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ABSTRACT

This research develops an automated apple bruise detection system that
combines digital image processing and machine learning to enhance quality
control. The study employs preprocessing techniques (resizing, grayscale
conversion, thresholding) and extracts key features including pixel count,
mean intensity, maximum and minimum pixel values, and estimated bruise
area. A dataset of 513 apple samples was created and divided into train-
ing (70%), validation (15%), and test (15%) sets. Among the five evalu-
ated classifiers, Decision Tree and Gradient Boosting demonstrate identical
peak performance (99.35% accuracy, 0.9941 Fl-score), with Decision Tree
offering superior computational efficiency (200 times faster training). Ran-
dom Forest achieves 98.70% accuracy, outperforming conventional methods
(SVM, KNN, Logistic Regression). Notably, the Decision Tree accurately
classifies severe bruises (Class 2), which is crucial for quality assurance.
The system’s effectiveness is validated through comprehensive metrics, in-
cluding confusion matrices and ROC analysis. These results highlight the
practical viability of implementing Decision Tree-based solutions in com-
mercial fruit grading systems, offering an optimal balance between accu-
racy (99.35%) and operational efficiency (0.0012 seconds of training time).
The findings enhance automated post-harvest inspection capabilities while
addressing critical industry needs for rapid and reliable bruise detection.
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1. INTRODUCTION

In modern agriculture, quality control of agricul-
tural products, especially fresh fruits, is a critical step
both for commercial purposes and to ensure compli-
ance with consumer safety standards. One of the
key factors affecting the quality and economic value
of fruits is “bruising”, which can occur during har-
vesting, transportation, or storage [1]. Bruising is a
common occurrence in apples that can lead to grad-
ual fruit decay and substantial economic losses, with
10-25% loss reported in the Belgian apple industry
during transportation alone. Comparison of Random
Forest, k-Nearest Neighbor, and Support Vector Ma-
chine Classifiers for Land Cover Classification Using
Sentinel-2 Imagery [1].

Bruises on fruits such as apples not only affect
their external appearance but also influence spoilage
rates, shelf life, and consumer satisfaction. Currently,
bruise detection is commonly performed by human

visual inspection, which has limitations in accuracy,
consistency, and speed, particularly in high-volume
or high-speed production lines [2]. Manual detection
or utilizing machine vision on RGB images to detect
bruises on apples with various skin colors in the early
stages is quite challenging, especially when bruises are
not easily distinguishable by the naked eye (PDF).
Comparison of Logistic Regression, Random Forest,
SVM, and KNN Algorithm for Water Quality Classi-
fication Based on Contaminant Parameters |[2].

To address these limitations, researchers have ex-
plored integrating digital technologies with automa-
tion systems, such as digital image processing and
machine learning, which offer potential to improve
accuracy and reduce inspection time [3]. Supervised
classification techniques including support vector ma-
chines, linear logistic regression, neural networks, de-
cision trees, k-means clustering, random forest, and
Extreme Learning Machine have been successfully ap-
plied in bruise detection, producing better results
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than pure statistical and image processing methods
(PDF) Comparison of Logistic Regression, Random
Forest, SVM, KNN Algorithm for Water Quality
Classification Based on Contaminant Parameters [2].
Previous studies have demonstrated the effectiveness
of various imaging techniques for bruise detection,
including Near-Infrared Imaging [4], Hyperspectral
Imaging [5], and visible/near-infrared hyperspectral
reflectance imaging for multispectral detection of ap-
ple bruises with optimized wavelength-specific spec-
tral resolutions [6].

Recent advances in computer vision have shown
promising results in apple quality assessment. Con-
volutional neural networks have been successfully ap-
plied to apple quality identification and classification,
achieving training accuracy of 99%, validation accu-
racy of 98.98%, and an overall accuracy of 95.33%
on independent test datasets [7]. This study used
Decision Tree, Extra Trees, and XGBoost to pre-
dict fruit waste at a South African wholesale mar-
ket (2021-2023). Decision Tree and Extra Trees had
the lowest MAE (112.19), showing potential to guide
market decisions and reduce postharvest waste [8].

Therefore, this research aims to develop a multi-
class bruise classification system for apples using im-
age analysis and machine learning techniques. The
goal is to accurately classify the severity and char-
acteristics of bruises, enabling efficient sorting of
produce and supporting the implementation of au-
tomated quality assessment systems in commercial
applications. Comparative studies have shown that
classical machine learning algorithms such as Ran-
dom Forest and Support Vector Machine can achieve
high accuracy, with RF outperforming SVM by 1-2%
in overall accuracy and 3% in Kappa coefficient [9].

In this work, we propose a Multi-Class Apple
Bruise Classification system using digital image pro-
cessing and machine learning, extracting features
such as area, intensity, and pixel count to classify
bruise severity into three levels. SVM offers high
prediction accuracy, KNN performs well on small
datasets, and Decision Trees provide strong inter-
pretability. Consistent with [10], which achieved over
98% accuracy in apple variety classification using
SVM, Random Forest, MLP, and KNN, our workflow
combines feature extraction with multi-class perfor-
mance evaluation. This paper is organized as follows:

Section 1 introduces the research background, mo-
tivation, and objectives. Section 2 reviews related
works in image-based fruit quality assessment and
machine learning classification. Section 3 presents the
research methodology, including image preprocessing,
feature extraction, and dataset preparation. Section
4 presents experimental results, a performance com-
parison, and an evaluation using confusion matrices
to statistically validate the significance of the perfor-
mance. Section 5 concludes the study and discusses
possible directions for future work.

