HyEcoSec: Hybrid Cloud Economic and Secure Workflow Scheduling System

ECT]

=——=Association

485

ECTI Transactions on Computer and Information Technology
Journal homepage: https://ph01.tci-thaijo.org/index.php/ecticit/
Published by the ECTI Association, Thailand, ISSN: 2286-9131

HyEcoSec: Hybrid Cloud Economic and Secure Workflow

Scheduling System

Sarra Hammouti!, Belabbas Yagoubi? and Sid Ahmed Makhlouf?

ABSTRACT
Scheduling scientific workflows in cloud environments is challenging due
to the need to balance multiple objectives while satisfying various con-
straints. In this paper, we propose a Hybrid cloud Economic and Secure
workflow scheduling system (HyEcoSec) designed to minimize makespan
and cost while ensuring security and meeting budget and deadline con-
straints. HyEcoSec comprises two modules: a Security Compliance Mod-
ule to manage user-defined security requirements, and a Scheduling Module
integrating a static scheduler based on the Multi-Portions Slime Mould Al-
gorithm (MPSMA) and a dynamic re-scheduler to handle runtime failures.
MPSMA, an enhanced version of the Slime Mould Algorithm (SMA), bal-
ances makespan and cost using a modified Pareto approach under budget
and deadline constraints. Performance evaluation using the WorkflowSim
demonstrates the effectiveness of HyEcoSec. Compared to baseline meth-
ods, MPSMA achieves a competitive execution time, reduces makespan by
26% and cost by 43%, and improves resource utilization by 22%. It ensures
compliance with budget and deadline constraints in almost all cases, out-
performing the compared algorithms. The integration of security services
shows minimal cost and time impact, confirming HyEcoSec’s suitability
for secure environments. Furthermore, the dynamic re-scheduler enhances
execution efficiency, reducing makespan by 61% and cost by 49% in failure

Article information:
Keywords: Cloud Computing,
Scientific Workflow, Scheduling,
Cost, Makespan, Budget, Dead-
line, Security

Article history:

Received: May 20, 2025

Revised: July 4, 2025

Accepted: July 29, 2025

Published: August 9, 2025
(Online)

scenarios.

DOI: 10.37936/ ecti-cit.2025193.261598

1. INTRODUCTION

Cloud Computing enables users to rent comput-
ing resources via the Internet on a pay-per-use ba-
sis. It offers scalability, rapid elasticity, and exten-
sive network access [1]. These valuable characteristics
make the cloud environment well-suited for hosting
and running scientific workflows, which are complex
sequences of computational tasks [2]. However, work-
flow scheduling in the cloud remains challenging due
to the dynamic nature of the cloud environment, as
well as the diverse user requirements, including mul-
tiple scheduling objectives (e.g., makespan, cost, en-
ergy consumption) and quality of service constraints
(e.g., deadline, budget, and security) [3]. The prob-
lem is considered NP-hard [4] due to the difficulty of
responding to the different scheduling objectives and
quality of service constraints. In this area, numerous

scheduling strategies have been developed, including
static and dynamic approaches [5]. Static scheduling
provides efficient execution plans before workflow ex-
ecution, ensuring optimized resource allocation with-
out runtime delays. However, it may suffer from inac-
curacies due to missing accurate runtime information.
Conversely, dynamic scheduling adapts to real-time
conditions but may introduce scheduling overhead
and runtime delays [6]. To address these inconsisten-
cies, we propose HyEcoSec, a hybrid static-dynamic
workflow scheduling approach that prioritizes secu-
rity while optimizing makespan and cost. It consists
of:

e Security Compliance Module: Ensures privacy and
security through task classification, prioritization,
and protection submodules.

e Scheduling Module: Consists of two submodules:

1.2:3The authors are with Oran 1 Ahmed Ben Bella University, Oran Computer Science Laboratory, Oran, Algeria, E-mail:
s.hammouti95@gmail.com, byagoubi31@Qgmail.com, sidahmed.makhlouf@gmail.com

3Corresponding author: sidahmed.makhlouf@gmail.com

486 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.19, NO.3 July 2025

1. Static Scheduler (Multi-Portions Slime Mould
Algorithm (MPSMA)): An improved version
of Slime Mould Algorithm (SMA) leveraging
a Pareto-based multi-objective approach. It
provides an initial execution plan, balancing
makespan and cost, and satisfies the user’s
deadline, budget, and security requirements.

2. Dynamic Re-scheduler: Handles unexpected
failures during workflow execution.

We evaluate the efficiency of HyEcoSec using the
WorkflowSim simulation tool [7], comparing MPSMA
against Nondominated Sorting Genetic Algorithm II
(NSGA-II), Multi-Objective Particle Swarm Opti-
mization (MOPSO), and Multi-Objective Ant Colony
Optimization (MOACO) [8-10]. Results show
that MPSMA outperforms competitors, improving
makespan by 26%, cost by 43%, and resource utiliza-
tion by 22%. Additionally, the dynamic re-scheduler
enhances system resilience, reducing makespan by
61% and cost by 49% in the event of failure scenarios.
The following is a summary of the primary contribu-
tions of this work:

1. Introducing HyEcoSec, a Hybrid Cloud Work-
flow Scheduling (HCWS) approach that optimizes
workflow execution time and cost and satisfies
deadline, budget, and security needs.

2. The HyEcoSec approach prioritizes user secu-
rity requirements and protects sensitive tasks and
data.

3. The HyEcoSec approach merges static and dy-
namic strategies to maximize its benefits.

4. The components of the HyEcoSec approach are
presented, explained in depth, and simulated using
the WorkflowSim simulator.

5. Extensive simulations and experimental analysis
are conducted using WorkflowSim to demonstrate
the effectiveness of our suggested approach.

The remaining sections are organized as follows.
Section 2 describes the related work, Section 3 de-
fines the system model and main assumptions, Sec-
tion 4 describes the proposed system, Section 5 out-
lines the performance evaluation and extensive simu-
lations, and Section 6 concludes the paper.

2. RELATED WORK

Cloud Computing is an appealing choice for scien-
tists to carry out their workflows. It provides pow-
erful features, high performance, and significant pro-
cessing power [3]. With the extensive usage of this
technology, users continually seek the simplest solu-
tions to achieve their goals at the lowest possible cost
and time. Thus, scheduling scientific workflows in a
cloud environment has become one of the most chal-
lenging problems facing researchers. The problem is
NP-hard, multi-objective, and multi-constrained [5].

According to previous studies [5, 11], most work-
flow scheduling strategies focus on minimizing execu-
tion cost and makespan while adhering to deadline,

budget, security, and quality of service constraints,
along with optimizing energy consumption, resource
utilization, and system reliability. Notable studies in-
clude [12], which proposed a scheduling algorithm to
minimize cost within deadline constraints in a hybrid
cloud, and [13], which introduced single-objective and
multi-objective optimization algorithms for cost and
makespan minimization. Similarly, [14] developed a
static immune-based particle swarm optimization al-
gorithm to optimize execution cost and makespan
under a user-defined deadline, while [15] proposed
a tri-objective hybrid meta-heuristic to enhance ef-
ficiency by minimizing makespan, cost, and energy
consumption. Security-aware workflow scheduling
has also been widely explored [11, 16], given its im-
portance for workflows that handle confidential data
or sensitive tasks. For instance, Zeng et al. [17]
integrated static and dynamic scheduling strategies
to reduce makespan under budget and security con-
straints, while Li et al. [2] proposed a static cost- and
security-aware scheduling algorithm that minimizes
cost while meeting deadline and risk constraints.

Cloud workflow scheduling is conducted using
heuristic, meta-heuristic, and hybrid algorithms, em-
ploying either a static strategy with a predetermined
execution plan or a dynamic strategy that adjusts
at runtime [3, 5]. Heuristic algorithms provide ap-
proximate solutions with lower time complexity [18].
The most common heuristics used to address this
issue include Heterogeneous Earliest Finish Time
(HEFT), Min-Min, Max-Min, and Random [19]. Be-
yond these, several other heuristic-based approaches
have been explored. For example, [20] proposed a
general framework and a static multi-objective list
scheduling algorithm to find a dominant solution us-
ing the Pareto approach. In addition, [21] introduced
a security-aware static heuristic model. However,
heuristics often suffer from the local optima problem
with large search spaces [22], prompting researchers
to adopt meta-heuristic algorithms, which typically
offer better optimization performance [3]. For in-
stance, [23] proposed a static Particle Swarm Opti-
misation (PSO)-based scheduling algorithm to min-
imize the execution cost, and [24] introduced a dy-
namic objective Genetic Algorithm (GA) to optimize
either makespan or execution cost under a deadline.
In addition, Ant Colony Optimisation (ACO) [25] was
also applied for static cost and makespan optimiza-
tion. To increase efficiency, researchers employ hybrid
approaches to leverage the strengths of multiple algo-
rithms at the same time. For example, [26] merged
GA, Best-Fit, and Round Robin algorithms to opti-
mize makespan and balance the load. Furthermore,
[27] and [28] presented various hybrid approaches for
static scheduling.

Moreover, in the context of hybrid cloud envi-
ronments, workflow scheduling has been addressed
through various approaches targeting different opti-

HyEcoSec: Hybrid Cloud Economic and Secure Workflow Scheduling System 487

mization objectives [5]. For instance, [29] introduced
a static mixed-integer linear programming model to
minimize the monetary cost of workflow execution
while satisfying task security requirements and meet-
ing a deadline, while [30] proposed a dynamic deep
reinforcement learning approach for scheduling real-
time jobs in a hybrid cloud context to optimize cost,
quality of service, and response time. However, this
approach cannot handle complex workflows involving
interdependent tasks. Furthermore, [31] addressed
the multi-workflow scheduling problem in a hybrid
cloud by introducing a dynamic tri-objective opti-
mization approach that integrates a multi-objective
salp swarm algorithm and an iterative greedy algo-
rithm.

