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ABSTRACT
Sign language is a critical communication medium for deaf and hard-of-
hearing individuals, yet the diversity of over 7,000 sign languages worldwide
presents significant challenges for automated recognition systems. This
paper presents a novel approach to sign language recognition (SLR) that
integrates computer vision techniques with advanced natural language pro-
cessing (NLP) to improve transcription accuracy and contextual relevance.
Our system employs a two-stage architecture: first, a gesture recognition
component utilizing MediaPipe Holistic for landmark extraction and Long
Short-Term Memory (LSTM) networks for classification; second, a text
enhancement module using bidirectional LSTM for contextual correction
and grammatical improvement. Experimental results demonstrate that
our NLP-enhanced system achieves 98.46% accuracy in gesture recognition
while significantly improving the grammatical correctness and contextual
coherence of the generated text compared to systems without NLP en-
hancement. The system can successfully identify missing function words,
add appropriate punctuation, and correct grammatical errors in real-time.
While primarily focused on American Sign Language (ASL), our approach
provides valuable insights for developing more effective and inclusive SLR
technologies for various sign languages. These advancements represent a
meaningful step toward bridging communication gaps between signing and
non-signing individuals, potentially enhancing accessibility in educational,
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1. INTRODUCTION

Sign language serves as a vital communication
medium for approximately 70 million deaf and hard-
of-hearing individuals [1]. Unlike spoken languages
that rely on auditory signals, sign languages utilize
visual-manual modalities through a combination of
hand gestures, facial expressions, and body postures
to convey meaning. Despite their importance, sign
languages remain largely inaccessible to the majority
of the global population, creating significant commu-
nication barriers for deaf communities in educational,
professional, and social environments.

The diversity of sign languages further complicates
this accessibility challenge. With over 7,000 distinct
sign languages globally, each with its own vocabulary,
grammar, and regional variations, developing univer-
sal recognition systems requires addressing consider-

able linguistic complexity. We focus specifically on
American Sign Language (ASL), which is used by ap-
proximately 500,000 people in the United States and
Canada as their primary mode of communication, due
to its extensive research documentation, established
linguistic frameworks, and availability of validation
resources that enable rigorous experimental design.
ASL’s well-documented grammatical structures pro-
vide an ideal testbed for developing NLP enhance-
ment techniques that can subsequently be adapted to
other sign languages, allowing us to establish proof-
of-concept for our integrated approach while laying
the groundwork for future multilingual extensions.

This study addresses the fundamental problem of
existing sign language recognition systems that pro-
duce grammatically incorrect and contextually inap-
propriate transcriptions due to their focus solely on
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gesture recognition without adequate linguistic pro-
cessing. Most current systems generate fragmented
outputs that lack proper sentence structure, omit es-
sential function words, and fail to maintain contex-
tual coherence, resulting in transcriptions that are
neither readable nor natural for effective communica-
tion.

Traditional approaches to bridging this communi-
cation gap have relied heavily on human interpreters,
which present limitations in availability, cost, and
privacy. While technological solutions have evolved
from basic text-to-speech systems to more sophisti-
cated gesture recognition technologies, current sign
language recognition (SLR) systems still face signifi-
cant challenges in achieving both accuracy and natu-
ral language output.

Existing SLR technologies can be broadly cate-
gorized into sensor-based approaches (such as data
gloves) and vision-based approaches. Sensor-based
methods often achieve high accuracy but require spe-
cialized equipment that may be cumbersome or ex-
pensive. Vision-based approaches, while more ac-
cessible and user-friendly, traditionally struggle with
varying lighting conditions, complex backgrounds,
and the dynamic nature of sign language. Moreover,
most current systems focus exclusively on recognition
without adequate attention to the linguistic context,
resulting in grammatically incorrect or contextually
inappropriate transcriptions.

Our research addresses these limitations by devel-
oping an integrated system that combines advanced
computer vision techniques with natural language
processing to enhance sign language recognition and
transcription. The key innovations of our approach
include:

1. A robust gesture recognition framework utilizing
MediaPipe Holistic for comprehensive landmark
extraction and Long Short-Term Memory (LSTM)
networks for accurate classification of dynamic
sign gestures.

2. A novel text enhancement component employ-
ing bidirectional LSTM networks to improve the
grammatical correctness and contextual relevance
of transcribed text.

3. An adaptive scoring mechanism that evaluates
multiple potential interpretations of signs based
on their contextual probability, improving overall
transcription quality.

