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ABSTRACT Article information:
PM2.5 is a silent yet severe pollutant that accumulates in the human body,
causing long-term health issues such as lung cancer. This study proposes
a novel fuzzy inference system (FIS) for PM2.5 forecasting, addressing the
nonlinear and dynamic nature of air pollution. Unlike complex, data-
intensive black-box models, the proposed FIS is transparent, interpretable,
and simple to implement. It uses only two lagged PM2.5 change rates and
nine fuzzy rules for accurate prediction. The model requires no geograph-
ical or emission-source data, which are often costly and region-speci�c.
Fuzzy rules are derived from natural PM2.5 rise-and-fall patterns, ensuring
logical consistency and minimal inputs. Using data from Chiang Mai, Thai-
land�one of the most polluted cities�the model was benchmarked against
MLR, MLP, LSTM, SVM, and Gradient Boosting. The FIS achieved up to
5% higher accuracy. Although the Diebold-Mariano test found no signi�-
cant di�erence, FIS showed comparable robustness with 49% fewer param-
eters and 56% fewer FLOPs. Optimal performance occurred at three input
lags and 27 fuzzy rules, balancing accuracy and complexity. Moreover, the
Chiang Mai FIS generalized well to other PM2.5-a�ected cities�Bangkok,
Jakarta, and Ho Chi Minh City�without modi�cations, maintained relia-
bility for both daily and extended to hourly forecasts.
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1. INTRODUCTION

Over the past decade, �ne particulate matter
(PM2.5) has become a major environmental and
health concern, especially in developing and indus-
trialized urban areas. Despite being preventable,
PM2.5 remains a heavy burden, mainly form com-
bustion sources. Since 2019, agricultural burning-
related PM2.5 has caused about US$1.1 trillion in
health damages. This is nearly double Thailand's
2019 GDP�nearly twice Thailand's 2019 GDP�and
driven health disparities across 39 countries, under-
scoring the need for targeted mitigation policies [1].

Biomass combustion has intensi�ed PM2.5 pollu-
tion across Southeast Asia. From 2000�2019, ris-
ing hotspot activity correlated with higher respira-
tory disease mortality [2]. Our 2012�2024 analysis
in Thailand con�rms this pattern, except in 2022
due to e�ective �re control. Transboundary haze re-

mains signi�cant, with Sumatra identi�ed as the main
haze source in Kuala Lumpur via NAME simulations
[3]. In Northern Thailand and Yunnan, WRF-Chem
and HYSPLIT analyses attribute dry-season PM2.5

to cross-border emissions from Myanmar and Lao
PDR [4], [5]. PM2.5 forecasting requires integrating
physical, chemical, and meteorological factors, mak-
ing it computationally demanding. Models such as
WRF-Chem [6], HYSPLIT [7], and CTMs [8] sim-
ulate atmospheric dispersion and chemical transfor-
mations but face uncertainties in parameterization,
input data, and resolution. Moreover, transbound-
ary smoke and emission-transport mechanisms fur-
ther complicate PM2.5 prediction.

Approaches to PM2.5 modelling di�er across re-
gions and frameworks. Classical multiple linear re-
gression (MLR) has been applied in India [9], Pak-
istan [10], and Vietnam [11], while nonlinear general-
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ized additive mixed models (GAMM) are used across
the Northern Hemisphere [12]. Support vector re-
gression (SVR) is common in China [13]. Neural net-
works (NNs) enhance prediction accuracy: MLP in
India [9] and Pakistan [10], CNN in Vietnam [11],
and LSTM or bi-LSTM in Jakarta [14], Liuzhou [15],
and Vietnam [11]. Hybrid models [10] and ensem-
ble methods—random forest (RF) [11], [15] and gra-
dient boosting (GB) [16]—show strong performance.
However, these black-box, data-driven models require
extensive training, risk overfitting, and lack inter-
pretability due to fixed, non-adaptive rules and im-
plicit assumptions. In contrast, adaptive fuzzy infer-
ence systems (FIS), though underutilized in PM2.5

forecasting, offer a compelling alternative. By us-
ing dynamically adjustable IF-THEN rules, FIS can
achieve reliable predictions with minimal training
data. Expert-defined rules allow post hoc error re-
finement, while the nonlinear fuzzy basis function
(FBF) (φfuzz) provides flexible yet interpretable in-
put–output mapping [17]-[18].

FIS-based models predict air quality index
(AQI) by capturing nonlinear pollutant relationships,
achieving over 89% accuracy with COx, SO2, NOx,
PM10, and O3 [19]-[20]. Genetic algorithm (GA)-
optimized FIS outperformed XGBoost and light gra-
dient boost machine (LightGBM) for PM10 in Mex-
ico [21], while grade-segmented FIS with fuzzy cogni-
tive mapping estimated PM2.5 and PM10 with lower
complexity than ANFIS [22]. Hybrid FIS–tree mod-
els predicted indoor PM2.5 [23]. Challenges remain
in parameter optimization: evolutionary tuning may
reduce interpretability, whereas grid-search hyperpa-
rameter selection is computationally intensive yet vi-
tal for generalizability.

