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ABSTRACT

In most countries, medicinal plants are crucial remedies for disease treat-
ment. Even though the majority are edible, ingesting the incorrect herbal
plant can have fatal consequences. It is essential to accurately identify
these plants not only for safe usage by individuals but also for various real-
time applications like aiding biodiversity conservation, supporting farmers
in recognizing local herbs, and also preserving indigenous systems. Numer-
ous automatic methods for identifying medicinal plants have been devel-
oped; however, most of them are severely limited, either by the relatively
small number of plant species they support or by the fact that they rely on
manual visual segmentation of plant leaf surfaces. This means that instead
of being easily recognized in their natural environments, which frequently
include complicated and chaotic backgrounds, they are snapped against a
plain background. Deep learning-based techniques have advanced signifi-
cantly in recent years. Still, they are trained on data that isn’t always fully
reflective of the intra-class and inter-class variances among the plant species
in consideration. The paper approaches this issue by integrating the hybrid
model of a pre-trained vision transformer with a CatBoost classifier tuned
with Optuna. The vision transformer model is trained with the Indian
medicinal plant dataset with the five most commonly used species. The hy-
brid model is compared with the deep learning models regarding precision,
recall, Fl-score, accuracy, and execution time on the same dataset. Our
proposed model achieves a training phase accuracy of 93%, which shows the
improvement for automating the identification of medicinal plants. In con-
clusion, our proposed hybrid model reveals enhanced accuracy, improved
reliability, and reduced false positives in automating the identification of
medicinal plants, contributing effectively to healthcare applications and
biodiversity.
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1. INTRODUCTION

Plants provide food, fiber, shelter, fuel, and medic-
inal materials for human life on earth [1]. Natural
products, especially from herbs, are considered safe
for the environment and, in most cases, have a bet-
ter safety profile compared with synthetic drugs. The
use of traditional medicinal herbs such as tulsi, neem,
alovera, turmeric, and ginger is above geographical
boundaries, as their applications have been found all

over different regions and are mainly used in India.
These traditional medicines have survived until this
date by curing many common seasonal health dis-
orders and possess an impressive safety record with
no side effects. Medicinal plants in India and world-
wide have been playing a highly essential role in tra-
ditional medicine, and they are one of the most ba-
sic protections for human health [2]. Drawing heav-
ily from botanical sources, traditional medicine forms
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an encapsulation of vital protection measures for hu-
man life. The use of leaves of medicinal plants goes
even beyond medicinal use and reaches into domains
that include culinary uses, fragrant purposes, and ol-
factory and gustatory intensifications in India and
worldwide [3].

Plants are of great importance to the future of the
human race, as they provide a source of sustenance
and oxygen. Several species are used in therapeu-
tics, folk medicine, and the pharmaceutical industry.
The National Cancer Institute and World Health Or-
ganization have estimated that 80 percent of people
worldwide rely on herbal medicines for some part of
their primary health care [4].

Ethnobotany is the study of how various cul-
tures use plants. Only 1/4 of the world’s estimated
250,000 higher plant species have been studied for
their medicinal potential. The obvious conclusion is
that we could potentially lose cures for many diseases
if plant species become extinct before they are stud-
ied. Numerous plant species are becoming extinct,
with 123 already classified as extinct and 37 extinct
in the wild. Many others are under susceptible cate-
gories such as Critically Endangered (3,325 species),
Endangered (6,063 species), and Vulnerable (7,072
species). These types of threats arise from various
factors such as population decline, reduced reproduc-
tion, habitat destruction (both natural and human-
induced), loss of pollinators, overexploitation, and di-
minishing genetic diversity [5, 6]. A striking example
is the rosy periwinkle, which is native to Madagascar.
The plant has been used in folk medicine for cen-
turies, but its effectiveness in treating certain cancers
was discovered only in the 20th century [7]. Cur-
rently, this plant is endangered, and it is uncertain
whether it can be conserved by following the effective
practices.

People’s trust in the long-established medicine sys-
tem, which withstood the test of time due to its af-
fordability [8]. In addition, biotechnological meth-
ods are generally utilized to conserve and propagate
the medicinal plants, along with the utilization of
information from Ayurveda to use herbs by scien-
tific intervention for treating the ailments, which is
enough to signify the role of traditional systems of
medicine. Today, the global scenario has made it
necessary to protect the knowledge of indigenous sys-
tems of medicine in various countries, as it directly
includes the intellectual property, protection of plant
resources, and traditional knowledge of a particular
country. This, in turn, has important socioeconomic
implications. Trade in medicinal plants and derived
products has become an important economic venture
in many developing countries. Unfortunately, there
has been large-scale exploitation and unconstrained
use of medicinal plants for commercial benefits, which
has led to the depletion of species and has brought
some of them to the verge of extinction [9]. There-

fore, effective approaches for monitoring and classi-
fying medicinal plant species are crucial for ensuring
their usage and conservation. Field-based and tra-
ditional approaches are error-prone, time-consuming,
and more often require expert knowledge. Thereby,
there is a need for solutions that can assist practition-
ers, farmers, policymakers, and researchers in early
and accurate recognition of medicinal plant species
in real time.