The integration of these components enables our
system to not only recognize individual signs with
high accuracy but also generate coherent, grammat-
ically correct sentences that preserve the intended
meaning. This represents a significant advancement
over existing approaches that often produce frag-
mented or contextually inappropriate transcriptions.

By focusing on both recognition accuracy and
linguistic quality, our research contributes to the
broader goal of creating more inclusive communica-

tion technologies. The successful implementation of
such systems could significantly enhance accessibility
for deaf and hard-of-hearing individuals across var-
ious domains, including education, healthcare, em-
ployment, and social interactions.

The remainder of this paper is organized as follows:
Section 2 reviews related work in sign language recog-
nition, Section 3 details our methodology and system
architecture, Section 4 describes the implementation
process, Section 5 presents experimental results, Sec-
tion 6 discusses implications and limitations, Section
7 outlines future work, and Section 8 concludes with
a summary of contributions and potential impact.

2. RELATED WORK

Sign language recognition has evolved significantly
over the past decades. Recent comprehensive surveys
[2,3] categorize existing approaches into sensor-based,
vision-based, and hybrid systems, each with distinct
advantages and limitations. This section provides a
comprehensive review of existing approaches, high-
lighting their strengths, limitations, and the research
gaps our work aims to address.

2.1 Traditional Approaches to Sign Language
Recognition

Early sign language recognition systems primarily
relied on wearable devices and sensor technologies.
Chen et al. [4] developed a glove-like device equipped
with thin, stretchable sensors to capture hand and fin-
ger movements for real-time ASL translation. Their
system successfully identified 660 signs with promis-
ing accuracy but required users to wear specialized
equipment that could be uncomfortable for extended
use. Similarly, Mehdi and Khan [5] created the “Talk-
ing Hands” system using a sensor glove with seven
sensors to measure finger flexure, hand tilt, and ro-
tation. While achieving an accuracy of 88% for al-
phabetic recognition, their approach was limited to
static gestures and excluded two-handed signs.

These wearable approaches demonstrate high po-
tential for accuracy but face significant limitations in
terms of user comfort, practicality, and the ability to
capture the full complexity of sign language, which
extends beyond hand movements to include facial ex-
pressions and body posture.

2.2 Vision-Based Sign Language Recognition
Systems Vision-Based Systems

Recent advancements in computer vision and deep
learning have enabled more natural, camera-based
sign language recognition systems. Monisha et al. [6]
combined hand tracking using the MediaPipe library
with convolutional neural networks (CNNs) for clas-
sification, achieving high confidence scores in gesture
recognition. However, their system struggled with
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hand occlusions and rapid movements and could not
recognize complex or dynamic gesture sequences.

Abubakar et al. [7] developed a machine learning-
based system for real-time ASL recognition, utilizing
the HandDetector module and CNNs. Their model
achieved impressive accuracies of 99.86% for training,
99.94% for validation, and 94.68% for testing. De-
spite these promising results, the system was limited
to static alphabetic gestures and required controlled
lighting and background conditions.

Bragg et al. [8] proposed a more comprehen-
sive approach combining computer vision, computer
graphics, and linguistics.  Their interdisciplinary
system incorporated symbolic representations and
computer-generated avatars but faced limitations due
to insufficient large-scale annotated datasets and
challenges in handling continuous signing.

ASL Recognition Using Mouthing Cues and
Finger Spelling

Alternative approaches have explored specific as-
pects of sign language. Albanie et al. [9] introduced
a scalable method for data collection using mouthing
cues from signers in broadcast footage, creating the
BSL-1K dataset with 1,000 hours of video. This ap-
proach demonstrated that mouthing cues could pro-
vide high-quality annotations for training robust sign
recognition models.

In the domain of finger spelling, Kadhim and
Khamees [10] developed a real-time ASL finger
spelling recognition system using CNNs, achieving
98.53% training accuracy and 98.84% validation ac-
curacy for all 26 letters of the ASL alphabet. Sim-
ilarly, Pugeault and Bowden [11] utilized the Mi-
crosoft Kinect device to capture both appearance and
depth images for finger spelling recognition, achieving
a mean precision of 75% but encountering challenges
with visually similar hand shapes.

Hybrid Approaches

Recognizing the limitations of single-method ap-
proaches, researchers have explored hybrid systems
that combine multiple technologies. Chong and Lee
[12] used the Leap Motion Controller with machine
learning techniques, achieving recognition rates of
93.81% for the 26 ASL letters using Deep Neural Net-
works. Buttar et al. [13] developed a hybrid approach
combining LSTM with MediaPipe holistic landmarks
for continuous signs (92% accuracy) and YOLOv6 for
static signs (96% accuracy).

