12: Emul=El2+1, Malign=b’01||Mmul

13: else if (Mmul(2·nf)=b’1) then
14: Emul=El2, Malign=Mmul

15: else
16: Emul=El2-Position,

Malign=b’01||Shift(Mmul,Position)
17: end if
{Step 5: Comparing, final Sign evaluation, Exponent sub-
traction and Mantissa swap}

18: [g2A>B , g2A=B]=Compare(Emul,Ce,Malign,Cm)
19: Signsop=Signmul⊕Cs

20: if (g2A>B=b’1) or (g2A=B=b’1) then
21: Maddl1=Malign, Maddl2=Cm

22: Esop=Emul, Eaddl2=Emul-Ce

23: else
24: Maddl1=Cm, Maddl2=Malign

25: Esop=Ce, Eaddl2=Ce-Emul

26: end if
{Step 6: shift and final Mantissa determination}

27: Mshift=b’0||Shift(Maddl2 ,Eaddl2 ,Right)
28: if (Signsop=b’0) then
29: Msop=Maddl1+Mshift

30: else
31: Msop=Maddl1 -Mshift

32: end if
{Step 7: Leading-One-Detection and normalization}

33: Position=LOD(Msop)
34: X=Norm(Signsop,Esop,Msop,Position,n,ne,nf)

Shifting functions with For-Loop method and nor-
mal shifting method are approximately 10 ns and 6.2
ns at 32-bit data-width. The normal integer mul-
tiplier has the critical delay 9.781 ns at 32-bit data-
width. Thus, design and analysis of Right/Left Shift-
ing and Leading-One-Detection (LOD) functions as
well as the integer multiplication operations are then
discussed in Section 4..

4. DESIGN AND ENHANCEMENT OF
THE FUNCTION AND OPERATION

4.1 Leading-One-Detection based on Binary-
Tree Algorithm

Leading-One-Detection (LOD) is a function used
to detect the first bit one from MSB to LSB or vice
versa. Normally, LOD is performed by the compari-
son of two adjacent bits by any Loop statement. By

means of this method, the critical delay is propor-
tional to the length of a considered bit string. In order
to reduce this critical delay, a binary-tree searching
algorithm has been applied instead. The depth of
this structure is determined by log2(N), where N is
the size of any input binary string. The Binary-Tree
structure is illustrated in Fig. 3.

Table 2 represents the truth table of the Binary-
Tree Cell (BT-Cell), where X, C, Nv−pq ∈ {0, 1} and
p, q, Nloc−pq ∈

{
0, ..N2 − 1

}
. Assuming that p, q are

a coordinate in XY plan, where p is a position on
the X axis and q is a position on the Y axis (depth).
Thus, BT-Cell01 is Binary-Tree located in the depth
level 0 in the column 1. XN−1:0 is an input binary
vector and C determines the direction of the search
(either MSB to LSB or LSB to MSB). Nloc−pq is a
selected location corresponding to the coordinates p
and q. Nv−pq is the bit value of the selected location.
For instance, in the 6th case, XN , XN−1, and C are
equal to b’101, meaning that the BT-Cell searches
the fist bit one from MSB to LSB. Afterwards, Nv−pq

is set to b’1 and Nloc−pq is equal to N .

Table 2: Binary selection algorithm [18] for the
BT-Cell.
Case XN XN−1 C Node-loc. Node-Value

(Nloc−pq) (Nv−pq)

1 0 0 0 N 0
2 0 0 1 N-1 0
3 0 1 0 N-1 1
4 0 1 1 N-1 1
5 1 0 0 N 1
6 1 0 1 N 1
7 1 1 0 N 1
8 1 1 1 N-1 1

The corresponding optimized combinational logic
is described by Eqs. (1) and (2). Fig. 2 illustrates
the design and architecture of the Binary-Tree Cell,
where ⊗ is AND gate and ⊕ is OR gate.

Nloc−pq =


N, if XN · (XN−1 + C)+

(XN−1 · C) is true

N − 1, otherwise

(1)

Nv−pq = XN +XN−1 (2)

Improvement of Standard and Non-Standard Floating-Point Operators 25

[BT-Cell]

Binary-Tree Cell

N N-1XN C

Nloc-pq Nv-pq

BT-Cell pq

XN-1 [Node-Index and

Node-Value]

mux

N N-1 XN C

Nloc-pq Nv-pq

XN-1 XN XN-1

Fig.2: Binary-Tree Cell and internal logical archi-
tecture

BT-Cell10BT-Cell11BT-Cell1BT-Cell1

Nloc-1 Nv-1 Nloc-1 Nv-1 Nloc-11 Nv-11 Nloc-10 Nv-10

BT-Cell21 BT-Cell20

Nloc-20 Nv-20

C

1 X1 0 X03 X3 2 X2N-2 XN-2N-3 XN-3N XN N-1 XN-1

BT-Cell30

BT-Cell2 BT-Cell20

Nloc-20 Nv-20

N
2

N
2

N
2

N
2
1

N
2
1

N
4

N
4

N
2
1

N
4

Nloc- 0
N
2
1 Nv- 0

N
2
1

Nv- 0
N
2
2Nloc- 0

N
2
2

Nloc-2 Nv-2

Fig.3: Binary-Tree structure

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

A number of bits (N)