Most existing studies focus on static schedul-
ing strategies while overlooking dynamic and hy-
brid approaches, which can handle unexpected run-
time events [6]. To fill this gap, we propose HyE-
coSec, a scheduling approach that combines static ef-
ficiency with dynamic adaptability, while optimizing
makespan, cost, resource utilization, and meeting the
user’s deadline, budget, and security requirements.

3. SYSTEM MODEL AND ASSUMPTIONS

This section outlines the models and key assump-
tions underlying our HCWS approach.

3.1 Workflow Model

A scientific workflow is a collection of computa-
tional tasks that exhibit inter-dependencies, primar-
ily involving data. It is typically represented as a
Directed Acyclic Graph (DAG), W(T, E, D), where:

o T ={tg,t1,...,t,} is the set of workflow tasks, and
n is the number of tasks.

e [is the set of edges representing the task’s prece-
dence constraints, with £ C T x T x R. For ex-
ample, the edge e(4, j) = (¢, t;, sd;;) indicates that
the task t; must start its execution after the com-
pletion of task ¢;, and the weight sd;; is the size
of data transferred from task t; to task ¢;. In this
case, task t; is referred to as the predecessor of task
t;, while task ¢; is referred to as the successor of
task t;.

e D = {dy,dy,...,dpn} is the set of workflow
datasets. Each task can be exploited by multiple
datasets, and a dataset can be exploited by multi-
ple tasks.

e The notations pred(t;) and succ(t;) denote the list
of predecessors and successors of the task t;. The
workflow entry task ten¢r, has no predecessors, and
the exit task t..;; has no successors.

e The notations I(¢;) and O(t;) denote the list of in-
put and output datasets of the task ¢;, respectively.

e A task cannot start until all its predecessors finish
and its input files are available.

3.2 Hybrid Cloud Model

A hybrid cloud integrates private and public cloud
resources. In the present paper, we focus exclusively
on Virtual Machines (VMs) as cloud resources, as
they are the primary components responsible for ex-
ecuting workflow tasks. We assume that a VM can
run only one task at a time. A private cloud has a
fixed number of VMs with zero monetary cost (since
the cloud customer owns it), higher security, but lim-
ited scalability, which can lead to increased execution
time. In contrast, public cloud offers scalable VMs,
but lower security, and a variable hourly cost model
based on performance, where the better the machine
performs, the higher the price. Private cloud VMs are
denoted by: VMP™ = {omg"™ om{"™", ... omb"™},
where p is the number of available VMs in the private
cloud. Public cloud VMs are denoted by: VMPU =
{vmg“b7 vm’f“b, ... ,vmg“b}, where ¢ is the number of
VMs allocated from the public cloud.

3.3 Security Overhead Model

To ensure data privacy and meet user security
requirements, we assume that each task or dataset
in the workflow may require the following services:
Confidentiality (C), to encrypt data and prevent
unauthorized access; Integrity (I), to protect against
unauthorized modifications; and Authentication (A),
to verify user or system identities. Following the
NIST data categorization model [32], we consider
that cloud customers define the required security lev-
els for each dataset based on its sensitivity. These
levels are classified as Low (L), Moderate (M),
or High (H) for each service, and are expressed
as: DSL(d;) = {dsi€,dsl!, dsl}. For example,
DSL(d;) = {H,M,M} means that the dataset d;
requires high confidentiality, moderate integrity, and
moderate authentication. The security requirements
of a task, denoted SL(t;) = {sI¢,sl!, sl }, are de-
rived from the datasets it processes, as detailed in
Section 4.1.1. To secure the workflow during exe-
cution, we ensure that each task is provided with
adequate security services, defined by PSL(t;) =
{psl¢, pslf, psi}, such that SL(t;) < PSL(t;) for all
t; € T. However, meeting these requirements intro-
duces computational overhead, potentially increasing
execution time. The security overhead SO(t;) of a
task is computed using Equation (1), where confiden-
tiality and integrity overheads depend on data size
(d;). In contrast, authentication overhead depends
solely on security level, as shown in Equation (2).
The function F'¥ determines the appropriate security
overhead per unit of time based on the task’s secu-
rity level. As accurately measuring this overhead is
challenging [33] and beyond the scope of this study,
we estimate it using empirical values reported in pre-
vious works [2, 33, 34].

488 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.19, NO.3 July 2025

SO(t:)= > SO(t) (1)
Le{C,1,A}
FL(siF dy) if L €{C,L};

504 ={ Fu(l

Since the private cloud offers a more secure envi-
ronment than the public cloud, we prioritize sensitive
tasks for execution in the private cloud by assigning
a priority rank to each task t; based on its security
requirements. This rank, denoted as Pr(t;), ranges
from low priority (tasks with minimal security needs,
posing low risk in the public cloud) to high priority
(tasks with high security needs, making execution in
the public cloud very risky). The calculation of Pr(¢;)
is detailed in Section 4.1.1.

if L €{A}; @)

3.4 Makespan and Monetary Cost Models

The makespan (M) is the elapsed time between the
start of the execution of the first task in the workflow,
ST (tentry, vmy), until the completion of the last task
in the workflow, FT (tcyit, VM) (See Equation (3)),
where vm; and vm,,, are the virtual machines exe-
cuting the entry and exit tasks, respectively.

M = FT(tewitv Umm) - ST(tent7'y7 Umk:) (3)

The makespan calculation depends on the follow-
ing parameters:
e Start Time (ST(t;,vm;)): Time at which task
t; begins execution on vmy, it is computed using
Equation (4).

ST(ti, Um]‘) =
WT(vmy;) Jif(pred(t;)) = @
max(WT(vm;), max (FT(tg,vmy)) ,otherwise
trEpred(t;)

(4)
where the work time WT'(vm;) represents the time at
which vm; becomes available for new task execution.
Initially, all cloud VMs are idle, with WT'(vm;) = 0.
After executing task ¢; on vm;, the work time has to
be updated as: WT' (vm;) = FT'(t;,vm;). Thus, the
final work time of a VM is computed as:

WT(vm;) =

max
Vt; assigned to vm;

(FT(ti, ’U’I’I’Lj))

e Execution Time (ET(t;,um;)): The estimated
time required to execute t; on vm; is computed
using Equation (5).

ET(ti,vm;) = (length(t;))/ (mips(vm;)) — (5)

where length(¢;) denotes the task size (in instruc-
tions), and mips(vm;) is the VM’s processing capac-
ity (in millions of instructions per second (MIPS)).
e Data Transfer Time (T7T(t;,um;)): Time to
transfer input data, as given in Equation (6).

TT(t:,vm;) = (SI(t:))/ (bw(vm;)) (6)

where SI(t;) is the size of the input data for task ¢;,

and bw(vm;) is the available bandwidth of vm,.

o Finish Time(FT(t;,vm;)): The estimated time
when task ¢; completes execution on VM vm;, as
defined in Equation (7).

FT(tl, vmj) :ST(tl, vmj) + ET(t“ vmj)

Monetary Cost (MC) represents the total cost of
leasing public cloud VMs to complete the execution
of the entire workflow, as shown in Equation (8).

MC =

M-

(WT(vm?"b) * Cy *price(vm?"b)) (8)

Jj=0

where WT(vmgub) is the work time of a public VM
in a given unit (e.g., milliseconds), and Cy is a con-
version factor that transforms this time into hours,
and price(vm?ub) is the hourly leasing cost.

3.5 Problem Formulation

Our problem consists of scheduling workflow tasks
while minimizing makespan (M) and monetary cost
(MC) under deadline, budget, and security con-
straints. The objective function is defined by Equa-
tion (9).

minimize : (M, MC)
o)
subject to : MC<B

where D is the deadline constraint representing the
maximum amount of time a user can wait to complete
the execution of their workflow, B is the budget con-
straint indicating the price a user is willing to pay for
running their workflow, and PSL(t;) is the provided
security level (ensuring it meets or exceeds required
security levels SL(t;)).

4. PROPOSED APPROACH

In this paper, we present a novel workflow schedul-
ing approach called Hybrid Cloud Economic and
Secure Workflow Scheduling System (HyEcoSec),
which is developed by enhancing our prior systems
[35, 36]. It consists of two main components: a secu-
rity compliance module and a scheduler module, as

HyEcoSec: Hybrid Cloud Economic and Secure Workflow Scheduling System 489

shown in Figure 1. The approach entails a secure and
cost-effective distribution of tasks across hybrid cloud
resources to provide clients with a safe schedule, min-
imized makespan, and reduced monetary cost, while
adhering to specified deadline, budget, and security
constraints.

Security Compliance Module Scheduling Module

Task Classification
Static Scheduler
Task Prioritization .

Task Protection

E Private Cloud Allocator

Dynamic Scheduler

Fig.1: HyFEcoSec Components.

