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A Design Method for Smith Predictors for
Minimum-Phase Time-Delay Plants
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ABSTRACT

In this paper, we examine a design method for a
modified Smith predictor for minimum-phase time-
delay plants. The modified Smith predictor is well
known as an effective time-delay compensator for a
plant with large time delays, and several papers on
the modified Smith predictor have been published.
However, the parameterization of all stabilizing mod-
ified Smith predictors has not been obtained. If this
can be obtained, we can express existing proposals for
modified Smith predictors in a uniform manner, and
the modified Smith predictor can be designed sys-
tematically. The purpose of this paper is to propose
the parameterization of all stabilizing modified Smith
predictors for minimum-phase time-delay plants. The
control characteristics of the control system using
the parameterization of all stabilizing modified Smith
predictors are also given. Finally, numerical examples
for stable plants and unstable plants are illustrated
to show the effectiveness of the proposed parameter-
ization of all stabilizing modified Smith predictors.

Keywords: Minimum-Phase System, Time-Delay
System, Smith Predictor, Parameterization

1. INTRODUCTION

In this paper, we examine a design method
for Smith predictors for minimum-phase time-delay
plants. Proposed by Smith to overcome time delays
[1], it is well known as an effective time-delay compen-
sator for a stable plant with large time delays [1–12].
The Smith predictor in [1] cannot be used for plants
having an integral mode, because a step disturbance
will result in a steady state error [2–4]. To overcome
this problem, Watanabe and Ito [4], Astrom, Hang
and Lim [9], and Matusek and Micic [10] proposed
a design method for a modified Smith predictor for
time-delay plants with an integrator. Watanabe and
Sato expanded the result in [4] and proposed a de-
sign method for modified Smith predictors for multi-
variable systems with multiple delays in inputs and
outputs [5].

Because the modified Smith predictor cannot be
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used for unstable plants [2–11], De Paor [6], De Paor
and Egan [8] and Kwak, Sung, Lee and Park [12] pro-
posed a design method for modified Smith predictors
for unstable plants. Thus, several design methods of
modified Smith predictors have been published.

On the other hand, another important control
problem is the parameterization problem, the prob-
lem of finding all stabilizing controllers for a plant
[13–21]. This problem was considered in [20, 21].
However, the parameterization of all stabilizing mod-
ified Smith predictors has not been obtained. If this
result could be obtained, we could express previous
studies of modified Smith predictors in a uniform
manner. In addition, modified Smith predictors could
be designed systematically.

The purpose of this paper is to propose the pa-
rameterization of all stabilizing modified Smith pre-
dictors for minimum-phase time-delay plants. First,
the structure and necessary characteristics of modi-
fied Smith predictors described in past studies in [1–
12] are defined. Next, the parameterization of all
stabilizing modified Smith predictors for minimum-
phase time-delay plants is proposed, for both stable
and unstable plants. The control characteristics of
the control systems using this parameterization are
also given. Finally, a numerical example is presented
to show the effectiveness of the proposed parameter-
ization.

This paper is organized as follows: In Section 2.
the Smith predictor is introduced briefly and the

problem considered in this paper is explained. In Sec-
tion 3. and Section 4., the parameterizations of all
stabilizing modified Smith predictors for stable and
unstable plants are given, respectively. In Section 3.
and Section 4., we clarify the control characteristics
using the parameterization of all stabilizing modified
Smith predictors. Simple numerical examples are il-
lustrated in Section 5.

Notation

R The set of real numbers.
R(s) The set of real rational functions with s.
RH∞ The set of stable proper real rational func-

tions.
H∞ The set of stable causal functions.
U The set of unimodular functions on RH∞.

That is, U(s) ∈ U implies both U(s) ∈
RH∞ and U−1(s) ∈ RH∞.

<{·} The real part of {·}.
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2. MODIFIED SMITH PREDICTOR

Consider the control system:{
y = G(s)e−sT u + d
u = C(s) (r − y) , (1)

where G(s)e−sT is the single-input/single-output
time-delay plant with time-delay T > 0, C(s) is the
controller, y ∈ R is the output, u ∈ R is the input,
d ∈ R is the disturbance and r ∈ R is the reference
input. G(s) is assumed to be coprime and of mini-
mum phase, that is, G(s) has no zeros in the closed
right half plane.