However, there are numerous technological and lo-
gistical obstacles to the identification of automatic
medicinal plant species that require a robust re-
sponse. Moreover, many similar or different species
of the same genus exist or evolve due to natural varia-
tion, which may be recorded with the proposed study.
Under environmental conditions, many factors influ-
ence the development of plants, which include muta-
tions at the genetic or morphological level influenced
by biotic and abiotic components in the environment.
So, identification of the true plant is a prerequisite
for their authentic product development as well as
for evaluating their actual population status. Cur-
rent research focuses on utilizing leaves to identify
medicinal plant species. Image processing methods
are being used by researchers on a greater scale to
identify plants based on pictures of their leaves. The
classification and identification of leaves of medicinal
plants can be greatly aided by artificial intelligence.

1.1 Contributions of the Paper

The main goal of this paper is to try to identify the
Indian medicinal plants with a hybrid model of ViT
and CatBoost with Optuna. It also presents the use
of transformer models for the identification of plants
with better accuracy as compared to baseline deep
models. Additionally, it also discusses the benefits
of using a hybrid model. The contributions of this
paper are highlighted as follows:

i. A dataset has been collected from various on-
line sources for those species that need to be
identified for many uses.

ii. A new hybrid model integrating the ViT with
CatBoost is developed; the transformer lever-
ages the capabilities of feature extraction and
CatBoost for robust classification.

iii. Optuna-based tuning is utilized to optimize
CatBoost parameters, which enhances the
model’s computational efficiency and classifi-
cation accuracy.

iv. A comparison of various widely used deep
learning models along with the proposed hy-
brid model was performed and rigorously
tested on an Indian medicinal plant dataset.

v. Model interpretability is improved using
SHAP analysis to identify the most influential
features that contribute to accurate medicinal
plant identification, which provides deeper in-
sight into decision-making behavior.
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The rest of this paper is organized as follows: Sec-
tion 2 offers a literature survey of the pertinent litera-
ture, while Section 3 outlines the suggested method-
ology. Sections 4 and 5 provide further details on
the testing classification report and outcome analy-
sis, respectively. The conclusion and future work are
covered in Section 6.

2. LITERATURE SURVEY

An extensive overview of existing research will be
offered in this section, which encompasses deep learn-
ing, machine learning, and transformer models, with
the intent of identifying their limitations, capabilities,
and gaps in research and thus adhering to the basis
for the proposed method.

P. Singla et al. [10] developed a web-based appli-
cation by using the deep learning model for recogni-
tion of medicinal plants and also conveys the alerts
to farmers if there is any ailment. Several deep con-
volutional neural network models were compared to
the suggested model. The suggested model demon-
strated categorization binary outcomes with 99.39%
accuracy, 0.0361 loss, 0.989 precision, and 0.984 re-
call, in contrast to the deep CNN models.

S. Chulif et al. [11] determined the herbarium-field
triplet loss network and proposed a model that defines
the mapping between the real-world and herbarium
domains. The cross-domain plant identification chal-
lenges of PlantCLEF 2020 and 2021 are quite similar.
In results, it has been proved that the network can
differentiate rare species as well as has an ability to
generalize without field images. In the test set of the
PlantCLEF 2020 and PlantCLEF 2021 species with
few training field images, the HF TL network achieved
a mean reciprocal rank score of 0.108 and 0.158, re-
spectively.

H. K. Diwedi et al. [12] proposed a framework of
an enhanced convolutional neural network with trans-
fer learning using upgraded ResNet50. This approach
adopted PTL by expanding the ReNet50 framework
to deploy for feature extraction. Optimized support
vector machine was applied for classification. Based
on the Indian medicinal plants database, a list of
publicly available medicinal plant species is prepared.
The modified ResNet50+0SVM model yielded 96.8%
accuracy during testing and 98.5K. Pankaja et al. [13]
developed a new approach to the organization of plant
leaves, which is the recognition of a class through the
incorporation of the Whale Optimization Algorithm
and Random Forest. The datasets considered were
Swedish and Flavia leaf specimens. The results show
an accuracy rate as high as 97.58%, along with bet-
ter efficiency in terms of execution time than previous
methodologies.

M. Sharma et al. [14] suggested an intelligent ap-
proach to leaf recognition of Indian medicinal plants.
The input features of the classifier models here are
heterogeneous attributes gathered from the leaves of

Indian medicinal herbs, and the results indicate that
the Random Forest classifier with a hybrid feature
vector manages to get a very low PFA of 0.02%, along
with precision, accuracy, and sensitivity greater than
99%. As compared to the existing models in use,
this model shows outstanding results, with up to 3%
performance enhancement, and has made some sig-
nificant improvements in recognition and categoriza-
tion accuracy concerning the Indian medicinal plant
leaves.

S. Kavitha et al. [15] advanced a deep learning
model to identify herb plants using a vision-based in-
telligent approach. In this study, 500 photographs
were compiled for each therapeutic plant. To increase
the sample size, the data were resized and supple-
mented. The MobileNet deep learning model was
selected for the automatic recognition of medicinal
leaves. The accuracy of the deep learning model for
the proper identification of medicinal herbs was 98.3

D. T. N. Nhut et al. [16] proposed various deep
learning approaches, including ViT and Bidirectional
Encoder Image Transformer (BEiT), and among all
the models, BEiT achieves the highest accuracy on
the VNPlant-200 dataset. The limitation in this pa-
per is that the author uses the images with less reso-
lution.

I. Pacal [17] introduces a multi-axis ViT model for
the classification of maize diseases, and the dataset
consists of 4 classes. To boost the accuracy, the
Global Response Normalization (GRN)-based MLP
from the ConvNeXtV2 architecture was adapted in-
stead of the MLP in the MaxViT architecture. Three
datasets were utilized to create the enhanced and
large amount of data, and the model gives the ac-
curacy of 99%, which has been demonstrated as ex-
ceedingly effective for practical applications in agri-
culture.

