
40 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY, VOL.20, NO.1, January 2026

ECTI Transactions on Computer and Information Technology
Journal homepage: https://ph01.tci-thaijo.org/index.php/ecticit/

Published by the ECTI Association, Thailand, ISSN: 2286-9131

Edge-to-Cloud Long Short-Term Memory Model for Ambient
Carbon Monoxide Level Prediction

Alauddin Maulana Hirzan1, April Firman Daru2, Susanto Susanto3 and Ahmad Rifa'i4

ABSTRACT Article information:
Carbon monoxide (CO) is a harmful gas from incomplete fuel combustion,
often found in motor vehicle emissions. Prolonged exposure can cause
serious health issues or death. While existing Internet-of-Things (IoT)
systems monitor CO levels, most lack predictive capability. One prior
study used an Arti�cial Neural Network with limited accuracy (79%). To
address this, a new IoT-based CO prediction model is proposed using a
Long Short-Term Memory (LSTM) algorithm. The model predicts fu-
ture CO concentrations based on seasonal patterns, empowering users to
anticipate and proactively respond to potential exposure. By leveraging
Edge-to-Cloud architecture, this approach enables low-power edge devices
to send data to the cloud for accurate forecasting without local model de-
ployment. Based on the evaluation, the model achieved 98.42% accuracy,
outperforming previous approaches by 19.42%. It also showed superior per-
formance against other algorithms, with the lowest MAE (0.026305), MSE
(0.016004), RMSE (0.126506), and the highest R² (0.997647). Evaluation
with AIC and BIC con�rmed its reliability, scoring zero after MinMax scal-
ing. The model demonstrates a substantial advancement in predictive CO
monitoring, giving users actionable insights to protect health and safety.
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1. INTRODUCTION

Carbon monoxide (CO) is a poisonous gas gener-
ated by the partial combustion of fuels in motorcycles
or cars. External factors that a�ect CO concentra-
tion include the type of fuel used (such as gasoline or
diesel), the number of engines operating, the speed
and density of tra�c, and ambient temperature. Al-
though CO can be produced outdoors, it can also
accumulate indoors through activities such as smok-
ing, the use of gas heaters, and running a motorcycle
in a garage. Unlike many gases, CO is colourless and
odourless[1], [2], yet it is dangerous if a person is ex-
posed to a high concentration for a long time. Since
Carbon Monoxide is easier to mix with haemoglobin
into carboxyhaemoglobin, the risk of Carbon Monox-
ide poisoning is higher than Carbon Dioxide. The
WHO carbon monoxide report states that lower and
higher exposures impact human life. Low Carbon
Monoxide exposure caused signi�cant focus impair-
ments. Angina Pectoris (or known as chest pain)
may occur as well[3], [4]. At higher exposure, Car-

bon Monoxide caused death for animals during lab
tests.[5], [6].

For these reasons, many studies focused on mon-
itoring ambient CO levels in the air. In 2020, a
study designed a low-cost atmospheric pollution sta-
tion. According to the evaluation, the developed
model highly correlates with a �xed station of r =
0.92 and r = 0.91[7]. Within the same year, another
study focused on creating a gas detection and warn-
ing system for older adults. Compared to a previ-
ous study, the developed model can transmit data
through the MQTT protocol and gives alerts with a
buzzer, vibration, and text noti�cation during criti-
cal situations[8]. This model was similar to the model
designed in article[9]. In 2021, the development of the
CO monitoring model continues. An article used the
Internet of Things (IoT) and Long-Range Wireless
Area Network (LoRaWAN) to monitor CO concen-
tration in a coal mine. The designed model is capa-
ble of sending an alert to the coal supervisor when the
CO concentration reaches a critical level and saving
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miners’ lives[10]. A different model also implemented
an Artificial Neural Network to predict CO concen-
tration. Based on the evaluation, the designed model
had an accuracy of up to 79%[11]. A carbon monoxide
monitoring model is still actively developed in 2022.
Article[12] designed an indoor monitoring model to
monitor CO concentration. Based on the evaluation,
the designed model consumed only 0.321mWh, and
the notification can be received through a smartphone
or personal computer. An article[13] in 2023 used a
different approach to designing a monitoring model.
Unlike the model in previous years, which only used
one sensor, the model in the article implemented two
gas sensors, MQ-135 and MQ-2. However, the de-
signed model can only alert the user through a smart-
phone for easier access. The most recent CO moni-
toring models were designed in 2024 and 2025. The
model developed in 2024 was implemented to moni-
tor CO pollution from diesel exhaust using an ESP32
microcontroller and an IoT platform[14]. Meanwhile,
a model developed in 2025 combined MQ-7, DHT-11,
and ESP8266 to monitor Carbon Monoxide wirelessly
through the ThingSpeak platform. This designed
model is capable of controlling ventilation based on
the CO concentration level[15].