Saggio et al. [14] integrated wearable electron-
ics with Al-based classification algorithms, utilizing a
sensory glove and inertial measurement units with k-
Nearest Neighbors and CNNs. Their system achieved
98.0% accuracy for the CNN-based approach but
noted issues with user comfort and gesture repeata-
bility.

2.3 Research Gaps and Our Contribution

Despite significant advancements, several critical
gaps remain in the current state of sign language
recognition research:

Conteztual Understanding: Most existing systems
focus primarily on gesture recognition without ad-
equate attention to linguistic context, resulting in
grammatically incorrect or contextually inappropri-
ate transcriptions.

Integration of Natural Language Processing: Few
approaches effectively integrate NLP techniques to
enhance the quality and coherence of transcribed
text, particularly for handling function words and
grammatical structures that may not have explicit
signs.

Real-time Performance with High Accuracy: Bal-
ancing computational efficiency with recognition ac-
curacy remains challenging, especially for systems de-
signed to operate in diverse real-world environments.

Handling of Dynamic and Continuous Signing:
Many systems are limited to static gestures or iso-
lated signs, struggling with the dynamic and contin-
uous nature of natural sign language communication.

The comprehensive analysis of existing approaches
reveals three critical gaps: (1) insufficient contextual
understanding in transcription processes, (2) limited
real-time performance with high accuracy across di-
verse environments, and (3) inadequate integration
of natural language processing techniques for linguis-
tic quality enhancement. While recent advances have
made progress in individual areas, the integration
of robust gesture recognition with contextual text
enhancement remains largely unexplored. Our re-
search specifically addresses these gaps through an
integrated approach that combines computer vision
techniques with advanced NLP methods, representing
a significant advancement over existing recognition-
focused systems.

3. METHODOLOGY

This section details the architecture and compo-
nents of our Al-driven sign language recognition sys-
tem, with particular emphasis on the integration of
computer vision techniques and natural language pro-
cessing for enhanced transcription accuracy.

3.1 System Architecture Overview

Our system implements a sequential pipeline ar-
chitecture consisting of five primary phases, each de-
signed to address specific challenges in sign language
recognition (Fig. 1):

1. Input Acquisition: Capture of video data
through a standard webcam, providing the raw vi-
sual information of sign language gestures.

2. Landmark Extraction: Preprocessing of video
frames to identify and track key anatomical points
necessary for gesture recognition.
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3. Gesture Recognition: Analysis of landmark se-
quences to identify specific signs using deep learn-
ing models.

4. Text Enhancement: Application of NLP tech-
niques to improve the grammatical structure and
contextual relevance of the recognized text.

5. Output Generation: Presentation of the en-
hanced text as the final transcription result.

This architecture facilitates a comprehensive ap-
proach to sign language recognition that extends be-
yond mere gesture identification to produce linguisti-
cally meaningful output

1. Input Acquisition

Camera Input

Fig.1: Al Dirven Sign Language Recognition System
Architecture.

3.2 Landmark Extraction MediaPipe Holistic
Framework

At the core of our landmark extraction process is
the MediaPipe Holistic framework [15], which enables
the simultaneous detection of pose, face, and hand
landmarks. This comprehensive approach is essential
for capturing the full range of anatomical information
involved in sign language communication.

The framework processes continuous video streams
in real-time, generating a total of 543 landmarks per
frame:

— 33 pose landmarks representing the overall body
posture.

— 468 face landmarks capturing facial expressions
and movements.

— 21 landmarks for each hand, detailing finger and
hand configurations.

Landmark Detection Pipeline
The detection pipeline operates through a multi-

stage process (Fig. 3):

1. The pose detection model first estimates the hu-
man pose from a lower-resolution frame (256 x
256).

654 123

Fig.2: (a) Pose Landmarks [16] (b) Hand Land-
marks [17] .