This study presents a FIS PM2.5 model with
φfuzz and evaluates its performance against bench-
mark models: MLR with linear basis functions (φlin),
SVR with kernel functions (φSV R), NNs using fuzzy-
like activations (φNN ), LSTM for temporal learning
(φLSTM ), and GB with decision tree outputs (φGB).
The study focuses on Chiang Mai, northern Thai-
land, affected by local and transboundary biomass
burning. This region experienced persistent PM2.5

pollution for over two decades, ranking globally first
in 2024 with levels exceeding 300 µg/m3. Prolonged
exposure led to rising hospitalizations and lung can-
cer cases [24], highlighting the need for prediction.
Chiang Mai FIS PM2.5 model generalizes to other
polluted cities—Bangkok, Jakarta, and Ho Chi Minh
City.

This study highlights cost-effective FIS forecast-
ing. Benchmark models are trained on 2014–2018
data, whereas FIS relies on one year of pat-
tern recognition with minimal training. Testing
covers 2019–2024. FIS parameters are manually
tuned, while benchmarks optimize errors. Perfor-
mance is evaluated via R2, MAE, RMSE, MAPE,

MBE, MdAE, residual analysis (t-stat, p-values),
and Diebold-Mariano Test. Complexity is assessed
through parameter counts, inference operations, and
asymptotic complexity O(·). Key contributions: (1)
FIS achieves competitive PM2.5 prediction with min-
imal inputs and pre-processing, suitable for resource-
limited or real-time applications; (2) offers inter-
pretable, rule-based transparency; (3) FIS rules re-
veal PM2.5 patterns in Northern Thailand, showing
increases during biomass burning, declines under mit-
igation, and stabilization during trend reversals; (4)
FIS generalizes spatially and temporally, applicable
to Bangkok, Jakarta, and Ho Chi Minh City, enabling
reliable hourly forecasting.

2. METHODS AND MATERIALS

2.1 Study Area

Chiang Mai (CM), Northern Thailand, was se-
lected for PM. modelling, having been studied ex-
tensively [25]–[31]. Surrounded by high mountains,
the region traps air pollutants and borders Myanmar
and Lao PDR. Intensive agricultural activity, com-
bined with widespread open-field and forest burn-
ing starting in December, drives seasonal pollution
from January to May. Cross-border fires exacerbate
transboundary haze, the “smoke season,” visible from
dense fire hotspots (Fig. 1). With over 12 million res-
idents, PM2.5 poses serious public health risks. While
Bangkok, Thailand’s capital, experienced episodic
PM2.5 spikes in January 2025 (65–101 µg/m3) from
traffic and industry. In contrast, CM suffers sustained
seasonal pollution with ∼217 days annually exceeding
WHO guidelines. Peak in March–April often surpass
70 µg/m3 and can reach 271 µg/m3. Accurate PM2.5

forecasting is therefore critical for effective long-term
mitigation.

2.2 Data and Data-Preprocessing

Developing an effective PM2.5 prediction model for
Chiang Mai requires integrating diverse datasets, fo-
cusing on environmental and atmospheric parame-
ters. Meteorological predictors such as temperature,
pressure, gust wind, and relative humidity [25], [28],
[31] were obtained from daily bulletins and historical
records from the Chiang Mai Meteorological Depart-
ment. Co-occurring air pollutants—CO, NOx, and
SO2—were sourced from the Pollution Control De-
partment (PCD) of Thailand. To assess generaliza-
tion, PM2.5 data from other regions were included:
daily data from Bangkok and Jakarta, where sources
include traffic, industry, and biomass burning, and
hourly data from Ho Chi Minh City, Vietnam, where
PM2.5 mainly arises from construction and motorcy-
cles, influenced by coastal factors [32]. These datasets
enabled evaluation of the spatial and temporal per-
formance of the FIS developed for daily PM2.5 fore-
casting in Chiang Mai.
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PM2.5concentrations, the target variable, are typ-
ically measured by ground monitoring stations, but
high installation and maintenance costs limit cover-
age. Portable electrostatic dust monitors (EDMs)
achieve over 90% accuracy [33], and low-cost partic-
ulate matter sensors (LCPMS) using laser scattering
reach up to 98% consistency with official PCD data
[34]. These affordable sensors make PM2.5 a practical
standalone predictor, reducing reliance on expensive
or error-prone datasets. Accurate forecasting using
only historical PM2.5 data—especially in regions with
consistent seasonal patterns like Chiang Mai—offers
a cost-effective, scalable solution. This study uses
data from two official Chiang Mai stations, 35T (City
Hall) and 36T (City High School), recording PM2.5

from 2012 to 2024, initially as integers, with decimal
precision added in 2023 (Fig. 2).

Fig.1: MODIS AQUA Satellite-Detected Fire
Hotspots on April 1, 2024, Indicating Transboundary
PM2.5 Haze over Chiang Mai and Surrounding Areas.

Fig.2: Daily PM2.5 Concentrations in Chiang Mai,
Thailand, between 2012 and 2024.