Although the designed models in the past success-
fully monitored the CO concentration level, they had
several weaknesses. The first weakness is the imple-
mentation of the sensor. Only one study properly
used MQ-7 as the primary sensor to detect ambient
CO concentration. However, the MQ-7 model was
unsuitable for battery or low-power models due to
cyclic heating. Furthermore, the supporting sensor
for CO is only DHT11 to detect temperature and
humidity. The DHT11 sensor has a limited range
to detect temperature compared to other sensors[16],
[17]. The second weakness is that the article imple-
ments an artificial neural network (ANN) to predict
CO concentration. This algorithm relies on the cor-
relation between variables to increase its accuracy.
Thus, the prediction would not be accurate if the
independent variables have low correlation with the
dependent variable[18], [19]. The article only imple-
ments ANN; the other studies do not implement any
algorithm. Thus, most previous models cannot pre-
dict the ambient CO concentration.

To address these weaknesses in previous models,
this study aims to design an ambient CO monitor-
ing model capable of predicting concentration levels
by implementing Long Short-Term Memory (LSTM)
with an Edge-Cloud architecture. Compared to pre-
vious models, the proposed model utilises MQ-9
rather than MQ-7. MQ-9 is easier to implement
and allows faster deployment compared to MQ-7[20],
[21]. Besides that, this model also utilises BME-
280 to measure temperature, humidity, and air pres-
sure for supporting data. Although the supporting
data will not be used for the LSTM model, these

data will help create predictions for comparison in
the evaluation phase. Compared to DHT-11, BME-
280 offers pressure measurement and a wider mea-
surement range[20], [22]. To address the problem
with the machine learning algorithm implemented in
the article[11]. This study will implement the Long
Short-Term Memory (LSTM) algorithm to predict fu-
ture CO concentrations using time series data. Since
the LSTM algorithm requires significant computing
resources and is not suitable for direct deployment
on resource-limited embedded systems such as the
ESP32, this study will employ an Edge-to-Cloud ar-
chitecture. In this setup, the ESP32 device reads
CO concentration levels from the environment and
transmits the readings to a cloud server via REST
API. The cloud server receives the data, runs the
LSTM prediction model on the incoming data, and
then stores both the original and predicted values for
permanent retention.

The gaps between past and proposed models are
methodological and evidence gaps. First, most pre-
vious models did not use any machine learning algo-
rithm except one, so they could not predict outcomes.
One model used an ANN, but its accuracy was low.
This study, in contrast, will use LSTM, which pre-
dicts time series data accurately, so independent vari-
ables are not needed. Second, past models, including
the one with ANN, did not train using time series
data. This study will use the time series CO dataset
for training, and the data type will impact the ma-
chine learning model’s behavior.

The novelties of this study are implementing an
Edge-Cloud architecture to produce LSTM predic-
tions by combining an Edge device to collect environ-
mental data and a Cloud to create predictions based
on the received data[23], [24]. This study also imple-
ments an MQ-9 sensor as the primary sensor to collect
ambient CO concentration in the air and a BME-280
sensor to collect supporting data for prediction com-
parison in the evaluation phase. Besides that, this
study also utilises time series datasets for training
and prediction instead of cross-sectional data.

This article is divided into different sections. The
first section is the introduction, which explains the
main problem, the state of the art (the most recent
and advanced developments in the field), the problem
with the current model, and the purpose of the study.
Next, the method used by the study to ensure repro-
ducibility is described, making it possible for future
studies to repeat the process and achieve the same
results. This is followed by the presentation and dis-
cussion of the proposed model’s results. Finally, the
overall study concludes with a summary.

