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ABSTRACT Article information:

This study develops a non-destructive avocado ripeness classification sys-
tem using a low-cost, portable near-infrared (NIR) scanner and machine
learning. Traditional ripeness assessment methods are often destructive
and subjective, limiting their efficiency in agricultural practices. To address
this issue, we developed a custom NIR scanner capable of capturing spec-
tral information across 18 discrete wavelength bands for avocado ripeness
classification. The research focuses on Buccaneer avocados sourced from
the Royal Project, with samples collected from both the Royal Project
Gardens and Sorting Plant. A total of 120 kg of avocados were systemat-
ically sampled and categorized by agricultural experts into three ripeness
stages :raw, ripe, and aged. This study applies Multiplicative Scatter Cor-
rection (MSC) to preprocess NIR spectra, enhancing feature separation
before machine learning model training. This study evaluates three clas-
sification models: Random Forest, XGBoost, and the Gaussian Mixture
Model (GMM). Random Forest achieved the highest classification accu-
racy (78%) with an AUC score of 0.93, followed by XGBoost (74% accu-
racy, AUC 0.91). GMM performed worse, with 42% accuracy and an AUC
of 0.58. Additionally, Natural Language Processing (NLP) was applied
to convert model predictions into human-readable ripeness descriptions,
assisting farmers in decision-making. This study demonstrates that low-
cost NIR technology combined with Al-driven analysis enables efficient,
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1. INTRODUCTION

Accurately determining fruit ripeness is essential
for optimizing harvest timing, reducing postharvest
losses, and ensuring product quality. Traditional
ripeness evaluation methods rely on destructive test-
ing and subjective assessments, which are inefficient
for large-scale applications. There is a growing need
for non-destructive, objective, and automated ap-
proaches to improve efficiency in agricultural produc-
tion.

Researchers commonly use NIR spectroscopy for
non-destructive classification of fruit ripeness. While
they work well, many models are still hard to under-

stand. Tipauksorn et al. [26] used comparable low-
cost sensors to perform simple binary classification
with color LEDs that required user interpretation.
This study extends previous research by examining
three ripeness stages and integrating NLP to provide
more precise feedback. This integration improves in-
terpretability and usability, bridging the gap between
advanced NIR systems and practical tools for farmers
and stakeholders in agricultural decision-making.

This research aims to develop a machine learning-
based avocado ripeness classification system using
NIR spectroscopy and Natural Language Processing
(NLP) for interpretability.
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This study sampled 120 kg of avocados and col-
lected NIR spectra across 18 wavelength bands. The
dataset was processed using Multiplicative Scatter
Correction (MSC) to reduce spectral noise, and mod-
els including Random Forest, XGBoost, and Gaus-
sian Mixture Model (GMM) were trained and evalu-
ated for classification performance. Additionally, this
study implements NLP to translate model predictions
into human-readable ripeness descriptions.

This study contributes to Al-driven agricultural
monitoring by combining NIR spectroscopy, machine
learning, and NLP to improve ripeness evaluation
accuracy and interpretability. The results support
improved decision-making for farmers, postharvest
management, and agricultural supply chain optimiza-
tion.

2. LITERATURE REVIEW

Accurate and efficient ripeness evaluation is
critical for optimizing harvest timing, minimizing
postharvest losses, and ensuring high-quality fruit
products. Traditional methods, often relying on de-
structive testing or subjective sensory evaluations,
are time-consuming, labour-intensive, and lack ob-
jectivity [1], [2]. Near-infrared (NIR) spectroscopy
emerges as a powerful non-destructive alternative, of-
fering rapid and objective assessments based on the
unique spectral fingerprint of each fruit [3], [4]. How-
ever, interpreting the complex NIR spectral data and
developing robust predictive models demands sophis-
ticated chemometric techniques and increasingly, the
application of artificial intelligence (AI), including
deep learning approaches [5], [6]. This literature re-
view examines the application of NIR spectroscopy in
fruit ripeness evaluation, focusing on the role of nat-
ural language processing (NLP) in enhancing model
interpretability and understanding.