Daily PM2.5 data from January–May 2012–2024
(∼1,967 points) were compiled, with ∼30 missing
values filled via cubic interpolation (Appendix A).
Typical models split data into training and test-
ing subsets (commonly 70:30) to optimize parame-
ters. In contrast, the proposed FIS requires only
∼10% of selected years, chosen for distinct PM2.5 pat-
terns—extremes, sharp peaks, or rapid changes—to
construct fuzzy rules (see Section 3), reducing the
need for extensive training while preserving predic-
tive performance. Feature selection is unnecessary,
as the model uses only past PM2.5 values. To main-
tain interpretability, the number of lag inputs is lim-

ited to two, forming a simple three-variable model
with the predicted PM2.5, suitable for 3D visualiza-
tion. Adding more variables would increase complex-
ity. Unlike models using multiple predictors or ma-
chine learning algorithms—which require data nor-
malization (e.g., Z-score)—the FIS relies solely on
PM2.5 and rule-based logic. Thus, normalization is
unnecessary, and the focus is on capturing logical pat-
terns in PM2.5 behaviour through fuzzy rule construc-
tion, preserving transparency and simplicity.

2.3 FIS Framework for PM2.5 Prediction
Modeling

The PM2.5 modelling (Fig. 3) employs a
Mamdani-type FIS optimized for interpretability via
minimal input variables and fuzzy sets, adhering
to Zadeh’s granularity principle to prevent overfit-
ting. Temporal PM2.5 values (e.g., PM2.5(t–2),
PM2.5(t–1), PM2.5(t)) are converted into rate
changes, ∆PM2.5(t) and ∆PM2.5(t–1), which serve
as fuzzy inputs. The output is the predicted in-
crement IncPM2.5(t), used to compute PM2.5(t +
1) = PM2.5(t) + IncPM2.5(t). Thus, the out-
put of FIS model for PM2.5 can be represented by
the function ffuzz: [Min∆PM2.5 , Max∆PM2.5]2 →
[MinIncPM2.5

, MaxIncPM2.5
], which minimizes

t∑
i=4

(∆PM2.5Actual
[i]− ffuzz[∆PM2.5(i),∆PM2.5(i− 1)])2. (1)

For the inputs and output, their domains are
covered with spanning P and Q membership func-
tions (MFs), respectively, as µ∆PM2.58(t),i and
µ∆PM2.58(t−1),j , and µIncPM2.5(t),k, where i, j =
1, . . . , P , and k = 1, . . . , Q. MF values µ ∈ [0, 1].
Three stages include fuzzification, rule evaluation,
and defuzzification (Fig. 3). In fuzzification, MFs
convert crisp input values into fuzzy µPM2.5(t) and
µPM2.5(t−1), representing the input strength. Trape-
zoidal MFs (TrMFs), µTrMF (x; a, b, c, d), are used at
domain boundaries, while triangular MFs (TMFs),
µTMF (x;α, β, γ), are used in central regions. MF pa-
rameters (a, b, c, d, α, β, and γ) are design by trial-
and-error with expert, including choice of P and Q.

In the rule evaluation, expert-defined fuzzy values
analysis are fed into the rule base to construct logi-
cal mappings between input PM. trends and output
increments of PM2.5. The P × P fuzzy IF-THEN
rules are formulated from expert knowledge as fol-
lows, Rule ij-th; If ∆PM2.5(t) isAi and ∆PM2.5(t–1)
is Bj THEN IncPM2.5(t) is Cij , where Ai, and Bj ,
are input linguistic terms (e.g., Negative Big (NB),
Zero Rate (Z), or Positive Big (PB)), and Cij is
the output linguistic terms (e.g., Decrease (D), Not
Change (NC), or Increase (I)) corresponding to the
respective MFs (i and j). The interaction of input
fuzzy values through the antecedent part of each rule
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yields the firing strength wij , computed using the
minimum operator,

wi,j = min
(
µ∆PM2.5(t),i, µ∆PM2.5(t−1),j

)
. (2)

Fig.3: The Fuzzy Inference System (FIS) for PM2.5

Forecasting and Expert-Based Rule Generation.

In the defuzzification, Cij is represented by a crisp
value δPM2.5(t)ij , and the overall incremental PM2.5

output is computed using weighted average (3) with
φfuzz given in (4). Thus, the fuzzy output can be
expressed linearly in (5). The predicted PM2.5 of the
FIS model is given in (6).

IncPM2.5(t) =

∑P
i=1

∑P
j=1 wij × δPM2.5(t)ij∑P
i=1

∑P
j=1 wij

, (3)

where wij = µ∆PM2.5(t),i · µ∆PM2.5(t−1),j is the fuzzy
weight.

φfuzz,ij =
µ∆PM2.5(t),i·µ∆PM2.5(t−1),j∑P

i=1

∑Q
j=1 µ∆PM2.5(t),i·µ∆PM2.5(t−1),j

. (4)

IncPM2.5(t) = ΦT × δPM2.5(t)ij , (5)

where Φ = [φfuzz,11(X), . . . , φfuzz,PP (X)]T is
the fuzzy basis function vector and X =
[∆PM2.5(t),∆PM2.5(t–1)]T .