2. METHOD

This section explains the research design, tools or
software, data gathering process, LSTM model cre-
ation, and analysis. Each subsection is important to



42 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.20, NO.1 January 2026

ensuring model and result reproducibility in future
studies. The first subsection is the research design,
which is the foundation of this study. The required
tools or software subsection explains how to write a
model or gather the data. Then, the data gathering
process is used to collect the required training data
from the environment. This study explains the train-
ing process in the LSTM model creation subsection,
finding the correct parameters. Then, the last sub-
section is the analysis, in which this study evaluates
the model’s performance.

2.1 Research Design

This subsection explains the research design used
as the foundation of this study. This study used an
experimental design. The first step was to find the
problem in an environmental issue. Environmental is-
sues are common in urban areas, including Semarang
city, Indonesia. Many vehicles were on the road and
produced many different gases. Since this occurrence
happened almost daily, it raised concerns about envi-
ronmental issues. To narrow the problem, this study
only focused on the environmental issues in Univer-
sitas Semarang since the number of students riding
motorcycles is high during class. This study observed
and found environmental problems in Universitas Se-
marang. The next step was to start the data gath-
ering process and experimentation with the LSTM
model and Internet of Things prototype. This study
evaluated them later in the evaluation step.

2.2 Required Software and Tools

This subsection explains the tools and software
required to gather environmental data for the pro-
posed model. This study breaks down the required
items into two categories: the IoT prototype, which
collects environmental data, and the LSTM model,
which processes this data for analysis. To gather the
required data, this study must first build the IoT pro-
totype. This step can be done easily by using an
ESP32 development board as the central processing
board to collect environmental data through sensors.
This development board is connected with two sen-
sors: the MQ-9 sensor to collect ambient CO concen-
tration in the air and the BME-280 to collect support-
ing data like Temperature, Humidity, and Pressure.
This prototype connects to a wireless access point
to send the collected data using the MQTT proto-
col. To support longer operation, the prototype is
powered by a 20,000mAh battery. This study used a
private MQTT broker to prevent high traffic or data
mixed with public data. Figure 1 illustrates the block
diagram of the data gathering prototype.

Figure 1 illustrates the connection between the
ESP32 development board, sensors, battery, internet
access point, and database. According to Figure 1,
the ESP32’s analog input (A0 pin) is connected to
the analog output of the MQ-9 sensor, from which it

Fig.1: Block Diagram for Data Gathering Proto-
type.

receives CO data. The ESP32 is also connected to the
BME-280 sensor via the I2C interface, receiving tem-
perature, humidity, and pressure data. To power the
entire prototype, this study used a power bank with
a 20,000 mAh capacity, allowing for longer operation
time. The study also used a battery-powered portable
wireless modem to provide connectivity to a private
MQTT broker server. Once all components are prop-
erly connected and booted, the prototype IoT can
gather the required data and store it in a database. In
this case, the database uses Comma-Separated Value
format for easier preprocessing later.

After designing the IoT prototype, the next step
was to reprogram the ESP32 board to gather data
from each sensor and publish it to the MQTT bro-
ker. The data gathering process is illustrated in the
flowchart in Figure 2.

Fig.2: IoT Prototype Flowchart.

Figure 2 illustrates the flow process inside the IoT
prototype programmed with the MicroPython lan-
guage. This study decided to use MicroPython in-
stead of other languages (C++ or Lisp) because it
was faster to deploy and did not require compilation.
The flow started by initialising wireless connectivity
to the access point. This step was critical to ensure
that the IoT prototype could send data to the MQTT
broker. The prototype would try to connect when
the Internet was unreachable before proceeding to the
next step. After the Internet became reachable, the
prototype initialised the sensor modules before mea-
suring environmental data. Then, the environmental
data was measured and pushed to the MQTT bro-
ker. Once the data is correctly pushed to the MQTT
broker, the prototype measures again and loops the
process until an interruption occurs. Once the pro-
totype is completed, the next step is to gather the
data.
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2.3 Data Gathering

This subsection explains the data gathering pro-
cess, including how much data was gathered. An
incorrect data gathering process may lead to an in-
correctly trained LSTM model and inaccurate pre-
dictions. This study configured the IoT prototype to
gather environmental data such as CO, Temperature,
Humidity, and Pressure for 24 hours with 10-second
intervals. Table 1 below is the sample data received
from the prototype.