R. K. Rachman et al. [18] introduced a ViT Base
(B) transfer learning model for the recognition of rice
disease and achieved an accuracy of 97%, which sur-
passes the deep learning model EfficientNetV2 B0. It
is mentioned that the ViT is a promising solution for
integrating cutting-edge Al into sustainable agricul-
tural practices, ultimately contributing to improved
crop management and yield.

The conclusion from the related research on plant
species categorization emphasizes how the use of ma-
chine learning and deep learning approaches has sig-
nificantly advanced the subject. Researchers have
shown the effectiveness of support vector machines,
deep convolutional neural networks, and novel tech-
niques, including progressive transfer learning and
hybrid feature vectors, in several investigations [19].
Impressive accuracy rates have been achieved by
these strategies, often outperforming conventional
classification techniques. The analysis also highlights
how crucial cross-domain identification is, especially
in difficult situations like diagnosing rare illnesses or
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species. The possibility for efficiently tackling such
difficulties is shown by the creation of specialized
models.

Overall, the simultaneous use of these efforts high-
lights how machine learning and deep learning have
a revolutionary effect on the categorization of plant
species, providing the possibility of improved preci-
sion, effectiveness, and scalability in further stud-
ies. The possibility for improvements in the cate-
gorization of plant species is still bright, as scien-
tists continue to hone current techniques and investi-
gate cutting-edge strategies. These developments will
provide priceless information for the fields of ecologi-
cal protection, agriculture [20], and medical research.
The growth and development of plants under natu-
ral conditions are usually influenced by many abiotic
(light, temperature, humidity, etc.) and biotic (bac-
teria, fungi, etc.) factors, which induce variations
in the plant populations, so for tracking the original
or true population data, the Indian medicinal plant
dataset input would be more appropriate or logically
utilized in the current scenario.

3. METHODOLOGY

In our recommended approach, the primary ob-
jective is to accomplish automatic categorization of
medicinal plants utilizing a hybrid model consisting of
a pre-trained ViT architecture and a CatBoost clas-
sifier [21] model enhanced with Optuna. The Indian
medicinal plant dataset is utilized to compile medic-
inal plant species [22]. Although conventional CNN
models have been trained over varied datasets, they
produce more false positive rates with low accuracy
[23]. Furthermore, most of these datasets contain a
smaller number of images and species. To get rid
of the above problems, data preprocessing techniques
such as image enhancement, segmentation, and aug-
mentation are in use. As the dataset increases, it is
difficult to obtain better performance from the CNN
models [24]. To overcome this problem, the ViT
model has been used, as transformers provide a few
advantages, such as the ability to capture long-range
dependencies and adapt to varying input sizes while
ensuring parallel processing, and will best fit the re-
lated tasks of images. The major objective of this pa-
per is to carry out automatic classification of medici-
nal plants using hybrid architecture of a combination
of a ViT with a CatBoost classifier. The database
used is of Indian medicinal plants that is publicly
available [22]. Existing CNN-based models decrease
the performance for the same dataset. Therefore,
an advanced hybrid model has been developed that
achieves higher accuracy classification while reducing
execution speed. Image preprocessing, the process
of segmentation, the feature extraction process, and
categorization are the four phases of the suggested
method. The first step is to collect datasets of various
species. Subsequently, various preprocessing steps

were applied to the existing dataset. The dataset
is trained using the pre-trained ViT model, following
principal component analysis (PCA) to minimize the
features that have been extracted, and the attributes
are categorized using the CatBoost classifier. Fig. 1
depicts the proposed hybrid model of ViT and Cat-
Boost. The proposed model, designed for the identi-
fication of Indian medicinal species, follows these key
steps:

Input:

Dataset D of leaf images with labels

Parameters: IMG_SIZE = 256x256, BATCH_SIZE = 32,
SEED = 99, PCA k

Output:

Trained CatBoost model M

Performance metrics: Accuracy, F1-Score, Confusion Matrix

1: Function Preprocess(D)

2:  For each image in D do

3 Resize image to IMG_SIZE

4: Normalize pixel values to range [0, 1]

5: Shuffle D using SEED

6: Split D into:

7 - 80% training set — D_train

8 - 20% validation set — D_val

9: - 10% test set (Separate) — D_test

10: Return D_train, D_val, D_test

11: Function ExtractFeaturesViT(D)

12: Load pre-trained Vision Transformer model ViT

(excluding final classification layer)

13: For each image in D do

14: x + ViT(image)

15: Return feature matrix X

16: Function ApplyPCA(X, k)

17:  Fit PCA on X to retain k components

18:  Return transformed matrix X_pca

19: Function TrainCatBoost(X_train, y_train)

20: Initialize CatBoost model with tuned hyperparameters

21:  Fit model on (X_train, y_train)

22:  Return trained model M

23: Main:

24:  D_train, D_val, D_test < Preprocess(D)

25:  X_train + ExtractFeaturesViT(D_train.images)

26:  X_val + ExtractFeaturesViT(D_val.images)

27: X_test < ExtractFeaturesViT(D_test.images)

28:  X_train_pca <+ ApplyPCA (X _train, PCA k)

29:  X_val_pca + ApplyPCA(X_val, PCA k)

30: X_test_pca < ApplyPCA(X_test, PCA k)