2. RELATED WORK

2.1 Digital Image Processing for Fruit Quality
Assessment

Digital image processing has become a key enabler
for non-destructive fruit quality assessment, offering
greater speed and objectivity than traditional inspec-
tion. Hyperspectral imaging has achieved recognition
rates above 92% for early bruise detection [5], with
wavelength-specific analysis further supporting real-
time sorting applications [6]. Near-infrared (NIR)
methods have reported classification accuracy exceed-
ing 99% using deep learning models, such as Faster R-
CNN and YOLO variants, demonstrating their suit-
ability for real-time deployment [4]. Similarly, short-
wave infrared (SWIR) has demonstrated advantages
in detecting subsurface bruises, achieving a 97.4%
mean average precision (mAP) [11]. Although hy-
perspectral and infrared systems deliver high accu-
racy, RGB-based approaches remain attractive for
cost-sensitive settings, achieving over 95% accuracy
with CNN models trained on images under complex
backgrounds [12]. These findings highlight the feasi-
bility of integrating both advanced and conventional
imaging modalities with machine learning to enhance
automated quality assessment.

2.2 Machine Learning Algorithms in Agricul-
tural Applications

Classical machine learning algorithms remain cen-
tral to agricultural image analysis, balancing accu-
racy, interpretability, and computational efficiency.
Random Forest (RF) often outperforms Support Vec-
tor Machines (SVM), as shown in land cover map-
ping, where RF achieved higher accuracy (0.86) and
Kappa scores (0.83) in mixed-class scenarios [9]. Nev-
ertheless, SVM maintains strong predictive power in
high-dimensional tasks, with accuracies above 97%
in multiclass apple quality classification [13]. K-
Nearest Neighbor (KNN) also demonstrated 96.6%
accuracy, making it suitable for small datasets and
resource-limited applications. In contrast, Decision
Trees (DT) achieved 93% accuracy, offering transpar-
ent decision rules that support practical deployment
[14]. Comparisons of optical property mapping fur-
ther demonstrated the superiority of SVM at 98.33%
and CNN at 99.16% (two-class), although CNN re-
quired substantially longer processing time, confirm-
ing the trade-offs between performance and efficiency.

2.3 Apple Defect and Bruise Detection Sys-
tems

Advanced imaging has proven effective in identify-
ing apple defects and bruises at early stages. Short-
wave infrared hyperspectral imaging detected latent
bruises invisible to the naked eye, with SVM pro-
viding the best detection and ESD achieving over
85% accuracy in severity classification [15]. Optical
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property mapping has also enabled detection within
1-2 hours after the occurrence of a bruise, enhanc-
ing visibility and measurement precision [16]. High-
speed systems utilizing pruned YOLOv4 on NIR im-
ages achieved 93.9% mAP at 5 fruits per second [3],
[18], while grading frameworks tailored to specific va-
rieties, such as Golden Delicious, reached 92.5% ac-
curacy. Recent model comparisons have further indi-
cated that SSD outperforms YOLOvV2 in RGB-based
defect detection [17], [19], confirming that algorithm
choice remains critical, even with conventional imag-
ing.

2.4 Machine Learning Approaches for Fruit
Classification

Machine learning has been widely applied to fruit
classification, offering efficiency, accuracy [20], and
consistency in automated quality control. Random
Forest (RF) has shown strong generalization, of-
ten outperforming SVMs in land cover mapping and
disease detection [21], while K-Nearest Neighbors
(KNN) and Decision Trees (DT) remain valuable for
small datasets and for interpretable decision rules
[10]. Logistic Regression also remains relevant for
probabilistic classification [19]. These traditional ma-
chine learning models continue to play an important
role in fruit quality assessment. Comparative studies
indicate that no single model consistently dominates
across all contexts, emphasizing the need to balance
accuracy, interpretability, dataset size, and computa-
tional constraints. In agricultural applications, DT
offers real-time sorting transparency due to its inter-
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pretability, whereas ensemble methods such as RF
provide greater robustness at a higher computational
cost.

3. RESEARCH METHODOLOGY
3.1 Research Framework

This study employs a systematic methodology for
bruise classification in apples by integrating digi-
tal image processing with classical machine learning
techniques. The framework (F'ig.1) consists of data
acquisition, preprocessing, feature extraction, label
assignment, dataset preparation, and model train-
ing [18],[20]. The dataset, collected from Roboflow,
comprises 513 images after augmentation. Each im-
age was converted to grayscale, thresholded, and pro-
cessed using contour detection to identify bruise re-
gions. Extracted features were used to label bruise
severity, followed by dataset partitioning and predic-
tive modeling with machine learning [22].

3.1.1 Research Objectives

First Objective: To develop an image process-
ing-based feature extraction process from apple im-
ages for classifying bruise severity levels.

Second Objective: To develop and optimize a De-
cision Tree model for classifying bruise severity in ap-
ples with high accuracy and fast processing speed.

Third Objective: To compare the performance of
seven machine learning algorithms and statistically
validate the significance of performance differences to
identify the most suitable model for real-world de-
ployment in automated fruit sorting systems.
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3.1.2 Four-Phase Framework

The research framework is structured into four se-
quential phases:

Phase 1: Data Collection — A representative
dataset was obtained from Roboflow and expanded to
513 images through augmentation from the original
244 images. This addressed the limitation of small,
labelled agricultural datasets while preserving class
distribution.

