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ABSTRACT
Sepsis is a critical and urgent medical condition that imposes a global
health burden due to high mortality and the risk of long-term disability
without prompt treatment. In this study, we propose a novel hybrid mod-
ified capsule and a transformer encoder (CaT) using a selected subset of
biomarkers for the diagnosis of sepsis. The biomarkers are identified by
a dual selection strategy that combines the differential expression analysis
of immune-related genes with the Boruta algorithm using a random forest
model. The modified capsule network consists of 4 parallel capsule layers,
each implemented as a feedforward unit comprising a linear transforma-
tion followed by ReLU activation. On the validation set using Leave-One-
Dataset-Out Cross-Validation, the CaT model shows better performance
compared to other machine learning and deep learning models, with an
accuracy of 96.8%, sensitivity of 98.0%, specificity of 87.9%, Mathews cor-
relation coefficient of 85.6%, and area under curve of 98.0%. These findings
highlight the robustness, generalization, and effectiveness of the proposed
CaT model, demonstrating its potential as a reliable tool for the prediction
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of sepsis in clinical practice.

DOT: 10.37936/ecti-cit.2026201.263411

1. INTRODUCTION

Sepsis is a major global health problem, which
causes a high mortality rate and certainly long-term
disabilities [1]. The complexity of this disease stems
from the abnormal response of the host to infection,
often associated with acute organ dysfunction [2],
which requires essentially an early diagnosis of sepsis
for effective and timely treatment. Sepsis induces a
systemic, maladaptive response that often leads to re-
mote multiorgan failure [3]. In addition, factors such
as the source of infection and pathogen or patient-
specific variables influence its expression [4]. Fur-
thermore, the typical pathophysiological pattern in
sepsis, with more than 80% of the transcriptional re-
sponse in leukocytes, which are independent of the
sources in terms of infection or pathogen, suggests
a common transcriptional pattern among sepsis pa-
tients, providing a potential target for personalized
strategies [5, 6].

Recent advances in genetics have provided signif-

icant insight into the molecular mechanisms of sep-
sis, which emphasize the important role of immune-
related genes (IRGs) in terms of sepsis diagnosis [7].
Additionally, the identification of differentially ex-
pressed genes (DEGs) has been proven their impor-
tance due to the reflection of dynamic changes in gene
expression profiles, which are associated with sepsis
progression and patient outcomes [8]. Therefore, dif-
ferential analysis of IRG expression allows the discov-
ery of potential biomarkers, which contribute dramat-
ically to early diagnosis, prognosis, and therapeutic
targeting, thus facilitating timely and effective clini-
cal management [9, 10].

The advancement of machine learning (ML) and
deep learning (DL) has facilitated the emergence of
numerous computational approaches for disease de-
tection and diagnosis. Indeed, ML models have
demonstrated a better ability to detect sepsis rapidly
and accurately in comparison with traditional meth-
ods, which allow prompt intervention and potentially

IThe author is with Center for Development of Information Technology and Communications (CDIT), Posts and Telecommu-
nications Institute of Technology (PTIT), Vietnam, E-mail: vtanh@ptit.edu.vn
2,3The authors are with Faculty of Telecommunications, Posts and Telecommunications Institute of Technology (PTIT), Viet-

nam, E-mail: bacdh@ptit.edu.vn and nmtuan@ptit.edu.vn
3Corresponding author: nmtuan@ptit.edu.vn



146 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.20, NO.1 January 2026

improve patient outcomes [11]. Indeed, the authors
of [12] identify vital IRGs, which are associated with
sepsis, using integrated Weighted gene correlation
network analysis (WGCNA), Estimation of STromal
and Immune cells in MAlignant Tumor tissues, and
different ML models such as Elastic net, Least ab-
solute shrinkage and selection operator (LASSO) re-
gression, random forest (RF), Boruta, and eXtreme
Gradient Boosting (XGBoost). As a result, 11 po-
tential IRGs are selected as the input of 6 ML mod-
els to predict sepsis, which obtains an area under
the curves (AUC) value greater than 75%. In [13],
gene selection and model estimation stages are de-
signed with different ML models. The former uses
a combination of 3 topological analysis methods and
4 ML models namely RF, LASSO, Support vector
machine (SVM), and XGBoost for the identification
of potential genes, the later considers Logistic re-
gression (LR), AdaBoost, K-nearest neighbor (KNN),
and XGboost as prediction models using the outcome
of the former. Consequently, the KNN model achieves
the highest performance related to sepsis recognition
with an AUC of 99%.

Another significant method to address DEGs is
the utility of intersection between the WGCNA and
MEturquoise module genes as shown in [14]. Here, a
total of 308 potential genes are identified for the in-
put of 113 combinations, which are generated from
12 ML models to estimate their detection perfor-
mance. The validation results indicate 22 biomarkers
identified by the RF and Elastic Net models, which
show the highest AUC of 88.1% among other com-
binations of models. In addition, Fan et at. [15]
use Limma and metaMA packages to find differen-
tially expressed mRNAs, which are then ranked by
mean decrease accuracy values calculated by the RF
model. Subsequently, a subset of 15 biomarkers is
identified by a forward-wrapper approach in combi-
nation with various ML models. The highest vali-
dation performance with an AUC of 87.3% on the
validation data is produced by RF model, which is
proposed as a final algorithm for sepsis diagnosis.
In [16], a modified LASSO penalized regression and
SVM are employed to identify hub autophagy-related
genes, which are then combined with an artificial
neural network for the prediction of sepsis. Conse-
quently, the proposed algorithm achieves a relatively
high AUC performance over 85%. The authors of [17]
consider Protein-Protein Interaction network analy-
sis using STRING and Cytoscape to address 5 hub
DEGs, used as the input of RF model, which shows
strong predictive AUC performance of 84.94% on dif-
ferent datasets.