31: M «+ TrainCatBoost (X_train_pca, D_train.labels)

32: y_pred < M.predict(X_test_pca)

33:  Evaluate predictions: Accuracy, F1-Score, and
Confusion Matrix on D_test

3.1 Data Collection

The dataset contained species of Indian medicinal
plants, from which some samples are shown in Fig.
2. The dataset is gathered across multiple regions in
Karnataka and Kerala, India. Features such as var-
ied resolutions, different lighting, various backdrops,
and different seasons of the year were all included in
the datasets. The datasets included 5900 photos of
40 different plant species and individual leaf photos
of 80 different plant species, totalling 6900 samples
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Fig.1: Research flow of real-time medicinal plant
identification.

that were captured with smartphones under real-time
conditions. For this research, a total of five species of
leaf images have been meticulously selected, as enu-
merated in Table 1. The final image quality is typi-
cally poor because of the hand and/or camera motion.
To ensure the acquisition of high-quality images and
improve the accuracy and performance of the subse-
quent models used in the study, image preprocessing
has been carried out, taking these parameters into
account. The data distribution is 80% training and
20% validation, as shown in Fig. 3.

Although the Indian medicinal plant dataset con-
sists of 40 species, for this paper only 5 species were
considered due to various reasons, such as the suf-
ficient number of available qualitative images, the
widespread use of these medicinal species in various
healthcare systems, and the visual diversity in leaf
morphology. By focusing on mostly common and dis-
tinctive species such as alovera, amla, ginger, coffee,
and castor, the aim is to develop a reliable baseline
for model development and performance.

3.2 Data Pre-processing

An extensive data preparation pipeline is imple-
mented once image acquisition is finished to get im-
ages ready for further analysis. Specifically intended
to enhance the quality and appropriateness of images

Alovera Amla Castor

Ginger Henna

Tulsi

Neem Pepper

Fig.2: Samples of Indian medicinal leaf images.

Data Distribution
Testing

Validation

Training

Fig.3: Data distribution.

for activities that come after, this preprocessing reg-
imen consists of a set of stages such as image en-
hancement, resizing, background removal, and aug-
mentation. By improving the dataset’s interpretabil-
ity, robustness, and generalizability, these preprocess-
ing methods together provide an adequate foundation
for further analysis and model building.

3.3 Image Augmentation

The Indian medicinal plant dataset contains im-
ages of medicinal plants from the states of Karnataka
and Kerala, India. A total of five species have been
considered, but the data is insufficient to identify the
actual species of medicinal plant. To overcome these
issues and balance the data, data augmentation is
performed with all the medicinal plant species. Ini-
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tially the resolution of every image was 256 x 256 pix-
els. The incorporation of diversification into images
via the methodology of image augmentation signif-
icantly enhances the generalizability and overall ef-
ficacy of machine learning and deep learning-based
classification models. Five types of augmentation had
been performed, which included flipping left to right,
flipping up and down, brightness, contrast, and sat-
uration of images. The range of contrasted images
was set to 0.2 to 0.4, saturation was set to be 2 to
6, the brightness of images was increased to 0.1, and
flipping was left to right and up to down. Table 1
displays the total number of photos before augmen-
tation, and after performing the augmentation, the
data has been increased five times, which increases
the accuracy of the model.

Table 1: List of medicinal plant species with botan-
ical names and total number of images.

Common | Botanical Name Total Augmented
Name Images | Data
Aloe vera | Aloe_barbadensis miller | 118 590
Amla Phyllanthus_emblica 67 335
Castor Ricinus_communis 129 645
Coffee Coffea 83 415
Ginger Zingiber_officinale 118 590
Total 515 2575

3.4 Image Enhancement

Image enhancement is a crucial step in the image
processing process that aims to improve the quality
and interpretability of the input image so that the
resulting output image is both more appropriate and
informative than the original. Image enhancement is
a carefully considered procedure that aims to clarify
hidden information and improve the image’s region
of interest, making it more useful for further analy-
sis and interpretation. This process improves the im-
age’s visual clarity and detail, which greatly increases
the efficiency and precision of later image-based tasks
and analysis.

3.5 Image Resizing

The resizing of images during preprocessing is a
crucial step aimed at ensuring compatibility with the
diverse requirements of deep learning models. Given
the varied specifications of these models about im-
age dimensions, standardization through resizing to
a uniform size becomes imperative. Following aug-
mentation, all images were again resized to a uniform
dimension of 256 x 256 pixels, facilitating consistent
input in input size for the ViT model, which requires
fixed-size inputs for optimal performance.

3.6 ViT Model Construction

Transformers can be instantly utilized in imagery,
with the least required alterations. To accomplish

so, an image is to be separated into patches and de-
liver the sequences of linear embedded data of these
patches as an input to a Transformer [26]. Image
patches are handled like tokens in an NLP implemen-
tation. Fig. 4 shows the ViT model architecture.

MLP Head

f

‘ Transformer Encoder
Jord TJ T Tt
# 191777 s

Linear Projection of Flattened Patches

‘% Ja0 amn ver

Fig.4: ViT Model Architecture.
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Equation (1) pertains to the input image’s class
token, patch embedding, and position embedding (E
denotes embedding).

Z'1=MSALN(U) +207Y ) 1=1

oL (2)

Equation (2) states that for each layer from 1 to L
(the entire number of layers), there is a Multi-Head
Attention layer (MSA) encompassing a LayerNorm
Layer (LN).