C
rit

ic
al

 d
el

ay
 (

ns
)

For−Loop
Binary−tree

single precision

Fig.4: Performance comparison between For-loop
method and Binary-Tree method

Fig. 4 depicts the performance of LOD performed
by the For-Loop method compared to the Binary-Tree
method, where the length of the input binary string
(N) varies from 5 to 64. The graph shows that when
the N increases , the critical delay of the For-Loop
method dramatically increases. On the other hand,
the critical delay of the Binary-Tree increases only
slightly. Therefore, LOD based on the Binary-Tree
architecture improves the performance of the floating-
point unit.

4.2 Function Right/Left Shift

The function is normally performed by a sequen-
tial shift-register where the shifting length and the
shifting direction are configurable. Similarly to the
critical delay analysis of LOD, the critical delay of the
sequential shift-register is proportional to the maxi-
mum shifting length of a mantissa faction. In order to
alleviate this critical delay, a multiplexer-based shift-
register is proposed. Assuming that n is the maxi-
mum shifting length of the registers A and B, m is
a location of the LOD in the register A and B. sel
is an intermediate shifting length where the shifting
length is greater or equal to n−1. The number of uti-
lized multiplexers is equal to n. Thus, the Right Shift
(RMux) function and the Left Shift (LMux) function
can be described by Eqs. (3) and (4).

b(m) = RMuxx =



a(0) sel = 0

a(1) sel = 1

...
...

a(n− 1) sel = n−m− 1

0 sel > n−m− 1
(3)

b(m) = LMuxx =



a(m) sel = 0

a(m− 1) sel = 1

...
...

a(n−m− 1) sel = m− 1

0 sel > m− 1
(4)

Fig. 5 shows the performance of the multiplexer-
based shift function when the shifting length varies
from 5 to 64 bits. The critical delay of the sequen-
tial shift-register is comprised between 4.5 ns to 6.2
ns whereas the Multiplexer-based one maintains the
critical delay between 4 ns and 4.5 ns. Thus, the
Multiplexer-based shift-register achieves a higher per-
formance than the the sequential shifting method.

26 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.1 May 2012

0 10 20 30 40 50 60
4

4.5

5

5.5

6

6.5

A number of bits (N)

C
rit

ic
al

 d
el

ay
 (

ns
)

Normal Shifting
Multiplex−based Shifting

single precision

Fig.5: Performance comparison between the
Multiplexer-based and Sequential method for the Shift
function

4.3 Partial Linear Integer Multiplier based on
a pipelined Architecture

Since the main critical delay of the floating-point
multiplier, the floating-point PoS, and the floating-
point SoP comes from an integer multiplier, improv-
ing this delay also becomes the objective of this sec-
tion. The partial linear integer multiplier technique
is applied to the multiplier’s nominator. The pipeline
architecture is utilized to improve the performance of
the multiplier based on the amount of pipeline states.
n and m are denominated as the number of bits of
the denominator and the number of partition. The
partial linear integer multiplier based on the pipeline
architecture is illustrated in Fig. 6 with m = 3. The
minimum number of pipeline states is equal to m+1.
Carry-Ripple-Adders (CRA) are employed to add the
results from each partial multiplier generated by the
previous state.

MUL

MUL

MUL

op1(n-1:0) op2(2par-1:par)op2(3par-1:2par) op2(par-1:0)0...0 ||

0...0 0...0

0n-10n-1 02n-1

02n-1

0...0

0n-1

0...0

X(2n-1:0)

02n-1

02n-1

02n-1

0n-1

0n-1 0n-1 0n-1 0n-1

0n-1

CRA

CRA

Fig.6: A 3-partition linear integer multiplier

Table 3: Synthesis results of the partial linear in-
teger multiplier on Xilinx Virtex 5 XC5VLX100t-
3FF1136.
Resources m=1 m=2 m=3 m=4

Slice Reg. 83 146 316 466
Slice LUTs 886 894 893 905
Critical Delay(ns) 9.781 5.529 4.503 4.412

Max. Frequency(MHz) 102.23 180.86 222.08 226.63

As reported in Table 3, the pipelined partial linear
integer multiplier is synthesized in order to illustrate
the relationship of the consumed resources and the
critical delay.