According to [1–12], the modified Smith predictor
C(s) is decided by the form:

C(s) =
C1(s)

1 + C2(s)e−sT
, (2)

where C1(s) ∈ R(s) and C2(s) ∈ R(s). In addi-
tion, using the modified Smith predictor in [1–12],
the transfer function from r to y of the control sys-
tem in (1), written as

y =
C(s)G(s)e−sT

1 + C(s)G(s)e−sT
r (3)

has a finite number of poles. That is, the transfer
function from r to y of the control system in (1) is
written as

y = Ḡ(s)e−sT r, (4)

where Ḡ(s) ∈ RH∞. Therefore, we call C(s) the
modified Smith predictor if C(s) takes the form of (2)
and the transfer function from r to y of the control
system in (1) has a finite number of poles.

The problem considered in this paper is to obtain
the parameterization of all modified Smith predictors
C(s) that make the control system in (1) stable. In
Section 3., we propose the parameterization of all
stabilizing modified Smith predictors C(s) for stable
plants. In Section 4., we expand the result in Section
3. and propose the parameterization of all stabilizing
modified Smith predictors C(s) for unstable plants.

3. THE PARAMETERIZATION OF ALL
STABILIZING MODIFIED SMITH PRE-
DICTORS FOR STABLE PLANTS

The parameterization of all stabilizing modified
Smith predictors for the stable plant G(s)e−sT is
summarized in the following theorem.

Theorem 1: G(s)e−sT is assumed to be stable.
The parameterization of all stabilizing modified
Smith predictors C(s) takes the form

C(s) =
Q(s)

1−Q(s)G(s)e−sT
, (5)

where Q(s) ∈ RH∞ is any function.

Proof: First, the necessity is shown. If the con-
troller C(s) in (2) makes the control system in (1)
stable and makes the transfer function from r to y
of the control system in (1) have a finite number of
poles, then C(s) takes the form of (5). From the as-
sumption that the controller C(s) in (2) makes the
transfer function from r to y of the control system in
(1) have a finite number of poles,

C(s)G(s)e−sT

1 + C(s)G(s)e−sT

=
C1(s)G(s)e−sT

1 + (C2(s) + C1(s)G(s)) e−sT
(6)

has a finite number of poles. This implies that

C2(s) = −C1(s)G(s) (7)

is necessary, that is:

C(s) =
C1(s)

1− C1(s)G(s)e−sT
. (8)

From the assumption that C(s) in (2) makes the
control system in (1) stable, C(s)G(s)e−sT /(1 +
C(s)G(s)e−sT ), C(s)/(1+C(s)G(s)e−sT ), G(s)e−sT /(1+
C(s)G(s)e−sT ) and 1/(1+C(s)G(s)e−sT ) are stable.
From simple manipulation and (7), we have

C(s)G(s)e−sT

1 + C(s)G(s)e−sT
= C1(s)G(s)e−sT , (9)

C(s)
1 + C(s)G(s)e−sT

= C1(s), (10)

G(s)e−sT

1 + C(s)G(s)e−sT

=
(
1− C1(s)G(s)e−sT

)
G(s)e−sT (11)

and

1
1 + C(s)G(s)e−sT

= 1− C1(s)G(s)e−sT . (12)

It is obvious that the necessary condition for all the
transfer functions in (9), (10), (11) and (12) to be
stable is C1(s) ∈ RH∞. Using Q(s) ∈ RH∞, let
C1(s) be

C1(s) = Q(s), (13)

we find that C(s) takes the form of (5). Thus, the
necessity has been shown.

Next, the sufficiency is shown. If C(s) takes the
form of (5), then the controller C(s) makes the control
system in (1) stable and makes the transfer function
from r to y of the control system in (1) have a finite
number of poles. From simple manipulation, we have

C(s)G(s)e−sT

1 + C(s)G(s)e−sT
= Q(s)G(s)e−sT , (14)
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C(s)
1 + C(s)G(s)e−sT

= Q(s), (15)

G(s)e−sT

1 + C(s)G(s)e−sT

=
(
1−Q(s)G(s)e−sT

)
G(s)e−sT (16)

and
1

1 + C(s)G(s)e−sT
= 1−Q(s)G(s)e−sT . (17)

From the assumption that G(s)e−sT is stable and
Q(s) ∈ RH∞, (14), (15), (16) and (17) are all sta-
ble. In addition, because the transfer function from r
to y of the control system in (1) takes the form (14)
and Q ∈ RH∞, the transfer function from r to y of
the control system in (1) has a finite number of poles.