Recently, DL-based diagnostic models have been
widely used for the designs of medical applications.
Obviously, a large number of studies [18-20] em-
phasize the potential applications of the transformer
model with respect to cancer disease using gene ex-

pression data. In the context of sepsis prediction,
the authors of [21-23] employ Convolutional neural
networks (CNN), Long short-term memory (LSTM)
networks, and Transformer models for the design of
sepsis detection algorithm. However, these models
are largely relied on physiological signals and clini-
cal measurements, such as vital signs, electrocardio-
grams, and biochemical laboratory values, which are
definitely time-consuming. Furthermore, the applica-
tion of DL models to gene expression data for the pre-
diction of sepsis remains relatively unexplored. Only
a few existing works follow this research direction
to explore potentials of the DL modes. Typically,
an Al-driven integrative framework, which combines
a Transformer-based DL model and established ML
models such as LASSO, SVM-Recursive feature elim-
ination, RF and neural networks is proposed to un-
cover complex, non-linear interactions among gene-
expression biomarkers [24]. As a result, AUC values
ranging from 93.95% to 99.96% of the Transformer-
based classifier confirm a subset of 5 genes as optimal
diagnostic biomarkers.

The utility of small datasets collected from one
or few platforms definitely reduces the reliability and
restricts the generalization of the proposed diagno-
sis models [12-17]. Motivated by this gap, our work
focuses on the development of an efficient DL frame-
work using gene expression data collected from var-
ious platforms. Moreover, we propose a novel algo-
rithm to predict sepsis disease, which contains an ef-
fective hybrid modified capsule and transformer en-
coder (CaT) model and a subset of biomarkers in
this paper. Here, the Boruta and RF models are
used to identify biomarkers from differentially ex-
pressed immune-related genes (DEIRGs). The pro-
posed method validates biomarkers using Leave-One-
Dataset-Out  Cross-Validation (LODO-CV) proce-
dure on the validation set, which contains 5 datasets
randomly selected under constraints: datasets should
originate from different platforms when possible; if
platforms overlap, selected datasets must differ in age
groups. The main contributions of this study are as
follows:

e Investigation of multiple gene expression databases
including various cell types, platforms, and age
groups to ensure high generalization of the pro-
posed prediction model.

e Identification of robust gene biomarkers associated
with sepsis disease.

e Proposal of a simple CaT architecture as an effi-
cient DL framework for sepsis recognition, which is
optimized and estimated by grid search-based al-
gorithm and statistical method using LODO-CV,
respectively.

The rest of the paper is organized as follows. Sec-
tion 2 describes the gene datasets with different plat-
forms. Section 3 presents the methodology, followed
by Section 4, which reports the simulation results.
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Table 1: Data description
Dataset No.Genes Control Sepsis Cell type Age Platform
GSE119217 28376 12 122 Peripheral blood Children GPL16686
GSE69686 20299 85 64 Peripheral blood Post-natal age GPL20292
GSE69063 25512 33 57 Peripheral blood Adult GPL19983
GSE134347 30905 83 215 Whole blood Aldult GPL17586
GSE131761 21754 15 81 Peripheral Blood Aldult GPL13497
GSE57065 23520 25 82 Whole blood Aldult
GSE95233 23520 22 102 Whole blood Adult
GSE28750 23520 20 10 Whole blood Aldult
GSE26378 23520 21 82 Whole blood Children
GSES8121 23520 15 60 Whole blood Children GPL570
GSE13904 23520 18 52 Whole blood Children
GSE26440 23520 32 98 Whole blood Children
GSE9692 23520 15 30 Whole blood Children
GSE4067 23520 15 69 Whole blood Children
GSE65682 19040 42 479 Whole blood Aldult GPL13667
E-MTAB-1548 17028 15 80 Peripheral blood Aldult BioStudies
Section 5 provides a discussion, while Section 6 sum- {777 C eneprepmcessmg """"""""""""
marizes our study.
Gene __, Mapping  Immune-
2. DATA databases probe genes related genes
In this study, a total of 16 gene expression datasets ..
are downloaded from the Gene expression omnibus ‘ Training set Validation set ;
(GEO) [25] and BioStudies [26] databases. A sum- . A SNSRI, A ‘
mary of these datasets is provided in Table 1. The . Biomarker selection . Model validation |
datasets include 2 cell types, namely peripheral blood ) ) ; | RF XGboost |
and whole blood, and span a wide range of age groups, . rlsslgirnegt[ﬁ " EBi"mar ke 5
including children, adults, and post-natal subjects. i il _> L S
These datasets are derived from 8 different platforms, l DEIRGs ' Vi 1D-CNN
including GPL16686 (Affymetrix Human Gene 2.0 EoRE !
ST Array), GPL20292 (Custom Affymetrix Human CaT LODO-CV |
Transcriptome Array), GPL19983 (Affymetrix Hu- I T Z Y W
man Gene 2.1 ST Array), GPL17586 (Affymetrix Hu- l Biomarkers Optimal models T
man Transcriptome Array 2.0), GPL13497 (Agilent- e
026652 Whole Human Genoile Microarra; 4x44K Model optimization
v2), GPL570 (Affymetrix Human Genome U133 Plus RF 1D-CNN MLP CaT @ridiseaten
2.0), GPL13667 (Affymetrix Human Genome U219
Array), and Agilent Human Gene Expression 4x44K SVM LR XGboost LODO-CV
v2 Microarray from the BioStudies database. = = ‘eomrmmemmsemmemsmssm s s s omn oo
A total of 5 datasets are randomly selected un- Fig.1: Method diagram.

der constraints: datasets should originate from differ-
ent platforms when possible; if platforms overlap, se-
lected datasets must differ in age groups. Therefore,
GSE26378, GSE69063, GSE134347, GSE57065, and
GSE119217 are chosen for the validation set, while
the remaining datasets are used for training.