5. IMPLEMENTATION AND INVESTIGA-
TION OF FLOATING-POINT OPERA-
TORS

In this section, the implementation and accuracy
analysis of the floating-point operational algorithms
proposed in Alg. 5-8 are illustrated. Based on a
pipelined architecture, the synthesis results on Xil-
inx Virtex 5 FPGA and 130-nm silicon technology
are reported in Table 11-14. The details of partition-
ing states used for consideration on each operators is
explained below:

5.1 Synthesis Result corresponding to state
Numbers

5.1.1 FP-Adder
From Alg. 5 having 5 steps, performance and effi-

ciency in architecture point of view by merging or sep-
arating the steps are analyzed, where the FP-Adder
is investigated in 4-, 5-, and 6-state respectively. In
4-state, the step 1 and 2 of Alg. 5 are merged to-
gether. In 6-state, LOD and normalization on step 5
are separated.

5.1.2 FP-Multiplier
From Alg. 6, there are 3 cases for evaluation which

are 4-,5-, and 6-state. For all cases, the step 1-3 have
been grouped because their total complexity is lower
than the integer multiplier’s one. Thus, the 3-state
FP-Multiplier becomes an initial model. To improve
its performance, the integer multiplier is split as 2-
and 3-state.

5.1.3 FP-PoS
From Alg. 7 which provides 7 steps, since the 1st

to 3rd steps are grouped together, the 5-state FP-SoP
becomes an initial model for consideration. As an
integer multiplier generates the longest critical path,
the multiplier is partitioned by two and three. Thus,
there are 3 cases for evaluation 5-, 6-, and 7-state.

5.1.4 FP-SoP
Like FP-PoS, the 1st to 3rd steps are grouped to-

gether Alg.8 and an integer multiplier is partitioned

Improvement of Standard and Non-Standard Floating-Point Operators 27

by two and three. There are also 3 cases for evalua-
tion 5-, 6-, and 7-state.

5.2 Comparison and Statistical Analysis in
Accuracy

In this section the proposed 5-state FP-Adder
method (Alg. 5) is implemented by using VHDL and
then synthesized based on Xilinx Virtex IIP xc2vp30-
7ff896 FPGA technology. The synthesis result is com-
pared with 5-state FP-Adder corresponding to the
methods in [19] and [20]. As illustrated in Table 4,
the proposed FP-Adder provides better area and time
efficiency than the two existing FP-Adder methods.

Table 4: Area & Time efficiency of a 5-state FP-
Adder.

Module
Clock speed Area

(MHz) (Slices)

Xilinx IP [?] 120 510

FP-Adder [?] 127 394

Proposed FP-Adder 140 326

In addition, area and time efficiency of the pro-
posed LOD method are compared with the LOD
methods in [20]. The comparison result is shown in
Table 5, where the proposed LOD based on binary-
tree method presents better efficiency than the cur-
rent LOD method proposed in [20].

Table 5: Area & Time efficiency of LOD.

Module
Critical Delay Area

(ns) (Slices)

LOD [?] 8.32 14

Proposed LOD 5.726 147

To compare with the 3-state FP-Adder method
proposed by [21], our FP-Adder method can also pro-
vide the 3-state FP-Adder by merging step 1 to 3 of
Alg. 5. However, since the FP-Adder method in [21]
is designed based on Leading-Zero-Anticipator (LZA)
and implemented in 0.5 µm CMOS technology which
is relative older, it is not convenient for comparison
with our proposed FP-Adder method.

Table 6: Statistical error comparison of hardware
float-point simulation and Matlab/Simulink, where all
input operands are varied from −1038.532 to 1038.532.

Operator Max. ε Min. ε |ε̄| σ(ε)

FP-Adder 1.0571E-6 3.7213E-12 1.6678E-7 1.6528E-7

FP-Mult. 1.4687E-6 3.8625E-15 1.5056E-7 1.9464E-7

FP-PoS 1.3892E-3 7.9421E-13 1.7340E-4 2.0198E-4

FP-SoP 3.5168E-4 6.8965E-10 4.6439E-5 4.4634E-5

For the computation precision analysis, the
floating-point arithmetic units is implemented in

VHDL conforming to the proposed Alg. 5-8. The re-
sults from the hardware VHDL simulation are com-
pared the ideal results from Matlab/Simulink. The
computation errors are considered and reported in
statistical terms. The maximum error (Max. ε), the
minimum error (Min. ε), the absolute error (|ε̄|), and
the standard deviation (σ(ε)) are listed in Table 6.
For the testing environment, the value of three input
operands 1 varied from −1038.532 to 1038.532.