NIR spectroscopy exploits the interaction be-
tween near-infrared light (typically 780-2500 nm) and
molecular vibrations within a substance [7], [8]. Dif-
ferent fruit components, including sugars, acids, and
water, exhibit unique absorption or reflectance pat-
terns at specific wavelengths. The resulting spectral
data, a collection of absorbance or reflectance values
across the NIR spectrum, serves as a fingerprint re-
flecting the fruit chemical composition and ripeness
stage [3], [9]. This non-destructive technique allows
for rapid, in-situ analysis, minimizing sample prepa-
ration and avoiding the need for destructive sampling
methods [10], [11].

The applications of NIR spectroscopy in fruit
ripeness assessment are diverse and expanding. Stud-
ies have successfully employed this technique to pre-
dict total soluble solids (TSS) in strawberries [9], as-
sess the quality of mangoes [6], and evaluate the in-
ternal quality of various citrus fruits, including or-
anges, lemons, clementines, tangerines, and Tahiti
limes [3]. Furthermore, researchers have explored its

use in watermelon ripeness detection [4], demonstrat-
ing its potential for broader application across vari-
ous fruit types. Researchers have applied this versa-
tile technology beyond fruit analysis, including wheat
quality assessment [12], nicotine content evaluation in
tobacco [13], and post-consumer textile waste classi-
fication [14].

Raw NIR spectra are often highly complex and not
directly interpretable. Chemometric methods play a
crucial role in extracting meaningful information and
building predictive models that relate spectral fea-
tures to ripeness [5], [6]. Traditional chemometric
techniques, such as multiple linear regression (MLR)
and partial least squares regression (PLSR), have
been widely utilized [3], [9]. However, these methods
can often lack transparency, making it difficult to un-
derstand the specific relationships between spectral
features and ripeness [6].

Machine learning (ML) algorithms, particularly
artificial neural networks (ANNs) and convolutional
neural networks (CNNs), have demonstrated supe-
rior performance in NIR spectral analysis compared
to traditional methods [6], [8]. These algorithms cap-
ture complex, non-linear relationships between spec-
tral data and ripeness, which leads to improved pre-
diction accuracy [15], [13]. For instance, CNNs have
shown promise in estimating the ripening state of
Fuji apples [15] and predicting sugar and pH levels in
wine grapes [16]. The application of Support Vector
Machines (SVM) in a watermelon ripeness detector
achieved 92.5% accuracy [4], highlighting the effec-
tiveness of ML in this domain. A lightweight 1D-
CNN model demonstrated success in predicting nico-
tine levels in tobacco using NIR spectroscopy [13],
indicating the adaptability of these techniques across
different agricultural products.

Deep learning (DL), a subset of ML, offers po-
tent tools for NIR spectral analysis [6]. DL mod-
els, with their multiple layers and ability to learn in-
tricate features, often surpass traditional ML meth-
ods in predictive accuracy [15], [16]. The use
of DL models, such as ResNet, has been success-
ful in automatically extracting and identifying fea-
tures from Fourier Transform Near-Infrared (FT-
NIR) spectroscopy data for the geographical trace-
ability of medicinal plants [17]. Researchers have ap-
plied one-dimensional convolutional neural networks
(ID-CNNs) and three-dimensional ResNet architec-
tures to determine maturity and soluble solids con-
tent in strawberries using hyperspectral imaging [18].
However, the increased complexity of DL models
presents a significant challenge to interpretability,
making it difficult to understand the decision-making
processes underlying their predictions.

The black box nature of many ML and DL models
is a significant obstacle to their wider adoption. Un-
derstanding the factors that drive model predictions
remains crucial, particularly in high-stakes applica-
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tions such as food safety and quality control. NLP
techniques [19] offer potential solutions to improve
model interpretability by bridging the gap between
complex model outputs and human understanding
[6].