Z'1 = MSA(LN(Z}))+ Z;,1=1,...,L  (3)

According to Equation (3), each layer from 1 to
L (the overall number of layers) is associated with
a Multilayer Perceptron layer (MLP) that wraps a
LayerNorm layer (LN).

y=LN(Z°) (4)

According to Equation (4), the last layer L, the
output y, is the zeroth token of z enclosed within a
LayerNorm layer (LN).

Vision transformers attain great performance
when pre-trained at the appropriate scale and trans-
lated to challenges with fewer data points [27]. Dur-
ing the model development phase, the vit keras li-
brary is used to create ViT architecture, especially
ViT-B16. The activation function softmax, class
count, and picture size were the configuration pa-
rameters used to instantiate this architecture, which
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is well-known for its efficiency in image classification
tasks. By using pre-learned representations during
pretraining, the model’s capacity to generalize across
a variety of picture datasets is improved. To meet the
demands of the classification assignment, the ViT-
B16 model is modified. To accept image inputs with
a size of 256x256, an input layer with the proper
proportions is constructed. The input layer is fit-
ted with the ViT model, and the output tensor is
then flattened to make it ready for the next fully con-
nected layer. With GELU activation functions, two
thick layers were added to the model architecture to
aid in feature translation and abstraction. With a
softmax activation function to calculate class prob-
abilities, the final dense layer had five output units
corresponding to the class labels. Softmax activation
is calculated by equation 5.

21

e
Z]K:l e

According to equation 5, zi is the output logit for
class i, and K is the total number of classes, and in
our case, 5 classes have been considered. To get the
model ready for training, compilation and model op-
timization were done. For consistent and effective
training, the AdamW optimizer is selected with a
0.001 learning rate and 0.01 weight decay. For multi-
class classification tasks, the loss function is tuned
to sparse categorical cross entropy calculated using
equation 6.

ACC’E = — Zjil Zj:l Yi,clog Yi,c (6)

where y; . gives the true label represented by 1, mean-
ing sample 4 belongs to class ¢, otherwise 0, and ;.
predicted the probability of sample i for class ¢. To
evaluate the model’s performance in a comprehensive
manner, accuracy and sparse top-k categorical Accu-
racy was used as an evaluation metric. This carefully
designed model architecture and optimization plan
provide a solid basis for reliable and efficient picture
categorization, preparing the ground for the training
and assessment stages that follow.

Softmax(zi) =

()

3.7 Training Process

For the classification of medicinal species, our pro-
posed hybrid model includes CatBoost algorithm due
to its ability to handle categorical data most effi-
ciently, prevent overfitting through ordered boosting,
and deliver superior accuracy with minimal param-
eter tuning for small to medium-sized datasets. It
delivers superior accuracy with minimal parameter
tuning. Compared with other boosting algorithms
like Light GBM and XGBoost, CatBoost has demon-
strated better generalization and faster convergence
in tabular and image-derived feature data. To en-
hance the performance of the model, the Optuna

framework was employed for hyperparameter tun-
ing. It provides a flexible and efficient optimization
process with features like automated search space
reduction and pruning unpromising trails. While
other methods like random search and grid search are
widely used, Optuna’ Bayesian strategy with fewer
iterations allows faster convergence toward optimal
configurations, which makes it suitable for resource-
constrained experimentation.

To increase the training accuracy and speed of the
hybrid model, various methods and parameters have
been utilized. During preprocessing, data augmenta-
tion techniques were adopted to get a large amount
of data for recognition purposes. Various transforma-
tions have been applied, like blurring, rotation, scal-
ing, flipping, etc. This helps to increase the diversity
of data for the training set. In addition to these meth-
ods, various parameters, which include batch size,
learning rate, number of epochs, weight decay rate,
activation functions, optimizer, loss, metrics, and in-
put image dimension, can substantially leverage the
performance of the model. Adjusting the learning
rate can impact a model’s accuracy and speed. To
overcome the overfitting, prevent abrupt loss diver-
gences, and improve model stability, a weight decay
parameter is used. For the ViT model, an image size
of 256 x 256 is utilized for both training and testing
the data. Various hyperparameters were considered
for achieving the better performance of the model as
mentioned in Table 2.

Table 2: Hyperparameters used in the CatBoost
model.

Hyperparameter Value

Image Size 256 x 256 pixels

Optimizer AdamW

Learning Rate 0.001

Weight Decay 0.01

Activation Function GELU

Final Activation Function | Softmax

Epochs 5

Loss Function Sparse Categorical Cross

Entropy

Important parameters like the learning rate are
0.001 for the ViT model for feature extraction, and
for classification, the learning rate is 0.0165 for the
CatBoost classifier. To prevent overfitting and help
models learn more complex patterns from data, L2
leaf regression of 0.01294 rates for classification and
a weight decay rate of 0.001. The total iterations are
785 for classification with a depth of 7, and to assign
the random weights to objects, the Bayesian boot-
strap type is used. To control the amount of noise,
random strength parameters are taken as 2.61 x 1076,
Bagging temperatures of 5.25 were utilized to control
the randomness of the data sampling process, which
is used in building the model’s trees during gradient
boosting. Bagging temperature is calculated using
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equation 7.

P(es) o exp (—ALT(””) (7)

where AL(z;) is the loss difference if sample ¢ is used
and T is the bagging temperature.After 5 epochs, the
proposed model achieves an accuracy of 93.3% with
a train loss value of 0.0143. The results demonstrate
the proposed hybrid model performs better for the
Indian medicinal plant dataset.