4.1 Security Compliance Module

The security compliance module ensures the pri-
vacy aspect of our HyEcoSec scheduling approach and
satisfies the cloud customer’s security requirements.
It has three main tasks, including:

4.1.1 Task Classification

To secure sensitive data in scientific workflows, ap-
plying high-level security measures to all data and
tasks can be effective but costly due to resource-
intensive issues and the time-consuming nature of
most security procedures. Therefore, according to
the announcements made by the NIST [32] and Ama-
zon Web Services best practices [37], one of the es-
sential practices that needs to be followed to ensure
appropriate levels of security for sensitive or criti-
cal data is data classification, which must be per-
formed before establishing any protection mechanism.
Thus, we assume that customers’ data is inherently
invisible, and it is the customer’s responsibility to
access and classify their data and thereby generate
the tuple DSL(d;) for each dataset d;. Meanwhile,
the task classification module generates the tuple
SL(t;) = {sl¢, sll, sl} for each task t; based on the
level of sensitivity of the dataset it handles. We sup-
pose that each task t¢; inherits the highest level of
confidentiality and integrity services among its inputs
and outputs, following the hierarchy (L < M < H)
as expressed in Equation (10). For authentication, if
any input or output of the task t; needs high confi-
dentiality, it is classified as highly sensitive and re-
quires high-level authentication services. Therefore,
each task adopts the maximum security level required
by its inputs and outputs for both authentication and
confidentiality, as shown in Equation (11).

For k € {C,I},sl¥

H o if 3d; € {I(t:), O(t:)} | dslﬁ
_du if fd; e {I(t;), O(ti)} | dsl =
" and 3d; € {I(t;),O(t;)} | alsl]~c M
L , otherwise
(10)
sl
H Jif 3dj € {I(t:),0(t:)} | dslf = Hv dsl = H
_u if Ad; € {I(t;),0(t:)} | dslf _HAdslA H,
- and 3d; € {I1(t;),0(t:)} | dle MvdslA M
L otherwzse

(11)
4.1.2 Task Prioritization

Each task is assigned a priority rank, Pr(t;), based
on its security requirements. Tasks with higher secu-
rity demands are prioritized for execution on the pri-
vate cloud, while lower-priority tasks may be assigned
to the public cloud with reduced risk. The ranking
function follows a hierarchical security classification:
Pr(t;)=ranks,,,.,(sl¢ + sl] + sl#), where assuming
that H = 3M and M = 2L, prioritizing tasks with
High (H) security level over Medium (M) and Low
(L), and discouraging their assignment to the public
cloud. The sorted set Sgorteq contains unique values
of all possible sums of si¢,slf, and si#, sorted in
ascending order. The functlon rank gives the prior-
ity rank based on the position of the corresponding
sum (sl¢ + slf + sl') in the Ssopteq set. The pri-
ority ranking matrix (PRM) (Table 1) precomputes
Pr(t;) for all security level combinations, allowing di-
rect lookup: Pr(t;) = PRM]s(¢] [slf][slﬂ For in-
stance, tasks t1, to, and t3 with SL(¢t;)={H, H, H},
SL(ty)={M,H,L}, and SL(t3) = {L,L,M} have
priorities 10, 6, and 2.

Table 1: Priority Rank Matriz (PRM).

N A N st | st
=H [HM[L| |=M[H[M[L]| |=L[H[M[L
H [i8]09]08 H [09]07]06 H|08]06]05
ZIM09o7(06] [T [M]07[04[03] | TM]06[03[02
L |08]06[05 L [06]03]02 L [05]02
[0 03 04 05 06 07 08 @l
Low High

Priority order of task assignment to the private cloud

490 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.19, NO.3 July 2025

4.1.3 Task protection

This module incorporates proactive measures and
required security services at rest and in transit,
thereby ensuring compliance with the constraint
SL(t;) < PSL(t;), as shown in Figure 2:

o At rest: Encrypting data before storage using
suitable confidentiality services to protect it from
unauthorized access and potential system breaches.

e In transit: Encrypting dataflows between tasks us-
ing the highest security level required by either
the sender or receiver tasks, ensuring protection
against intercepted communications across private
and public clouds. This involves: (1) authenticat-
ing access before task initiation, () decrypting data
for use while enforcing integrity checks during ex-
ecution, and (3) encrypting data at the end of each
task before transmission, as shown in Figure 2.

prr—
e
3
i Function
H ©
2 exeane w Dataset
- - Task
§ ‘excaution
% s e o N . Dataflow
= !‘ l v In transit encrypted
3 e s . 3 ¢ dataflow
Lol X @ - - -, Dataencryption at
2 40 exeanion y) s
i m®? S
E . transit encryption
Confeiatty e
ooy
P 1
£ ﬁ :‘
‘ L ‘ o)
Private Cloud i N Public Cloud v
- / o 3
p = s @
@

Fig.2: Protective Actions Offered by the Task Pro-
tection Module®.

Given that the private cloud offers higher security
and incurs no additional costs, we prioritize maximiz-
ing workload allocation to it. However, this may in-
crease execution time, potentially violating the dead-
line constraint. To address this, we introduce the
Private Cloud Allocator (PCA) module, which bal-
ances privacy requirements with deadline adherence.
PCA strategically assigns tasks to the private cloud
based on priority and security needs while ensuring
the makespan remains within the deadline. The PCA
pseudo-code is presented in Algorithm 1. It employs
a modified HEFT algorithm (Algorithm 2) to deter-
mine the priority threshold 7p,., which classifies tasks
for private or public cloud execution. Initially, 7p,
is set to the lowest priority (01). HEFT schedules
tasks by assuming all with priorities greater than or
equal to 7p, run on the private cloud. If the resulting
makespan meets the deadline, the algorithm returns
Tpr; otherwise, it increments 7p, until reaching the

INote: data and tasks are color-coded based on their priorities,
as defined in the PRM matrix (Table 1)

Algorithm 1. Private Cloud Allocator

Input: W = (T,E,D); VMP™; VMP¥?; D:deadline;
Output: 7p,.: Priority rank threshold

1. 7p, < 1;

2. while 7p, < 10 do

3. M « M — HEFT(W,VMP™,V MP¥’ 1,.3;
4. if (M < D) then return tp,;

5. Tpr <« Tpr+ 1;

6. end while

7. return Tp,;

Algorithm 2. M-HEFT

Input: W = (T,E,D); VMP™,VMP¥; 7, ;
Output: M: Makespan;

1. Compute and sort task ranks in decreasing order using
Equation (12);

2. for all t; in decreasing rank do

3. if Pr(t;) < Tp, then L « VMPUb;

4. else L « VMPTY,

5. Assign t; to vmy € L with min(FT(t;, vmy))
(Equation (7));

6. end for

7. Generate the schedule and calculate M Equation (3);

8. return M;

highest priority (10). HEFT ranks tasks based on
execution and data transfer times, as expressed in
Equation (12), where AvgEt(¢;) is the mean execu-
tion time across all VMs (private and public) (Equa-
tion (13)), and AvgTT(¢;,t;) is the average transfer
time (Equation (14)):

rank(t;)
— AvgEt(t,) + Vi, € suce(t)(AveTT(t), rank(ty)) (12)

max

TP BT(t,vm? ")+ 9_o ET(t;,vm?"?)
pt+q

AvgEt(t;) = (13)

dSij
AvgTT(t;,t;) = AvaBw
ds;; is the data size transferred from ¢; to t;, and
AvgBw is the average bandwidth. M-HEFT assigns
each task to the VM that minimizes the earliest fin-
ish time (F'T), choosing from private or public cloud
based on its priority rank (Pr(¢;)).

(14)

4.2 Scheduling Module

The scheduling module employs a hybrid strat-
egy consisting of a static scheduler and a dynamic
re-scheduler. The static scheduler generates an ini-
tial execution plan before workflow execution, mini-
mizing makespan and cost while satisfying the user’s
deadline, budget, and security constraints. However,
as it relies on predicted data, it cannot handle unex-

HyEcoSec: Hybrid Cloud Economic and Secure Workflow Scheduling System 491

pected failures. Conversely, the dynamic re-scheduler
adapts in real time to manage unforeseen failures
but cannot optimize execution plans. To address
these limitations, our hybrid strategy leverages both
a static scheduler for initial planning and a dynamic
re-scheduler for runtime adjustments.

4.2.1 Static Scheduler

This module provides an initial execution plan by
mapping tasks to virtual machines while minimiz-
ing makespan and cost. Our analysis of scheduling
methods indicates that bio-inspired algorithms yield
strong performance in workflow scheduling. In par-
ticular, the Slime Mould Algorithm (SMA) [38] has
shown promising results in solving complex optimiza-
tion problems. However, as noted in prior studies
[39, 40], the basic SMA tends to favor exploitation
over exploration, making it susceptible to premature
convergence and entrapment in local optima. These
weaknesses are particularly problematic in complex,
multi-objective environments such as hybrid cloud
scheduling. Moreover, the original SMA was designed
for single-objective problems and lacks the mecha-
nisms for handling trade-offs between conflicting ob-
jectives like makespan and cost. To address these
challenges, we introduce the MPSMA algorithm, an
enhanced version of the SMA algorithm, which im-
proves the exploration—exploitation balance by di-
viding the population into three fitness-based por-
tions. In addition, MPSMA integrates a Pareto-based
method to handle trade-offs between makespan and
cost while satisfying deadline and budget constraints.