6. DESIGN AND ARCHITECTURE OF
FLOATING-POINT ARITHMETIC AC-
CELERATOR

The floating-point operators, FP-Adder, FP-
Multiplier, FP-PoS, and FP-SoP, which have been
designed and analyzed in the previous sections are
combined into a floating-point accelerator. The archi-
tecture of the accelerator is illustrated in Fig. 7. The
integration of the accelerator into a multi-processor
system is depicted in Fig. 8.

data-in

valid-in

data-out

valid-out

ack-in

ack-out

Flow of I1 and I3 Flow of I2

Result collision event

In
te

rn
a
l
in

o
u
t-

b
u
s

In
te

rn
a
l
o
u
to

u
t-

b
u
s

Fig.7: The architecture of the floating-point accel-
erator

Floating-point

 arithmetic

 accelerator

 Main

processor

 1

Bus A

Processor

 32

Processor

 2

32-bit data-in
valid-in

32-bit data-out

valid-out

Bus B

B
u
s
 c

o
n
tr

o
lle

r

ack-out[1:0]

ack-in[1:0]

Fig.8: A multi-processor system integrating the
floating-point accelerator

6.1 Design and Architecture

In Fig. 7, a 32-bit pipelined instruction architec-
ture is employed for the design of the floating-point
accelerator in order to fetch and execute an inter-
mediate instruction at every clock cycle. The de-
sign is comprised of three states : Fetch/Decode,
Execute and Writeback. The signals data − in/out,
valid− in/out and ack− in/out are defined as exter-
nal inputs and outputs connected to BusA and BusB.
The 2-bit ack− in/out signal is used to notify the re-
ceived status to a source module, where b’00 shows

28 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.1 May 2012

the status that the destination is in ready state ; b’01,
b’10, and b’11, inform that the 1st, 2nd, and 3rd words
respectively are accepted by the destination. The in-
ternal ready−i/o signal indicates that the destination
is in the ready state. Similarly to the handshaking
protocol, a 1-word signal, data − in/out, coming si-
multaneously with a valid signal, valid−in/out signal
as the timing in Fig. 11 and 12. Fig. 8 shows the di-
agram where the proposed floating-point accelerator
is applied to multi-processor system. The processors
can send and receive data to and from the accelerator
via a bus-system, Bus A and Bus B. A bus controller
is used to handle any requests to the two buses at
runtime.

The proposed floating-point accelerator is targeted
to operate at the maximum frequency on Xilinx Vir-
tex 5 FPGA (200 Mhz) and at 1 GHz using the
130-nm Silicon technology. Consequently, the corre-
sponding number of states employed in the design of
FP-Adder, FP-Multiplier, FP-PoS, and FP-SoP are
5-state, 5-state, 7-state, and 7-state respectively, in
accordance to the synthesis results given in Table 11-
14

6.2 Micro-Instruction and Timing Diagram

The micro-instruction pattern and the timing of
the accelerator are designed in such away that it will
be easily adapted to any general purpose processors.
From the proposed floating-point operators, three
types of instruction format, short and long (#F1 and
#F2) and write-back (#R1), are introduced (Fig 9).
The short and long instruction formats are respec-
tively 3 and 4 words long. The 1st word consists of a
16-bit command (cmd), 8-bit instruction ID(Iid) and
5-bit processor ID (Pid). Up to 32 processors can be
thus supported. The 2nd to 4th words are the three
operands of the floating-point operation. There are 2
words for the reply format #R1 where the 1st word
is composed of 8-bit instruction ID (Iid) and 5-bit
processor ID (Pid). The last word is an intermediate
result performed by the floating-point units. Table 7
represents the four micro-instruction table to be used
by any general purpose processors.

cmd Iid Pid n/a op1 op2
0 1516 23 24 25 32 63 64 95

cmd Iid Pid n/a op1 op2 op3
0 1516 23 24 25 32 63 64 9596 127

Iid Pid n/a result
0 78 12 32 63

#F1

#F2

#R1

Fig.9: Instruction format #F1, #F2 and Reply for-
mat #R1 of the accelerator

FD FD FD EX EX EXEX EXEXFD EX

Collision

FD FD FD EX EX EXEX

FD FD FD EX EX EXEX

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

EX

EX

18

FD FD FD EX EX EX WBEX EXST

Stalling

19

Fig.10: Result collision when either FPPoS32 or
FPSoP32 instruction are first required and followed
by either FPADD32 or FPMUL32, FD, EX, and WB
are Fetch&Decode cycle, Execution cycle, and Write-
back cycle.

Fig. 10 shows the result of a collision event at the
internal output-bus when a long instruction is ahead
of a short instruction. FPADD32, FPPoS32, and FP-
MUL32 are called in sequence starting from the 2nd

clock cycle. The result collision event happens in the
17th clock cycle, where two word results performed
by FPPoS32 and FPMUL32 have been written back
simultaneously. In order to alleviate this problem, a
simple pattern instruction format detection is intro-
duced into the Fetch&Decode module. If the previous
instruction is a long instruction and the current in-
struction is a short instruction, a stalling state (ST)
is used. The resulting timing diagram using the ST
state is illustrated in Fig. 10, where the 1st and 2nd

WB generated from the FPMUL32 are presented at
the 18th and 19th clock cycle.