To evaluate and monitor the training process of our
proposed model, the training accuracy and loss values
were recorded for each epoch. Fig. 5 illustrates the
learning curve and testing over 5 epochs. The graph
shows the consistent increase in training and test-
ing accuracy, which indicates effective model learn-
ing. With these results, our proposed model depicts
the optimization efficiency and supports the conver-
gence.

1.00

— Train

Test
0.95 1

0.90

0.85 1

Accuracy

0.80

0.75 1

0.70 T T T T T T T T T
1.0 15 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Epoch

Fig.5: Learning curve showing training and testing
accuracy over 5 epochs for our proposed model.

3.8 Experimental Setup

The proposed hybrid model was evaluated and im-
plemented in a GPU-based environment to ensure
efficient testing and training performance. Experi-
ments were performed in Google Colab, which offers
access to NVIDIA Tesla T4 GPUs having the pro-
cessing capabilities for deep learning tasks. Python
was used as the primary programming language along
with some libraries such as Keras, TensorFlow, and
Matplotlib. Table 3 represents the software tools, op-
erating system, hardware configuration, and dataset
utilized for training and processing the dataset.

4. CLASSIFICATION

After model training, the saved model and weights
were loaded to facilitate feature extraction, ensur-
ing the preservation of the trained model’s architec-
ture and learned parameters for subsequent analysis
and deployment. Subsequently, a feature extraction
model is constructed using the loaded model, with

Table 3: Software and hardware environment used

for model training and processing.

Category Description

— Python 3.6.0

— TensorFlow / Keras (for ViT)

— CatBoost (Python Library)

— Optuna (for Hyperparameter Optimization)
— Matplotlib / SHAP (for Visualization)
Google Colab environment (Linux backend)
NVIDIA Tesla T4 GPU

Software Tools

Operating System

Hardware 16 GB GPU memory
Configuration 12 GB RAM (Colab runtime)
Dataset Indian Medicinal Plant Leaf Dataset 5 classes

a specific focus on extracting features from a desig-
nated layer pivotal for capturing high-level represen-
tations of the input data. These features play a cru-
cial role in downstream analysis tasks such as classifi-
cation or clustering. Leveraging the constructed fea-
ture extraction model, features were extracted from
the training dataset by passing it through the model.
This process yielded a set of representative features
encapsulating meaningful information from the input
images, serving as the foundation for subsequent anal-
ysis and model evaluation. The significance of fea-
ture extraction in enhancing model interpretability
and performance across various applications is un-
derscored.

4.1 Dimensionality Reduction

After features were extracted using the built
model, principal component analysis (PCA) is used
to minimize the number of dimensions in the feature
space while maintaining all the required data. For
a variance ratio of around 0.99, a total of 45 main
components are chosen. Variance is calculated using
equation 8, where J\; is the eigenvalue for the principal
component ¢, k is the number of selected components,
and n is the total number of features.

Z?:l Ai

Interpretability and computational efficiency are
improved by this dimensionality reduction approach,
which makes it easier to explore underlying patterns
and connections within the feature space. After fit-
ting the features obtained to the PCA model, a trans-
formed feature representation is generated as a con-
sequence of the PCA transformation. In order to en-
able further analysis and interpretation, the modified
characteristics were then arranged into a structured
framework, with each primary component. A struc-
tured dataset is created by compiling the modified
features that resulted, which included the reduced-
dimensional representation brought about by PCA.
For further in-depth investigation of the underlying
structure and trends in the data, this dataset pro-
vides a basis for further research activities. In addi-
tion to mitigating the curse of dimensionality, many

(8)

Variance Retained =



Al-Based Smart Identification of Medicinal Plants Using Vision Transformer and CatBoost for Biodiversity and Healthcare 9

things change the underlying structure of the feature
space by using PCA for dimensionality reduction. All
things considered, the study approach is more effec-
tive overall because of the reduced-dimensional fea-
ture representation that PCA produces, which im-
proves model generalization and allows for more effi-
cient computing.

4.2 Classification CatBoost Model

In the experimentation phase, a CatBoost clas-
sifier model, fine-tuned with the Optuna optimiza-
tion framework, is deployed to classify the extracted
features. The model’s hyperparameters were meticu-
lously tuned to enhance performance and robustness,
as mentioned in Table 4.

Table 4: Hyperparameters used in the CatBoost
model.

Hyperparameter Value

Learning Rate 0.0165

Iterations 785

Maximum Tree Depth | 7

L2 Leaf Regularization | 0.01294

Bootstrap Type Bayesian Bootstrap
Random Strength 2.61 x 1076
Bagging Temperature 5.25

With iterations set to 785 and the learning rate op-
timized to 0.0165. Additional parameters, including
depth, L2 leaf reg, bootstrap type, random strength,
and bagging temperature, were carefully selected to
optimize model effectiveness and generalization. Fol-
lowing model training on the extracted features from
the training dataset, the test set underwent prepro-
cessing to prepare it for prediction. This involved
applying the same feature extraction technique uti-
lized in the training phase, followed by dimensional-
ity reduction using PCA to align the feature space
with the trained model’s input requirements. The
transformed test features were then organized into
a structured format, mirroring the feature column
names from the training dataset, to facilitate pre-
diction using the trained CatBoost classifier model.
Predictions were generated for the test set samples
using the trained model, providing insights into the
model’s performance on unseen data. Employing this
rigorous approach to model deployment and test set
processing can ensure the robustness and reliability of
their classification system, thus enhancing the credi-
bility and validity of the research findings.