We have thus proved Theorem 1.
Note 1: Note that because the proof of Theorem

1 does not require the assumption that G(s) is of
minimum phase, even if G(s)e−sT is of non-minimum
phase, the parameterization of all stabilizing modified
Smith predictors is given by Theorem 1.

Next, we explain the control characteristics of the
control system using the parameterization of all stabi-
lizing modified Smith predictors in (5). The transfer
function from the reference input r to the output y
of the control system in (1) takes the form

y = Q(s)G(s)e−sT r. (18)

Therefore, for the output y to follow the step refer-
ence input r = 1/s without steady state error,

Q(0)G(0) = 1 (19)

must be satisfied. Q(s) is chosen by

Q(s) =
q(s)
G(s)

, (20)

where

q(s) =
1

(1 + sτ)α
, (21)

where τ > 0 and α is a positive integer that makes
Q(s) in (20) proper.

The disturbance attenuation characteristics are as
follows. The transfer function from the disturbance
d to the output y of the control system in (1) is given
by

y =
(
1−Q(s)G(s)e−sT

)
d. (22)

Therefore, to attenuate the step disturbance d = 1/s
effectively, Q(s) must satisfy

Q(0)G(0) = 1. (23)

That is, when Q(s) is chosen according to (20), the
control system in (20) can attenuate not only the step
disturbance d effectively but also a disturbance with
frequency component ω satisfying

1− q(jω)e−jωT ' 0. (24)

4. THE PARAMETERIZATION OF ALL
STABILIZING MODIFIED SMITH PRE-
DICTORS FOR UNSTABLE PLANTS

In this section, we expand the result in Section 3.
and propose the parameterization of all stabiliz-

ing modified Smith predictors C(s) for unstable min-
imum phase plants.

This parameterization is summarized in the follow-
ing theorem.

Theorem 2: G(s)e−sT is assumed to be unstable
and to be of minimum phase. For simplicity, the un-
stable poles of G(s)e−sT are assumed to be distinct.
That is, when si(i = 1, · · · , n) denote unstable poles
of G(s), si 6= sj(i 6= j; i = 1, · · · , n; j = 1, · · · , n).
Under these assumptions, there exists Ḡu(s) ∈ U sat-
isfying

Ḡu (si) =
1

Gs (si) e−siT
, (25)

where Gs(s) is a stable minimum-phase function of
G(s), that is, when G(s) is factorized as

G(s) = Gu(s)Gs(s), (26)

Gu(s) is the unstable biproper minimum phase func-
tion and Gs(s) is the stable minimum phase function.
Using these functions, the parameterization of all sta-
bilizing modified Smith predictors C(s) is written as

C(s) =
Cf (s)

1− Cf (s)G(s)e−sT
, (27)

where Cf (s) is given by

Cf (s) =
Ḡu(s)
Gu(s)

(
1 +

Q(s)
Gu(s)

)
(28)

and Q(s) ∈ RH∞ is any function.
The proof of Theorem 2 requires the following
Lemma.

Lemma 1: G(s) is assumed to be unstable and to
be of minimum phase. For simplicity, the unstable
poles si(i = 1, · · · , n) of G(s)e−sT are assumed to
be distinct. Under these assumptions, there exists
Ḡu(s) ∈ U satisfying (25), where Gs(s) is the stable
function of G(s).

Proof: From the assumption that G(s) is of min-
imum phase, Gs(s) is also of minimum phase. There-
fore, for all si on the real axis, 1/

(
Gs (si) e−siT

)
are

all the same sign. From Theorem 2.3.3 in [16], there
exists Ḡu(s) ∈ U satisfying (25).

We have thus proved Lemma 1.
Using this Lemma, we shall show the proof of Theo-
rem 2.

Proof: First, the necessity is shown. If the con-
troller C(s) in (2) makes the control system in (1)
stable and makes the transfer function from r to y
of the control system in (1) have a finite number of
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poles, then C(s) takes the form (27). From the same
assumption,

C(s)G(s)e−sT

1 + C(s)G(s)e−sT

=
C1(s)G(s)e−sT

1 + (C2(s) + C1(s)G(s)) e−sT
(29)

has a finite number of poles. This implies that

C2(s) = −C1(s)G(s) (30)

is satisfied, that is, C(s) is necessarily

C(s) =
C1(s)

1− C1(s)G(s)e−sT
. (31)