Phase 2: Data Processing — Standardized prepro-
cessing (grayscale conversion, thresholding, and con-
tour detection) ensured consistent feature extraction
and reduced variability introduced by acquisition con-
ditions.

Phase 3: Model Training — Seven machine learn-
ing algorithms were systematically compared using
hyperparameter tuning and cross-validation. This
phase ensured that the Decision Tree was selected
as the optimal model based on evidence rather than
arbitrary preference.

Phase 4: Model Evaluation — A comprehensive
performance assessment employed multiple metrics
(accuracy, Fl-score, confusion matrices, and ROC
curves) to confirm both statistical significance and
real-world deployment readiness. Together, these
four phases establish a rigorous pipeline from data ac-
quisition to model validation, ensuring that the pro-
posed system is not only statistically sound but also
practically feasible for automated apple grading ap-
plications [23].

3.1.3 Technology Stack and Implementation Plat-
form

The research leverages open-source tools to ensure
reproducibility and transparency. Image processing is
performed using OpenCV 4.5 or later and PIL, while
machine learning algorithms and evaluations are im-
plemented with scikit-learn 1.0 or later and XGBoost
1.6 or later. NumPy and Pandas handle numerical
and structured data operations, with Matplotlib and
Seaborn used for visualization. All experiments are
conducted in Google Colab Pro, ensuring consistent
cloud-based execution across different hardware envi-
ronments.

3.2 Data Collection and Preprocessing
3.2.1 Dataset Characteristics and Sources

This research utilizes an apple bruise detection
dataset from Roboflow, a platform that provides
high-quality, annotated images. The dataset initially
contained 244 RGB images with varying bruise sever-
ity [24], each professionally annotated with bounding
boxes delineating bruise regions.

Dataset specifications:
e Total images: 244 high-resolution samples
e Resolution: 640 x 640 pixels (standardized)

e Annotation: Bounding box coordinates with
“bruise” labels

e Source: Robo flow [25]

The dataset’s consistent quality, standardized res-
olution, and precise annotations ensure suitability for
machine learning, with background uniformity mini-
mizing noise and bounding boxes providing accurate
spatial coordinates for feature extraction.

3.2.2 Data Augmentation Techniques

To overcome the limited sample size, systematic
data augmentation was applied to the 171 training
images, expanding the dataset to 513 samples. Four
transformations were used:

e Horizontal flipping — increases positional vari-

ance while preserving bruise characteristics.

e Rotation (£15°) — simulates natural handling

variations.

e Brightness adjustment (+15%) — accounts for di-

verse lighting conditions.

Controlled blur (<2.5 pixels) — mimics motion or
focus variations.

This augmentation strategy expanded the dataset
without additional collection, improved robustness
through realistic variation, and reduced overfitting.
All transformations preserved biological realism while
maximizing diversity (F'ig.2).

Fig.2: Contour of a sample defective apple

Fig.2: Contour of a sample defective apple.

3.2.3 Image Preprocessing with OpenCV [26]

Image preprocessing is a crucial step for transform-
ing raw visual data into formats suitable for quan-
titative analysis. This study utilizes OpenCV 4.5+
as the primary framework, implementing a three-
stage pipeline specifically designed for apple bruise
detection. First, RGB images are converted into 8-
bit grayscale using the standard luminance-weighted
transformation (Eq. 1).

G(z,y) = 0.299 - R(z,y) + 0.587 - G(z,y)+ 1)

0.114 - B(z,y)

where G(x, y) represents the grayscale intensity at

pixel coordinates (z,y), and R, G, and B denote the

red, green, and blue channel values, respectively. The

Grayscale Conversion and Threshold Mask is shown
in Fig. 3.
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Binary Mask
(1 regions)

Gray Image

Fig.3: Grayscale Conversion and Threshold Mask.

255 if G(x,y) < 120
B(w,y) = { 0 if GEa«yi > 120 } (2)

where B (z,y) represents the binary mask and 120
is the empirically determined threshold.

Following thresholding, the Suzuki—-Abe algorithm
detected bruise contours with sub-pixel accuracy,
generating coordinate-based perimeters for feature
extraction. Morphological operations were employed
to remove noise, and only contours exceeding a min-
imum area were retained, thereby ensuring an accu-
rate geometric representation of bruise regions.

3.2.4 Feature Extraction Methods

Mean Intensity (u):
The mean intensity, a primary indicator of bruise
severity, is calculated as:

1 N

p=x+t Zi:l I; (3)

where p represents mean intensity, NV denotes total
pixels in the bruise region, and I; represents individ-
ual pixel intensity values.

Post-thresholding contour detection precisely
maps bruise boundaries, with the total affected serv-
ing as a key indicator of severity - larger areas cor-
relate with greater damage (Fig.4). The method’s
sub-pixel boundary tracing ensures accurate geomet-
ric feature extraction for subsequent classification.

Contour Area (A):

Post-thresholding contour detection maps bruise
boundaries, with the total affected area serving as a
key indicator of severity. The area is computed as in
equation (4)

A= 2;21 Area(C;) 4)

Where A represents the total bruise area in pixels?,
Cj

C; denotes the j — th individual contour, and n is
the total number of contours detected in the binary
image.

Alternative approach using pixel counting:

Final Result

Fig.4: Contour detection.

P=3 " 1¢i (5)

where P represents total pixel count and |C;| de-
notes the number of pixels within contour j.