5. TESTING

During the testing stage, the model’s effective-
ness was determined by calculating the forecasts and
related performance metrics. Accuracy, precision,
and recall were used to measure classification per-
formance across different species. Additionally, the
Mean Squared Error (MSE) was computed separately

to compute the average squared difference between
the model’s predicted probabilities and the true class
labels. The proposed model achieved an accuracy
score of 93.3%, a weighted F1-score of 0.933, and an
MSE of 0.55649, indicating both high classification
consistency and low prediction error. These useful
metrics are used to assess how well the trained model
can accurately predict the leaf categories from the in-
put visuals. By examining these metrics, it can better
comprehend the benefits and drawbacks of the model,
which will be useful for future changes and improve-
ments to the categorization system.

5.1 Performance Metrics

The confusion matrix is used to record the per-
formance assembled by the classifier for the desired
evaluation, which is a table of n x n with n classes. By
equating the predicted classes with the actual classes,
it conveys assumptions about the rendition of the
classifier. It includes various principles like true neg-
ative, true positive, false positive, and false negative.
Overall, the performance of the classifier is consid-
ered using the accuracy and can be figured utilizing
the following formula, as depicted in Equation (9).

(Number of Correct predictions)

(9)
Precision is the proportion of samples that are in
the positive category that the classifier expected to be
in the positive group. Precision provides information
with respect to the capability of the classifier in cor-
rectly recognizing the actual positive samples. The
formula for precision is given in equation (10). Of all
the positive predictions the classifier made, precision
provides the percentage of how correct the positive
predictions were. Equation 10 calculates this most
important statistic for assignments in which the goal
is to be sure that positive predictions are correct and
to minimize false positives.

A =
ceuracy (T'otal no of predictions)

(TruePositive)
(T'ruePostive + FalsePositive)

(10)

Precision =

Recall, also referred to as sensitivity or the true
positive rate, is the ratio of the actual number of sam-
ples that, in reality, belong to the positive class and
are correctly classified as positive by the classifier. It
informs about the capability of the classifier in iden-
tifying each positive sample. Recall can be estimated
using Equation 11 as the formula. Recall represents
the percentage of true positive predictions out of all
actual positive samples, and it is represented by this
symbol. This statistic is important when the goal is
to reduce false negatives and make sure that the pos-
itive forecasts are accurate. A high recall will mean
that most of the positive samples within the dataset
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are being captured by this classifier.

(TruePositive)

Recall =
cea (T'ruePostive + FalseNegative)

(11)

Recall and accuracy can be summarized into one
metric, the so-called Fl-score, which gives a general
view of the performance of the classifier. Considering
accuracy, or the ability to correctly identify positive
samples, and recall, or the ability to include all the
positive samples, it makes for a much more thorough
evaluation. Equation 12 is the formula to get the F1-
score. The Fl-score ranges between 0 and 100% and
is given in percentage format. A successful classifi-
cation strategy selects a good balance between recall
and precision when the F1-Score is high.

(Precision x Recall)

F1-8 =2
core . (Precision + Recall)

(12)

5.1.1 Cross-Validation Performance

To evaluate the generalizability and robustness of
our proposed model, a 5-fold cross-validation was car-
ried out on the Indian medicinal plant dataset. In
each fold, 80% of the data was utilized for training
and 20% for validation to ensure that every sam-
ple was presented to both training and evaluation
phases. Additionally, 10% of the entire dataset was
taken as an independent test set that was not involved
in model training or validation. The results corre-
sponded to the mean and standard deviation across
the 5 folds, while the test set was utilized for final
model testing. Table 5 summarized the average per-
formance across folds and their standard deviations.

Table 5: Demonstrates the average performance
across folds and standard deviations.

Metric Mean (%) | Std. Dev (%)
Accuracy | 92.8 +0.47
Precision | 91.5 +0.51
Recall 90.7 +0.56
F1-Score | 91.1 +0.50

These results of our proposed hybrid model persis-
tently outperform well across various subsets of the
dataset, with low standard deviation values, which in-
dicates reliable and stable predictions. In balancing
the precision and recall for medicinal plant classifica-
tion, the high average F1 score highlights the model’s
effectiveness.

5.2 Results and Discussion

A comprehensive classification report with spe-
cific metrics for every class is generated during the
assessment of the model’s performance in classifica-
tion. Key performance indicators for each class in the

dataset are compiled in the classification report, and
they include precision, recall, F1-score, and support.
The parameters were set to guarantee that each class
in the report is accurately labelled, improving the
report’s readability and clarity. The model’s perfor-
mance can be evaluated class-by-class with the help
of the classification report, which offers a detailed ex-
amination of the model’s features and drawbacks in
several categories. Accuracy, recall, precision, and
Fl-scores are the measures considered to examine
the testing outcome. The accuracy, recall, precision,
and Fl-score of the CatBoost model are 93.3%, 90%,
92%, and 91%, respectively, making it effective in the
recognition of the Indian medicinal plants, with a to-
tal average score of 93% across all measures. Fig. 6
and Table 6 show the metrics score applied to test
data of the CatBoost classifier as a bar graph.

Table 6: CatBoost classifier model outcome.

Precision | Recall | Fl-score | Support
Alovera | 0.91 0.94 0.93 53
Amla 0.91 0.88 0.89 33
Castor | 0.95 0.96 0.95 72
Coffee 0.97 0.97 0.97 38
Ginger | 0.93 0.88 0.90 43
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Fig.6: Model performance of CatBoost classifier.