PM2.5(t+ 1) = PM2.5(t) + IncPM2.5(t). (6)

3. DESIGNING THE FIS FOR MODELLING
PM2.5

For FIS design, analysing ∆PM2.5 involves plot-
ting a histogram and calculating key metrics such
as range (R), standard deviation (SD), and mean.
A single-peaked histogram near zero suggests three
partitions—negative (N), zero (Z), and positive
(P )—are sufficient. Multiple peaks or broader
spreads may require five partitions (e.g., NB, NS,
Z, PS, PB). The distribution shape guides fuzzy
MF design: symmetrical distributions use equal par-

titions, asymmetrical distribution use unequal par-
titions, allocating smaller bins to denser regions.
Smooth datasets require 3–5 fuzzy sets, with three
for simplicity and five for precision, following Zadeh’s
granularity principle. K-means clustering can parti-
tion ∆PM2.5 into three or five clusters. A low SD/R
ratio (< 0.2) indicates smooth trends, while a high
SD/R (> 0.2) supports five partitions.

In designing a fuzzy prediction model for PM2.5,
training data from 2014–2018 and testing data from
2019–2024 are used. Cluster distributions for three
and five partitions across 2014, 2016, and 2018 (Fig.
4) highlight differences in granularity, with dense cen-
tral clustering suggesting finer granularity near the
mean and broader partitions for sparse tails, as in-
dicated by a primary peak and a smaller secondary
peak to the right of zero.

Fig.4: Comparison of ∆PM2.5 Distributions and
Cluster Partitions across 2014–2018, with Three Par-
titions Effectively Capture Key Trends with Simplic-
ity.

Variability metrics of ∆PM2.5(t) indicate low
variability, with SD/R < 0.2 in 2014 (R = 75,
SD = 10.9, SD/R = 0.14), 2016 (R = 134,
SD = 18.19, SD/R = 0.13), and 2018 (R = 42,
SD = 7.64, SD/R = 0.18), supporting three parti-
tions. Histograms and scatterplots reveal three main
clusters—N , Z, and P—justifying the choice, while
five partitions may overcomplicate the system. K-
means clustering (k = 3) confirms clear groupings,
balancing simplicity and accuracy for low-variability
data. Based on these findings, two FIS models were
developed. The natural rise-and-fall fuzzy (NRF-
fuzzy) system follows the inherent temporal PM2.5

trend, while the optimized NRF-fuzzy (ONRF-fuzzy)
system introduces RMSE minimization while preserv-
ing interpretability. Together, these models evalu-
ate baseline predictive performance and optimization
benefits, ensuring robustness of the proposed fuzzy



Fuzzy Inference Approach for PM2.5 Modelling with High Accuracy and Low Complexity 625

framework for PM2.5 forecasting.
For ∆PM2.5(t) and ∆PM2.5(t−1)), Fig. 5 defines

three MFs: NB (trapezoidal [−40,−40,−10,−5]) for
significant decreases; Z (triangular [−10, 0, 10]) for
minimal changes, and PB (trapezoidal [5, 10, 40, 40])
for significant increases. Trapezoidal shapes cover ex-
treme ranges (NB,PB) and triangular shapes cover
the central range (Z), balancing interpretability and
precision. These MFs capture the symmetric dis-
tribution of ∆PM2.5 centred around zero, reflecting
both variability and incremental PM2.5 changes. For
the output IncPM2.5(t), the NRF-fuzzy model uses
five MFs: V D with TrMF [−50,−50,−30,−20], SD
with TMF [−30,−15, 0], Z with TMF [−10, 0, 10],
SI with TMF [0, 15, 30], and V I with TrMF [20,
30, 50, 50] (Fig. 5(b)). In contrast, the ONRF-
fuzzy model simplifies IncPM2.5(t) to three TMFs:
SD for significant decreases [−50,−5, 0], NC for min-
imal changes [−15, 0, 15], and SI for significant in-
creases [0, 5, 50] (Fig. 5(e)). Next, for designing fuzzy
rules, a reasonable and interpretable set of 9 rules of
NRF-fuzzy model to predict PM2.5(t+1)=PM2.5(t)+
IncPM2.5(t) are presented in Table 1, for example:
Rule 1: If ∆PM2.5(t) is NB and ∆PM2.5(t1) is NB,
Then IncPM(t) is V D (Sharp decrease continues).

Fig.5: Input and Output MFs, and 3D Surface
Input-Output Plots of (a) NRF and (b) ONRF FIS.

Table 1: Comparison of Standard Rules and Trend-
Modified Rules for Predicting Increment PM2.5.

Rules 1 and 9 predict strong decreases or increases
(V D or V I) when both inputs align, while counter-
acting inputs, such as in Rules 3 and 7, predict stabil-
ity (NC). Rule 5 captures stable conditions when in-
puts indicate no change, and intermediate rules (e.g.,

2, 4, 6, 8) handle gradual transitions with moderate
changes.