The Slime Mould Algorithm (SMA), intro-
duced by Li et al. [38], is a meta-heuristic optimiza-
tion algorithm inspired by the foraging behaviour of
Physarum polycephalum. These organisms efficiently
locate food by generating propagation waves that in-
fluence cytoplasmic flow, forming intricate networks
of protoplasmic tubes. SMA emulates this adaptive
search mechanism to explore and refine solutions it-
eratively. The algorithm begins by generating an ini-
tial population of potential solutions, representing the
slime’s exploratory expansion. It then alternates be-
tween investigating unexplored solution domains and
improving existing ones based on fitness values. The
pseudo-code for the SMA is presented in Algorithm 3.
First, parameters such as the maximum number of
iterations t,,4., population size popsize, and the po-
sitions X; of each search portion (individual) must
be initialized, with ¢« = 1,2,...,popsize. The popu-
lation size refers to the number of slime’s search por-
tions or the number of veins. At each iteration, the
algorithm computes the fitness of each search agent,
denoted as S;. The fitness values are then sorted and
indexed in the Smelllndex list using Equation (16).
Subsequently, the global best fitness bestFitness and
its respective positions X, are updated. Afterward,
the weight of slime, which models its adaptive search

behaviour, denoted as W, is determined by Equation
(15).

W (Smellindex(i))

,the first hal f
of the population
the second hal f
of the population
(15)

1+r-log (7”%};?2(2“ + 1)

1+rdog(%§€%%%—+1)

SmellIndex = Sort(S) (16)

where bF and wF indicate the local best and
worst fitnesses found at the current iteration. They
correspond to the first and last elements in the
Smelllnder list, respectively, and r is a random value
in the range of [0,1]. The weight formula’s condition
is similar to that of the original work, where it cor-
responds to the first and second halves of the popu-
lation. Finally, an update of the slime’s positions is
performed using Equation (17).

X+ 1)
r1 - (ub—1b) +1b gafr < oz

X+ b (W X4(t) — Xp(®) Lifrs < p
W)T@S yif 2> p

(17)

where t refers to the current iteration, 1 and ro are
random values in [0,1], z is a parameter in [0,0.1]
(in the original paper z = 0.03), ub and b are the
upper and lower search range boundaries, m is
the best individual at iteration ¢, (X 4(¢) and Xp(t
denote two individuals from the population who were
picked at random at iteration t. vb is a parameter in
[—a, a] where a is calculated using Equation (18). ¢
converges to zero after fluctuating within the interval
[-1,1], p is a variable represented by Equation (19).

t
a = arctanh (— (t) + 1)

p = tanh |S(i) — bestFitness|

(18)

(19)

For further details, readers are referred to the orig-
inal paper introducing the SMA algorithm.

The SMA algorithm, like most meta-heuristic op-
timizers, relies on two key processes: exploration and
exploitation. However, an imbalance between these
processes can lead to premature convergence and trap
the search in local optima [39, 40]. This behaviour of-
ten results from poor exploration due to limited pop-
ulation diversity, which narrows the search space and
limits the discovery of better solutions. Additionally,
the standard SMA was originally designed for single-
objective optimization and lacks built-in mechanisms
for handling conflicting objectives in multi-objective
scenarios.

492 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.19, NO.3 July 2025

Algorithm 3. SMA Algorithm

1. Initialize population size popsize, max iterations t,, 4.
and positions X; for (i = 1,...,popsize);

2. t< 0;

3. whilet < t,,,, do

4, Compute fitness, update bestFitness, X;

5. Compute weight W (Equation (15)), update
parameter a (Equation (18));

6. for all search portions do

7. Update the parameters p (Equation (19)), vb,

ve;
8. Update positions X; (Equation (17));
9, end for

10. t—t+1;
11. end while
12. return bestFitness;

To overcome these limitations, we propose an en-
hanced version of SMA, called MPSMA. Inspired
by [41], we divide the population into three fitness-
based groups: best, moderate, and poor. This strat-
egy helps maintain diversity and balances the search
process by intensifying exploration in weaker solu-
tions while refining high-quality candidates through
exploitation.

1. The best search portion consists of individuals ex-
hibiting superior fitness, located near the food
source. Our goal is to enhance their exploita-
tion capabilities to accelerate convergence and find
the global optimum efficiently. The position up-
date follows the original SMA equation (Equa-
tion (20)), maintaining its proven exploration-
exploitation balance. To further improve exploita-
tion, we introduce the Exploitation Factor (EF)
(Equation (21)), which increases over iterations,
gradually shifting the search from exploration to
intensive local refinement.

X+ 1)

r1 - (ub—1b) +1b Jfr < oz
—{ X+ BF b (W Xal) ~ Xp()) if o < p
ot X (t yifre > p
(20)
tl/a
EF::[—@ (21)

where « is a constant that represents the precision

of exploitation, t refers to the current iteration, and

tmax 18 the maximum number of iterations.

2. The moderate search portion comprises individu-
als with mixed fitness. The objective is to balance
exploration and exploitation, ensuring a diverse
search while guiding solutions toward the global
optimum. The position update follows Equation
(22), incorporating EF (with + sign) to enhance
local search diversity. Additionally, the Explo-
ration Exploitation Balancing (EEB) parameter

facilitates a dynamic transition from exploration
to exploitation. Its value increases linearly with
each iteration, as defined in Equation (23). In
early iterations, a random number r € [0,1] is
likely to exceed the current EEB value, satisfying
the condition described in Equation (23). This
increases the likelihood that the algorithm ap-
plies Roulette Wheel Selection (RWS), promot-
ing exploration by favoring less fit or diverse solu-
tions. As iterations progress and EEB approaches
1, the condition becomes less likely to hold, and
the algorithm naturally shifts toward exploiting
high-quality individuals. This dynamic adjust-
ment helps maintain diversity in early stages and
improves convergence in later stages.

X+ 1)

X&)+ EF-ob- (W Xa(t) - Xn(8)) .if r2 <05 -
= X = EF-oh- (W-Xalt) = Xo(B}) ifra>05
RWS(W) Jif . > EEB
(22)
EEB(t) (23)
max

The use of FEB and Exploitation Factor (EF)
in this work is inspired by previous studies on
nature-inspired and meta-heuristic algorithms [42,
43]. These parameters help to balance the exploration
and exploitation processes. Furthermore, we employ
the RWS method to strengthen the algorithm’s ex-
ploration and increase population diversity. It en-
ables the algorithm to reach new regions, improving
its ability to approach the global optimum and avoid
local optima. The RWS provides a higher probability
of choosing slime portions with better fitness, while
still allowing the selection of certain individuals with
lower fitness due to the possibility of finding some
advantageous portions in nearby positions. The se-
lection probability is given by Equation (24), where
the Roulette fitness parameter, Ry, is computed us-
ing Equation (25):

o It is proportional to the weight W, as higher
weights indicate proximity to the optimal solution.
o It is inversely proportional to the objective func-
tions f; and fo, since we are solving a bi-objective

minimization problem. For our HCWS problem: f;

and f5 correspond to the estimated execution time

and monetary cost of running task ¢; on vm;, re-

spectively, with f1 = ET(¢;,vm;) (Equation (5)),

and fo = ET(t;,vm;) X price(vm;).

__ By
Pr= ST R (24)
w
Pr= fife (25)

3. The poor search portion consists of low-fitness
individuals located far from the optimal region.

HyEcoSec: Hybrid Cloud Economic and Secure Workflow Scheduling System 493

To improve exploration in this group, we apply
the Opposition-Based Learning (OBL) mechanism
[44, 45], which assumes that if a solution X(t) is
distant from the optimum, its opposite X (t) =
Ib 4+ ub — X (t) may be closer. By_ev}aluating the

fitness values of both X—(t; and X (t)$, the algo-
rithm increases its chances of escaping local op-
tima and locating distinct, potentially better re-
gions of the search space. This dual evaluation
enhances population diversity by introducing so-
lutions that are spatially distant from current in-
dividuals, effectively broadening the search space
and reducing the risk of premature convergence.
In addition, it accelerates convergence by increas-
ing the likelihood of identifying high-quality solu-
tions earlier in the optimization process, as the op-
posite point may lie closer to the global optimum.
As a result, OBL improves the initial distribution
and guides the search more effectively, especially
when the current population is trapped in a sub-
optimal region. For this sub-portion, the position
update strategy incorporating this mechanism is
presented in Equation (26).

X(t+1)

—_— _
i dSS
X ifS% S
)E%+EF~%-(W/~XA(#,7XB(U if <05
X0} = BF - ub- (W Xalt) - Xp(t)) ifram05 0770
(26)

Given our multi-objective and multi-constrained
HCWS problem (Minimize: f1, f2), we modify the
Pareto optimality approach to rank fitness values and
to update the best solution at each iteration. We
also adjust weight (W) and parameter (p) compu-
tations, as shown in Equations (27) and (28), re-
spectively, to account for two-dimensional Euclidean
distances instead of one-dimensional measures used
in single-objective problems, where bF;, S1(4) corre-
spond to makespan (M) and bFs, S2(i) to monetary
cost (MC).

W (Smellindex(i)

r-lo \/(bFl = S1(0)* + (bFs = 5a(0)” condition
B L+r-log VF — wF(i))2 + (bFy — wFy(i))2 L) conditi
N A VOF = 81(0)” + (bF; — 5(1))2 _
Ll | R —wR)T OF — ek)
(27)

p = tanh(y/(s1(i) — BFy)2 + (s2(i) — BF2)2) (28)

The MPSMA algorithm’s pseudo-code is outlined in

Algorithm 5. It consists of three main steps:

1. Initialization: Define population size (popsize),
maximum number of iterations (tmax), and search
portion positions (7;) In our HCWS problem, X
is a matrix where each value X; ; represents the

Algorithm 4. Fitness Function

Input: S = {VM,T,M}
Output: M: makespan; MC: monetary cost

1. forallt; € T do

2. Compute start time, execution time, transfer time,
security overhead, and finish time of t; on vm;
(Equations. (4-7));

3. Update the work time of vm; ;

4. end for

5. Compute M and MC (Equations (3), (8));

6. return (M, MC);

VM assigned to task ¢;. Each portion of the slime

produces an execution plan denoted as ?l The
assignment is randomly generated using Equation
(29), where the upper and lower borders, ub and
lb, represent the maximum and minimum VM IDs
across the hybrid cloud, respectively. Similarly,
Ubpry and lby,,.,) define the bounds for private cloud
VMs. The condition (Pr(¢;)> = 7p,) restricts the
assignment of each task ¢; with a priority Pr(t;)
greater than or equal to the priority threshold 7p,
generated by the PCA module (Algorithm 1) to a
private cloud VM.