2. Based on the inferred pose landmarks, three re-
gions of interest (ROIs) are identified for the face
and each hand.

3. These ROIs are then cropped from the full-
resolution input frame.

4. Specialized face and hand models process these
cropped regions at appropriate resolutions.

5. All landmarks are merged into a comprehensive
representation of the signer’s position and move-
ments.

Data Reduction Benefits This landmark-based

approach offers significant advantages in computa-

tional efficiency. By extracting only the essential
anatomical points from each frame, we achieve a dra-
matic reduction in data volume:

o Raw image representation: ~1,875,000 data points
for a 10-frame sequence (250 x 250 pixel RGB im-
ages)

e Landmark representation: ~16,290 data points for
the same sequence (543 landmarks with three co-
ordinates each)

3.3 Gesture Recognition

Model Architecture
Our gesture recognition component employs a
Long Short-Term Memory (LSTM) neural network
architecture, specifically designed to process sequen-
tial data and capture temporal dependencies in
sign language gestures. The LSTM architecture
builds upon the foundational work of Hochreiter and
Schmidhuber [18], with bidirectional processing fol-
lowing Graves and Schmidhuber’s [19] methodology.
The model consists of multiple layers:
1. Input layer: Accepts sequences of landmark co-
ordinates extracted from video frames
2. LSTM layers: Three stacked LSTM layers (64,
128, and 64 units) with tanh activation functions
3. Dropout layers: Applied after each LSTM layer
with a 20% dropout rate to prevent overfitting
4. Dense layers: Two fully connected layers (64 and
32 units) with ReLU activation
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MediaPipe Holistic Framework

| MediaPipe Holistic

Video Frame Input

Pre-processing

Processed Frame ' /

{ RGB Frame / /

[ Pose Detection ] [ Face Detection ] [ Hand Detection ]

{ ROI Processing } [ ROI Processing ] [ ROI Processing ]

l I |

[Pose Landmarks(33 points)l [Face Landmarks(468 poims)] [Hand Landmarks(42 points)l i

‘ Combined Landmarks (543 points) ’

Fig.3: Landmark Ezxtraction Pipeline. The pipeline processes video frames to extract anatomical landmarks:
(i) Detects key body regions (ii) Processes each region at optimal resolution (iii) Extracts precise landmark

coordinates (i) Combines into a unified representation.

5. Output layer: Dense layer with softmax activa-
tion producing probability distributions across all
possible signs
The return_sequences parameter is set to True for

the first two LSTM layers to preserve temporal in-

formation throughout the network. In contrast, the
final LSTM layer outputs only the concluding state
to summarize the sequence information.

Key Parameters
Several parameters significantly
model’s performance:

influence the

e Sequence Length: The number of consecutive
frames processed as a single gesture (optimized
at 10 frames)

e Landmarks Used: The specific anatomical
points included in the model (hands and pose
landmarks demonstrated optimal performance)

e Recognition Threshold: The minimum prob-
ability required to consider a prediction valid
(set to 0.99)

e Confidence Count: The number of consecu-
tive frames that must yield the exact same pre-
diction (set to 10)

These parameters were carefully tuned through

experimentation to balance accuracy and computa-
tional efficiency.

3.4 Text Enhancement

Bidirectional LSTM for Contextual Under-
standing

The text enhancement component utilizes a bidi-
rectional LSTM (biLSTM) architecture to improve

the linguistic quality of recognized gestures. This ap-
proach captures contextual information in both for-
ward and backward directions, addressing a key lim-
itation of many existing systems.

noindent The model architecture includes:

1. Embedding layer: Converts token IDs into 128-
dimensional dense vectors
2. Two bidirectional LSTM layers: Each with
256 units and tanh activation
. Dense layer: 128 units with ReLU activation
4. Output layer: Softmax activation with vocabulary-
size units

w

Text Enhancement Algorithm

Our text enhancement process incorporates sev-
eral sophisticated scoring mechanisms to evaluate and
improve transcription quality. These scoring mech-
anisms are mathematically defined to quantify the
contextual appropriateness of different word combi-
nations:
Word Score (WS): Evaluates the basic relationship
between a sentence and a potential next word by cal-
culating the probability that the sentence is contex-
tually followed by the word:

WS (Sentence, word) = P(Sentence|lword) (1)

This score directly measures how well a candidate
word fits as the next element in the sequence.
Alternative Score (AS): Considers different com-
binations by examining sentence segments, alterna-
tive words from our dictionary, and potential function
words. It selects the maximum probability among all
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possible combinations:

AS(Sentence, word) = max(P(Sentence;| FWj, + word;)) (2)

Where Sentence; and word; are alternative forms of
the sentence and word, respectively, and FWj repre-
sents optional function words that might be inserted
in the sequence. This scoring mechanism enables the
system to consider multiple linguistic alternatives si-
multaneously.