Table 1: Sample Data from IoT Prototype.

Timestamp
Temp Humi Press CO
(◦C) (%RH) (hPa) (ppm)

11/04/2025
26.19 57.73 1007.67 0.02

08:00
11/04/2025

26.18 57.47 1007.69 0.01
08:00

11/04/2025
26.18 57.36 1007.72 0.02

08:00
. . .

12/04/2025
31.21 47.82 997.56 0.13

07:59
12/04/2025

31.18 47.91 997.61 0.11
07:59

12/04/2025
31.18 47.95 997.61 0.08

08:00

Table 1 contains a partial part of the whole dataset
gathered by the IoT prototype. Out of a total of 9,326
rows collected, only the Carbon Monoxide data col-
umn was selected for LSTM model training, as LSTM
only required the target feature. This dataset was
also used to create a comparison model for evaluation.
Once the necessary Carbon Monoxide data were col-
lected, the study continued with preprocessing. Data
was split using a 70% training and 30% testing ra-
tio. Data denoising or normalisation was conducted
using the Exponential Moving Average (EMA), con-
sidering a look back of 30 data points for each case.
EMA was applied to both training and testing data
before initiating the training phase to reduce noise in
the dataset.

2.4 Long Short-Term Model

This subsection explains the LSTM model creation
process, inference mechanism, and deployment us-
ing Edge-to-Cloud architecture. In order to train an
LSTM model, the required data must be gathered be-
forehand. After obtaining the primary training vari-
able, this study created the LSTM model. During
the LSTM model creation process, this study used a
brute-force approach by testing possible internal and
external parameters, epochs, and denoising methods
to obtain the best parameters to predict CO concen-
tration. Table 2 shows the best configuration that
this study found to create a prediction model.

Table 2 shows the configuration for the LSTM
model with input and output dimensions of 1, mak-

Table 2: LSTM Model Parameters.
Parameter Configuration

Epochs 1684
Hidden Dimension 8
Layer Dimension 2
Input Dimension 1

Output Dimension 1
Sequence Length 6

Exponential Moving Average 30
Denoise

ing it a regression model. The model includes eight
hidden dimensions and two layers. The denoising
method uses an Exponential Moving Average (EMA)
of 30 (5 minutes, based on a 10-second interval).
Training and testing require three-dimensional data,
so the sequential length was set to six, allowing the
model to use six consecutive data points as input.
The model was trained for 1684 epochs, with the best
evaluation result achieved. Figure 3 shows the loss
during training.

Fig.3: LSTM Model Training Losses.

Figure 3 illustrates the LSTM model training
losses with the required dataset. Based on this figure,
the LSTM minimised its mean squared error loss from
1.0192×10-2 to 1.4784×10-5. This result indicated
that the LSTM model successfully learned the time
series pattern inside the CO dataset. After success-
ful training, the LSTM deployment to a cloud server
involved three steps: (1) exporting the model’s state
weights, (2) saving them in a portable format, and (3)
uploading the portable file to the cloud environment.
These steps ensured that the model could be easily
deployed while preserving the exact trained weights.
Figure 4 illustrates the Edge-to-Cloud topology for
online inferencing.

Fig.4: Edge-to-Cloud Architecture for LSTM Model
Inferencing.

Figure 4 illustrates the architecture that allows the
LSTM model to infer without being implemented di-
rectly into the edge device. Since no neural network
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algorithm could be deployed directly on the ESP32
board, the most possible deployment method was via
an external server with a REST API endpoint. Based
on Figure 4, the IoT prototype, as an edge device,
sends sensor data to the server via REST API. The
server, deployed with an LSTM model and a REST
API endpoint, received and inferred the data. All
prediction results were stored in a database for easier
analysis in the evaluation phase.