3. METHOD

The proposed method is shown in Figure 1, which
includes 4 stages namely gene processing, dual selec-
tion of biomarkers, model optimization, and model
validation.

e In the first stage, raw gene datasets are pre-
processed using the Robust Multi-array Average

(RMA) procedure [8], followed by the identification

of the potential IRGs [10] using the intersection be-
tween expression profiles and curated immune gene
databases.

In the second stage, a dual selection strategy
of biomarkers includes the differential expression
analysis [8] and Biomarker selection is implemented
to address the most relevant gene subset known
as biomarkers. Indeed, the former plays a role to
identify the DEIRGs among input IRGs in terms
of sepsis detection using absolute fold-change and
adjusted p-value, which are higher and lower than
thresholds of 1.5 and 0.05, respectively. The latter
employs a Boruta with a Random Forest (Boruta-
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RF) wrapper [28] to refine the most informative,
contributive DEIRGs using a configuration of 100
trees and a maximum of 50 Boruta iterations.

e In the third stage, different classification models
namely RF [31], LR, XGboost, SVM [13], one-
dimensional CNN (1D-CNN) [32], MLP [33], and a
hybrid CaT [29] are trained with the above selected
biomarkers. Here, a grid search-based optimization
algorithm is deployed to select the optimal hyper-
parameters and structures of various models.

e In the last stage, the optimal models are validated
for their classification performance on the valida-
tion set using the selected biomarkers and LODO-
CV procedure for further comparisons and proposal
of the final algorithm with respect to sepsis recog-
nition.

3.1 Gene Processing
3.1.1 Mapping probe genes

We use Robust multi-array average (RMA) al-
gorithm to preprocess the 16 raw gene expression
datasets. Probe-to-gene annotation is conducted by
aligning probe identifiers with corresponding gene
symbols, utilizing the latest SOFT files or Chip
Description Files (CDFs) obtained from the GEO
database. Moreover, custom CDFs and SOFT files
are applied for the input gene databases in which the
former maps gene data of GSE119217 and GSE69063,
and the latter processes the remaining gene databases
using the average expression of probes corresponding
to the similar genes, which represent the gene expres-
sion level.

3.1.2 Immune-related gene extraction

A referred database of IRGs is used to extract
IRGs, which have a significant impact on sep-
sis disease, derived from the NanoString database
(www.nanostring.com). Consequently, a total of 770
IRGs are obtained according to [10], which are con-
sidered as a standard IRG dataset for the selection
of genes related to both sepsis disease and the im-
mune system. Indeed, the individual gene datasets
are compared with the above standard IRG dataset
to address various subsets of IRG corresponding to
different individual platforms. A gene intersection
between all subsets of IRGs coming from various plat-
forms is then identified as the potential IRGs, which
represents the IRGs shared across all datasets. This
step ensures a consistent gene space for the subse-
quent analysis. The resulting IRGs are then normal-
ized using a Min—Max scaler to the range [0-1].

3.2 Dual selection of biomarkers
3.2.1 DEIRG selection

Differential analysis [8] is performed for the IRGs
using the Limma package using R software, which is
a part of the Bioconductor project for the analysis

of gene expression data using microarrays and RNA-
seq. The package provides linear models and empiri-
cal Bayes moderation in which the formers are fitted
to expression data and the latter to stabilize the vari-
ances estimated across genes. Empirical Bayes mod-
eration is particularly important in genomic studies
using small databases with massive genes.

Besides, p-values and fold-change are the reliably
statistical measurements, which are applied for the
correction of multiple hypothesis testing. Indeed,
the false discovery rate is controlled by p-values,
which are certainly adjusted by Benjamini-Hochercg
method [27]. This adjustment definitely reduces the
possibility of false positive results (type I errors),
which result in a statistical reliability with respects
to the identification of the DEIRGs. In addition,
fold-change is computed to quantify the magnitude
of expression differences between septic patients and
healthy controls. Positive and negative fold-change
values show the up-regulated and down-regulated
characteristics of genes related to sepsis. As a re-
sult, adjusted p-value less than 0.05 and fold-change
over 1.5 are the main conditions to mark significantly
differential expression as DEIRGs.

3.2.2 Biomarker selection

The Boruta method [28], known as a wrapper fea-
ture selection algorithm that works in conjunction
with the RF classifier, is used to identify the biomark-
ers. Here, the RF model has the ability to mea-
sure the importance of each gene by evaluating how
much predictive accuracy decreases when the values
of those features are permuted. Unlike conventional
feature selection methods, which frequently aim to
find a minimal subset of features with a minimal er-
ror on a selected classifier, the Boruta method is pro-
posed to retain all features which are either strongly
or weakly relevant to the target variable. Therefore,
this method is well suited for biomedical applications,
which essentially make a decision of biomarkers cer-
tainly involved in a particular disease condition.

In this study, the DEIRG dataset is used as in-
put of Boruta algorithm for the generation of shadow
genes using shuffled copies of the total genes. More-
over, a RF model is trained on the orginal gene
dataset and shadow gene dataset to calculate the im-
portant values of genes, which are further evaluated
by decreases in mean accuracy. Then, the importance
of each DEIRG is compared with the most impor-
tant shadow gene in each iteration until either en-
tire DEIRGs are labeled or repetition of RF model is
completed. The final result is a subset of identified
DEIRGSs, known as biomarkers, which definitely are
robust and effective for the sepsis diagnosis.