Clk

valid-in

data-in[31:0]

ack-in[1:0]

1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 0 1 2 3 1 2

INS op1 op2 INS op1 op2 op3 INS op1 op2

Instruction 1(I1) Instruction 2(I2) Instruction 3(I3)

Fetch & Decode cycle

000

Fetch & Decode cycle Fetch & Decode cycle

0

#F1 #F2 #F1

Fig.11: The timing diagram shows the handling of
three instructions by the Fetch&Decode module

Clk

ready-o

valid-o

data-o[31:0]

valid-out

data-out[31:0]

ack-out [1:0]

9 10 11 12

result

resultInfo.

0 0 1 0

Writeback

I1

16 17 18 19 20

result result

result resultInfo. Info.

0 1 0 1

Writeback

I2

Writeback

I3

Fig.12: The timing diagram of the personal infor-
mation and the computation result of I1, I2, and I3
on their Writeback cycle.

The timing diagram in Fig. 11 shows the execution
of 3 instructions, I1, I2, and I3 which are FPADD32,
FPPoS32, and FPMUL32 respectively. Each word
presented by the data-in signal will be validated by
the valid-in signal. Whenever destination has already
received the computation result, the 2-bit ack − in

Improvement of Standard and Non-Standard Floating-Point Operators 29

Table 7: The micro-instruction of the proposed floating-point accelerator available for any general purpose
processors.

Cmd Mnemonic Operand Operation Description #Clock

x’0001 FPADD32 Id, Pid, op1, op2, R R←op1 + op2 32-bit floating-point addition 10

x’0002 FPMUL32 Id, Pid, op1, op2, R R←op1× op2 32-bit floating-point multiplication 10

x’0003 FPPoS32 Id, Pid, op1, op2, op3, R R←(op1+op2)× op3 32-bit floating-point Product-of-Sum 13

x’0004 FPSoP32 Id, Pid, op1, op2, op3, R R←(op1× op2) + op3 32-bit floating-point Sum-of-Product 13

signal will by incremented. It is then reset when the
result is completely received.

The timing diagram in Fig. 12 shows the Write-
back cycle of the personal information (Info.) and
the computation result generated by I1, I2, and I3.
With always active the ready − o signal, the compu-
tation result and its validation are presented on the
data−o signal and on the valid−o signal at 10th, 16th,
and 18th clock cycle. Considering at 10th clock cycle,
as soon as, the valid− o signal is active, the personal
information of I1 is written to the data− out signal,
connected to the 32-bit data − out signal on Bus B.
It is followed by the computation result on the next
clock cycle, where the valid − o signal is also active
for two clock cycle. In common with the writeback
cycle of I1, the personal Info. and the computation
result of I2 and I3 are presented at the 16th and 18th

clock cycle.

6.3 Performance Analysis

The performance of the proposed floating-point ac-
celerator can be evaluated by Fetch Instruction Rate
(instr./s) and Throughput in number of floating-point
operations per sec (FLOPS). f is denoted the max-
imum operating frequency of the design. The Fetch
Instruction Rate (FR) means a number of floating-
point instructions that can be fetched and decoded in
a certain period. Obviously, the FR depends on ac-
celerator’s architecture, where if system data-width
equals to the defined data-word, the FR will equal to
f . However, in our design the accelerator has 32 bits
data-width, where 1 data-word is 32 bits. There are
two types of input instruction formats #F1 and #F2
which provide 3 and 4 data-words for one floating-
point operation. Thus, the maximum and minimum
FR are determined by f/3 and f/4.

Table 8 shows the Fetch Instruction Rate and the
Throughput of the proposed design based on FPGA
and 130-nm silicon technology. The table shows that
by selecting 5-state FP-Adder and FP-Multiplier as
well as 7-state FP-PoS and FP-SoP, the input rate
and output rate of the accelerator are similar.

Table 8: Performance definition and evaluation on
Xilinx FPGA and 130-nm silicon technology

Measurement FPGA Silicon

Max. Fetch Rate (Minstr./s) f/3 66.67 333.33

Min. Fetch Rate (Minstr./s) f/4 50 250

Max. Throughput (MFLOPS) Max. FR 66.67 333.33

Min. Throughput (MFLOPS) Min. FR 50 250

Table 9 and 10 summarizes the consumed resources
and areas of the floating-point accelerator when syn-
thesized on a Xilinx xc5vlx110t-3ff-1136 FPGA and
on a 130-nm Silicon technology targeting at 200 MHz
and at 1 GHz respectively.

Table 9: Synthesis results on a Xilinx Virtex 5 de-
vice xc5vlx110t-3ff-1136.