Intensity Range Analysis:

The intensity range within bruise regions provides
critical information on severity and uniformity. The
minimum intensity represents the most severely dam-
aged tissue, while the maximum intensity corresponds
to the transition zone between bruised and healthy
areas. Together, these values strengthen the discrim-
inative power of the feature set for Decision Tree clas-
sification.

Minimum Intensity Extraction:

The minimum intensity identifies the darkest pix-
els within detected bruise regions, calculated accord-
ing to equation (6):

Imin = miniebruise regionmin (6)

The maximum intensity captures the lightest pix-
els within bruise boundaries, providing information
about damage periphery, expressed as equation (7):

Ima:r: = MAZ;cbruise regionminIi (7)

where I,,;, and I,,,, represent the minimum and
maximum intensity values, respectively, and I; de-
notes the intensity value of individual pixels within
the identified bruise regions.

The complete intensity range characterizes the full
spectrum of damage severity within each bruise, cal-
culated as:

Al = Imaac - Imin, (8)

where AT represents the intensity range, providing
a measure of bruise heterogeneity and internal varia-
tion.

In the process of extracting five key characteristics
from each bruise region as described in Algorithm
1, the number of pixels in the bruise was 4,088, the
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average brightness was 89.52739726027397, the mini-

Table 1: Stratified Class Distribution Across Parti-

mum brightness was 23, and the maximum brightness  ¢jons.
was 120. Dataset Class 0 Class 1 Class 2 Total
Training 122 140 97 359
. . . Validati 27 31 19 7
Algorithm 1: Comprehensive Feature Extraction T:slt e 2% 30 91 =
Input: Grayscale image G (x, y), Contour set C
Output: Feature vector F = [, A, P, Inin, Imax] Table 2: Presents comprehensive statistical sum-
maries. .
1. In1t1allze' feature vector F « [0, 0, 0 o0, -o0] Parameter Options Selected Reason
2. Create binary mask M from contour set C Tested
3. Extract bruise pixel intensities: Max depth 5.8.10,12 8 Best CV
For each pixel (x, y) where M (x, y) = 1: . score
a. Collect intensity value G(X, y) MHI samples 10.15.20 15 Prcvcgts
b. Update Ininand Imax split T overfitting
4. Calculate statistical measures: Min samples 5.8.10 8 Stability
a. i < mean of collected intensities leaf i
b. A < sum of contour areas using Green's theorem Criterion Gini, entropy Gini Mult}—clalss
c. P «<— count of bruise pixels optima

5. Construct feature vector F «<— [, A, P, Inin, Imax]
6. Return normalized feature vector F

The extraction process systematically analyses
pixels within the detected contour, computing sta-
tistical measures that quantify the bruise’s proper-
ties. The resulting feature vector provides a com-
pact numerical representation of complex visual in-
formation, enabling quantitative comparison and au-
tomated classification. Algorithm 1 formalizes this
comprehensive feature extraction workflow.

3.2.5 Dataset Splitting and Preparation

To prevent data leakage and ensure unbiased
model evaluation, the 513-image dataset was parti-
tioned prior to any augmentation. Stratified sam-
pling was used to maintain class proportions, result-
ing in a 70% training (359 images), 15% validation
(77 images), and 15% testing (77 images) split. Data
augmentation was performed exclusively on the train-
ing set, while the validation and test sets were left
untouched. This split-then-augment strategy follows
established best practices in deep learning workflow
design [27] and aligns with the methodological ap-
proaches used in agricultural bruise detection stud-
ies [28]. Augmentation techniques included rotation,
flips, brightness adjustments, and minor geometric
transformations to improve generalization without al-
tering the inherent bruise characteristics.

Dataset integrity was verified through systematic
quality checks assessing image consistency, complete-
ness, and label accuracy. Table 1 summarizes the
results of these quality assurance procedures, con-
firming the dataset’s reliability for machine learning
experiments.

Understanding feature characteristics enables ap-
propriate preprocessing decisions and parameter opti-
mization strategies. Table 2 presents comprehensive
statistical summaries for all five extracted features
across the complete 513-sample dataset.

3.3 Model Training Methodology
3.3.1 Training Protocol and Implementation

The training phase centered on developing the
Decision Tree model while systematically compar-
ing alternative algorithms to optimize bruise sever-
ity classification. All experiments were performed
on Google Colab Pro using Python 3.8+, scikit-learn
1.0+, NumPy, and Pandas, with a fixed random seed
(42) for reproducibility. The 513-sample dataset was
preprocessed before training, with feature scaling ap-
plied only to algorithms that require normalized in-
puts (SVM, KNN), while tree-based models used raw
features to preserve interpretability.

3.3.2 Decision Tree Hyperparameter Optimization

Decision Tree optimization employed grid search
with cross-validation to balance accuracy, inter-
pretability, and efficiency while avoiding overfitting.
The optimization objective function is defined as:
Optimization Objective Function:

The hyperparameter selection prioritizes balanced
performance across multiple criteria expressed as EQ:

Obj = a-Accuracy—+8-Speed+v-Interpretability (9)

where @ = 0.6, § = 0.3, and v = 0.1 reflect the
relative importance of accuracy, computational effi-
ciency, and model interpretability, respectively.

3.3.3 Cross-Validation Strategy

Robust model evaluation was conducted using
stratified k-fold cross-validation to ensure stable per-
formance estimates and consistent class distributions
across folds. In this process, the dataset is divided
into k folds while preserving class balance. The model
is trained and validated iteratively, with results ag-
gregated to compute mean accuracy, standard de-
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viation, and confidence intervals, thereby reducing
bias from any single split. A 5-fold stratified cross-
validation was applied to the 359-sample training set,
maintaining class proportions (34.1%, 39.2%, 26.7%)
in each subset of approximately 72 samples. Perfor-
mance evaluation considered accuracy, macro-average
F1-score, precision, and recall, with aggregated met-
rics providing reliable assessments for model compar-
ison.