Segmentation Score (SS): Assesses the probability
of correct sentence boundaries using special tokens for
sentence beginning (< sos >) and ending (< eos > ):

SS(Sentence, word) = P(sentence| < eos >) X P(< sos > |word)
3)
This score helps the system determine when one
sentence ends and another begins, improving the
overall structure of the transcribed text.
Punctuation Score (PS): Evaluates the likelihood
of different punctuation marks fitting between a sen-
tence and a word by calculating separate probabilities
for the comma, period, question mark, and exclama-
tion mark:

COM = P(sentence| < com > +word)  (4)

PNT = P(sentence| < pnt > + < eos >) x P(< sos > |word) (5)

QST = P(sentence| < gst > + < eos >) x P(< sos > |word) (6)

EXC = P(sentence| < exc > + < eos >) X P(< sos > |word) (7)

The Punctuation Score is then determined as the
maximum of these individual scores:

PS(Sentence, word) = max(COM,PNT,QST, EXC) (8)

This mechanism enables the use of appropriate
punctuation based on contextual cues.

Enhanced Score (ES): Aggregates the results of
all scoring mechanisms to determine the most contex-
tually appropriate combination:

ES(Sentence, word) = max(PS,WS, AS,SS) (9)
By selecting the maximum score among all mech-

anisms, the system prioritizes the most probable in-
terpretation in each context.

The prediction score is a critical component that
calculates the probability of a sequence of words fol-
lowing a given text. For a text A followed by a se-
quence B containing n words, the prediction score
P(A—B) is calculated as:

P(A|B) = P(A[Bo) x [ P(A+ BilBiy1) (10)

This formulation represents the product of condi-
tional probabilities for each word in the sequence B
given the preceding context. The prediction score
enables the system to evaluate more extended word
sequences by decomposing them into a series of next-
word predictions, each conditioned on the accumu-
lated context.

Dictionary and Special Tokens

The text enhancement process is supported by sev-

eral key linguistic resources:

e A dictionary providing alternative interpreta-
tions for each sign.

e Special tokens marking sentence boundaries and
structural elements (e.g., < sos > for start of
sentence, < eos > for end of sentence).

e Punctuation tokens (< com >, < pnt >, <
gst >, < exc >) for appropriate text format-
ting.

e A catalog of function words commonly needed
for grammatical completeness.

The text enhancement algorithm operates through

the following process “Algorithm 1”:

Algorithm 1: Text Enhancement via biL.STM

Input: sentence (current sentence, initially empty),
alt words (set of alternative words with scores),
biLSTM _model (pretrained language model), threshold
(prediction score threshold).

Initialization:

If sentence == @:

i word = argmax(alt words.score)

Capitalize word
sentence = word

For each word selection step do:

predictions «<— biLSTM_model.predict next(sentence).

enhanced score «— 0

enhanced word «— @

For each word € alt words do:
generate_combinations(word, predictions)
score = evaluate(combinations)

If score > enhanced_score:
# enhanced score < score
enhanced word < word
If enhanced_score > threshold:
sentence «— sentence + " " + enhanced word
Replace special tokens with punctuation
Split at sentence boundaries
v Capitalize first words of new sentences
End Algorithm

This detailed workflow ensures comprehensive lin-
guistic processing that considers multiple interpreta-
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tions, grammatical structures, and contextual rele-
vance to produce the most appropriate transcription
of the signed content.

System Integration
The final system integrates all components into a
cohesive pipeline (Fig. 4) where:
1. Video input is processed frame-by-frame
through the MediaPipe framework
2. Extracted landmarks are fed into the gesture
recognition model
3. Recognized gestures are passed to the text en-
hancement component
4. Enhanced text is generated as the final output
This integrated approach ensures that each com-
ponent complements the others, resulting in a system
that not only recognizes individual signs accurately
but also produces coherent, grammatically correct
transcriptions that preserve the intended meaning of
the signed communication.

Special Tokens &Function Words Raw Recognized Text
Bidirectional LSTM
Alternative Score H

Dictionary(Alternative Signs)

l Word Score ]

SS(S,w) = P(S|<eos>)
x P(<s0s>|w)

Sentence boundary detection

Score > Threshold?
o Yes

Discard Prediction

Fig.4: Text Enhancement Workflow.

Raw Input:
“how you i good”

1 Enhanced Text Output ]

Enhanced Output:
"H

“How are you? | am good."