Several NLP techniques enhance the interpretabil-
ity of NIR spectral models. Attention mecha-
nisms, commonly used in NLP for tasks like ma-
chine translation [20] and text summarization, can be
adapted to highlight the most relevant wavelengths
or spectral regions contributing to a ripeness pre-
diction [6]. These techniques visually represent the
model decision-making process, enabling researchers
to identify the key spectral features most influential
in predicting ripeness.

Natural language generation (NLG) offers another
promising avenue. Natural Language Generation
(NLG) creates human-readable reports that sum-
marize model predictions, including the predicted
ripeness level, confidence score, and relevant spec-
tral features [6]. These reports facilitate communica-
tion among model developers, stakeholders, and end
users, thereby promoting trust and informed decision-
making. While the current literature does not exten-
sively detail specific NLP applications in this context,
the potential for such applications is clearly signifi-
cant.

Effective data pre-processing is essential for suc-
cessful NIR spectral analysis. Various techniques,
including standard normal variate (SNV), variable
sorting normalization (VSN), and Savitzky-Golay
smoothing, are employed to reduce noise, correct for
scattering effects, and enhance relevant spectral fea-
tures [9], [21]. However, it is crucial to recognize that
some pre-processing methods can negatively impact
model performance, especially when both chemical
and physical properties are essential for understand-
ing fruit ripeness [21]. Careful consideration of the
pre-processing method is necessary to optimize both
model accuracy and interpretability.

Feature selection techniques enhance interpretabil-
ity by reducing data dimensionality while preserving
or improving predictive performance. Methods like
competitive adaptive reweighted sampling (CARS)
and variable importance in projection (VIP) help
identify the most relevant wavelengths for predicting
specific fruit quality attributes [17]. By focusing on
a smaller subset of key spectral features, it becomes
easier to understand the model predictions and the re-
lationships between spectral data and fruit ripeness.

Despite its considerable potential, NIR spec-
troscopy still faces several challenges. Building ro-
bust and accurate models requires large, high-quality
datasets representing the variability in fruit charac-
teristics across different varieties, growing conditions,
and harvesting seasons [6], [16]. Data scarcity can
limit the generalizability of models and hinder their
practical application. The high dimensionality of NIR

spectra necessitates effective feature selection and di-
mensionality reduction techniques to prevent overfit-
ting and improve model interpretability [6], [8].

Recent research on stereo vision-based turn-
alignment optimization has introduced novel ap-
proaches to enhancing real-time spatial positioning
for wireless power transmission [22]. This method
enables precise spatial calibration, which benefits
agricultural sensing applications such as NIR-based
ripeness evaluation. By integrating stereo vision tech-
niques with NIR spectroscopy, future research can ex-
plore enhanced accuracy in fruit quality assessment
by improving sensor alignment and fruit positioning.
These developments contribute to the broader goal
of advancing automated agricultural monitoring and
improving innovative farming applications.

Near-Infrared (NIR) spectroscopy, combined with
Natural Language Processing (NLP), enables non-
destructive ripeness evaluation by converting spectral
data into interpretable insights. Advances in Al and
IoT further optimize these methods, facilitating real-
time monitoring in smart agriculture. The integra-
tion of Al-driven algorithms with high-capacity IoT
networks, as discussed in [23], underscores the poten-
tial of RoF (Radio-over-Fiber) systems for efficient
data transmission.

Future research should prioritize the development
of more sophisticated NLP techniques for interpret-
ing NIR spectral models, leading to a deeper un-
derstanding of their decision-making processes. In-
tegrating NLP with explainable AI (XAI) methods
could further enhance model transparency and build
trust in automated ripeness assessments [6]. Explor-
ing hybrid models that combine NIR spectroscopy
with other sensing technologies, such as hyperspec-
tral imaging and electronic noses, holds significant
promise for improving the accuracy and comprehen-
siveness of ripeness evaluations [24], [25]. Develop-
ing portable and affordable NIR spectrometers plays
a critical role in enabling broader adoption of this
technology across diverse agricultural settings. The
successful integration of these advanced technologies
with existing agrarian practices is vital for maximiz-
ing their impact.