From the assumption that C(s) in (2) makes the
control system in (1) stable, C(s)G(s)e−sT /(1 +
C(s)G(s)e−sT ), C(s)/(1+C(s)G(s)e−sT ), G(s)e−sT /(1+
C(s)G(s)e−sT ) and 1/(1+C(s)G(s)e−sT ) are stable.
From simple manipulation and (30), we have

C(s)G(s)e−sT

1 + C(s)G(s)e−sT

= C1(s)G(s)e−sT , (32)

C(s)
1 + C(s)G(s)e−sT

= C1(s), (33)

G(s)e−sT

1 + C(s)G(s)e−sT

=
(
1− C1(s)G(s)e−sT

)
G(s)e−sT (34)

and

1
1 + C(s)G(s)e−sT

= 1− C1(s)G(s)e−sT . (35)

It is obvious that the necessary condition for all the
transfer functions in (32), (33) and (35) to be stable
is that C1(s)G(s) is stable. This implies that C1(s)
must take the form

C1(s) =
C̄1(s)
Gu(s)

, (36)

where C̄1(s) ∈ RH∞. From the assumption that the
transfer function in (34) is stable and from (36), for
si(i = 1, · · · , n), which are the unstable poles of G(s),

1− C1(si)G(si)e−siT = 1− C̄1(si)Gs(si)e−siT

= 0 (i = 1, · · · , n) (37)

must be satisfied. From Lemma 1, there exists
Ḡu(s) ∈ U satisfying

1− Ḡu(si)Gs(si)e−siT = 0 (i = 1, · · · , n).(38)

Note that the condition in (38) is equivalent to (25),
because Gs(s) the stable minimum phase function,
that is Gs(si) 6= 0. Using Ḡu(s) ∈ U satisfying (38),
C̄1(s) is rewritten as

C̄1(s) = Ḡu(s)
(

1 +
C̄1(s)− Ḡu(s)

Ḡu(s)

)
. (39)

Because Ḡu(s) ∈ U and C̄1(s) ∈ RH∞, (C̄1(s) −
Ḡu(s))/Ḡu(s) is stable. In addition, because (C̄1(s)−
Ḡu(s))/Ḡu(s) takes the form

C̄1(s)− Ḡu(s)
Ḡu(s)

=
C̄1(s)
Ḡu(s)

− 1 (40)

and both C̄1(s) and 1/Ḡu(s) are proper, (C̄1(s) −
Ḡu(s))/Ḡu(s) is proper. Therefore, (C̄1(s) −
Ḡu(s))/Ḡu(s) ∈ RH∞.

From (37) and (38),

C̄1(si)− Ḡu(si) = 0 (i = 1, · · · , n) (41)

holds. This implies that si(i = 1, · · · , n), which
are zeros of Gu(s), are zeros of C̄1(s) − Ḡu(s), be-
cause Ḡu ∈ U and C̄1(s) ∈ RH∞. When we rewrite
(C̄1(s)− Ḡu(s))/Ḡu(s) as

C̄1(s)− Ḡu(s)
Ḡu(s)

=
Q(s)
Gu(s)

, (42)

then Q(s) ∈ RH∞, because 1/Gu(s) ∈ RH∞. In
this way, it is shown that if the controller C(s) in (2)
makes the control system in (1) stable and makes the
transfer function from r to y of the control system in
(1) have a finite number of poles, then C(s) is written
as (27).

Next, the sufficiency is shown. If C(s) takes the
form (27), then the controller C(s) makes the control
system in (1) stable and makes the transfer function
from r to y of the control system in (1) have a finite
number of poles. After simple manipulation, we have

C(s)G(s)e−sT

1 + C(s)G(s)e−sT

= Ḡu(s)
(

1 +
Q(s)
Gu(s)

)
Gs(s)e−sT , (43)

C(s)
1 + C(s)G(s)e−sT

=
Ḡu(s)
Gu(s)

(
1 +

Q(s)
Gu(s)

)
, (44)

G(s)e−sT

1 + C(s)G(s)e−sT

=
{

1− Ḡu(s)
(

1 +
Q(s)
Gu(s)

)
Gs(s)e−sT

}
G(s)e−sT

(45)

and
1

1 + C(s)G(s)e−sT

= 1− Ḡu(s)
(

1 +
Q(s)
Gu(s)

)
Gs(s)e−sT . (46)
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Because Ḡu(s) ∈ U , Q(s) ∈ RH∞, Gs(s) ∈ RH∞, the
transfer functions in (43), (44) and (46) are stable. If
the transfer function in (45) is unstable, the unsta-
ble poles of the transfer function in (45) are unstable
poles of G(s). From the assumption that Ḡu(s) satis-
fies (25), the unstable poles of G(s) are not the poles

of
{

1− Ḡu(s)
(

1 + Q(s)
Gu(s)

)
Gs(s)e−sT

}
G(s)e−sT .