(Pr(t}) > 7py)

| rx (ubpry — lbpry) + by
Xig = { bty (Prt) <7py (29

7 (ub—1b) 4+ 1b

2. Fitness Evaluation & Best Fitness Update:
The fitness S; of each execution plan X; is calcu-
lated utilizing Algorithm 4, which computes the
makespan and monetary cost of a given schedul-
ing scheme S = {VMP™ VMP T M}, where
VMP VMP and T list cloud VMs and work-
flow tasks, and M maps tasks to VMs. The fit-
ness values S; are then sorted and indexed in
the Smelllndex list using the Pareto Optimality
method outlined in Section 5, and the global best
fitness is updated.

3. Parameters & Location Update: Search
portions are categorized as best, moderate, or
poor based on fitness values. The parameters
a, EF, EEB, p,vb,vc, and weight W are then up-
dated accordingly. The location is adjusted using
Equations (20), (22), and (26), depending on the
classification. To align with our HCWS problem,
if the assigned VM X, ; corresponds to a public
VM and Pr(t;) > 7p,, we replace X;) with a ran-
dom value from [lbypy, ubpry]. Additionally, for
each generated position X; ;, we apply absolute
rounding, ensuring that id,,, takes discrete posi-
tive values, where X; ;= round(|X, ;|).

The Pareto method is a widely used approach in

multi-objective optimization for identifying trade-offs

between conflicting objectives [46, 47]. The first step
is to partition the population into Pareto-dominated
and non-dominated solutions to identify the set of

494 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.19, NO.3 July 2025

optimal trade-offs. A solution s; dominates another
solution ss if s1 is better than or equal to s, in all ob-
jectives and strictly better in at least one. Two solu-
tions, s3 and sy, are non-dominated if one is better in
one objective and worse in another. In our case, each
solution, s, has two objectives: makespan (m) and
monetary cost (mc). A solution S; = {My, MC4}
dominates S = M,MC if and only if either M; < My
and MCq < MCQ) or (Ml < M5 and MC < MCQ)
Conversely, S3 = {M3, MCs} and Sy = {My, MC4},
are non-dominated if (M3 < My and MC3 > MCy)
or (Ms > My and MCs < MCy). The resulting set
of non-dominated solutions forms the Pareto Opti-
mal Front (POF), which represents the set of com-
promises between conflicting objectives. From this
set, we select an optimal solution based on the min-
imum Euclidean distance to an ideal point, defined
as the intersection of the minimum achievable values
of makespan and cost [47, 48]. Figure 3 illustrates
the distribution of dominated and non-dominated so-
lutions, the POF, and the selection of the optimal
point

Since the problem we tackled is multi-constrained,
we introduce another solution set, called Constrained
Pareto Optimal Front (CPOF), which encompasses
the POF solutions that also satisfy the user’s dead-
line and budget constraints. Next, the optimal solu-
tion is selected from the CPOF set as the one with
the smallest Euclidean distance to the ideal point, as
shown in Figure 4. To incorporate this concept into
our MPSMA algorithm, we modify the original sort
function of the SMA algorithm (Equation (16)) to
rank the solutions in the Smelllndex list according
to Pareto optimality. We assume that CPOF solu-
tions are better than POF solutions, which are pre-
ferred over dominated solutions in terms of makespan
and monetary cost. Thus, the Smelllndex list will
include first the CPOF solutions, then the POF so-
lutions, and finally the dominated solutions, where
the elements of each set are arranged in ascending
FEuclidean distance order, with the first item repre-
senting the best fitness and the last item the worst
fitness, as illustrated in Figure 5.

4.2.2 Dynamic Re-scheduler

Dynamic schedulers adapt to real-world systems
by responding to real-time changes in cloud resources
and workflow tasks. However, they may fail to op-
timize cost and time due to their reactive nature.
In contrast, static schedulers generate efficient exe-
cution plans but rely only on predicted information
and do not account for unexpected events at run-
time. To bridge this gap, we propose a static sched-
uler that aims to provide a cost and time-optimized
initial execution, followed by a dynamic re-scheduler
module that can deal with unexpected events while

Algorithm 5. MPSMA Algorithm

1. Initialize population size popsize, max iterations t,,qx»
and positions X; for (i = 1,...,popsize);

2. t< 0;

3. whilet < t,,, do

4. Compute fitness using Algorithm 4 and sort using
Constrained Pareto (CPOF) ;

5. Update bestFitness, X,, and classify search
portions;

6. Compute weight W and update parameter a, EF,
EEB, using Equations (27), (18), (21), and (23);

7. for all search portions do

8. Update the parameters p (Equation (28)), vb,

and UC;

9. switch search portion do

10. case best do Update X; by Equation (20);

11. case moderate do Update X; by Equation (22);

12. case poor do Update X; by Equation (26);

13. end switch

14. end for

15. t=t+ 1;
16. end while
17. return bestFitness,

© Non-dominated solution ® Dominated solution \._Pareto optimal front e i I gon S "

Makespan

Fig.4: Pareto Method

Fig.3: CPOF

Bf: best fitness
CPOF: Cnstrained Pareto Optimal Front

Wf: Worst fitness
POF: Pareto Optimal Front

Dominated Solutions

e J L L L L LU L L1 [wk

Fig.5: Smelllndex List.

maintaining efficiency. The dynamic re-scheduler re-
assigns failed tasks to active VMs, assuming failures
are primarily due to VM unavailability. It preserves
the static scheduler’s execution plan to ensure com-
pliance with the targeted objectives and constraints
while handling failures dynamically. The algorithm’s
pseudo-code is mentioned in Algorithm 6. It takes
a task (¢) as input and returns the virtual machine
(vm) on which it will be executed. By default, the al-
gorithm assigns task ¢ to the V M initially planned by
the static scheduler. If execution fails, it selects a new
VM by computing the real start time RST(t,vm,)
on all available VMs and choosing the one with the
smallest deviation from the initially predicted start
time ST(t,vm). The real start time is determined as:
RST(t,vm;) = max(RWT(vm;), PRFT(t)), where
RWT(vmy) is the real work time of virtual machine
vmj, indicating the time at which it becomes avail-
able, and PRFT(t) is the real time when the last pre-

HyEcoSec: Hybrid Cloud Economic and Secure Workflow Scheduling System 495

Algorithm 6. Dynamic Re-scheduler

Input: Task t
Output: Virtual machine vm

1. vm = VM(t);

2. ift is failed then

3 if pred(t) = ¢ then

4 PRFT(t) = 0;

5. else

6 PRFT (t) = max (RFT (t,)|t; € pred(t));

7 end if

8. for allvm; € VM do

9. RST(t,vm;) = max(RWT (vm;), PRFT (t));

10. end for

11. vmlList = VM ;

12. if (Pr(t) >= 1,,) then vmList = VMP"";

13. return vm; with min(|RST (t,vmj) —
ST (t,vm)|), where vmj € vmlList, vmj is active
and not busy;

14. else

15. return vm;

16. end if

decessor of task t finishes its execution. Furthermore,
it considers assigning task t; to the private cloud when
its priority exceeds the threshold 7p, generated by the
PCA module (Algorithm 1). Consequently, the dy-
namic re-scheduler ensures that the execution plan re-
mains aligned with the static scheduler’s initial plan,
achieving efficient scheduling while dynamically han-
dling runtime failures.

5. PERFORMANCE EVALUATION AND
RESULTS

To assess the efficiency of HyEcoSec, we first com-
pare our static scheduler, MPSMA, with the original
SMA and three baseline algorithms for static cloud
workflow scheduling: NSGA-II [8], MOPSO [9], and
MOACO [10]. The comparison focuses on makespan,
monetary cost, resource utilization, and adherence to
deadline and budget constraints. We also assess the
impact of a dynamic re-scheduler in scenarios involv-
ing system failures, which is crucial for understand-
ing the robustness of our scheduling solution. Addi-
tionally, we examine the implications of security con-
straints on the proposed system, ensuring that our
approach not only optimizes performance but also
adheres to essential security requirements. We im-
plemented HyEcoSec using WorkflowSim [7], an ex-
tension of CloudSim [49], and evaluated its perfor-
mance across three synthetic workflow applications:
LIGO (data-intensive), Montage (I/O-intensive), and
Epigenomics (CPU-bound). For detailed descriptions
of these workflows, refer to [50]. All results are de-
rived from the average of 100 execution attempts to
ensure accuracy.