Integrating Near-Infrared (NIR) spectroscopy with
modern machine learning and Natural Language
Processing (NLP) offers a game-changing approach
for assessing fruit ripeness without causing damage.
Deep learning models such as CNNs achieve high clas-
sification accuracy; however, limited interpretability
can hinder adoption by end users, including farmers.
This study aims to improve transparency by using
NLP-based explanations designed for real-world ap-
plications. Earlier work by Tipauksorn et al. [26] ap-
plied the same low-cost 18-band NIR hardware to bi-
nary avocado classification (raw vs. ripe) using LED
outputs, whereas this study extends the task to three
ripeness classes (raw, harvestable, and ready-to-eat)
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and integrates NLP-based interpretability to improve
usability. This work addresses a critical gap in practi-
cal human—AT collaboration for agricultural decision-
making.

Recent studies from 2022 to 2025 highlight the
growing significance of NIR—-AI integration in preci-
sion agriculture for fruits like mango, kiwi, and av-
ocado. Many studies focus on predictive accuracy
but overlook model explainability and practical us-
ability. We address this issue by emphasizing user-
friendly interpretability and immediate applicability,
particularly in low-resource environments. Future re-
search should emphasize multi-seasonal datasets, sen-
sor fusion strategies, and multilingual NLP interfaces
to encourage broader adoption across diverse farm-
ing contexts. The combination of explainable Al and
portable NIR sensors has excellent potential to en-
hance postharvest quality monitoring, minimize food
loss, and promote data-driven farming in line with
global agricultural modernization trends.

3. METHODOLOGY

This study utilized near-Infrared (NIR) spec-
troscopy and machine learning models to classify av-
ocado ripeness into raw, harvestable, and ready-to-
eat categories. This study samples 120 kg of av-
ocados and acquires NIR spectra across 18 wave-
length bands. MSC pre-processing reduces spectral
noise and improves feature separation before train-
ing Random Forest, XGBoost, and Gaussian Mix-
ture Model (GMM) classifiers. The system further
integrates NLP to translate model predictions into
human-readable ripeness descriptions for agricultural
decision-making.

3.1 System diagram

o

L)

V 4
// Privaté Cloud ML Server
/
y
Ve

q/\°\

0 o
Smartphone ly

=
NIR Portable Scanner

5G Base Staton

Fig.1: System Architecture for Cloud-Based NIR
Spectroscopy Ripeness Prediction Using 5G  and
MQTT Protocol.

The proposed system integrates Near-Infrared
(NIR) spectroscopy with cloud-based machine learn-
ing (ML) to classify avocado ripeness in real time. It
enables wireless data transmission, remote computa-
tion, and result visualization, delivering an efficient

and scalable solution for ripeness assessment in agri-
cultural environments, as shown in Figure 1.

The portable NIR scanner acquires spectral data
from avocados and transmits the values to a 5G
hotspot router using MQTT over a Wi-Fi connection.
The router acts as a gateway, forwarding the data to
a 5G network infrastructure for seamless transmis-
sion to a Private Cloud ML Server. Once the data
reaches the cloud server, the machine learning model
processes the NIR spectral data, classifies the ripeness
stage, and generates a prediction result.

After processing, the system sends the predicted
ripeness results back to the portable NIR scanner
and the smartphone web monitoring application via
the MQTT protocol. The raw spectral data and
computed results are securely stored in the cloud
server, ensuring proper data management for future
analysis. Users can access real-time ripeness sta-
tus and harvesting recommendations through a web-
based monitoring system, improving decision-making
for postharvest management.

The proposed architecture integrates 5G, cloud
computing, and MQTT communication to deliver a
scalable, efficient, and accessible real-time solution for
intelligent agricultural monitoring.

3.2 Population and Sampling

This study examines avocados grown in a 1,600-m?
(1 Rai) garden. To ensure accurate representation,
the research assumes that 1 kilogram of avocados re-
flects the average yield of an avocado tree within this
area. The sampling process was structured to include
avocados at different ripeness stages, as outlined in
Table 1.