3.3.4  Algorithm Comparison Framework

A comprehensive evaluation was conducted across
seven machine learning algorithms to benchmark
performance on bruise severity classification. The
Decision Tree (DT) was selected as the primary
baseline due to its interpretability, computational
efficiency, and suitability for threshold-based clas-
sification. Comparisons included ensemble meth-
ods—Random Forest (RF), Gradient Boosting Ma-
chines (GBM), and Extra Trees—as well as Support
Vector Machines (SVM, RBF kernel) and K-Nearest
Neighbours (KNN).

Primary Performance Indicators:

Correct Predictions
Total Predictions

where Correct Predictions represents the number
of samples correctly classified across all three bruise
severity classes, and Total Predictions denotes the to-
tal number of test samples evaluated by the model.

Accuracy = (10)

C 2 - Precision; x Recall;

1
F1-Score (Macro) = 5—}—2

i=1 Precision; + Recall;

(11)
Here, C = 3 denotes the severity classes of bruises:
mild, moderate, and severe. Precision; is the ratio
of true positives to predicted positives, while Recall;
is the ratio of true positives to actual positives.

TP,
Precision TP 1 FD, (12)
TP,
U= ——— 1
Recalli = 5 FN; (13)

where T P; denotes true positives for class i, FP;
represents false positives for class 7, and FN; indi-
cates false negatives for class ¢ based on confusion
matrix analysis.

Balanced DT training incorporated these weights
and was evaluated using macro-averaged precision,
recall, and Fl-score. In practice, this procedure cor-
responds to two integrated steps: (1) training the DT
with balanced class weights and (2) evaluating results
using macro-averaged metrics, thereby aligning sta-
tistical rigor with practical grading needs.

This framework ensures robust validation by com-
bining balanced Gini impurity with macro-averaged
metrics. It enhances transparency, supports inter-

pretability, and confirms the Decision Tree’s superi-
ority for field-ready bruise-grading systems. The Gini
impurity for balanced evaluation is expressed as:

Ginibalanced = Wz * Pl * (1 — Pz) (14)

Here, W; denotes the balanced class weight, and
P; the proportion of class i. Decision Trees with class
weight = ‘balanced’ are best evaluated using macro-
averaged metrics to reflect true performance gains.

The Decision Tree algorithm applies balanced class
weights in training and splitting to ensure fair treat-
ment of all bruise severity levels. This adjusts tra-
ditional node impurity calculations by incorporating
class weights, as illustrated in Algorithm 2.

The suitability of the Decision Tree for field-ready
fruit grading. The balanced weight approach was fur-
ther validated by computing metrics separately for
each bruise severity class.

Algorithm 2: Balanced Decision Tree Classification
Input: X: feature matrix, y: target vector,
p: threshold parameter
Step 1: Calculate class proportions
for i in range(n_classes):
p_i=count(y ==1) / len(y)
Step 2: Calculate balanced weights
for i in range(n_classes):
w_i=1/(n_classes * p 1)
Step 3: Apply threshold classification
for each sample with parameter p:
if p > 80:
class = 0 # Mild
elif 50 < p <80:
class = 1 # Moderate
else: # <50
class =2 # Severe
Step 4: Train the decision tree with balanced weights
tree =
DecisionTreeClassifier(class_weight="balanced')
tree.fit(X, y, sample_weight=w)
Step 5: Evaluate using macro-averaged metrics
- Macro-averaged Precision
- Macro-averaged Recall
- Macro-averaged F1-score
Output: Trained balanced decision tree model

The macro-averaged approach mitigates class im-
balance bias, ensuring mild bruise accuracy does not
obscure severe detection errors. By averaging preci-
sion, recall, and F1l-score across classes, it offers reli-
able guarantees for agriculture. Algorithm 3 inte-
grates balanced Gini impurity with per-class metrics
to provide a transparent and diagnostic assessment.
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Algorithm 3: Macro Averaged Balanced Evaluation

Input: y_true, y_pred, class_weights

Step 1: Calculate per-class metrics
for i in range(n_classes):

TP_i=count ((y_true =1) & (y_pred =1))
FP_i=count ((y_true! =1) & (y_pred =i))

FN _i=count ((y_true =1) & (y_pred !=1))
Precision_i=TP_i/(TP_i+ FP_i)

Recall i=TP_i/(TP_i+FN_i)

F1_i=2 * (Precision_i * Recall i)/ (Precision_i +
Recall 1)

Step 2: Calculate macro-averaged metrics
Precision_macro = mean (Precision_i for all 1)
Recall _macro = mean (Recall_i for all 1)

F1_macro = mean (F1_i for all 1)

Step 3: Calculate balanced Gini impurity
for each node:

Gini_balanced =X (W_1*P_i*(1-P_1))

Output: Balanced performance metrics

4. EXPERIMENTAL RESULTS AND ANAL-
YSIS

This chapter presents the experimental results of
the multi-class apple bruise severity classification sys-
tem described in Chapter 3. The evaluation cov-
ers seven machine learning algorithms with a focus
on Decision Tree (DT) optimization and compara-
tive analysis. All experiments used the standardized
dataset of 513 images, split into 70% training, 15%
validation, and 15% test sets. Model performance was
evaluated across key agricultural dimensions, includ-
ing classification accuracy, computational efficiency,
interpretability, and deployment feasibility. Statisti-
cal significance testing ensured the robustness of the
results, while error analysis identified model limita-
tions and opportunities for improvement.4.2 Dataset
Characteristics and Class Distribution.