Utilization % of Total
Slice registers 1973 2%
Slice LUTs 4946 7%
Slice LUT-FF 1374 24%
BUFG/BUFGCTRLs 32 3%
Critical Delay 5 ns
Maximum Frequency 200 MHz

Table 10: Synthesis result on 130-nm silicon tech-
nology.

Utilization
Area(um) 189513
Power(mW) 60.607
Critical Delay 1 ns
Maximum Frequency 1 GHz)

7. SUMMARY AND CONCLUSION

This paper proposes the design and analysis of
floating-point operators and accelerator architecture
in compliance to the IEEE standard 32-bit single-
precision format. The operators are considered in
their algorithmic form for hardware simplification.
The standard and non-standard floating-point opera-
tors, i.e., FP-Adder, FP-Multiplier, FP-PoS, and FP-
SoP are analyzed in order to increase their perfor-
mance and efficiency. The PoS and SoP algorithms
are also introduced by the fusion of the floating-point
addition/subtration and multiplication algorithms.
The Leading-One-Detection based on Binary-Tree ar-
chitecture and the multiplexer-based Right/Left Shift
method are proposed to alleviate the restriction de-
rived from the maximum critical delay corresponding

30 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.1 May 2012

to the longest critical path. The partial architecture
of integer multiplier is introduced and analyzed in or-
der to improve the performance. The floating-point
algorithms are implemented, synthesized, and simu-
lated based on the hardware models in VHDL. Their
computation accuracy are statistically compared with
the ideal results from Matlab/Simulink. The results
show that the proposed operators provide a high per-
formance and high accuracy.

Moreover, the floating-point accelerator is de-
signed by grouping the introduced floating-point op-
erators. The maximum operating frequency at 200
MHz on Xilinx FPGA Virtex 5 xc5vlx110t-3ff-1136
and 1 GHz on 130-nm Silicon technology become the
design constraint. In order to simplify for any general
purpose processors, the micro-instruction set is intro-
duced, where its maximum and minimum clock delay
at 10 and 13 clock cycles for the short instruction for-
mat #F1 and the long instruction format #F2 are re-
ported. From evaluation results, the accelerator pro-
vides the maximum and minimum instruction rate at
66.67 and at 50 Minstr./s on FPGA and at 333.33 and
at 250 Minstr./s on Silicon. Its maximum and mini-
mum throughput are at 66.67 and at 50 MFLOPS on
FPGA and at 333.33 and at 250 MFLOPS on silicon-
based technology.

References

[1] J. Gray, F. Grenzow, and M. Siedband, “Apply-
ing a PC accelerator board for medical imaging,”
IEEE Engineering in Medicine and Biology Mag-
azine, vol. 9, pp. 61-63, 1990.

[2] B. Bomar and B. Winkleman, “A method for
accelerating the design of optimal linear-phase
FIR digital filters,” IEEE Transactions on Signal
Processing, vol. 39, no. 6, pp. 1419-1421, June
1991.

[3] C. Huntsman and D. Cawthron, “The MC68881
Floating-point Coprocessor,” IEEE Micro, vol.
3, pp. 44-54, 1983.

[4] C. Rowen, M. Johnson, and P. Ries, “The MIPS
R3010 floating-point coprocessor,” IEEE Micro,
vol. 8, pp. 53-63, June 1985.

[5] P. Maurer, “Design verification of the WE 32106
math accelerator unit,” IEEE Design & Test of
Computers, vol. 5, pp. 11-21, 1988.

[6] T. Nakayama, H. Harigai, S. Kojima, H. Kaneko,
H. Igarashi, T. Toba, Y. Yamagami, and Y.
Yano, “A 6.7-MFLOPS floating-point copro-
cessor with vector/matrix instructions,” IEEE
Journal of Solid-State Circuits, vol. 24, no. 5,
pp. 1324-1330, October 1989.

[7] S. Kawasaki, M. Watabe, and S. Morinaga, “A
floating-point VLSI chip for the TRON architec-
ture: an architecture for reliable numerical pro-
gramming,” IEEE Micro, vol. 9, pp. 26-44, 1989.

[8] M. Darley, B. Kronlage, D. Bural, B. Churchill,
D. Pulling, P. Wang, R. Iwamoto, and L. Yang,

“The TMS390C602A floating-point coprocessor
for Sparc systems,” IEEE Micro, pp. 36-47, 1990.

[9] F. Mayer-Lindenberg and V. Beller, “An FP-
GAbased floating-point processor array support-
ing a high-precision dot product,” in IEEE In-
ternational Conference on Field Programmable
Technology, pp. 317-320, 2006.

[10] A. Nielsen, D. Matula, C. Lyu, and G. Even,
“An IEEE compliant floating-point adder that
conforms with the pipeline packet-forwarding
paradigm,” IEEE Transactions on Computers,
vol. 49, no. 1, pp. 33-47, January 2000.