3.3 Model Optimization

There are 3 DL models namely 1D-CNN [32], MLP
[33], the proposed CaT model, and 4 ML models in-
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Fig.2: CaT model.

cluding RF [31], LR, SVM, XGboost [13], which are
implemented for performance analysis and compar-
isons. In addition, a grid search-based method com-
bined with LODO-CV procedure is also applied for
optimization of model hyperparameters to select the
optimal parameters and structures of different ML
and DL models.

The parameters are considered for the RF model
namely number of trees in a range of [75, 85, 95, 105]
and the maximum tree depth searched in [3, 5, 10,
15, 20], which results in a total of 20 RF structures.
The LR model is implemented with a fixed config-
uration, which employs a L2 regularization solver of
“Ibfgs” and a maximum of 1000 iterations. Moreover,
RBF kernel is selected for SVM model using parame-
ter C identified in a range of [0.1, 10] using a step size
of 0.1, which results in 100 structures of SVM model.
The optimal structure of XGboost model is addressed
by optimization of parameter values from different
ranges such as tree number of [100, 200, 300], learn-
ing rate of [0.01, 0.05, 0.1], and maximum tree depth
of [3, 5, 7], which result in 27 structures. Moreover,
the learning rate, batch size, optimizer, and number
of epochs are necessary to fine-tuned for the 1D-CNN
and MLP models to maximize the performance and
avoid overfitting. Here, we apply various range of
values for the grid search to identify the optimal pa-
rameters of the 1D-CNN and MLP models such as
optimizers of [RMSprop, Adam, SGD], batch-size of
[16, 32, 64], epochs of [40, 50, 60], and learning-rate
of [0.0001, 0.0005, 0.001]. Besides, a group of 4 dif-
ferent layers including 1D convolutional, ReLLU acti-
vation, batch normalization, and max-pooling is de-
fined to make different 1D-CNN structures. Indeed,
we consider 10 1D-CNN structures containing 1 to 10
groups, which leads to 810 1D-CNN structures. In
addition, the structures of the MLP models are opti-
mized with the number of hidden layers ranging from
1 to 5 and the number of neurons of [16, 32, 64], which
results in 1215 model structures.

In the CaT model as shown in Figure 2, we propose
a modification of the capsule network, which is im-
plemented via parallel feedforward projections with-
out dynamic routing. The capsule-like embeddings
are subsequently contextualized by a Transformer en-

coder to capture global dependencies between genes.
The input in the CaT architecture is a B x D ma-
trix of biomarkers, where B denotes the batch-size
and D denotes the number of biomarkers. The in-
put is first passed through a capsule network module
with N parallel capsule units. Unlike capsule net-
work in study [29], which uses squashing functions
and dynamic routing mechanisms, the capsules in the
proposed CaT model are implemented as simplified
feedforward subnetworks, each consisting of a linear
layer followed by a ReLU activation. This maps the
input biomarkers into a tensor of shape B x N X d,
where, N and d denote the number of capsules and
the dimension of the capsule, respectively. The out-
put of stacked capsules is passed to a transformer
encoder to model contextual interactions among the
capsules. The transformer encoder [30] consists of
2 main layers, namely multi-head self-attention and
feedforward. The multi-head self-attention mecha-
nism enables each capsule embedding to attend to all
other capsule embeddings, allowing the model to cap-
ture both local and global dependencies. The feed-
forward network refines the attended representations
by increasing the ability of the model to learn com-
plex transformations. After the transformer encoder,
a flatten layer is used, which is then passed through
a fully connected (FC) layer. Finally, an output layer
is applied to generate prediction probabilities. To
optimize the performance of the CaT model, a grid
search is applied for the structure parameters such
as the number of capsules ranging from 2 to 6 , the
dimension of the capsule of [16, 32, 64], the number
of transformer encoder layers ranging from 1 to 3,
and the number of attention heads ranging from 2 to
4. In addition, optimal learning parameters such as
optimizers of [RMSprop, Adam, SGD], batch-size of
[16, 32, 64], epochs of [40, 50, 60], and learning-rate of
[0.0001, 0.0005, 0.001] are also addressed by the grid
search algorithm for the CaT model, which results in
a total of 10.935 CaT model structures.

3.4 Model Validation

The validation set includes 5 datasets in which chil-
dren and adult samples are available in GSE126378
and GSE57065 datasets of the GPL570 platform
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while the remaining datasets namely GSE69063,
GSE134347, and GSE119217 are of the GPL19983,
GPL17586, and GPL16686 platforms, respectively.
The LODO-CV procedure is implemented to estimate
the model performance on the validation set. Indeed,
4 datasets are combined to use for training, and the
last is for testing. The repetition of the procedure
is run 5 times to ensure that every single dataset is
considered as a testing dataset.

4. SIMULATION RESULTS
4.1 Performance measurement

To comprehensively and reliably evaluate the di-
agnostic ability of each model in classifying between
sepsis and control samples, 5 metrics [8] including
Accuracy (Acc), Sensitivity (Sen), Specificity (Spe),
Mathews correlation coefficient (Mcc), and the Area
under curve (AUC) are calculated to estimate the per-
formance of the models in this study. Acc represents
the proportion of participants who are correctly pre-
dicted. Sen and Spe represent the number of cor-
rectly detected sepsis patients and control people, re-
spectively. The quality of a binary classification be-
tween sepsis patients and control people is measured
by the Mcc parameter. Furthermore, AUC evaluates
the ability of the ML and DL models to discriminate
between sepsis patients and controls.

e TP + TN 0
“TTPIFP+TN+FN
TP
Sen = F 5 T IN (2)
TN
SPe = TN T FP (3)

TP x TN — FP x FN
V(TP +FP)(TP+ FN)(TN + FP)(TN + FN)
(4)

Where TP, FN, TN, and FP are true positive,
false negative, true negative, and false positive values.