4.1 Dataset Characteristics and Class Distri-
bution

The dataset comprises 513 apple images system-
atically distributed across three severity classes. Ta-
ble 3 summarizes the distribution: Class 0 (Mild) —
175 images (34.1%), Class 1 (Moderate) — 201 images
(39.2%), and Class 2 (Severe) — 137 images (26.7%).

This natural imbalance reflects realistic post-
harvest conditions, with moderate bruising being
most common, and underscores the need for balanced
classification strategies.

Table 3 summarizes the dataset distribution: mod-
erate bruising is most frequent (39.2%), followed by
mild (34.1%) and severe (26.7%). This imbalance re-
flects typical post-harvest patterns and underscores
the need for balanced classification. Despite being
the smallest group, severe bruises remain economi-
cally critical, and the ratio is acceptable for robust
training.
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Table 3: Distribution of Images Across Severity
Classes. < Y RTam
i} everity umber o ercentage
Class Level Images (%)
0 Low 175 34.10%
1 Moderate 201 39.20%
2 High 137 26.70%

4.2 Decision Tree Results

The optimized Decision Tree demonstrates high
accuracy, efficiency, and interpretability in apple
bruise severity classification, validated through com-
prehensive architecture analysis, feature importance,
and performance metrics.

4.2.1 Decision Tree Optimization

The optimized Decision Tree employs a simple
three-level structure based solely on mean intensity
values, achieving effective bruise classification with
minimal complexity. Balanced class weights (w0 =
0.981, wl = 0.849, w2 = 1.247) addressed dataset
imbalance, ensuring fair treatment across severity
levels. The model automatically derived clear sep-
aration thresholds: mean intensity < 50.08 for se-
vere, 50.08-79.88 for moderate, and > 79.88 for mild
bruises. This compact hierarchy provided strong in-
terpretability and achieved classification purity above
94% across severity classes.

The analysis confirmed that mean intensity ac-
counted for over 95% of predictive power, validating
tissue darkness as the primary biomarker of bruise
severity. Reliance on this single feature supports
streamlined sensing, low computational cost, and
real-time applicability. This compact hierarchy pro-
vided strong interpretability, achieving over 94% clas-
sification purity, while ensuring the Decision Tree re-
mains lightweight, accurate, and practically deploy-
able for grading systems. This finding further high-
lights the suitability of the model for industrial fruit
grading, where robustness and efficiency are equally
critical.

4.2.2 Cross-Validation Stability Analysis

The Decision Tree model demonstrates exceptional
stability and generalization capability through a com-
prehensive 5-fold stratified cross-validation. Using
the 359-sample training set, it achieved consistent
accuracy across all folds ([1.0000, 1.0000, 1.0000,
1.0000, 0.9718]), yielding a mean accuracy of 99.44%
+ 1.13%. Table X summarizes the cross-validation
metrics, including a CV score of 0.9944, a narrow
confidence interval [0.9845, 1.0042], and a low stan-
dard error of 0.0050. These results confirm the ro-
bustness and reliability of the Decision Tree for field-
ready bruise classification.
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Cross-Validation Performance Metrics:
Mean Accuracy: 99.44% =+ 1.13%
CV Score: 0.9944 (indicating high consistency)
Standard Deviation: 0.0113 (excellent stability)
Confidence Interval (95%): [0.9845, 1.0042]
Standard Error: 0.0050

These results confirm exceptional stability and
generalization across partitions, with minimal gaps
between training and validation scores indicating no
overfitting. Stable performance was achieved from
about 75 training samples, reinforcing the robustness
of the feature selection and decision rule learning pro-
cesses.

4.2.3 Per-Class Performance Analysis

The Decision Tree demonstrated balanced classi-
fication across all bruise severity classes. Table 4
and Fig. 5 present detailed per-class results, showing
macro-averaged precision of 0.9938, recall of 0.9944,
Fl-score of 0.9941, and an overall accuracy of 99.35%.
Severe bruises (Class 2) were identified with 100%
precision, recall, and F1-score, which is economically
critical for preventing damaged fruit from entering
markets. Mild bruises (Class 0) achieved high con-
sistency, with only one misclassified moderate sam-
ple, while moderate bruises (Class 1) maintained
strong boundary tolerance (precision = 1.000, re-
call = 0.983). These results highlight the robust-
ness of the Decision Tree, ensuring reliable classifi-
cation across all severity levels [29]. These findings
also demonstrate the model’s ability to maintain sta-
ble performance despite variations in sample distri-
bution, reinforcing its suitability for real-world grad-
ing environments. Furthermore, Decision Tree’s in-
terpretability provides practical value to agricultural
practitioners who require transparent, easily under-
standable decision logic.

Table 4: Decision Tree Per-Class Performance Met-

T1CS. .