To enhance temporal representation, the NRF-
fuzzy model is extended by using 3-input system
with 27 rules. Each input variable ∆PM2.5(t),
∆PM2.5(t − 1), and ∆PM2.5(t − 2) is described
by three linguistic terms—NB, Z, and PB—while
the output IncPM2.5(t) used five terms: V D,
SD, NC, SI, and V I. Rule construction fol-
lowed the NRF principle: when all inputs aligned
(NB–NB–NB,PB–PB–PB), the system produced
the strongest outcomes (V D, V I); conflicting signals
yielded NC; and partial alignments resulted in mod-
erate changes (SD, SI). For example, Rule 1 states:
If ∆PM2.5(t), ∆PM2.5(t − 1), and ∆PM2.5(t − 2)
are {NB, NB, and NB}, Then IncPM(t) is V D.
While the full set of rules is summarized in Table 2.

Table 2: FIS Rules with Three Input Lags with
Three MFs.

The main characteristics of the 27-rule base, com-
pared with the previous 9-rule version using two lags,
are summarized as follows. Rules 1 and 27 represent
the strongest outcomes when all inputs align. Rules
3, 6, 7, 8, 12, 16, 19, 20, and 22 capture counteract-
ing effects, yielding NC (no change). Mixed combi-
nations of NB, Z, and PB produce SD or SI, de-
pending on the dominant trend, while central cases
such as Z–Z–Z or Z–Z–PB correspond to stable or
small-change conditions.

In the benchmark PM2.5 prediction models (2012-
2018 training data), Figures 6(a)–(e) illustrate the
MLR, SVR, NN, LSTM, and GB models, respec-
tively. The corresponding basis functions and output
prediction expressions, Eq. (7)–(21), are summarized
in Table 3.
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Fig.6: The Benchmark PM2.5 Prediction Models.

For MLR, the fuzzy basis function φfuzz, Eq. (4) is
replaced by linear basis functions φlin, Eq. (7), rep-
resenting lagged PM2.5 features. Using Lasso (L1)
regularization, the optimal subset of two lags is φlin
= [PM2.5(t), PM2.5(t − 5)], reflecting immediate lo-
cal emissions and delayed transboundary haze effects.
The coefficients (in Eq. (8)) are ω0=3.04, ω1=0.84,
ω5=0.084. For SVR (Eq. (10)), φSV R=K(X,Xi)
(Eq. (9)) with RBF kernels maps input to high-
dimensional spaces. Lasso selects the same two lags
(t and t5). Grid search tuned C ∈ [0.001, 1000], the
epsilon-insensitive loss ε ∈[0.001, 10], and the kernel
scale σ ∈[0.01, 100], yielding C=1000, ε=0.001, and
σ=100. The model used 698/1,050 support vectors,
indicating high accuracy but potential overfitting due
to complexity.

For NN, Eq. (12), φfuzz is replaced by activation
functions g(·) applied to the weighted inputs, form-
ing φNN , Eq. (11). Using two lagged PM2.5 values,
the model was tuned over hidden nodes H ∈ [5, 30],
learning rate η ∈ [0.001, 0.2]), and epochs Nepochs ∈
[100, 1000]) to balance bias-variance trade-offs. The

Table 3: Benchmark PM2.5 Prediction Models, In-
cluding Their Basis Functions and Output Prediction
Expressions.

optimal configuration—g(·)=tanh, H = 15, η = 0.01,
and Nepochs = 500—achieved minimal RMSE on val-
idation set.

For LSTM, integrating gating mechanisms and
memory updates over time, the input vector
PM=[PM2.5(t), PM2.5(t–1)]T is processed through
four gates: forget (ft) (Eq. (13)), input (it) (Eq.
(14)), candidate state (ct) (Eq. (15)), and output (ot)
(Eq. (16)), each computed using weighted sums of the
input PM and previous hidden state (ht–1). The cell
state (Ct) (Eq. (17)) updated by combining the previ-
ous stage and new candidate, modulated by the forget
and input gates. The φfuzz is replaced by the LSTM
output φLSTM = ht (Eq. (18)), derived from the up-
dated cell state and output gate, then passed through
a linear layer producing the final prediction PM2.5(t+
1) (Eq. (19)). Key hyperparameters: hidden units H,
η, dropout (pdrop), and Nepochs. These tuned within
H ∈ [50, 200], η ∈ [0.001, 0.01], pdrop ∈ [0.2, 0.5], and
Nepochs ∈ [50, 200], balancing accuracy and overfit-
ting. The optimal configuration—H = 100, pdrop =
0.2, η = 0.001, and Nepochs=100—yielded reduced
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RMSE and validation loss. Finally, for GB, φfuzz is
replaced by the outputs of sequentially trained deci-
sion trees forming φGB (Eq. (20)). Each tree cor-
rects residual errors from the previous one, and their
weighted sum provides the final PM2.5 prediction (Eq.
(21)). Model complexity and convergence depend on
the number of trees (K), η, and maximum tree depth
(MaxDepth). These were tuned over K ∈ [50, 200],
η ∈ [10−3, 1], and varying MaxDepth. The optimal
setup, η = 0.1, K = 50, and MaxDepth = 6, yielded
the lowest RMSE under 5-fold cross-validation.