Mcc =

4.2 Gene processing
4.2.1 Mapping probe genes

The RMA technique is adopted to process 16 gene
expression datasets followed by gene annotation by
mapping using SOFT and CDF files as detailed in
Table 1, which result in preprocessed gene datasets
containing the number of genes between 17,028 and
30,905.

-log10 (adjusted p-value)

— D W b N
SO O O o o o o o
1 1 1 1 1 1 1 1
[ ]

log2 (fold change)

Fig.3: DFEIRGS of sepsis and controls; Red and Blue
represent up-requlated and down-regulated DEIRGS,
while Gray indicates insignificant IRGs.

4.2.2 Immune-related gene extraction

The 16 gene expression datasets are compared with
a standard dataset, which includes 770 IRGs. The
number of IRGs, which are related to the immune sys-
tem are 760, 696, 742, 755, 751 IRGs corresponding
to GSE119217, GSE69686, GSE69063, GSE134347,
GSE131761 datasets, respectively. Moreover, the
GPL570 platform provides 11 gene datasets in which
the numbers of IRGs are 740 and 627 of GSE65682
and E-MTAB-1548, and the remaining gene datasets
consist of 737 IRGs. A total of 16 subsets of IRGs
are then compared to extract an intersected part of
TRGs, which results in a common subset of 560 IRGs
for further selection of DEIRGs.

4.3 Dual selection of biomarkers
4.3.1 DEIRG selection

A subset of 219 DEIRGs is identified by differential
expression analysis, which includes 56 up-regulated
and 163 down-regulated DEIRGs using thresholds for
the adjusted p-value and the fold-change as shown
in Figure 3. The up-regulated DEIRGs, which have
adjusted the p-value < 0.05 and absolute fold-change
value > 1.5, show higher expression levels in sepsis
patients compared to healthy controls, while down-
regulated DEIRGs exhibit reduced expression, which
have adjusted p-value over 0.05 and absolute fold-
change value lower than 1.5.