2.5 Evaluation

Evaluation is the most important step, indicat-
ing whether the proposed model is better than the
previous model or vice versa. This study used sev-
eral methods to evaluate the proposed model. The
first method compares the LSTM prediction with real
data. The second method compares the LSTM pre-
diction with other time series-based algorithms, like
Autoregressive Integrated Moving Average (ARIMA)
and Fuzzy Time Series Chen (FTS Chen). The last
evaluation is to compare with another algorithm like
Artificial Neural Network (ANN), Linear Regression
and Random Forest. Besides comparing side-by-side
with another algorithm, this study also evaluates
with a statistical approach using Mean Average Er-
ror (MAE), Mean Squared Error (MSE), Root Mean
Squared Error, and R2[25], [26]. The following equa-
tions are the calculation formulas for each statistical
analysis.

MAE =
1

num

num∑
iter=1

|actualiter − prediter| (1)

MSE =
1

num

num∑
iter=1

(actualiter − prediter)2 (2)

RMSE =2

√√√√ 1

num

num∑
iter=1

(actualiter − prediter)2

(3)

R2 = 1−
∑num

iter=1(actualiter − prediter)2∑num
iter=1(actualiter − actualiter)2

(4)

Where num refers to the total number of the dataset,
iter refers to the iteration number or index. Each
formula has a different purpose. MAE measures the
difference between actual and predicted errors. MSE
measures the average squared error between two val-
ues. RMSE measures MSE but is aware of the scaling.
R2 was also known as the coefficient of determina-
tion, measures the proportion of variance in predic-
tion. This study also used Akaike Information Crite-
rion (AIC) and Bayesian Information Criterion (BIC)

to validate the best model among all algorithms.[27],
[28], [29]. The following formula was used to calculate
AIC and BIC.

AIC = 2 · param− 2 · ln(L̂) (5)

BIC = ln(num) · param− 2 · ln(L̂) (6)

Where param is the number of parameters used in the
model, followed by the maximum likelihood value’s
natural logarithm (ln). BIC shared a similar equation
structure with AIC, with an additional number as the
number of observations (or the tested data)

3. RESULTS AND DISCUSSION

This section consists of two subsections. The first
subsection explains the proposed model’s evaluation
result compared to actual data and with other time-
series algorithms. This study also provides statistical
evaluation results to compare which algorithm best
predicts ambient CO concentration. Meanwhile, the
second subsection discusses the results, implications,
strengths, weaknesses, and future studies of this type
of research.

3.1 Results

This subsection explains the evaluation result from
the proposed model. The first evaluation result was
comparing the LSTM model with the actual data.
Figure 5 illustrates the difference between actual data
and LSTM prediction.

Fig.5: Comparison of Actual Data and LSTM Pre-
diction.

Figure 5 compares actual data from the IoT proto-
type to the LSTM prediction. At the 996th timestep,
the LSTM predicted 3.678, closely matching the ac-
tual value of 3.729. At the 2368th timestep, the
LSTM predicted 4.003 compared to the actual value
of 3.718. The deviation between actual and predicted
values was minimal. To further evaluate LSTM’s per-
formance, Figure 6 compares it with other time-series
algorithms.

Figure 6 shows the comparison among time-series
algorithms. The evaluation was fair since this study
used LSTM, specifically tuned to detect temporal
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Fig.6: Comparison of LSTM with other Time Series
Algorithms.

patterns. At the 996th step, LSTM predicted a CO
concentration of 3.678 ppm, followed by FTS Chen
at 4.128 ppm, and ARIMA at 0.386 ppm. This in-
dicates that LSTM and FTS Chen had predictions
closest to the actual data for that step. At the 2368th
step, FTS Chen was closest to the actual value with
4.147 ppm, followed by LSTM at 4.462 ppm. How-
ever, these results do not establish LSTM or FTS
Chen as the best algorithm overall. The findings sup-
port that time-series algorithms can capture patterns
in Carbon Monoxide data over time. On the other
hand, ARIMA performed poorly, likely due to the
lack of exogenous variables and the need for more in-
dependent data to enhance prediction. Figure 7 then
compares a different algorithm not designed for time-
series datasets.

Fig.7: Comparison of LSTM with Another Algo-
rithm.