4. RESULTS AND DISCUSSION

4.1 Direct Comparison of PM2.5 Prediction
Models

On the 2019–2024 test data, optimized FIS and
tuned benchmarks (MLR, SVR, NN, LSTM, GB)
were evaluated using R2, RMSE, MAE, MAPE,
MBE, and MdAE, with residuals tested under H:
mean error = 0 via t-statistics and p-values (Table
4, Fig. 7). Overall, MLR, FIS, and SVR yielded the
highest R2 (0.76, 0.75, 0.75). For RMSE, MLR =
14.96, SVR = 15.33, FIS = 15.42. MAE favoured
SVR, MLR, NN (≈ 9.8). MAPE remained low for
SVR = 23.37, NN = 23.76, FIS = 23.76. Minimal
bias appeared in FIS = 0.17, GB = 0.30, MLR =
0.42. Median errors were smallest for SVR = 5.76,
NN = 5.93, GB = 6.09, confirming their stable, low-
error prediction performance across years.

Residual analysis using t-statistics and p-values
confirms statistically sound model performance. Un-
der the null hypothesis (H), unbiased prediction re-
quires a t-statistic near zero and p-value > 0.05.
The FIS, SVR, and GB models met these conditions,
showing negligible, statistically insignificant residu-
als. This highlights their robustness and adaptability.
Overall, the proposed FIS achieved the most consis-
tent accuracy across all metrics, while MLR and NN
followed closely, demonstrating strong and competi-
tive predictive capabilities across the 2019–2024 eval-
uation period.

Figure 8 compares the predictive performance
of six models—MLR, SVR, NN, LSTM, FIS, and
GB—for PM2.5 forecasting. In each panel, red lines
denote predicted values, and green circles indicate ob-
served data. All models effectively capture overall
trends and seasonal fluctuations in PM2.5 concentra-
tions.

While all models capture PM2.5 trends, deviations
occur at peaks—most notably in SVR and LSTM,
which tend to over- or underpredict extremes, reflect-
ing noise sensitivity and possible overfitting. NN and
GB exhibit slight delays in high-concentration spikes,
while MLR and FIS align closely with observed data,
especially during rapid PM2.5 fluctuations. FIS deliv-
ers the most stable and accurate peak responses, bal-
ancing trend-following and residual control. Overall,
FIS ranks highest in robustness, followed by MLR,

Fig.7: Performance Comparison of Various Models
(MLR, SVR, NN, LSTM, GB, and FIS) Using R2,
RMSE, MAE, MAPE, MBE, and MdAE across the
Years 2019–2024 for the Study Area of Chiang Mai,
Thailand.

Table 4: Performance Metrics and Residual Anal-
ysis for Various Models, Including MLR, SVR, NN,
LSTM, GB, and FIS Models, with Results Presented
Numerically by Year for the Study Area of Chiang
Mai, Thailand.
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Fig.8: Comparison of Actual versus Predicted
PM2.5 from 2019 to 2024 using (a) MLR, (b) SVR,
(c) NN, (d) LSTM, (e) GB, and (f) FIS Models in
the Study Area, Chiang Mai, Thailand.

NN, and GB performing moderately, and SVR and
LSTM showing higher variability.

4.2 Pairwise PM2.5 Model Comparison via
DMT

The Diebold-Mariano Test (DMT) [35] statisti-
cally compares the forecasting accuracy of two models
over short horizons by evaluating differences in their
error distributions. In this study, it assesses six PM2.5

prediction models. The loss differential d represents
the performance gap between models, defined as ei-
ther squared-error d = (e1

2 − e2
2) or absolute error

d = |e1| − |e2|. depending on the nature of the eval-
uation. The DM statistic is subsequently computed
using the mean and variance of d as

DMstat =
mean(d)√
Var(d)/N

, (22)

where N represents the sample size.

The DMT evaluates the null hypothesis H0:
E(d) = 0. A large absolute DMstat or p < 0.05 re-
jects H0, confirming significant accuracy differences.
As shown in Table 5, the FIS shows a slight advantage
over others, but high p-values (> 0.05) indicate no
statistically significant difference, implying compara-
ble predictive accuracy. The only exception is the GB
model, whose negative DMstat and p < 0.05 confirm
statistical significance over MLR. For all other pairs,
p > 0.05 suggests no meaningful differences. Overall,
the FIS model performs competitively, neither out-
performing nor underperforming others.

Table 5: Diebold-Mariano Test Statistics and p-
Values (DMstat/p-Value) for Pairwise Comparisons
among MLR, SVR, NN, LSTM, GB, and FIS models.