Severity Precision | Recall Fl- Support
Level Score

Mild-

Class 0 0.9815 1 0.9907 53

Moderate- 1 0.983 | 0.9916 | 60

Class 1

Severe-

Class 2 1 1 1 41

4.2.4 Balanced Classification Implementation

The Decision Tree implementation successfully ad-
dresses class imbalance by systematically applying
balanced class weights computed using the inverse-
frequency weighting method outlined in Chapter 3.
The balanced Gini impurity approach ensures equi-
table treatment across all severity classes, prevent-
ing bias toward majority classes. The model em-

Confusion Matrix Decision Tree

Mild (0) -|

Moderate (1) -

Actual Class

Severe (2) -

Moderate (1
Predicted Class

Mild (0) Severe (2)

Fig.5: Confusion Matrix Decision Tree.

ploys class-specific weighting to address data imbal-
ance, with weights calculated as w00 = 0.981 (mild,
34.0%), wll = 0.849 (moderate, 39.3%), and w22
= 1.247 (severe, 26.7%). This balancing strategy
yields class-specific Gini impurities of 0.2201 (mild),
0.2024 (moderate), and 0.2442 (severe), culminating
in a total balanced Gini impurity of 0.6667. This bal-
anced approach successfully eliminates classification
bias, as evidenced by the perfect classification of se-
vere bruises (Class 2) and consistent accuracy of over
98% across all classes [30], [31].

4.2.5 Computational Efficiency and Feasibility

The Decision Tree model demonstrates exceptional
computational efficiency, achieving rapid training and
prediction speeds without compromising classifica-
tion accuracy. As summarized in Table 5, it con-
sistently outperforms more complex ensemble meth-
ods in terms of training time and resource require-
ments, underscoring its suitability for deployment
in resource-constrained agricultural environments.
With an average prediction latency of just 0.0033
seconds per image, the model comfortably surpasses
the 0.01-second real-time requirement for automated
fruit grading. This efficiency ensures seamless inte-
gration into high-throughput sorting systems with-
out processing bottlenecks., while also maintaining
accuracy competitive with state-of-the-art ensemble
models.

The dataset reflects real agricultural conditions,
with moderate bruising (39.2%) being the most com-
mon, followed by mild (34.1%) and severe (26.7%).
Severe bruises, though least frequently, are economi-
cally critical, highlighting the need for balanced clas-
sification.

The Decision Tree’s reliance on mean intensity
(>95% importance) reduces computational cost and
enables real-time deployment, aligning with agricul-
tural understanding that bruise severity is closely tied
to tissue discoloration intensity.
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Table 5: Computational Efficiency Comparison.

. Training Speed Relative

Algorithm Time (s) | Ranking | Speed vs DT
Decision Tree 0.0012 1 1.0x
K-Nearest
Neighbors 0.0025 2 2.1x slower
Support Vector | 5 3 3.2x slower
Machine
XGBoost 0.0772 4 64.3x slower
Extra Trees 0.0802 5 66.8x slower
Random Forest 0.1351 6 112.6x slower
Gradient 0.2402 7 200.2x slower
Boosting

4.3 MODEL PERFORMANCE RESULT

This section presents a comprehensive compara-
tive analysis of seven machine learning algorithms
evaluated for apple bruise severity classification, fol-
lowed by a detailed performance assessment of the
optimized Decision Tree model. The analysis encom-
passes accuracy metrics, computational efficiency,
cross-validation stability, and practical deployment
considerations to establish evidence-based algorithm
selection for agricultural applications.

4.3.1

Seven machine learning algorithms were system-
atically evaluated using identical training protocols,
feature sets, and evaluation metrics to ensure a fair
comparison. The results show accuracy rates ranging
from 93.51% to 99.35%, with a comprehensive per-
formance comparison. Real-time processing capabil-
ity represents a critical requirement for agricultural
automation systems.

The results demonstrate that Decision Tree and
Gradient Boosting achieve the highest classification
accuracy of 99.35% and identical macro F1-scores
of 0.9941. However, Decision Tree exhibits supe-
rior computational efficiency with a training time of
0.0012 seconds compared to 0.2402 seconds for Gra-
dient Boosting, representing a remarkable 200-fold
improvement in processing speed. Random Forest
achieves competitive performance at 98.70% accuracy
while maintaining reasonable computational require-
ments. As illustrated in Fig. 6, the performance com-
parison highlights clear advantages of the Decision
Tree in accuracy, training time, and cross-validation
stability.

The ensemble methods (Random Forest, Extra
Trees, XGBoost) achieve strong performance but
with higher computational costs, while traditional al-
gorithms such as SVM, KNN, and Logistic Regression
show moderate accuracy and fall behind tree-based
models. The confusion matrix analysis highlights
clear performance differences across algorithms. Both
Decision Trees and Gradient Boosting reach 99.4%
accuracy with minimal misclassification, but only the
Decision Tree perfectly identifies severe bruises (Class

Comparative Algorithm Performance

2), which is economically critical for removing dam-
aged fruit. Fig. 7 further illustrates these error pat-
terns and confirms the superior classification consis-
tency of the Decision Tree. Algorithm Selection Jus-
tification: The Decision Tree emerges as the opti-
mal choice due to several converging factors: (1) it
achieves accuracy comparable to computationally in-
tensive ensemble models, (2) offers exceptional com-
putational efficiency suitable for real-time agricul-
tural use, (3) provides interpretable decision rules ac-
cessible to practitioners, and (4) demonstrates strong
cross-validation stability. It’s 200 X training speed
advantage over Gradient Boosting—while maintain-
ing identical accuracy—further reinforces its suitabil-
ity for practical deployment. A comprehensive com-
parison of the evaluation metrics across all seven al-
gorithms is summarized in Table 6.

Table 6: Presents a comprehensive performance
comparison of Metrics.