To demonstrate the classification findings, a con-
fusion matrix is created as part of the model perfor-
mance assessment. The confusion matrix makes it
easier to see any misclassifications or patterns in the
prediction errors by giving a thorough overview of the
model’s predictions across several categories. More-
over, the confusion matrix’s visual representation is
improved by using a color map to indicate the degree
of categorization errors shown in Fig. 7. The con-
fusion matrix is easier to understand because of its
color-coded form, which makes it easier to spot areas
with greater error rates.
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Fig.7: Confusion matrix of CatBoost classifier.

5.2.1 Comparative Analysis with Standard Models

Comparative analysis of various baseline deep
learning algorithms such as ResNet50, Efficient-
NetB0, and MobileNetV2 has been performed using
transfer learning from ImageNet pretrained weights
with our proposed model with training accuracy and
loss. Our model shows the highest accuracy of 93.3%,
which outperforms the others among all metrics like
precision, recall, and F1-score. The final classification
layers were substituted with a dense output layer of
five neurons and a softmax activation function. All
the models were fine-tuned on the same number of
epochs with the optimizer as AdamW, a learning rate
of 0.001, and a batch size of 32. Table 7 presents the
comparison of the performance of the proposed ViT
+ CatBoost hybrid model against three widely used
deep learning models: ResNet50, EfficientNetB0, and
MobileNetV2. Fig. 8 shows the comparative analysis
of classification performance across baseline models
and the proposed ViT 4 CatBoost hybrid model.

Table 7: Demonstrates the comparison of our pro-
posed model with other deep learning models.

Model Accuracy | Precision | Recall | F1-Score
ResNet50 89.6 0.88 0.87 0.87
EfficientNetBO | 91.2 0.90 0.89 0.89
MobileNetV2 90.3 0.89 0.88 0.88
ViT+CatBoost | 93.3 0.92 0.90 0.91
(Proposed)

5.3 Testing Predictions

To assess test predictions, a function is estab-
lished to use those generated predictions for five
randomly chosen images from the test set; also,
their corresponding predictions were generated. To
make the prediction findings more understandable
and clearer, this color-coded annotation approach is
used as shown in Fig. 9. The function used the pre-

) Performance Metrics Comparison of Standard Models vs Proposed Model

Accuracy (%)
~o— Precision (%)
—— Recall (%)

o F1.Score (%)

92

Score (%)

89

88

8 ResNet50 EfficientNetBO MobileNetV2 ViT+CatBoost(Proposed)

Models
Fig.8: Comparative analysis of classification perfor-
mance across baseline models and the proposed ViT
+ CatBoost hybrid model.

dicted categories to iteratively go through the chosen
photos and assess how accurate the model’s predic-
tions were concerning the ground truth labels. The
pictures were then presented with the titles that cor-
responded to them, giving an illustration of how well
the model performed on data that had not yet been
viewed.

Image No. : 47

Tmage No. : 143 Image No. : 175
Amruthabali Curry

o

Tmage No. : 187
Doddpathree

Image No. : 234
Drumstick

\ P
Y

F1g9.9: Random images from the test dataset.

The efficiency and precision of the model in clas-
sifying leaves from test photos were evaluated using
this systematic assessment technique, providing im-
portant information about the model’s generalization
potential and possible areas for improvement. The
SHapley Additive explanation (SHAP) has been im-
plemented for the model explanation, feature impor-
tance, and interpretability of the proposed model.
The SHAP analyzes the contribution of independent
feature variables to the model’s predicted output.
Fig. 10 plots show the top 8 features that most sig-
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Fig.10: SHAP-based feature importance values derived from PCA-transformed ViT embeddings used by the

CatBoost classifier.

nificantly influence the predictions of the CatBoost
model, allowing us to gain insights into the model’s
decision-making process.

6. CONCLUSION AND FUTURE WORK

Despite the increasing availability of researchers
and public apps, accurate recognition of medicinal
plants is still a challenge. Most of the datasets do not
provide features like size, color, shape, and inter-class
domain. CNN-based learning models do not provide
better results for species classification, as the data to
be provided is inadequate. This paper presents a hy-
brid model based on the Transformer and CatBoost
classifier tuned with Optuna, in which images were
selected to evaluate the model’s performance thor-
oughly, and accuracy and sparse top-k categorical ac-
curacy were used as evaluation metrics. The classical
CatBoost hyperparameters are tuned with Optuna to
achieve a better performance for the recognition. Im-
age preprocessing, background removal, and resizing
are performed to enhance the input image. The first
step is to take the leaf images from the Indian medici-
nal plant dataset and then perform preprocessing; af-
ter that, the model will extract the features, and clas-
sification will be done. The hybrid model, ViT, and
CatBoost classifier model perform better than other
existing models in the training and testing stages, ac-
cording to the overall simulation results. Using the
Indian medicinal plant dataset, various comparative
analyses have been done, and it gives an accuracy of
93%, and other parameters like precision, recall, and
F1-score are consistently higher.

However, our study has demonstrated the iden-
tification of medicinal plant leaves by testing on a
few desirable plant species supplemented with more
datasets, and future work will be extended for cater-
ing to a large number of commercially important
medicinal plant species of higher altitudes as well.

Also, incorporating hyperspectral imagery and ex-
panding to real-time mobile application deployment.
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