Therefore, the transfer function in (45) is stable. In
addition, because the transfer function from r to y of
the control system in (1) is given by (43) and Ḡu(s),
Q(s), 1/Gu(s) ∈ RH∞, the transfer function from r
to y of the control system in (1) has a finite number
of poles.

We have thus proved Theorem 2.
Note 2: Ḡu(s) satisfying (25) is obtained using the

method given in the proof of Theorem 2.3.3 in [16].
The modified Smith predictor in (27) is explained

based on the frequency domain. In the time domain,
using the modified Smith predictor in (27), the con-
trol input u(t) is given as follows. From the assump-
tion that the unstable poles of G(s)e−sT are distinct,
and from (25), Gu(s) and Ḡu(s)(1+Q(s)/Gu(s))G(s)
can be rewritten as

Gu(s) =
n∑

i=1

ci

s− si
+ δ (47)

and

Ḡu(s)
(

1 +
Q(s)
Gu(s)

)
G(s) =

n∑
i=1

cie
siT

s− si
+ Q̄(s), (48)

respectively, where

ci = (s− si)Gu(s)|s=si
(i = 1, . . . , n). (49)

Q̄(s) ∈ RH∞ holds true because the unstable poles
of Ḡu(s)(1 + Q(s)/Gu(s))G(s) are equal to si(i =
1, . . . , n). δ 6= 0 ∈ R is satisfied, because Gu(s) is
biproper. Using δ, Q̄(s) and ci(i = 1, . . . , n) in (47),
(48) and (49), the control input u(t) is given by

u(t)

=
1
δ
Q̄(p)u(t− T )− 1

δ

∫ 0

−T

n∑
i=1

cie
−siτu(t + τ)dτ

+
1
δ
Ḡu(p)

(
1 +

Q(p)
Gu(p)

)
(r(t)− y(t)) , (50)

where p is the differential operator, i.e. py(t) = dy(t)
dt .

The control input u(t) in (50) is obviously realiz-
able, because Q̄(s) ∈ RH∞, <{si} ≥ 0(i = 1, . . . , n),
Ḡu(s)(1 + Q(s)/Gu(s)) ∈ RH∞ and u(t + τ), −T ≤
τ ≤ 0, is the past history of the control input over the
finite interval T . The fact that the control input u(t)
in (50) is written in the frequency domain as C(s)
in (27) is confirmed as follows: Taking the Laplace

transformation of (50) yields

δu(s)

= Q̄(s)e−sT u(s)−
∫ 0

−T

n∑
i=1

cie
−siτu(s)eτsdτ

+ Ḡu(s)
(

1 +
Q(s)
Gu(s)

)
(r(s)− y(s))

= Q̄(s)e−sT u(s)−

(
n∑

i=1

ci

s− si

−
n∑

i=1

cie
siT

s− si
e−sT

)
u(s) + Ḡu(s)

(
1 +

Q(s)
Gu(s)

)
·(r(s)− y(s)). (51)

From (47), (48), (51) and simple manipulation, we
have

u(s) =
Ḡu(s)

(
1 +

Q(s)
Gu(s)

)
(r(s)− y(s))

Gu(s)− Ḡu(s)
(

1 +
Q(s)
Gu(s)

)
G(s)e−sT

=
Cf (s)

1− Cf (s)G(s)e−sT
(r(s)− y(s)). (52)

From the above equation, we find that the control
input u(t) in (50) is written in the frequency domain
as C(s) in (27).

Next, we explain the control characteristics of the
control system using the parameterization of all stabi-
lizing modified Smith predictors in (27). The transfer
function from the reference input r to the output y
of the control system in (1) is written as

y = Ḡu(s)
(

1 +
Q(s)
Gu(s)

)
Gs(s)e−sT r. (53)

Therefore, when G(s) has a pole at the origin, for the
output y to follow the step reference input r = 1/s
without steady state error,

Ḡu(0)Gs(0) = 1 (54)

must be satisfied. Because Ḡu(s) ∈ U satisfies (38),
(54) holds true. This implies that when G(s) has a
pole at the origin, the output y follows the step refer-
ence input r without steady state error, independent
of Q(s) ∈ RH∞ in (27). On the other hand, when
G(s) has no pole at the origin, for the output y to fol-
low the step reference input r = 1/s without steady
state error,

Ḡu(0)
(

1 +
Q(0)
Gu(0)

)
Gs(0) = 1 (55)

must hold. From simple manipulation, if Q(s) is cho-
sen satisfying

Q(0) = Gu(0)
(

1
Ḡu(0)Gs(0)

− 1
)

, (56)
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then the output y follows the step reference input
without steady state error.