. Macro Training | CV Mean +
Algorithm | Accuracy Fl-Score | Time (s) Std
Decision 0.9944 £+
Treo 0.9935 0.9941 0.0012 0.0113
Gradient . 0.9944 +
Boosting 0.9935 0.9941 0.2402 0.0113
Random 0.9888 +
Forest 0.9870 0.9881 0.1351 0.0113
Extra - 0.9638 +
Trees 0.9805 0.9822 0.0802 0.0113

0.9944 £+
XGBoost 0.9740 0.9763 0.0772 0.0070
K-Nearest 0.9053 +
Neighbors 0.9416 0.9432 0.0025 0.0180
Support
Vector 0.9351 0.9389 0.0039 0-9193 &

. 0.0150
Machine

4.3.2 Computational Efficiency Comparative Anal-
ysis

This makes the Decision Tree particularly suit-
able for real-time agricultural deployment due to
its lightweight structure and extremely fast training
time. In five-fold stratified testing, it attained a mean
accuracy of 99.44% with low variability (£1.13%),
indicating strong generalization. Training required
only 0.0012 seconds—over 200 x faster than Gra-
dient Boosting at the same accuracy level. Its effi-
ciency, interpretability, and lightweight 12 KB model
size make it the most practical option for deployment.
In comparison, KNN and SVM achieved lower ac-
curacy, whereas XGBoost, Extra Trees, and Gradi-
ent Boosting required significantly longer processing
times, limiting their use to offline applications.
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Comprehensive Performance Comparison
Model Accuracy Comparison Model F1-Score Comparison
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Fig.6: Presents a comprehensive performance compam'son.
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Fig.7: Confusion Matriz Comparison.
Fig. 6 shows that the Decision Tree achieves erate classes, while SVM (93.5%) and KNN (94.2%)

99.35% accuracy with extremely fast training (0.0012
seconds) and stable cross-validation performance,
making it ideal for real-time agricultural use. It
matches Gradient Boosting in accuracy but is over
200x faster. While Random Forest, Extra Trees, and
XGBoost maintain high accuracy at a higher com-
putational cost, KNN and SVM perform lower with
reduced stability.

Fig. 7 compares confusion matrices across seven
algorithms. Random Forest (98.7%) and Extra Trees
(98.1%) show slight confusion between mild and mod-

exhibit higher misclassification, particularly for se-
vere bruises. The Decision Tree (99.35%) stands out
by achieving perfect detection of severe cases, result-
ing in the most balanced and accurate classification
distribution.

4.3.3 Statistical Significance Testing

Statistical Hypothesis Testing for Decision Tree vs.
Other Algorithms

To determine whether the Decision Tree algorithm
demonstrates statistically significant superiority over
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other classification models, specific hypotheses were
formulated and tested through pairwise comparisons.
The evaluation focuses primarily on the Decision
Tree, given its outstanding performance in both ac-
curacy and computational efficiency.

Hy: There is no statistically significant difference in
mean accuracy between Decision Tree and Gradient
Boosting (4-DT = u-GB).

H;: A statistically significant difference exists in
mean accuracy between the two algorithms (u DT

# u-GB).

Hp: There is no statistically significant difference in
mean accuracy between Decision Tree and the respec-
tive algorithm (4 DT = p_other).

H;: Decision Tree significantly outperforms the re-
spective algorithm in terms of accuracy (u DT >
p-other).

All tests were conducted at a significant level ()
of 0.05. The comparative analysis focuses on Deci-
sion Tree versus other algorithms, supported by three
considerations: alignment with the study’s aim to
validate DT as the most suitable model for apple
bruise severity classification, DT’s highest observed
accuracy (99.35%) and superior computational effi-
ciency, and the need for practical relevance in agri-
cultural applications. Using paired t-tests on 5-fold
cross-validation accuracy.

Paired t-tests on 5-fold cross-validation accuracy
were conducted to statistically validate the superior-
ity of the Decision Tree. Results showed no signif-
icant difference between DT and Gradient Boosting
(p = 1.000), confirming both achieve equivalent accu-
racy. However, DT significantly outperformed Ran-
dom Forest, Extra Trees, XGBoost, KNN, and SVM
(all p < 0.001). These findings strongly support DT
as the most effective algorithm, matching Gradient
Boosting in predictive accuracy while requiring 200
times less training time, and clearly surpassing all
other alternatives.

5. CONCLUSION

This study developed and validated an optimized
Decision Tree model for classifying apple bruise sever-
ity, achieving exceptional performance across accu-
racy, efficiency, and stability metrics. The model
attained an overall accuracy of 99.35%, a macro
Fl-score of 0.9941, and perfect detection of severe
bruises (100% precision and recall), demonstrating
balanced and reliable classification across all bruise
levels. Computational analysis revealed outstanding
efficiency, with a training time of 0.0012 seconds and
a prediction latency of 0.0033 seconds per image, out-
performing Gradient Boosting by 200 times in speed

while maintaining identical accuracy. The Decision
Tree ranked first among seven machine learning al-
gorithms in speed and agricultural suitability, requir-
ing only ~12 KB of storage, making it compatible
with edge devices for on-site deployment. Stabil-
ity assessment showed a CV mean of 99.44% with
a low standard deviation of 1.13%, confirming ex-
cellent consistency. Furthermore, feature importance
analysis identified Mean Intensity as the sole critical
predictor (100% importance), enabling interpretable,
threshold-based decision rules ideal for transparent,
real-time agricultural automation.
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