5.1 Comparison with Baseline Methods &
Deadline, and Budget Constraints

We evaluated MPSMA’s performance against
SMA and the baseline algorithms, focusing on
makespan, monetary cost, resource utilization, execu-
tion time, and compliance with deadline and budget
constraints. To ensure fairness, all algorithms em-
ployed the same fitness function and Pareto optimal-
ity method, with necessary adjustments to align with
HyEcoSec’s security constraints. Each algorithm was
executed for 100 iterations with a population size of
25, adhering to original parameter settings. Eval-
uations were conducted under two virtual machine
configurations: a small-scale setup with 20 VMs (10
public and 10 private) and a large-scale setup with
50 VMs (25 public and 25 private). Each VM was
configured with:

e MIPS: randomly assigned between 100 and 1000.

e RAM: selected from {128, 256, 512, 1024, 2048}
MB.

e Bandwidth: randomly assigned between 10 and 100
Mbps.

e Cost per hour: calculated based on a simplified
model that increases proportionally with MIPS,
RAM, and bandwidth. Such cost modelling is com-
monly employed in CloudSim-based simulations to
approximate cloud provider billing policies [49].
These configurations reflect the diversity of VM

offerings available from commercial cloud providers.

They ensure a more comprehensive evaluation of the

scheduling strategy under varying resource condi-

tions, thereby enhancing generality and reducing bi-
ases associated with fixed configurations.

Deadlines (D) and budgets (B) were determined us-

ing:

D=Lp+k *(Up—Lp) (30)

B:LB+]€2*(UB—LB) (31)

where Lp = Mpgrrpr (Makespan of HEFT), Up =
5% Myppr and ky € [0,1]. Lp represents the cost of
assigning all tasks to the cheapest VM, Ug the cost
of assigning each task to the most expensive VM, and
ko € [O, 1]

Results indicate that MPSMA consistently out-
performs SMA, achieving improvements of 35% in
makespan and 38% in cost (Figures 6, 7). Com-
pared to baseline algorithms, MPSMA achieves aver-
age makespan reductions of 38% over NSGA-II, 21%
over MOPSO, and 17% over MOACO, with an over-
all average improvement of 26% (Table 5). These re-
sults highlight MPSMA's efficiency in handling large-
scale workflows. Additionally, increasing VM re-
sources from 20 to 50 leads to reduced execution times
across all algorithms, with MPSMA consistently de-
livering superior results, demonstrating better scala-
bility. MPSMA also consistently meets deadline con-

496 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.19, NO.3 July 2025

straints, especially for medium and large workflows,
whereas other algorithms struggle, particularly with
the Montage workflow. In terms of monetary cost
(Figure 7), MPSMA achieves reductions of 49% over
NSGA-II, 47% over MOPSO, and 34% over MOACO,
averaging a 43% improvement (Table 5). While other
algorithms meet budget constraints in some cases,
they often struggle with smaller workflows, notably
Montage. Table 3 further shows that MPSMA im-
proves deadline adherence by 32% and budget compli-
ance by 50%, outperforming all compared algorithms.
The superior performance of MPSMA is attributed
to enhancements in the SMA algorithm, optimizing
both exploration and exploitation processes, leading
to more efficient workflow scheduling.

Additionally, we evaluated the resource utiliza-
tion efficiency of MPSMA; the results indicate that
MPSMA improves resource utilization by an average
of 22% over the compared algorithms (Table 5). For a
more precise comparison, Table 2 provides a detailed
summary of the average makespan, monetary cost,
and resource utilization achieved by each algorithm
(MPSMA, NSGA-II, MOPSO, and MOACO) across
the three workflows: LIGO, Montage, and Epige-
nomics. This comparison further confirms the supe-
rior performance of MPSMA across all metrics and
workflows.

I MPSMA SMA-.— . -NSGA-IF - ~MOPSO- - -MOACO Deadline I

104 23 Mo3 e B 103

-
wN
R

Makespan (s)
M)
\\
Makespan (s)
Y
i
A
Makespan
wN
iy
LY
\L

Task number Task number Task number

(a) Ligo (20 VM)

(b) Montage (20
VM)

(c) Epigenomics
(20 VM)

8 lm"’

vvvvvvvv

Makespan (s)
o

Makespan (s)
Makespan (s)

50 Iy

Task number Task number

(d) Ligo (50 VM) (e) Montage (50

VM)

(f) Epigenomics
(50 VM)

Fig.6: Makespan of MPSMA vs. Baselines & Dead-
line Constraint.

Moreover, we assessed the execution time of
MPSMA compared to baseline algorithms to eval-
uate its computational efficiency. Figure 8, which
uses a logarithmic scale on the Y-axis to repre-
sent the wide variation, shows the execution time of
MPSMA compared to the NSGA-II, MOPSO, and
MOACO algorithms across different workflows and
task sizes. Compared to MOACO and NSGA-II,
MPSMA achieves significantly faster execution times
across all workflows and task configurations. How-
ever, in comparison with MOPSO, MPSMA is slightly
slower for small- and medium-scale workflows. This

MPSMA SMA-=--NSGA-IF -~ ~=MOPSGO- = -MOACG--Budget

o 4103 iG3 104

Cost (8)
\

Task number

(b) Montage (c) Epigenomics

(20VM) (20VM)
10 4103 o 3 M3 S 8 104 fio
2 . 2, 7 E) £
e - A s -4 Efr=
S * 1 /% é 2 e 7,
9] 6] zi] =
0 0 0 L=
28g888¢838
- NS ©C ®oC
Number of Task number

(f) Epigenomics
(50VM)

(d) Ligo (50VM) (e) Montage

(50VM)

Fig.7: Monetary Cost of MPSMA vs. Baselines €
Budget Constraint.

minor performance gap is justified by the additional
mechanisms integrated into MPSMA, such as the
EBB parameter, OBL, and roulette wheel selection,
which introduce computational overhead but effec-
tively help prevent premature convergence and local
optima, thereby yielding better results in terms of op-
timization objectives and adherence to constraints.

I MPSMA- — -NSGA-IF MOPSO MOACO l

103

|
1w

Time (ms)

Time
o
~
\

\
W
\

~
\
\

NOoooQOoo

NWOoOOoOeOS o

Task number Task numbe

Task number

(a) Ligo (b) Montage (c) Epigenomics

Fig.8: FExecution Time of MPSMA vs. Baselines.

Overall, MPSMA offers a favourable trade-off be-
tween execution time and solution quality. The de-
tailed values achieved by each algorithm are illus-
trated in Table 4, which reports the average of 100
runs for each configuration under 20-VM and 50-VM
setups.

5.2 Impact of Dynamic Re-scheduler

The dynamic re-scheduler heuristic proposed in
this study addresses unexpected failures during real-
time workflow execution. Its effectiveness was evalu-
ated by comparing the average makespan and mone-
tary costs across 100 runs of the HyEcoSec approach,
both with and without the dynamic re-scheduler,
while considering system failures. These failures were
simulated using WorkflowSim’s built-in fault injec-
tion framework. The failure model was configured to
generate task-level failures following a normal distri-
bution, with a fixed failure rate of 10% per workflow
level. Failures were introduced across all virtual ma-

HyEcoSec: Hybrid Cloud Economic and Secure Workflow Scheduling System

497

Table 2: Comparison of Average Makespan (M), Monetary Cost (MC), and Resource Utilization (RU) for

MPSMA wvs. Baseline Algorithms Across Workflows.

Algorithm LIGO Montage Epigenomics
M (s) MC(@$) |RU((%)| M(s) | MC($) [RU (%) M (s) MC ($) | RU (%)
MPSMA 10767.48 | 2006.20 | 37.81 | 809.38 | 770.04 | 26.86 | 128725.19 | 12965.18 | 34.00
NSGA-II 17853.19 | 3254.80 | 26.60 | 1265.10 | 170491 | 20.40 | 209712.29 | 28141.31 | 25.80
MOPSO 13521.90 | 3927.07 | 34.50 | 997.48 | 1385.22 | 25.95 | 169147.57 | 24363.64 | 29.10
MOACO 12817.48 | 2723.96 | 31.95 | 964.10 | 1488.99 | 22.70 | 158985.48 | 17890.46 | 28.05

Table 3: Performance Gains in Terms of Budget
and Deadline Compliance.

MPSMA NSGA-II MOPSO MOACO

Deadline | Budget| Deadline | Budget| Deadline | Budget| Deadline | Budget

Ligo 4% | 2% | 4% | 6% | 24% | 6% | 24% | 26%
Montage 17% | 43% | -44% | -56% | 9% |-16% | -7% | -26%

Epigenomics

39%

55%

1%

1%

21%

7%

22%

34%

Average

32%

50%

-16%

-16%

12%

-1%

13%

11%

Table 4: FEzecution Time (in milliseconds) of the
Proposed MPSMA Compared to Baseline Methods.

by the fact that our suggested dynamic re-scheduler
does not account for the VM’s bandwidth.

I‘ —.+= HyEcoSec ~ - - - HyEcoSec Without Dynamic Re-scheduler |

2105

=
\

¥
pan (s)

=l w
\
N

Makespan (s)

Makespan (
:.ﬁ-
h ¥

> a 5 7 106 - yo=
102547 7
=1
Task number’ Task number
(a) LIGO (b) Montage (c) Epigenomic
~104 ” P e i g AT
" Pt » 10 sl ®10°F _~ _
- » s 2 et St
2 A z z104 T
O1034 Rig20- 2} /
103 £/
288 2g8g88ggsg
-~ a ~ Q90 ®O
Task number Task number Task number
(d) LIGO (e) Montage (f) Epigenomic

Task number

Workflow | Algorithm 50 | 100| 200 | 400 | 600 | 800 | 1000
MPSMA 26 | 53| 98 | 200 | 297 | 424 | 498

Ligo NSGA-II 78 | 95| 139 | 215 | 308 | 476 | 558
MOPSO 19 [33| 67 | 159 | 263 | 423 | 525

MOACO | 271 [545[1096(2211|3352]|4576|5678

MPSMA 31 | 53| 103 | 210 | 315 | 430 | 547

Montage NSGA-II 80 | 101] 157 | 290 | 428 | 685 | 732
MOPSO 25 | 38| 77 | 178 | 284 | 429 | 584

MOACO | 278 [665|1116|2236|3374]|4560|5787

MPSMA 26 | 53| 96 | 187 | 281 | 432 | 493

Epigeno- NSGA-II 75 |1 93 | 128 | 200 | 287 | 464 | 554
Mics MOPSO 16 | 34| 66 | 138 | 225 | 412 | 516
MOACO 253 1541[1083|2207|3348 (4545|5722

Table 5: Performance Gains of MPSMA Compared
to Baseline Algorithms.