Figure 7 illustrates the comparison result between
LSTM prediction and other algorithms. According
to the Figure, only the LSTM prediction was close to
the actual data. In the 996th timestep, an Artificial
Neural Network predicted 0.484 ppm, linear regres-
sion predicted 0.589, and Random Forest predicted
0.349 ppm. These results were far from the actual
data, with a result of 3.729 ppm. Algorithms like Ar-
tificial Neural Networks, linear regression, and Ran-
dom Forest require supporting data to act as inde-
pendent variables that affect carbon monoxide. How-
ever, the results were far from the actual data. This
result is caused by the supporting data, which corre-
lates poorly with the carbon monoxide data. Thus, a
significant change only affects a small portion of the

Carbon Monoxide concentration. Figure 8 illustrates
the statistical comparison between all algorithms.

Fig.8: Statistical Comparison between Algorithms.

Figure 8 illustrates the statistical evaluations from
all algorithms. Several parameters, such as MAE,
MSE, RMSE, and R2, were included. The interpre-
tation of each parameter was different for R2. If the
model with the lowest MAE, MSE, and RMSE was
considered the best, then a model with the highest R2
(close to 1) was considered the best. Based on these
interpretations, the proposed model with LSTM pre-
diction was the best model with an MAE of 0.026305,
an MSE of 0.016004, an RMSE of 0.126506, and an
R2 of 0.997647. FTS Chen was in second place with
an MAE of 0.399192, an MSE of 0.159354, an RMSE
of 0.399192, and an R2 of 0.976572. The rest of the
algorithms were considered weak models with high
errors. The accuracy of the LSTM prediction model
was calculated using the Mean Average Percentage
Error and subtracting it from 100. With that calcu-
lation, the accuracy of the LSTM model was 98.42%.
This study calculated the AIC and BIC to validate
the best model among all algorithms to strengthen
this proof. Figure 9 illustrates the AIC and BIC com-
parison results between algorithms.

Fig.9: Validation with AIC and BIC.

Figure 9 illustrates the AIC and BIC results be-
tween algorithms. The interpretation of AIC and
BIC was based on the low score. However, there
was no baseline result for AIC and BIC. Thus, this
study used MinMax scaling to interpret the results
more straightforwardly. Based on the validation re-
sult, LSTM has the lowest AIC and BIC of 0, clearly
demonstrating its superiority in CO prediction. FTS
Chen follows with AIC and BIC of 0.359271, while
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the remaining algorithms have higher AIC and BIC
scores above 0.97. These results, together with previ-
ous evaluation and validation findings, firmly estab-
lish the proposed model as the best performer among
the compared algorithms. Further explanations will
be provided in the Discussion subsection.

3.2 Discussion

This subsection discusses the results, implications,
strengths, weaknesses, and future studies. The first
section highlights that the proposed model had the
nearest regression prediction to the actual data, with
the FTS Chen model as the next closest. Both the
proposed model and FTS Chen could predict CO con-
centration accurately by learning the time-series pat-
terns in the dataset. Autoregressive Integrated Mov-
ing Average underperformed among time-series algo-
rithms due to its reliance on unavailable exogenous
data during training. Some algorithms with support-
ing data still performed poorly due to weak correla-
tion between those variables (Temperature, Humid-
ity, and Pressure) and Carbon Monoxide concentra-
tion, leading to low accuracy.

The second discussion compares the designed
model in previous studies. Most of the previous mod-
els, except one article, were not equipped with a pre-
diction algorithm. Thus, the proposed model in this
study already exceeds the previous models in terms
of implementing a prediction algorithm. However,
to compare the performance of the prediction algo-
rithm, this study used article(11) as the baseline for
comparison. The model in that article successfully
predicted Carbon Monoxide concentration up to 79%.
In comparison, the proposed model successfully pre-
dicted Carbon Monoxide concentration with an accu-
racy of 98.42%. With a 19.42% accuracy difference,
the proposed model successfully surpassed the previ-
ous model’s accuracy.

The third discussion concerns the implications of
this result for the practical or policy side. The data
gathering alone indicated that the CO concentration
in Universitas Semarang’s parking lot was not high,
but that concentration may cause a milder risk if ex-
posed longer. The data gathering result may affect
the new policy for Universitas Semarang to mitigate
the CO concentration by adding additional exhaust
fans or a more open area in the parking lot. The
practical implication of this study lies in implement-
ing the proposed model. The prototype of the LSTM
prediction model can be implemented to create a mit-
igation alert whenever the CO concentration reaches
the warning zone. Thus, the students or staff may
avoid the affected area to mitigate CO poisoning.