[11] C. Chen, L.-A. Chen, and J.-R. Cheng, “Ar-
chitectureal design of a fast floating-point
multiplication-add fused unit using signed-digit
addition,” IEE Proceedings - Computers and
Digital Techniques, vol. 149, no. 4, pp. 113-120,
July 2002.

[12] J. Bruguera and T. Lang, “Leading-one predic-
tion with concurrent position correction,” IEEE
Transactions on Computers, vol. 48, no. 10,
pp.1083-1097, October 1999.

[13] H. Suzuki, H. Morinake, H. Makino, Y. Nakase,
K. Mashiko, and T. Sumi, “Leading-Zero An-
ticipatory Logic for High Speed Floating-Point
Addition,” IEEE Journal of Solid-State Circuits,
vol. 31, no. 8, pp. 1157-1164, 1996.

[14] E. Hokenek and R. Montoye, “Leading-Zero An-
ticipator (LZA) in the IBM RISC System/6000
Floating-Point Execution Unit,” IBM Journal of
Research and Development, pp. 71-77, 1990.

[15] M. S. Schmookler and K. J. Nowka, “Leading
Zero Anticipation and Detection A Comparison
of Methods,” in Proceedings. 15th IEEE Sympo-
sium on Computer Arithmetic, pp. 7-12, 2001.

[16] P. Surapong, M. Glesner, and H. Klingbeil, “Im-
plementation of realtime pipeline-folding 64-tap
filter on FPGA,” in PhD-Forum: PhD Research
in Microelectronics and Electronics (PRIME),
pp. 1-4, 2010.

[17] K. Donghyun and K. Lee-Sup, “A Floating-
Point Unit for 4D Vector Inner Product with
Reduced Latency,” IEEE Transactions on Com-
puters, vol. 58, no. 7, pp. 890-901, July 2009.

[18] P. Surapong and M. Glesner, “On-chip efficient
Round-Robin scheduler for high-speed intercon-
nection,” in 22nd IEEE International Sympo-
sium on Rapid System Prototyping, pp. 199-202,
2011.

[19] W. Ligon, S. McMillan, G. Monn, F. Stivers, and
K. Underwood, “A revaluation of the practicality
of floating-point operations on FPGAs,” in IEEE
Symp. FPGAs for Custom Computing Machines,
pp. 206215, April 1998.

[20] A. Malik, D. Chen, Y. Choi, M. H. Lee, and S.B.
Ko, “Design tradeoff analysis of floating-point
adders in FPGAs,” Canadian Journal of Elec-
trical and Computer Engineering, vol. 33, pp.

Improvement of Standard and Non-Standard Floating-Point Operators 31

Table 11: Hardware synthesis results of FP-Adder and FP-Multiplier on Vertex 5 XC5VLX100t-3FF1136.

Operator FP-Adder FP-Multiplier
Resources 4-state 5-state 6-state 4-state 5-state 6-state

Slice Reg. 200 241 290 332 395 599
Slice LUTs 442 483 488 1,132 1,159 1,155
LUT-FF pairs 187 200 255 209 253 282
Critical Delay(ns) 4.375 3.605 3.168 5.620 4.503 4.412

Max. Freq.(MHz) 228.60 277.40 315.63 177.95 222.09 226.63

Table 12: Hardware synthesis results of FP-PoS and FP-SoP on Vertex 5 XC5VLX100t-3FF1136.

Operator FP-Product-of-Sum FP-Sum-of-Product
Resources 5-state 6-state 7-state 5-state 6-state 7-state

Slice Reg. 317 435 500 430 492 783
Slice LUTs 1642 1438 1463 1,574 1669 1634
LUT-FF pairs 260 306 337 297 325 422
Critical Delay(ns) 6.827 5.620 4.95 5.962 5.662 4.937

Max. Freq.(MHz) 146.48 177.95 202.23 167.73 177.95 202.54

Table 13: Hardware synthesis results of FP-Adder and FP-Multiplier on 130-nm silicon technology.

Operator FP-Adder FP-Multiplier
Resources 4-state 5-state 6-state 4-state 5-state 6-state

Area(um). 16,747 18,226 19,396 39,487 40,413 47,900
Power(mW) 8.5772 10.318 18.791 14.5492 16.377 21.783
Critical Delay(ns) 0.82 0.8 0.48 0.95 0.9 0.83
Max. Freq.(GHz) 1.22 1.25 2.083 1.05 1.11 1.20

Table 14: Hardware synthesis results of FP-PoS and FP-SoP on 130-nm silicon technology.

Operator FP-Product-of-Sum FP-Sum-of-Product
Resources 5-state 6-state 7-state 5-state 6-state 7-state

Area(um). 44,807 52,104 54,897 49,114 53,470 63,799
Power(mW) 16.99 24.923 25.716 14.692 15.510 26.193
Critical Delay(ns) 1.12 0.9 0.85 1.41 1.2 0.95
Max. Freq.(GHz) 0.89 1.11 1.18 0.71 0.83 1.05

169-175, 2008.
[21] A. Beaumont-Smith, N. Burgess, S. Lefrere, and

C. Lim, “Reduced latency IEEE floating-point
standard adder architectures,” in 14th IEEE
Symposium on Computer Arithmetic Proceed-
ings, pp. 35-42, 1999.