4.3.2 Biomarker selection

We implement the Boruta-RF method using a sub-
set of 219 DEIRGs as input for selection of biomark-
ers. Consequently, a subset of 135 biomarkers is
addressed in which 55 and 80 biomarkers are up-
regulated and down-regulated, respectively, as shown
in Table 2. These biomarkers are then validated for
their classification performance using various ML and
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Table 2: Selected biomarkers from DEIRGs.
No. Biomarkers FC P.Value adj.P.Val Regulation No. Biomarkers FC P.Value adj.P.Val Regulation
1 CEACAMS 24.09 9.42E-10 3.38E-09 Up 68 STAT4 -2.37  1.01E-19 8.04E-19 Down
2 LCN2 21.79 4.78E-22 4.78E-21 Up 69 CSF1R -2.34 3.00E-14 1.67E-13 Down
3 IL1R2 21.65 1.20E-51 9.62E-50 Up 70 ITGAM 2.34 T79TE-17 5.58E-16 Up
4 S100A12 8.26 1.69E-74 9.46E-72 Up 71 HLA.DMA -2.33 7.69E-16 4.79E-15 Down
5 ARG1 5.55 1.02E-57 1.14E-55 Up 72 GZMB -2.31 3.27TE-14 1.78E-13 Down
6 IL18R1 547  3.68E-59 5.15E-57 Up 73 ILF3 -2.29  7.98E-18 5.96E-17 Down
7 LRRN3 -5.11  2.67E-60 4.99E-58 Down 74 IFNGRI1 2.28 1.97E-15 1.20E-14 Up
8 CLEC5A 4.95 8.20E-21 7.06E-20 Up 75 HLA.DRA -2.26 4.53E-10 1.69E-09 Down
9 CD3G -4.92  2.44E-46 1.37E-44 Down 76 CARD11 -2.25 1.31E-20 1.08E-19 Down
10 CD3E -4.84 1.68E-45 8.57E-44 Down 77 CAMP 2.25 6.66E-18 5.04E-17 Up
11 CD163 4.31 1.18E-36 4.12E-35 Up 78 CD55 2.24 9.88E-14 5.12E-13 Up
12 C3AR1 4.27 2.35E-55  2.19E-53 Up 79 SH2D1A -2.23  1.90E-21 1.68E-20 Down
13 CDY96 -4.26  3.11E-49 1.94E-47 Down 80  ST6GAL1L -2.20 9.38E-21 7.84E-20 Down
14 TLR5 4.25 1.54E-68 4.31E-66 Up 81 TNFSF13B 2.16 6.22E-12 2.77E-11  Up
15 ITK -4.25 6.59E-36 2.05E-34 Down 82 IL1R1 2.15  1.19E-30 2.22E-29 Up
16~ S100AS8 3.89  3.28E-22 3.34E-21 Up 83  SIGIRR -2.12  3.37E-15 1.97E-14 Down
17 KLRB1 -3.85 6.78E-39 2.53E-37 Down 84 TBP -2.11 1.18E-13 6.05E-13 Down
18 CCR7 -3.76  9.79E-29 1.48E-27 Down 85 CD81 -2.11  2.56E-13 1.25E-12 Down
19  IL18RAP 3.74  1.20E-34 3.19E-33 Up 8  NCF4 2.07  1.99E-11 8.42E-11 Up
20 HLADQA1l -3.72 3.91E-28 5.61E-27 Down 87  TLRS 2.06 3.91E-14 2.09E-13 Up
21 TXK -3.69 1.08E-44 5.04E-43 Down 88 CXCR3 -2.056  9.58E-19 7.45E-18 Down
22 KLRG1 -3.66 1.24E-44 5.35E-43 Down 89 TLR2 2.04 491E-10 1.82E-09 Up
23 MS4A1 -3.61 1.04E-31 2.25E-30 Down 90 DOCK9 -2.01 1.92E-21 1.68E-20 Down
24 FCER1A -3.55 4.87E-50 3.41E-48 Down 91 NFATC3 -2.00 4.21E-15 2.41E-14 Down
25 GNLY -3.48 1.96E-29 3.22E-28 Down 92 TLR1 2.00 3.74E-12 1.69E-11 Up
26 KLRF1 -3.48 6.50E-41 2.60E-39 Down 93  ANXA1l 1.96 2.27E-10 8.83E-10 Up
27 CTSW -3.47  T7.44E-30 1.26E-28 Down 94 CTSG 1.96 4.42E-06 1.12E-05 Up
28 CD2 -3.39  1.30E-31 2.70E-30 Down 95 TBX21 -1.96 6.53E-13 3.13E-12 Down
29 CD247 -3.38  3.32E-30 5.81E-29 Down 96 AKT3 -1.94 8.90E-18 6.56E-17 Down
30 LCK -3.32  5.18E-28 7.25E-27 Down 97 LTB -1.93 2.35E-08 7.43E-08 Down
31 LY96 3.31 4.63E-34 1.18E-32 Up 98 HLA.DPA1 -1.93 1.01E-07 3.03E-07 Down
32 LY9 -3.26  1.75E-36 5.78E-35 Down 99 CDS8B -1.93 6.33E-16 4.03E-15 Down
33  ZAP70 -3.21  1.99E-31 3.98E-30 Down 100 SLAMF1 -1.93 3.88E-17 2.79E-16 Down
34 CD5 -3.21  2.45E-30 4.42E-29 Down 101 FCER2 -1.92  9.70E-17 6.71E-16 Down
35 CD40LG -3.13  8.25E-36 2.43E-34 Down 102 REPS1 -1.90 2.48E-13 1.23E-12 Down
36 CD63 3.10 1.21E-21 1.11E-20 Up 103 IFITM1 1.86 7.26E-06 1.79E-05 Up
37 ETS1 -3.03 6.50E-29 1.04E-27 Down 104 FUT7 1.84 3.02E-16 1.99E-15 Up
38 CD3D -3.00 6.03E-22 5.72E-21 Down 105 CD58 1.83 1.63E-13 8.24E-13 Up
39 ITGA4 -2.99 4.40E-27 5.60E-26 Down 106 LCP1 1.79 1.78E-05 4.04E-05 Up
40  EOMES -2.98  2.31E-32 5.39E-31 Down 107 RELA -1.79  1.79E-09 6.30E-09 Down
41 FCER1G 2.95 1.28E-21 1.16E-20 Up 108 NFKBIA 1.77 1.07E-07 3.19E-07 Up
42 CD6 -2.93  1.11E-28 1.64E-27 Down 109 CYLD -1.77  3.43E-09 1.19E-08 Down
43 BST1 2.91 7.06E-31 1.36E-29 Up 110 SPN -1.76  6.95E-11 2.84E-10 Down
44 MAPK14 291 1.41E-33 3.43E-32 Up 111  ADA -1.75 8.49E-10 3.11E-09 Down
45  BCL6 2.87 1.14E-21 1.06E-20 Up 112 NFATC1 -1.74 1.80E-11 7.75E-11 Down
46  GZMK -2.84 8.24E-23 9.04E-22 Down 113  CLECTA -1.71  4.42E-08 1.37E-07 Down
47 DPP4 -2.78  2.00E-35 5.60E-34 Down 114 PDGFC 1.68 2.45E-15 1.47E-14 Up
48 RUNX3 -2.71  1.48E-22 1.56E-21 Down 115 IL6ST -1.67 1.89E-07 5.46E-07 Down
49  PRF1 -2.69 8.74E-21 T7.41E-20 Down 116 LGALS3 1.67 1.76E-05 4.00E-05 Up
50 CD7 -2.68 5.73E-22 5.54E-21 Down 117 Cl1QA 1.66  7.06E-09 2.38E-08 Up
51 CD160 -2.66 3.93E-32 8.79E-31 Down 118 SF3A3 -1.65 1.04E-08 3.40E-08 Down
52  CD28 -2.66 1.08E-27 1.44E-26 Down 119 NT5E -1.64 3.95E-15 2.28E-14 Down
53 IL10RA -2.66 7.78E-16 4.79E-15 Down 120 CHIT1 1.64 296E-12 1.35E-11 Up
54 CRI1 2.60 2.80E-27 3.65E-26 Up 121 CCR1 1.62 2.60E-06 6.85E-06 Up
55  GZMM -2.60 4.50E-23 5.04E-22  Down 122 SELL 1.59  0.000653 0.001184 Up
56 NFATC2 -2.58 8.01E-28 1.09E-26 Down 123  BATF 1.59  3.28E-07 9.28E-07 Up
57  BLNK -2.54  3.99E-24 4.76E-23 Down 124 JAK2 1.58 1.83E-07 5.33E-07 Up
58  GATA3 -2.51  7.11E-29 1.11E-27 Down 125 LYN 1.57  0.000183 0.000371 Up
59  FPR2 2.50  9.82E-24 1.15E-22 Up 126 PRKCD 1.56  3.71E-06 9.49E-06 Up
60 BCL2 -2.50 1.35E-22 1.45E-21 Down 127 MERTK 1.56 1.11E-10 4.36E-10 Up
61 KLRD1 -2.49 1.62E-22 1.68E-21 Down 128 FEZ1 -1.56  9.06E-11 3.63E-10 Down
62 CD74 -2.45  5.60E-17 3.97E-16 Down 129 IFITM2 1.55 0.002973 0.004771 Up
63 CEBPB 245  1.70E-12 7.85E-12 Up 130 PYCARD 1.55 8.81E-05 0.000183 Up
64 C1QB 2.42 5.29E-18 4.06E-17 Up 131 CSF3R 1.54  0.000458 0.00086 Up
65 HLA.DPB1 -242 9.30E-18 6.76E-17 Down 132 Cl1QBP -1.53  8.02E-06 1.94E-05 Down
66  SH2D1B -2.41  5.39E-26 6.71E-25 Down 133  FCGR2A 1.53  0.00026  0.000517 Up
67 GZMA -2.38  2.59E-16 1.72E-15 Down 134 IL10 1.52  3.33E-15 1.96E-14 Up
135 CFD -1.51  0.000265 0.000523 Down
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Table 3: Performance of models on validation set.