NSGA-II MOPSO MOACO

M [MC [RU | M [MC [RU [M [MC [RU
< |_Ligo | 40%| 38%] 42%| 20%] 49%| 10%] 16%| 26%] 18%
> [Montage| 36%| 5% 32%| 19%| 44%| 3% | 16%| 48%] 17%
S Ep;ﬁi‘;"' 39%| 54%| 37%] 24%| 47%| 17%| 19% | 28%| 21%
Average | 38%| 49%] 37%| 21%] 47%] 10%| 17%] 34%| 19%

Average (M) =26% Average (MC) = 43% Average
(RU) = 22%

chines and the 11 workflow levels used in the eval-
uation. These values follow WorkflowSim’s default
configuration, where 11 levels are used because most
workflows supported by the simulator have a maxi-
mum of 11 levels. A 10% failure rate is applied for
simplicity, meaning that 10% of submitted tasks at
each level are randomly selected to fail. Results, il-
lustrated in Figure 9, show a significant improvement
when employing the dynamic re-scheduler, reducing
makespan by 61% and cost by 49%, particularly for
smaller task counts (50, 100). For medium and large
workflows, the dynamic re-scheduler negatively im-
pacted the execution costs of the Montage workflow,
which is input/output bound. This can be explained

Fig.9: Impact of Dynamic Re-scheduler on Improve-
ment of HyEcoSec Approach.

5.3 Security Impact

We evaluated the impact of security constraints on
workflow makespan and monetary cost by comparing
our HyEcoSec approach with and without security
constraints. The results, illustrated in Figure 10, in-
dicate that the HyEcoSec technique experiences in-
creased makespan when security constraints are ap-
plied, as shown in Figures 10a, 10b, and 10c. This
is attributed to the security overhead from sensitive
tasks. Conversely, Figures 10d, 10e, and 10f demon-
strate that the monetary costs remain consistent re-
gardless of the presence of security constraints. This
is due to the billing model of our cloud resources,
where virtual machines are charged for full hourly
intervals, leading to no change in cost despite the in-
creased makespan caused by security overhead.

6. CONCLUSION

This paper presents HyEcoSec, a secure, time- and
cost-efficient workflow scheduling system for hybrid
cloud environments. It combines a Security Compli-
ance Module that meets user security requirements
and a Scheduling Module that integrates a static

498 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.19, NO.3 July 2025

I B HyEcoSec [@ HyEcoSec Without Security Constraint

103

.104

- Now R

Makespan (s
Makespan (s

Makespan (s)

100

3]
Task n

(a) LIGO

108

(b) Montage (c) Epigenomics

6

54108 .104

st ($)
st ($)

5
4
2

Cost (3)

Cc

w oo oo

= 400

»
>200

L

(d) LIGO (e) Montage (f) Epigenomics

Fig.10: Impact of Security Constraint on Workflow
Makespan and Monetary Cost.

scheduler based on the MPSMA algorithm and a dy-
namic re-scheduler.

MPSMA efficiently balances makespan and cost
while meeting deadline and budget constraints using
a modified Pareto approach. Experimental results
show that MPSMA outperforms SMA and baseline
methods (NSGA-II, MOPSO, MOACO), achieving
up to 43% cost reduction, 26% makespan improve-
ment, and 22% better resource utilization. In terms
of computational speed, MPSMA also achieves com-
petitive execution times, significantly outperforming
NSGA-II and MOACO. The dynamic re-scheduler
further enhances execution in failure scenarios, re-
ducing makespan and cost by 61% and 49%, re-
spectively. HyEcoSec is particularly effective for
data-intensive and CPU-bound workflows, with mi-
nor overhead from security integration.

However, this study has certain limitations as it
was conducted in a simulated environment using syn-
thetic workflows, which may not fully reflect the com-
plexity and variability of real-world scenarios. In ad-
dition, the estimation of security overhead was sim-
plified and assumed to be static. In contrast, in real-
world deployments, this overhead may vary dynam-
ically depending on task characteristics and cloud
providers’ security policies. Future studies can ad-
dress these limitations by incorporating real workflow
traces, deploying the system on actual cloud plat-
forms, and accounting for dynamic, real-world vari-
ations in security overhead. Additionally, HyEcoSec
can be extended to address energy consumption and
explore additional quality of service parameters, such
as load balancing and system reliability. Given its ef-
ficiency in cloud computing, HyEcoSec shows strong
potential for adaptation to other environments, such
as Fog computing.

AUTHOR CONTRIBUTIONS

Conceptualization, S.H.; methodology, S.H.; soft-
ware, S.H.; validation, S.H., B.Y., and S.M.; for-
mal analysis, S.H.; investigation, S.H.; data curation,
S.H.; resources, S.H.; writing—original draft prepa-
ration, S.H.; writing—review and editing, S.H. and
S.M.; visualization, S.H.; supervision, B.Y. and S.M.
All authors have read and agreed to the published
version of the manuscript.

References

[1] P. Mell and T. Grance, The NIST definition of
cloud computing, 2011.

[2] Z.Li et al., “A security and cost aware schedul-
ing algorithm for heterogeneous tasks of sci-
entific workflow in clouds,” Future Generation
Computer Systems, vol. 65, pp. 140-152, 2016.

[3] S.Kaur, P. Bagga, R. Hans and H. Kaur, “Qual-
ity of service aware workflow scheduling in cloud
computing: A systematic review,” Arabian Jour-
nal for Science and Engineering, vol. 44, pp.
2867-2897, 2019.

[4] M. Masdari, F. Salehi, M. Jalali and M. Bidaki,
“A survey of PSO-based scheduling algorithms
in cloud computing,” Journal of Network and
Systems Management, vol. 25, pp. 122-158, 2017.

[5] M. Adhikari, T. Amgoth and S. N. Srirama, “A
survey on scheduling strategies for workflows in
cloud environment and emerging trends,” ACM
Computing Surveys (CSUR), vol. 52, no. 4, 2019.

[6] Y. Wang, Y. Guo, Z. Guo, W. Liu and C. Yang,
”Securing the Intermediate Data of Scientific
Workflows in Clouds With ACISO,” in IEEE Ac-
cess, vol. 7, pp. 126603-126617, 2019.

[7] W. Chen and E. Deelman, ”WorkflowSim: A
toolkit for simulating scientific workflows in dis-
tributed environments,” 2012 IEEE Sth Inter-
national Conference on E-Science, Chicago, 1L,
USA, pp. 1-8, 2012.

[8] K. Deb, A. Pratap, S. Agarwal and T. Meyari-
van, A fast and elitist multiobjective genetic
algorithm: NSGA-IL,” in IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182-
197, April 2002.

9] C. A. Coello Coello and M. S. Lechuga,
"MOPSOQO: a proposal for multiple objective par-
ticle swarm optimization,” Proceedings of the
2002 Congress on FEwvolutionary Computation.
CEC’02 (Cat. No.02TH8600), Honolulu, HI,
USA, vol.2, pp. 1051-1056, 2002.

[10] D. Angus and C. Woodward, “Multiple objective
ant colony optimisation,” Swarm Intelligence,
vol. 3, pp. 69-85, 2009.

[11] M. Masdari, S. ValiKardan, Z. Shahi and S. I.
Azar, “Towards workflow scheduling in cloud
computing: A comprehensive analysis,” Journal
of Network and Computer Applications, vol. 66,
pp- 64-82, 2016.

HyEcoSec: Hybrid Cloud Economic and Secure Workflow Scheduling System

[12]

[15]

[16]

[17]

[18]

[19]

[20]

L. F. Bittencourt and E. R. M. Madeira,
“HCOC: A cost optimization algorithm for work-
flow scheduling in hybrid clouds,” Journal of In-
ternet Services and Applications, vol. 2, pp. 207-
227, 2011.

J. Zhou, T. Wang, P. Cong, P. Lu, T. Wei and
M. Chen, “Cost and makespan-aware workflow
scheduling in hybrid clouds,” Journal of Systems
Architecture, vol. 100, p. 101631, 2019.

P. Wang, Y. Lei, P. R. Agbedanu and Z.
Zhang, “Makespan-Driven Workflow Schedul-
ing in Clouds Using Immune-Based PSO Algo-
rithm,” in IEEFE Access, vol. 8, pp. 29281-29290,
2020.

A. Mohammadzadeh, M. Masdari, F. S. Ghare-
hchopogh, and A. Jafarian, “A hybrid multi-
objective metaheuristic optimization algorithm
for scientific workflow scheduling,” Cluster Com-
puting, vol. 24, pp. 1479-1503, 2021.

M. Alam, M. Shahid and S. Mustajab, “Secu-
rity challenges for workflow allocation model in
cloud computing environment: A comprehensive
survey, framework, taxonomy, open issues, and
future directions,” The Journal of Supercomput-
ing, vol. 80, pp. 11491-11555, 2024.