Pongyupinpanich Surapong was born
in Prachinburi, Thailand. He received
his Bachelor and Master of Engineering
degree in Electrical Engineering from
King Mongkut’s Institute of Technol-
ogy Ladkrabang (KMITL), Thailand in
1998 and 2002. Currently, he is work-
ing toward the PhD degree in Microelec-
tronic Systems Research Group, Tech-
nische Universität Darmstadt, Darm-
stadt, Germany. His research interests

include computer-aided VLSI design, design optimization al-
gorithm, circuit simulation, digital signal processing, system-
on-chip, all in the context of field-programmable gate-array
devices and VLSI technology.

François Philipp was born in For-
bach, France. In 2009, he received
a double degree from the Ecole Na-
tionale Supérieure de l’Electronique et
de ses Applications (ENSEA), Cergy,
France and from the Technische Univer-
sität Darmstadt, Germany in the field of
computer engineering. Since 2009, he is
a Ph.D. candidate in the Microelectronic
Systems Research Group at Technische
Universität Darmstadt. He is working

in the LOEWE-Zentrum AdRIA (Adaptronik-Research, Inno-
vation, Application) and in the EU FP7 project MoDe (Main-
tenance on Demand). His research interests include acoustic
signal processing, wireless sensor networks and reconfigurable
hardware.

32 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.1 May 2012

Faizal Arya Samman was born in
Makassar, Indonesia. In 1999, he re-
ceived his Bachelor of Engineering de-
gree from Universitas Gadjah Mada, in
Yogyakarta, Indonesia. In 2002, he re-
ceived his Master of Engineering degree
from Institute Teknologi Bandung, in
Indonesia with Scholarship Award from
Indonesian Ministry of National Educa-
tion. In 2002, he was appointed to be a
research and teaching staff at Universi-

tas Hasanuddin, in Makassar, Indonesia. He received his PhD
degree in 2010 at Technische Universität Darmstadt, in Ger-
many with scholarship award from Deutscher Akademischer
Austausch-Dienst (DAAD, German Academic Exchange Ser-
vice). He is now working as a postdoctoral fellow in LOEWE-
Zentrum AdRIA (Adaptronik-Research, Innovation, Applica-
tion) within the research cooperation framework between Tech-
nische Universität Darmstadt and Fraunhofer Institute LBF
in Darmstadt. His research interests include network-on-chip
(NoC) microarchitecture, NoC-based multiprocessor system-
on-chip, design and implementation of analog and digital elec-
tronic circuits for control system applications on FPGA/ASIC
as well as energy harvesting systems and wireless sensor net-
works.

Manfred Glesner received the diploma
degree and the Ph.D. degree from Uni-
versität des Saarlandes, Saarbrücken,
Germany, in 1969 and 1975, respec-
tively. His doctoral research was based
on the application of nonlinear opti-
mization techniques in computer-aided
design of electronic circuits. He re-
ceived three Doctor Honoris Causa de-
grees from Tallinn Technical University,
Tallinn, Estonia, in 1996, Poly-technical

University of Bucharest, Bucharest, Romania, in 1997, and
Mongolian Technical University, Ulan Bator, Mongolia, in
2006. Between 1969 and 1971, he has researched work
in radar signal development for the Fraunhofer Institute in
Werthoven/Bonn, Germany. From 1975 to 1981, he was a Lec-
turer in the areas of electronics and CAD with Saarland Uni-
versity. In 1981, he was appointed as an Associate Professor in
electrical engineering with the Darmstadt University of Tech-
nology, Darmstadt, Germany, where, in 1989, he was appointed
as a Full Professor for microelectronic system design. His cur-
rent research interests include advanced design and CAD for
micro- and nanoelectronic circuits, reconfigurable computing
systems and architectures, organic circuit design, RFID design,
mixed-signal circuit design, and process variations robust cir-
cuit design. With the EU-based TEMPUS initiative, he built
up several microelectronic design centers in Eastern Europe.
Between 1990 and 2006, he acted as a speaker of two DFG-
funded graduate schools. Dr. Glesner is a member of several
technical societies and he is active in organizing international
conferences. Since 2003, he has been the vice-president of the
German Information Technology Society (ITS) in VDE and
also a member of the DFG decision board for electronic semi-
conductors, components, and integrated systems. He was a
recipient of the honor/decoration of “Palmes Academiques” in
the order of Chevalier by the French Minister of National Ed-
ucation (Paris) for distinguished work in the field of education
in 2007/2008.