4. RESULTS

The system was implemented on two computing
devices: an ASUS TUF Gaming FX505DD laptop
featuring an AMD Ryzen 5 3550H processor (3.7
GHz), an NVIDIA GeForce GTX 1050 GPU, 16 GB
RAM, and Windows 11, and a desktop computer
equipped with an Intel Core 15-9400F CPU (2.90
GHz), an NVIDIA GeForce GTX 1660 SUPER GPU,
16 GB RAM, and Windows 10. The implementation
utilized Python 3.10.11 with key libraries, including
TensorFlow 2.10.1 and Keras 2.10.0 for deep learning,
MediaPipe 0.10.0 for landmark detection, OpenCV
4.9.0.80 for image processing, NLTK 3.8.1 for natural
language processing, and NumPy 1.26.4 and Pandas
2.2.2 for data handling and manipulation.

4.1 Gesture Recognition Model Implementa-
tion

Data Collection and Preprocessing Due to lim-

itations in existing datasets, we generated our own

training data to ensure quality and consistency. The

data collection process involved:

1. Recording videos of ASL signs performed by mul-
tiple signers.

2. Extracting landmarks using MediaPipe Holistic.

3. Concatenating landmarks into uniformly struc-
tured arrays.

4. Organizing the data into sequences of consistent
length.

This approach resulted in a custom dataset opti-
mized for our specific requirements, eliminating is-
sues with inconsistent quality or excessive size found
in many publicly available datasets.

Model Training and Optimization We conducted
extensive experimentation to identify the optimal
configuration for the gesture recognition model, test-
ing various combinations of:

e Number of sequences per sign.

e Number of frames per sequence.

e Types of landmarks used (hands only, hands and

pose, or all landmarks).

The results of this experimentation are summa-
rized in Table 1. The experimental results reveal sev-
eral important insights about feature selection in sign
language recognition. Most notably, the configura-
tion including all landmarks (hand, pose, and face
with 543 features) achieved slightly lower accuracy
(97.89%) compared to the hand and pose configura-
tion (75 features, 98.46% accuracy), despite having
significantly more features. This counterintuitive re-
sult can be attributed to the curse of dimensionality,
where increased feature space (543 vs 75 features)
may have introduced noise that overshadowed rele-
vant gesture information, particularly given our cur-
rent dataset size.

Table 1: Training results for different configs.
Sequences | Frames Landmarks Used Accuracy (%) | Training Time (mm:ss)
15 30 Hand only (42) 84.67 00:29
15 15 Hand only (42) 86.23 00:14
30 15 Hand only (42) 88.78 00:29
30 10 Hand only (42) 89.54 00:19
60 10 Hand only (42) 90.92 00:39
60 10 Hand and Pose (75) 94.37 01:09
90 10 Hand and Pose (75) 98.46 01:43
90 10 Hand, Pose, and Face (543) 97.89 12:28

Additionally, many ASL gestures in our vocab-
ulary rely primarily on hand positioning and body
posture rather than facial expressions, making facial
landmarks less discriminative for our specific set of
gestures. The current dataset size appears insuffi-
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cient to effectively train the more complex model
required for 543 features, leading to overfitting de-
spite regularization techniques, while facial land-
marks showed high variability across different signers
in terms of baseline expressions and signing styles,
reducing model generalization capability. Further-
more, the dramatic increase in training time (12:28
vs 1:43) suggests that the computational complex-
ity is not justified by the marginal accuracy changes,
emphasizing the importance of domain knowledge in
feature engineering for sign language recognition sys-
tems.

Based on these results, we selected the configura-
tion with 90 sequences, 10 frames, and both hand and
pose landmarks (75 features) as the optimal balance
between accuracy (98.46%) and training time (1:43).

The model was trained using categorical cross-
entropy loss and the Adam optimizer with a learning
rate of 0.001. Early stopping with a patience of 5
epochs was implemented to prevent overfitting. Fig.
5 illustrates the accuracy and loss for this optimal
setup.

Model Evaluation The trained model was evalu-
ated using a confusion matrix (Fig. 6) to assess clas-
sification performance across all gesture classes. The
consolidated confusion matrix showed:
e High numbers of true positives (TP) and true
negatives (TN)
e Minimal false positives (FP) and false negatives
(FN)
The overall accuracy score achieved was 0.9930,
indicating excellent classification performance across
the gesture vocabulary.

Accuracy

0 50 100 150 0 50 100 15

Epochs

Epochs

Fig.5: Accuracy and loss for this optimal setup.

4.2 Ablation Study

To systematically evaluate the contribution of each
system component, we conducted a comprehensive
ablation study examining the impact of different con-
figurations on overall performance.