L. Zeng, B. Veeravalli and X. Li, “SABA:
A security-aware and budget-aware workflow
scheduling strategy in clouds,” Journal of Par-
allel and Distributed Computing, vol. 75 , pp.
141-151, 2015.

R. Marti and G. Reinelt, “Heuristic methods,”
in The Linear Ordering Problem, Springer, pp.
17-40, 2011.

M. M. Lopez, E. Heymann and M. A. Senar,
“Analysis of Dynamic Heuristics for Workflow
Scheduling on Grid Systems,” 2006 Fifth Inter-
national Symposium on Parallel and Distributed
Computing, Timisoara, Romania, pp. 199-207,
2006.

H. M. Fard, R. Prodan, J. J. D. Barrionuevo
and T. Fahringer, “A Multi-objective Approach
for Workflow Scheduling in Heterogeneous Envi-
ronments,” 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Com-
puting (ccgrid 2012), Ottawa, ON, Canada, pp.
300-309, 2012.

F. Abazari, M. Analoui, H. Takabi, and S. Fu,
“MOWS: Multi-objective workflow scheduling in
cloud computing based on heuristic algorithm,”
Simulation Modelling Practice and Theory, vol.
93, pp. 119-132, 2019.

D. G. Maringer, Portfolio Management with
Heuristic Optimization, Boston, MA: Springer
Us, 2005.

S. Pandey, L. Wu, S. M. Guru and R. Buyya, “A
Particle Swarm Optimization-Based Heuristic
for Scheduling Workflow Applications in Cloud
Computing Environments,” 2010 24th IEEE In-

[29]

[30]

[31]

[32]

[33]

[34]

[35]

499

ternational Conference on Advanced Information
Networking and Applications, Perth, WA, Aus-
tralia, pp. 400-407, 2010.

Z. -G. Chen et al., “Deadline Constrained Cloud
Computing Resources Scheduling through an
Ant Colony System Approach,” 2015 Interna-
tional Conference on Cloud Computing Research
and Innovation (ICCCRI), Singapore, pp. 112-
119, 2015.

Q. Wu, F. Ishikawa, Q. Zhu, Y. Xia and J. Wen,
“Deadline-Constrained Cost Optimization Ap-
proaches for Workflow Scheduling in Clouds,” in
IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 12, pp. 3401-3412, 1 Dec.
2017.

A. G. Delavar and Y. Aryan, “HSGA: A hybrid
heuristic algorithm for workflow scheduling in
cloud systems,” Cluster Computing, vol. 17, pp.
129-137, 2014.

A. Belgacem and K. Beghdad-Bey, “Multi-
objective workflow scheduling in cloud comput-
ing: Trade-off between makespan and cost,”
Cluster Computing, vol. 25, pp.579-595, 2022.

N. Arora and R. K. Banyal, “A particle grey
wolf hybrid algorithm for workflow scheduling in
cloud computing,” Wireless Personal Communi-
cations, vol. 122, pp. 3313-3345, 2022.

S. Abdi, M. Ashjaei and S. Mubeen, “Deadline-
constrained security-aware workflow scheduling
in hybrid cloud architecture,” Future Generation
Computer Systems, vol. 162, p. 107466, 2025.

L. Cheng et al., “Cost-aware real-time job
scheduling for hybrid cloud using deep reinforce-
ment learning,” Neural Computing and Applica-
tions, vol. 34, pp. 18579-18593, 2022.

Z. Sun, H. Huang, Z. Li, C. Gu, R. Xie
and B. Qian, “Efficient, economical and en-
ergy saving multi-workflow scheduling in hybrid
cloud,” FExpert Systems with Applications, vol.
228, p.120401, 2023.

National Institute of Standards and Technology
(U.S.), “Standards for security categorization of
federal information and information systems,”
Washington, D.C., Tech. Rep. 199, 2004.

H. Chen, X. Zhu, D. Qiu, L. Liu and Z.
Du, “Scheduling for Workflows with Security-
Sensitive Intermediate Data by Selective Tasks
Duplication in Clouds,” in IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no.
9, pp. 2674-2688, 1 Sept. 2017.

T. Xie and X. Qin, “Scheduling security-critical
real-time applications on clusters,” in IFEFE
Transactions on Computers, vol. 55, no. 7, pp.
864-879, July 2006.

S. Hammouti, B. Yagoubi and S. A. Makhlouf,
“Workflow security scheduling strategy in cloud
computing,” in International Symposium on

500

[38]

[41]

[42]

[43]

ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.19, NO.3 July 2025

Modelling and Implementation of Complex Sys-
tems, Springer, pp. 48-61, 2020.

S. Hammouti, B. Yagoubi and S. Ahmed
Makhlouf, “Parametric Scientific Workflow
Scheduling Algorithm in Cloud Computing,”
2022 International Symposium on iNnovative
Informatics of Biskra (ISNIB), Biskra, Algeria,
pp. 1-6, 2022.

Amazon Web Services, “Data protection secu-
rity pillar.” [Online]. Available: https://docs.
aws.amazon.com/wellarchitected/latest/
security-pillar/data-protection.html.
[Accessed: Dec. 9, 2024].

S. Li, H. Chen, M. Wang, A. A. Heidari
and S. Mirjalili, “Slime mould algorithm: A
new method for stochastic optimization,” Future
Generation Computer Systems, vol. 111, pp. 300-
323, 2020.

H. Chen, C. Li, M. Mafarja, A. A. Heidari,
Y. Chen and Z. Cai, “Slime mould algorithm:
A comprehensive review of recent variants and
applications,” International Journal of Systems
Science, vol. 54, no. 1, pp. 204-235, 2023.

F. S. Gharehchopogh, A. Ucan, T. Ibrikci, B.
Arasteh and G. Isik, “Slime mould algorithm: A
comprehensive survey of its variants and appli-
cations,” Archives of Computational Methods in
Engineering, vol. 30, no. 4, pp. 26832723, 2023.
Y. Shen, C. Zhang, F. S. Gharehchopogh and S.
Mirjalili, “An improved whale optimization al-
gorithm based on multi-population evolution for
global optimization and engineering design prob-
lems,” FExpert Systems with Applications, vol.
215, p. 119269, 2023.

S. Mirjalili, S. M. Mirjalili and A. Hatamlou,
“Multi-verse optimizer: A nature-inspired algo-
rithm for global optimization,” Neural Comput-
ing and Applications, vol. 27, pp. 495-513, 2016.
L. Abualigah, A. Diabat, S. Mirjalili, M. Abd
Elaziz and A. H. Gandomi, “The arithmetic opti-
mization algorithm,” Computer Methods in Ap-
plied Mechanics and Engineering, vol. 376, p.
113609, 2021.

H. R. Tizhoosh, “Opposition-Based Learning:
A New Scheme for Machine Intelligence,” In-
ternational Conference on Computational In-
telligence for Modelling, Control and Automa-
tion and International Conference on Intelligent
Agents, Web Technologies and Internet Com-
merce (CIMCA-TAWTIC’06), Vienna, Austria,
pp. 695-701, 2005.

S. Mahdavi, S. Rahnamayan and K. Deb, “Op-
position based learning: A literature review,”
Swarm and FEvolutionary Computation, vol. 39,
pp. 1-23, 2018.

S. Yassa, R. Chelouah, H. Kadima and B.
Granado, “Multi-objective approach for energy-
aware workflow scheduling in cloud computing

| &
ences, Rector of the University of Mostaganem, and Rector of

the University Center of Tindouf. He is also research team
leader at the Oran Computer Science Laboratory.

environments,” The Scientific World Journal,
vol. 2013, no. 350934, 2013.

N. Gunantara, “A review of multi-objective opti-
mization: Methods and its applications,” Cogent
Engineering, vol. 5, no. 1, 2018.

T. Ozcelebi, “Multi-objective optimization for
video streaming,” Ph.D. dissertation, Graduate
School of Sciences and Engineering, Koc Univer-
sity, 2006.

R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A.
De Rose and R. Buyya, “CloudSim: A toolkit
for modeling and simulation of cloud computing
environments and evaluation of resource provi-
sioning algorithms,” Software: Practice and Fx-
perience, vol. 41, no. 1, pp. 23-50, 2011.

G. Juve, A. Chervenak, E. Deelman, S. Bharathi,
G. Mehta and K. Vahi, “Characterizing and pro-
filing scientific workflows,” Future Generation
Computer Systems, vol. 29, no. 3, pp. 682-92,
2013.

Sarra Hammouti is a Ph.D. candi-
date in Computer Science at the Uni-
versity of Oran 1 Ahmed Ben Bella,
Algeria. Her research interests include
cloud computing, workflow scheduling,
distributed systems, and multi-objective
optimization. She is also a member
of the Oran Computer Science Labora-
tory.

Belabbas Yagoubi holds a Ph.D. in
Computer Science on 2007 and is a
Full Professor at the Oranl University
Ahmed Ben Bella, Algeria. His research
focuses on parallel and distributed sys-
tems, including resources management
in cloud computing (security, fault tol-
erance, tasks scheduling, load balancing,
etc.). He has held several academic and
administrative roles, including Dean of
the Faculty of Exact and Applied Sci-

Sid Ahmed Makhlouf holds a Ph.D in
computer science on 2019. His main re-
search interests include distributed sys-
tem, cluster, grid and cloud comput-
ing, load balancing, task and workflow
scheduling, and machine learning. He is
currently an associate professor at the
University of Oranl Ahmed Ben Bella
(Algeria) and a member of the Oran
Computer Science Laboratory.