4.3 Comparison of Computational Complex-
ity

Assessing model complexity (Table 6), the MLR
with p = 2 inputs—PM2.5(t − 1) and PM2.5(t −
5)—and one output requires 3 parameters (ω1, ω5, ω0)
and each prediction involves 2 multiplications, 2 ad-
ditions, and 1 bias addition (Eq. (8)), totalling ≈ 2p
FLOPs, whereas the SVR, with N = 96 support vec-
tors, has 97 parameters (αi) (Eq. (10)) and for each
support vector computes p subtractions, p squarings,
p − 1 additions for the Euclidean norm, and 1 ex-
ponential operation yielding3p + 1 FLOPs per vec-
tor and N · (3p+ 1) FLOPs (Eq. (9)); consequently,
MLR offers minimal complexity O(p) and high inter-
pretability, while SVR scales as O(N ·p) with greater
expressiveness. For a NN with p = 2, one hidden layer
of H = 15 neurons, and one output, the total param-
eters (w′s and b′s) are (p+ 1) ·H +H + 1, with each
hidden neuron performing 2p+1 FLOPs and the out-
put node 2H FLOPs, yielding a total inference cost of
(2p+1) ·H+2H(O(H ·p)). For the LSTM, four gates
per cell has 4[(p+ 1) ·H +H2] parameters (Eq. (13)-
(16)) and 4H ·(p+H)+10H FLOPs (O(H ·(p+H))),
while dropout (pdrop = 0.2) affects training only. For
the GB model, the total number of parameters across
K trees is approximately K · (2MaxDepth−1) and the
FLOPs is ≈ K ·MaxDepth +K or O(K ·MaxDepth).
For the proposed FIS with p inputs, each with P MFs
(TrMF trapezoidal and TMF triangular), the to-
tal parameters are p · (3P + TrMF ) + 3TMF , and
inference requires 3p · P + 3Rule + 1 FLOPs, where
Rule = P p. This scale asymptotically asO(p·P+P p),
capturing both input/output fuzzification and expo-
nential rule growth.
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Table 6: Comparison of PM2.5 Model Complexity
in terms of Parameter Counts, Floating-Point Oper-
ations (FLOPs), and Asymptotic Complexity O(·).

4.4 Optimal FIS structure

For the FIS, increasing the number of inputs (p,
lagged ∆PM2.5) or the number of MFs (P ) raises
total parameters, rules, and FLOPs. These factors
must be considered to avoid excessive complexity. Ta-
ble 7 summarizes these values for p = 2 − 10 and
P = 3, 5, and 7. The parameter count grows linearly
with p and P , following O(pP + P p) with exact ex-
pression of 3pP + 3P p + 1, while the number of fuzzy
rules and inference cost grow exponentially as Rule
=P p. Configurations with P = 3 remain tractable
for moderate input sizes (p ≤ 10), whereas P ≥ 5 be-
come demanding for p ≥ 4−6, and P = 7 is infeasible
beyond small p. These findings emphasize balancing
model granularity (P ) and computational tractability
(p) when designing FIS models. These trade-offs are
summarized in Tables 8, guiding selection of optimal
lags and MFs for PM2.5 forecasting, with results for
2024 shown in Fig. 9.

Examining input lags shows that increasing p from
2 to 3 improves R2 from ≈0.82-0.93 → 0.98-0.99 and
reduces RMSE, MAE, and MAPE, while further in-
creases to 4 or 5 lags degrade performance, indicat-
ing three lags optimally balance pattern capture and
overfitting. Increasing MFs from P = 3 to 5 at the
same lag improves R2 and reduces errors, but exces-
sive MFs (e.g., p = 3, P = 5 or p = 4, P = 5) raise
complexity without significant gains, risking overfit-
ting. Comparisons of 2023 and 2024 data confirm sta-
bility, with p = 3 and P = 3 yielding R2 ≈ 0.98−0.99,
RMSE≈ 4.8 − 4.9, MAE≈ 1.5 − 1.6. Figure 9 illus-
trates these effects: increasing lags from 2 to 3 (Fig.
9(a)-(c)) substantially improves alignment with tar-
get PM2.5, while further lags (Fig. 9(d),(f)) add lit-
tle benefit and may slightly overfit. Increasing MFs
from 3 to 5 (Fig. 9(b) vs. (a), Fig. 9(e) vs. (c))
enhances flexibility but adds complexity, with dimin-
ishing returns for higher rule counts (e.g., 125). Table
8 summarizes these results, highlighting the optimal
FIS configuration.

Therefore, the optimal FIS structure for PM. fore-
casting is p = 3 lags and P = 3 MFs (27 rules),
achieving R2 ≈ 0.99 while minimizing overfitting and

maintaining strong generalization. Compared with
p = 2, P = 3 (R2 ≈ 0.82), it reduces RMSE, MAE,
and MAPE, better capturing temporal and nonlinear
patterns. This configuration increases parameters by
∼35%, rules ×3, and FLOPs by ∼50%, yet remains
computationally efficient.

Table 7: Parameters and FLOPs by Lag and MFs.

Table 8: Analysis of FIS Structure Complexity ver-
sus Forecasting Error Metrics for PM2.5 Forecasts.

Fig.9: Chiang Mai PM2.5 Forecasts (Jan–May
2024) by FIS; Input 3 & MF 3 (27 Rules) Gives Op-
timal Accuracy.
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4.5 Comparison of Model Performance

This subsection compares the FIS PM2.5 model
with prior studies (Table 9). In India [9], FIS achieves
comparable R2 to MLR and NN but with a wider
RMSE range; its simplicity offers a practical alterna-
tive. In Pakistan [10], FIS outperforms both MLR
and NN in RMSE and MAE while maintaining simi-
lar MAPE. In Ho Chi Minh City, Vietnam [11], FIS
surpasses MLR and LSTM, with higher R2, lower er-
rors, and reduced computational complexity, demon-
strating robust, efficient PM2.5 prediction. The FIS
model shows competitive R2 compared with GAMM
for the Northern Hemisphere [12], despite slightly
higher RMSE and MAE, and does not require de-
tailed atmospheric data, highlighting adaptability. In
Jakarta [14], FIS outperforms LSTM with meteoro-
logical features in MAE while using fewer inputs. For
Liuzhou, China [15], LSTM with wavelet-transformed
inputs exceeds FIS in RMSE, MAE, and MAPE, but
FIS achieves comparable MAPE without intensive
pre-processing. In Central and Bangkok, Thailand
[16], Light GB surpasses FIS in RMSE and MAE,
yet FIS maintains competitive R2 with simpler, more
interpretable, and computationally efficient design.