The disturbance attenuation characteristics are as
follows. The transfer function from the disturbance
d to the output y of the control system in (1) is given
by

y =
{

1− Ḡu(s)
(

1 +
Q(s)
Gu(s)

)
Gs(s)e−sT

}
d. (57)

Therefore, to attenuate the step disturbance d = 1/s
effectively, Q(s) must satisfy

Ḡu(0)
(

1 +
Q(0)
Gu(0)

)
Gs(0) = 1. (58)

That is, when Q(s) is chosen satisfying (56), the step
disturbance d is attenuated effectively.

5. NUMERICAL EXAMPLE

In this section, numerical examples for stable and
unstable plants are presented to show the effective-
ness of the proposed parameterization of all stabiliz-
ing modified Smith predictors.

Let us consider the problem of finding the parame-
terization of all stabilizing modified Smith predictors
for the stable plant G(s)e−sT written as

G(s)e−sT =
1

s2 + 3s + 4
e−4s, (59)

where

G(s) =
s + 1

s2 + 3s + 4
(60)

and T = 4[sec]. From Theorem 1, the parameteri-
zation of all stabilizing modified Smith predictors for
G(s)e−sT in (59) is given by (5). For the output y to
follow the step reference input without steady state
error, Q(s) ∈ RH∞ is chosen using (20), where q(s)
is

q(s) =
1

(1 + 0.1s)2
. (61)

The response of the output y for the step reference
input r is shown in Fig. 1 . Figure 1 shows that the
control system is stable and the output y follows the
step reference input r without steady state error.

Next we show a numerical example for an unstable
plant. Let us consider the problem of finding the pa-
rameterization of all stabilizing modified Smith pre-
dictors for the unstable plant G(s)e−sT given by

G(s)e−sT =
s + 1

s2 + 3s
e−s, (62)

where

G(s) =
s + 1

s2 + 3s
(63)
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Fig.1: Step response

and T = 1[sec].
G(s) is factorized by (26) as

Gu(s) =
s + 2

s
(64)

and

Gs(s) =
s + 1

(s + 2)(s + 3)
. (65)

One Ḡu(s) in (28) satisfying (25) is given by

Ḡu(s) =
6(2s + 1)
3s + 1

. (66)

From Theorem 2, the parameterization of all stabiliz-
ing modified Smith predictors for G(s)e−sT in (62) is
given by (27), where

Cf (s) =
6s(2s + 1)

(3s + 1)(s + 2)

(
1 +

s

s + 2
Q(s)

)
(67)

and Q(s) ∈ RH∞.
choosing Q(s) ∈ RH∞ as

Q(s) =
s + 2
s + 3

, (68)

we have

Cf (s) =
6s(2s + 1)(2s + 3)

(3s + 1)(s + 2)(s + 3)
. (69)

Because G(s) in (63) has a pole at the origin, from
the discussion in the preceding section, the output y
follows the step reference input r without steady state
error. The step response of the control system in (1)
using Cf (s) in (69) is shown in Fig. 2 . Figure 2
shows that the control system in (1) is stable and the
output y follows the step reference input r without
steady state error.

In this way, we find that by using the results in
this paper, we can easily obtain the parameterization
of all stabilizing modified Smith predictors for time-
delay plants.
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6. CONCLUSION

In this paper, we proposed the parameteriza-
tion of all stabilizing modified Smith predictors for
minimum-phase time-delay plants. First, the param-
eterization of all stabilizing modified Smith predictors
for stable plants, which are not necessarily of mini-
mum phase, was proposed. Next, we expanded the
result of the parameterization for stable plants and
proposed the parameterization of all stabilizing modi-
fied Smith predictors for unstable plants. The control
characteristics of the control system using the param-
eterization of all stabilizing modified Smith predictors
and design method of Q(s) in (5) and (27) were also
given. Finally, numerical examples were presented to
show the effectiveness of the proposed parameteriza-
tion.
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