Model Acc (%) Sen (%) Spe (%) Mce (%) AUC (%)
1D-CNN  90.0 £ 9.8 96.0 £ 5.0 75.00 £27.5 714+ 25.6 96.7 £ 6.8
MLP 89.7+£93 935+£101 775 +£231 71.9 £+ 26.2 974 £ 5.3
RF 90.0 £+ 8.4 96.2 + 8.4 70.1 £ 24.0 70.3 £ 27.0 96.5 £ 7.2
LR 833+ 124 86.5+£16.2 732+ 28.6 60.5+ 25.7 96.7 £ 6.7

SVM 88.8 £ 13.2 953+ 106 71.1 £ 39.8 66.2 £+ 40.4 97.3+5.7
XGboost  94.4 4+ 4.3 98.2 £ 2.7 78.4+ 18.9 79.3 + 20.8 97.4+ 4.3
CaT 96.8 £ 3.7 98.0 £ 2.2 87.9 +£18.5 85.6 £21.3 98.0 + 4.0

DL models in combination with LODO-CV proce-
dure.

4.4 Model optimization

A grid search-based method in combination with
LODO-CV procedure is applied for selection of the
optimal parameters and structures of the ML and DL
models. As a result, the optimal RF model is selected
with 95 trees and a maximum depth of 5. The SVM
model achieves its best performance with a RBF ker-
nel and a regularization parameter C of 1.0. The
XGBoost model is optimized with 300 trees, a learn-
ing rate of 0.05, and a maximum depth of 5. More-
over, the optimal 1D-CNN model is selected with 3
groups using Adam optimizer, learning-rate of 0.001,
batch-size of 32, epoch of 50. The optimal parame-
ters of the MLP model is identified by the grid search
method with 2 hidden layers using 64 neurons, opti-
mizer of Adam, learning-rate of 0.0005, batch-size of
32, and epoch of 50. The CaT model is addressed
with an optimal structure, which includes 4 capsules
using a dimension of 32 followed by a transformer
encoder using 2 attention heads, optimizer of Adam,
learning-rate of 0.001, batch-size of 32, and epoch of
40.

4.5 Model validation

Table 3. shows the validation performance of
different models using LODO-CV procedure. The
proposed CaT model produces the highest perfor-
mance of all evaluation metrics in comparison with
other models using the selected biomarkers, which
demonstrates superior generalization and robustness.
Hence, the CaT model and the selected biomarkers
are proposed as the final algorithm for the diagnosis
of sepsis.

5. DISCUSSION

Sepsis is a life-threatening disease caused by the
dysregulated host response to the infection and is the
leading cause of death in patients in the intensive care
unit. Early and accurate prediction of sepsis is cru-
cial to improving patient outcomes, as timely inter-
ventions significantly reduce the risk of complications
and mortality. Therefore, studies related sepsis detec-
tion are paid intensive attention from clinic experts

and technicians to improve the performance and reli-
ability of the proposed algorithms for the applications
in real-world hospital environments.

Unfortunately, limitations are still available in
many existing publications in which different ap-
proaches rely on small gene expression datasets down-
loaded from one or several platforms, which restrict
the generalization and real-world applicability of the
final proposed algorithms. In addition, while ML
models such as KNN [13] or RF [15] have been em-
ployed for the designs of proposed algorithms with
respect to the diagnosis of sepsis, very few studies
have explored DL methods. Indeed, the DL archi-
tectures, which are productive to capture complex
non-linear patterns and contextual dependencies in
gene expression data, have been considered insuffi-
ciently. This highlights the need for robust and scal-
able DL models, which are specifically designed for
sepsis prediction applications. Therefore, we address
the gaps of previous studies by the utility of 16 gene
expression datasets from 8 different platforms, which
are collected from the GEO database and BiOstud-
ies, representing diverse experimental conditions and
population groups in this work. Furthermore, a novel
proposal of a framework that includes a hybrid CaT
model with 135 biomarkers to diagnose sepsis is also
presented.