4.6 Comparison of Model Performance

To test generalization, the Chiang Mai FIS (nine-
rule ORNF system) was applied without retraining
to Bangkok, Thailand; Jakarta, Indonesia; and Ho
Chi Minh City, Vietnam (Fig. 10). In Bangkok, FIS

achieved R2 ≈ 0.70, MAE=5.48µg/m3, RMSE=7.98,
and MAPE≈21.6%, capturing ∼70% of daily vari-
ance with slightly higher RMSE than MAE due to
occasional peaks. Jakarta showed higher absolute er-
rors (MAE=9.17, RMSE=11.06), lower relative error
(MAPE15.9%), negative mean bias (MBE ≈-2.12),
and moderate R2 ≈ 0.58, reflecting higher volatility.
In Ho Chi Minh City, daily-trained FIS applied to
hourly data yielded MAE=3.96, RMSE=8.85, R2 ≈
0.62, and MAPE≈22.3%, demonstrating adaptabil-
ity across temporal resolutions. Statistical tests con-
firmed unbiased predictions across all sites: Bangkok
(t = 0.84, p = 0.40), Jakarta (t = 0.11, p = 0.36),
Ho Chi Minh City (t = 0.23, p = 0.32), highlight-
ing robustness and reliability for PM2.5 forecasting
in diverse spatial and temporal contexts

4.7 Limitation and Further Suggestions of
This Study

The study’s main limitation is its reliance on only
PM2.5 data with two lags (PM2.5(t) and PM2.5(t −
1)), excluding other variables such as temperature,
PM10, wind speed, ozone, and toxic gas levels, which
could enhance forecasting accuracy. To improve the
model, incorporating hotspot count or changes as in-
puts could better capture local environmental factors,
such as dust sources from biomass burning and forest
fire in Chiang Mai, Thailand. Additionally, optimiz-
ing the parameters of MFs and fuzzy rules through
techniques like GA or particle swarm optimization

Fig.10: Generalization Testing of the FIS for Temporal and Spatial PM2.5 Prediction in (top) Bangkok,
Thailand, (middle) Jakarta, Indonesia, and (bottom) Ho Chi Minh City, Vietnam.
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Table 9: Summary of Prior PM2.5 Prediction Stud-
ies.

(PSO) could improve the model’s adaptability to non-
linear patterns and regional data.

Future developments should consider the complex-
ity of real-world interactions, where ∆PM(t) and
∆PM(t − 1) may not follow linear patterns, espe-
cially when key external factors are missing. Adding
explanatory variables could better capture these in-
teractions and enhance accuracy. Care is needed to
avoid overfitting the fuzzy rule base, which may re-
duce generalizability. Optimization algorithms for
parameter selection and rule generation could refine
the model. Expanding this time-series approach to
other regions and exploring advanced techniques such
as deep learning may further improve predictive ac-
curacy and the overall performance.

5. CONCLUSIONS

This study introduced an innovative FIS model for
PM2.5 pollution prediction, prioritizing simplicity, in-
terpretability, and independence from geographically
specific inputs. Utilizing lagged PM2.5values and ex-
pertly designed fuzzy rules, the model achieves com-
parable performance to advanced benchmarks, in-
cluding NNs, LSTM, SVR, and GB, while avoiding
extensive data pre-processing or computational com-
plexity. Its evaluation across error metrics highlights
consistent reliability and adaptability, with notable
success in volatile regions like Chiang Mai, Thailand.
Pairwise comparisons using the DMT confirmed that
the FIS model performs comparably to other meth-
ods, with no statistically significant differences in pre-
dictive accuracy. Among nonlinear models, the FIS
also offers the most favourable trade-off between ac-
curacy and computational efficiency, maintaining sig-
nificantly lower complexity. Moreover, the Chiang
Mai FIS model shows strong robustness and gener-
alization across spatial and temporal domains. Ap-

plied directly to Bangkok, Jakarta, and Ho Chi Minh
City (hourly data), it maintained accurate predic-
tions, demonstrating its practical applicability for di-
verse PM2.5 monitoring and forecasting.

Despite its strengths, the model excludes meteo-
rological and exogenous variables influencing PM2.5

levels in SEA countries. Future research should
extend to other regions and integrate such fac-
tors—particularly hotspot counts—while applying
optimization techniques to enhance fuzzy parame-
ters. Expanding studies geographically will further
validate the FIS’s robustness. This study positions
the FIS as a practical, interpretable foundation for
advancing air quality forecasting.
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Table 10: Chiang Mai PM2.5 Data (1/1/2012-
5/31/2024) (Top-Down, Left-Right Reading Order).
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