Landmark Configuration Impact
Our analysis reveals the relative importance of
each feature set:
e Hand landmarks only (42 features): 89.54% ac-
curacy

True label

2000
1750
0 2159 1
1500
1250
1000
750
1 1 143 500
250
0 1

Predicted label

Fig.6: Confusion matrix for the SLR model.

e Hand + Pose landmarks (75 features): 98.46%
accuracy
o All landmarks (543 features): 97.89% accuracy
The inclusion of pose landmarks provides substan-
tial improvement (4+8.92% accuracy), indicating that
body posture contains crucial contextual information
for gesture disambiguation.

Sequence Parameter Analysis

e 15 sequences: 86.23% accuracy

e 30 sequences: 89.54% accuracy

e 90 sequences: 98.46% accuracy

This demonstrates that increasing training se-
quence diversity has more impact than extending in-
dividual sequence length.

NLP Enhancement Impact

Without NLP enhancement: Raw gesture predic-
tions with frequent grammatical errors

With NLP enhancement: 94.2% improvement in
grammatical correctness based on human evaluation
of 100 test sentences.

4.3 Text Enhancement Model Implementa-
tion

Data Collection and Preprocessing

The text enhancement component was trained on
a diverse corpus of English sentences scraped from
various internet sources, with a focus on typical us-
age patterns. The dataset included sentences of vary-
ing lengths, with the majority containing 5-10 words
(Fig. 7) to represent typical conversational struc-
tures.

The preprocessing steps involved removing null
values and numeric records, filtering sentences based
on length, converting text to lowercase, and remov-
ing special characters and URLs to clean the dataset.
Additionally, special tokens were added to indicate
sentence boundaries and punctuation, followed by
tokenizing sentences into sequences and generating
n-grams to enhance contextual learning. Finally,
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Fig.7:  Distribution of Sentence Lengths in the
Dataset.

sequence padding was applied to standardize input
length for model consistency.

Model Training

The bidirectional LSTM model was trained with
various optimizer configurations to identify the most
effective approach.

Based on the results presented in Table 2, we se-
lected the Adam optimizer for its optimal balance of
high accuracy (70.12%) and reasonable training time
(115 epochs) (Fig. 8). The model was trained using
categorical cross-entropy loss with early stopping to
monitor accuracy improvements.

Table 2: Optimizer performance comparison.

Optimizer Epochs | Loss Accuracy
SGD 362 2.6769 | 0.4196
SGD with Nesterov | 303 0.9767 | 0.7042
Nadam 107 1.3518 | 0.6600
Adam 115 0.9838 | 0.7012
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Fig.8: Accuracy and loss for the final model.

4.4 System Performance and Results

To evaluate the effectiveness of our complete sys-
tem, we conducted comparative tests with and with-
out the NLP text enhancement component. Three

representative examples illustrate the significant im-
provements achieved through our integrated ap-
proach:

Example 1: Basic Conversation

As shown in Fig. 9, without text enhancement,
the system produced raw output such as: “how you
i good.” With text enhancement (Fig. 10), the sys-
tem appropriately generated properly structured sen-
tences: “How are you? I am good.”

This example demonstrates the system’s ability
to insert missing function words (“are,” “am”) and
add appropriate punctuation, significantly improving
readability and grammatical correctness.

Fig.9: FEzample 1 of SLR without text enhancement.

Fig.10: Example 1 of SLR with text enhancement.
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Ezxzample 2: Contextual Error Correction

Without text enhancement, the system output in-
cluded contextually inappropriate words: “can you
bad” (Fig. 11). With text enhancement, the sys-
tem recognized the low probability of “bad” in this
context and waited for a more appropriate gesture,
eventually producing coherent text: “Can you help
me please? Thank you.” (Fig. 12).

This example highlights the system’s capacity to
filter out false positives and maintain contextual co-
herence, enhancing overall communication quality.

System Evaluation Summary

Our evaluation reveals that the system success-
fully achieves high accuracy (98.46%) in recogniz-
ing trained gestures while effectively enhancing the
linguistic quality of transcriptions. It excels at im-
proving common conversational expressions, properly
segmenting complete sentences, and correcting gram-
matical errors and missing punctuation, significantly
increasing the readability and naturalness of the out-
put text. However, the system still faces challenges
with distinguishing between visually similar gestures
and occasionally misinterprets unfamiliar signs as fa-
miliar ones. It cannot handle finger spelling for
proper names or technical terms without established
signs, which limits its vocabulary range in specialized
contexts. Additionally, while the NLP enhancement
generally improves output quality, it occasionally in-
terferes with correct predictions or introduces inap-
propriate enhancements, particularly with domain-
specific terminology or uncommon expressions. These
limitations, while not undermining the system’s over-
all effectiveness for general communication, highlight
areas for future improvement to increase robustness
across different signing styles and specialized vocab-
ulary.