The fourth discussion is about the strengths and
weaknesses of the proposed model. The strength of
the proposed model lies in the capability of the LSTM
model to learn time-series patterns from the data
set. Thus, additional data were not required. Fur-

thermore, increasing the row number of datasets will
increase the accuracy of the prediction model. An-
other strength of the proposed model is the low-power
operation. Since the ESP32 is a low-power process-
ing board, the battery usage for this board is rela-
tively low. Thus, the board can be used longer than
a System-on-Chip-based board (for example, Rasp-
berry Pi). The subsequent strength of the proposed
model is that a stronger processing board is not re-
quired at all. Since the prediction mechanism was
done in the cloud server, the edge node only needs
to send the data. There are several weaknesses in
the proposed model. The first weakness is the algo-
rithm itself. The LSTM algorithm is a type of al-
gorithm that leverages seasonality or trends within
a dataset. Without this pattern, LSTM would not
be able to learn the pattern and would produce low-
accuracy predictions. Thus, it is critical to capture
the seasonality of the data. The second weakness is
the application of LSTM. The model is only appli-
cable in the designed location and time. If the pro-
posed model predicts in different locations (for ex-
ample, the canteen area), the result may differ and
produce low accuracy. Besides that, an LSTM that
only learns hourly patterns will not be able to predict
daily patterns. Thus, daily patterns are required to
predict daily results. The third weakness is the ac-
curacy of LSTM prediction. Although the accuracy
of the LSTM model reached 98.42%, it was deemed
sufficient. As shown in Figure 6, there were several
incorrect predictions in time steps 996th and 2368th.
The fourth weakness of this model is the internet re-
quirement to send the data to the cloud server, since
it is impossible to process the prediction onboard.

The last discussion concerns future studies on
Carbon Monoxide prediction. Several improvements
could enhance the model. First, using a different on-
board machine learning model would enable indepen-
dent predictions. Second, including more LSTM data
may allow additional future predictions. Third, us-
ing supplemental data may improve accuracy in var-
ious algorithms. Fourth, adding sensors such as NOx
or PM2.5 could increase model variation, but each
sensor should be trained separately. In summary,
these changes could further refine predictions. The
study concludes that the LSTM-based model accu-
rately predicts CO concentration in Universitas Se-
marang’s parking lot at 98.42%, a 19.42% improve-
ment from the previous study.

4. CONCLUSIONS

Partial or incomplete fuel combustion in motor ve-
hicles emits carbon monoxide, a poisonous gas. This
gas alone may cause health problems like chest pain
and focus impairment. Higher exposure can cause
death. For that reason, several studies have fo-
cused on CO concentration monitoring with Inter-
net of Things technology. Most models implement a
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monitoring capability, but do not create predictions
for future alerts. Meanwhile, only one article imple-
mented an Artificial Neural Network to create pre-
dictions based on a dataset. However, the accuracy
of the past model was limited to 79%. Because of
this, this study proposes an Internet-of-Things-based
prediction model with a Long Short-Term Memory
algorithm to create future predictions. With Edge-to-
Cloud architecture, a low-processing board can create
a prediction by sending the data to the cloud without
deploying the prediction model onboard. Based on
the evaluation step, the proposed model produced a
regression prediction close to the actual data, achiev-
ing an accuracy of 98.42%. This is a 19.42% improve-
ment compared to the previous model. Besides that,
this study also compared other time series and non-
time series algorithms to evaluate performance. The
LSTM model outperformed all algorithms with the
lowest MAE of 0.026305, MSE of 0.016004, RMSE of
0.126506, and the highest R2 of 0.997647. To validate
the result, this study used AIC and BIC to determine
the best algorithm. Both AIC and BIC scored zero
after MinMax scaling, deeming the proposed model
with the LSTM algorithm as the best among the rest.
This explanation shows that the proposed model with
the LSTM algorithm is the best and successfully out-
performs both time series and non-time series algo-
rithms.
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