The dual selection strategy of biomarkers is pro-
posed to improve the robustness of diagnostic mod-
eling, which includes differential analysis and the
Boruta-RF method. The differential expression anal-
ysis initially identifies 219 DEIRGs, reflecting the
dysregulation of immune pathways during the pro-
gression of sepsis. However, relying solely on differ-
ential analysis retains redundant features, potentially
compromising the generalization of models. There-
fore, the Boruta-RF algorithm is subsequently ap-
plied to identify the most relevant DEIRGs by com-
paring them with random shadow DEIRGs, which re-
sult in a subset of 135 biomarkers as given in Table 2.
This approach ensures that the final biomarkers cap-
ture genes, which are altered during infection-induced
systemic inflammation and retain DEIRGs with po-
tential predictive value.

Another significant characteristic is that the CaT
model, which combines simple capsule layers with a
transformer encoder, inspired by Capsule Networks,
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is proposed in this study. Instead of using com-
plex dynamic routing mechanisms, the capsule com-
ponent in CaT is modified for the construction of in-
dependent and parallel feedforward subnetworks in
which the individual subnetwork comnsists of a lin-
ear transformation followed by a ReLU activation.
The linear layer projects the biomarker features into
a capsule-specific latent space, while the ReLU ac-
tivation introduces nonlinearity to capture complex
biomarker interactions. Therefore, this network en-
sures efficient gene extraction and enhances the abil-
ity of the CaT model to learn discriminative local
representations. This design enables the CaT model
to project the input gene expression vector into mul-
tiple capsule embeddings, which captures distinct as-
pects of the underlying biological patterns. The re-
sulting embeddings are then contextualized by self-
attention mechanisms in the Transformer encoder.
Moreover, the optimization of hyperparameters and
structures for the models plays a vital role in im-
proving the detection performance of the proposed
algorithm. Hence, a grid search with LODO-CV pro-
cedure is applied for identification of optimal mod-
els, namely RF, LR, SVM, XGboost, CNN, MLP and
CaT in this work, which systematically explores opti-
mal parameter combinations and selects the most ef-
fective structures based on the highest validation per-
formance, leading to overfitting avoidance and gener-
alization improvement. The optimal CaT structure
includes 4 capsules in which each of them adopts a
dimension of 32, followed by a transformer encoder
with 2 attention heads.

A comparison with existing works, as shown in Ta-
ble 4, highlights the superior performance of the pro-
posed algorithm. Indeed, the authors of [29] intro-
duce a capsule network combined with a transformer
to develop a sepsis diagnostic model using single-
cell RNA sequencing data and subsequently transfer
it to bulk RNA data. Their capsule network con-
sists of fully connected and capsule layers in which
the former projects gene expression into eight pri-
mary capsules and the latter contains 20 capsules,
each of them represented as a 16-dimensional vec-
tor computed through dynamic routing. However,
we propose a simple capsule network, including 4
capsules, each consisting of a linear projection fol-
lowed by a Relu activation. This simple modification
significantly reduces computational complexity while
still enabling the generation of diverse capsule embed-
dings. As shown in Table 4, the proposed CaT model
achieves similar value of AUC but remains simplicity
and generalization in comparison with [29].

The first limitation of our work is a large sub-
set of 135 final biomarkers selected by the proposed
method, which requires a time-consuming, complex-
ity process, which possibly increases the overall cost
to profile them in real-world clinical settings and re-
sults in a significant challenge for application deploy-

Table 4: Performance comparison between the pro-
posed algorithm and existing works.

Ref Acc Mcc AUC
[15] NA 713 83.7
[17] NA NA 849
[129] NA NA 980
Proposed algorithm 96.8 85.6  98.0

ment on a large-scale. The second limit is the im-
balanced class between sepsis and controls, which is
exhibited in the datasets used in this study.

It is obvious that the limitations of this study
will be addressed in future work. Indeed, differently
advanced methods to identify a small and efficient
biomarker subset are implemented to enhance prac-
ticality and cost-effectiveness in clinical applications.
Besides, variously effective strategies to address im-
balanced class problem are proposed to improve the
robustness of the models . Additionally, advanced
deep learning architectures, which have emerged as
promising algorithms to enhance predictive perfor-
mance, will be investigated and employed for further
studies.

6. CONCLUSION

Sepsis is a serious disease associated with high
mortality and long-term sequelae, which places a sub-
stantial burden on healthcare systems. Therefore, ac-
curate and timely prediction is essential to alleviate
this burden.

In this paper, we propose a novel method that in-
cludes dual selection of biomarkers and an efficient
and simple CaT model consisting of 4 capsule lay-
ers and a transformer encoder. The dual selection
of biomarkers including differential expression analy-
sis of IRGs to identify DEIRGs, followed by Boruta-
RF to select biomarkers, allows an effective search
for the most informative biomarkers related to sep-
sis detection. The utility of a large number of gene
datasets from different platforms covering diversity
of the participants, which reflects the heterogeneity
commonly encountered in real-world clinical settings,
definitely improves the generalization and reliability
of the proposed algorithm. Additionally, the quality
of selected biomarkers, which represent the most im-
portant characteristic of the sepsis patients, is also
significantly improved due to the use of the massive
gene datasets. A significant modification is imple-
mented in CaT model, which considers the individual
capsule layer as a feedforward subnetwork compris-
ing a linear transformation followed by a ReLU ac-
tivation for projection of input biomarkers into vec-
torized capsule embeddings processed by the trans-
former encoder to capture global interactions across
the biomarkers. The above modification of CaT
model combined with transformer encoder produces
a relatively high performance with an Acc of 96.8%,
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Sen of 98.0%, Spe of 87.9%, Mcc of 85.6%, and AUC
of 98.0% using LODO-CV procedure and the selected
biomarkers. The simulated results confirm the sim-
plicity, robustness, and reliability of the proposed al-
gorithm for the recognition of the sepsis, which is
potential application in practical environments.
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