These results demonstrate that our integrated ap-
proach successfully addresses many of the limitations
found in existing sign language recognition systems,
particularly in terms of linguistic quality and contex-
tual relevance.

5. FUTURE WORK

Our current sign language recognition system
demonstrates promising results in combining com-
puter vision techniques with natural language pro-
cessing for improved transcription. However, several
avenues for enhancement remain unexplored due to
time and resource constraints. This section outlines
potential directions for future research that could fur-
ther advance the system’s capabilities and practical
applications.

A significant limitation of the current text en-
hancement algorithm is its unidirectional approach,
which evaluates each potential next word based solely
on its fit with the existing sentence. This method of-

Fig.11:
ment.

Ezample 2 of SLR without text enhance-

Fig.12: FExample 2 of SLR with text enhancement.

ten overlooks viable alternatives that meet the spec-
ified threshold but could ultimately prove more con-
textually appropriate when considering additional
text.

We propose implementing a bi-directional con-
text enhancement mechanism that would maintain a
memory of combinations meeting the scoring thresh-
old but not currently selected as the top choice. As
new contextual information becomes available, the
system could re-evaluate these stored combinations
against the previously selected best option. This dy-
namic re-assessment would enable the system to ad-
just its selections based on expanded context, poten-
tially improving overall coherence and contextual rel-
evance.

While our current implementation focuses on
American Sign Language (ASL), the framework could
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be extended to support other sign languages. This
expansion would significantly increase the global ac-
cessibility and impact of the system.

A notable limitation of the current system is its
limited ability to interpret non-manual signals such
as facial expressions, which form an integral part of
sign language communication. Future work should
focus on improving the detection and interpretation
of facial expressions and incorporating eye gaze and
head movements as additional features. This integra-
tion would significantly improve the system’s ability
to capture the full semantic range of sign language
communication.

To make the system more accessible in diverse set-
tings, future work should address performance opti-
mization for low-resource environments by develop-
ing lightweight models suitable for mobile devices to
broaden the potential user base and application con-
texts for the system.

6. CONCLUSION

Our research presents a significant advancement
in sign language recognition technology through the
innovative integration of computer vision techniques
and natural language processing. By addressing both
the recognition accuracy and linguistic quality as-
pects of sign language transcription, our system rep-
resents a meaningful step toward bridging communi-
cation gaps between signing and non-signing individ-
uals.

The two-stage architecture we developed—combin-
ing gesture recognition with text enhancement—de-
monstrates remarkable performance improvements
over traditional approaches. The gesture recognition
component, utilizing MediaPipe Holistic for land-
mark extraction and LSTM networks for classifica-
tion, achieves 98.46% accuracy in identifying Amer-
ican Sign Language gestures. More importantly, the
text enhancement module employing bidirectional
LSTM effectively transforms raw gesture predictions
into grammatically correct, contextually appropri-
ate text by inserting missing function words, adding
punctuation, and correcting structural errors.

The analysis of our ablation study confirms that
strategic integration of multiple technologies yields
superior results compared to individual component
optimization. Our findings demonstrate that pose in-
formation contributes significantly to gesture recog-
nition accuracy (+8.92% improvement). In compar-
ison, our NLP enhancement module provides sub-
stantial improvements in linguistic quality (94.2%
improvement in grammatical correctness) that are
essential for practical communication applications.
These results validate our hypothesis that contextual
text enhancement is as crucial as accurate gesture
recognition for effective sign language transcription
systems.

Despite these achievements, our system faces lim-

itations that point toward future research directions.
The challenges of recognizing visually similar ges-
tures, handling finger spelling for proper names, and
adapting to individual signing styles remain areas for
improvement. The proposed bi-directional context
enhancement approach holds particular promise for
addressing some of these limitations by enabling more
sophisticated contextual interpretation.

The implications of this research extend beyond
technical advancements to meaningful social impact.
Improved sign language recognition systems have the
potential to enhance accessibility in educational set-
tings, workplace environments, healthcare facilities,
and everyday social interactions. By making sign lan-
guage more accessible to non-signers and facilitating
more natural communication, such technologies con-
tribute to a more inclusive society that values and
accommodates diverse communication needs.
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