Table 1: Population and Sample Distribution.

Ripeness Category Sampled Estimated No.
Weight (kg) | of Avocados
Raw 40 120-160
Ripe (Stored 7 Days) 40 120-160
Aged (Stored 3 Days) 40 120-160
Total 120 360-480

This study collects avocado samples from the
Royal Project and categorizes them into three
ripeness groups. Agricultural academics carefully
sorted the avocados into the following categories

e Raw — Unripe avocados, not yet suitable for con-
sumption.

e Ripe (Stored for 7 Days) — Avocados that are
harvested and stored for a week before being
ready-to-eat.

e Aged (Stored for 3 Days) — Avocados that ripen
rapidly and require consumption within three
days.

Typically, three to four avocados weigh approxi-

mately 1 kilogram, which served as a reference in the
sampling process. A total of 120 kilograms of avoca-
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dos were collected, ensuring a diverse and statistically
significant dataset for analysis.

Figure 2 illustrates the avocado sampling process
conducted as part of this study. The avocados, iden-
tified as the Buccaneer variety, were sourced from the
Royal Project, specifically from its gardens and sort-
ing plant. The top-left image presents freshly har-
vested avocados labeled for sample tracking.

Fig.2: Sampling Process of Buccaneer Avocados in
the Royal Project.

The top-right image illustrates the sorting and
categorization process at the Royal Project Sorting
Plant, where agricultural staff classify avocados by
ripeness stage. The bottom row shows key fieldwork
activities using a low-cost portable NIR scanner that
transmits spectral data over Wi-Fi through a 4G/5G
hotspot, including harvesting, initial quality inspec-
tion, and transport to the sorting facility. This sys-
tematic sampling ensures representative data collec-
tion for the study.

3.3 Data Collection and Variable Measure-
ment

The study utilizes near-Infrared (NIR) spec-
troscopy to analyze the spectral properties of avo-
cados at different ripeness stages. The system stores
the collected data in a database for subsequent pro-
cessing and machine learning—based classification.

Data Collection Process

e Avocado Selection — Avocados are categorized

based on ripeness.

e Spectral Scanning — Each sample undergoes NIR

spectroscopy, capturing data at 18 wavelengths.

e Data Storage — The spectral information is

stored in a structured dataset.

e Pre-processing — The raw spectra undergo Mul-

tiplicative Scatter Correction (MSC) to reduce
noise.

3.4 Data Analysis and Statistical Methods

The research involves machine learning-based clas-
sification to distinguish between different ripeness
categories. The analysis follows these steps.

Table 2: Variable Definitions.

Variable Description Measurement
Name Unit
Spectruml— | NIR spectral features | Absorbance/
Spectrum18 measured at 18 Reflectance
wavelengths
Evaluate the | Ripeness category of Categorical
Type the avocado (Raw, Ripe,
Aged)

2.Model Training and Simulation

+ Without MSC train the following
models on the raw spectral data
o Random Forest (RF)
© XGBoost
o Gaussian Mixture Model
(GMM)
« With MSC train the same models
on MSC-corrected spectral data.

1.Data Preprocessing 3.Performance Evaluation

+ Classification Report (Precision,
Recall, Fl-score)

« Confusion Matrix
(Misclassification analysis)

« ROC Curves (Overall model
performance)

« Multiplicative Scatter Correction
(MSC) is applied to the NIR spectral
data to correct scattering effects.

« Standardization is performed to

Fig.3: Shows data analysis and statistical process
step.

This Figure 3 illustrates the Data Analysis and Sta-
tistical Methods workflow in three main steps
1. Data Pre-processing

e Multiplicative Scatter Correction (MSC) is
applied to the Near-Infrared (NIR) spectral
data to correct scattering effects and improve
signal quality.

e The preprocessing stage applies standardiza-
tion to normalize spectral data and ensure
consistent input values for machine learning
models.

2. Model Training and Simulation

e Without the MSC training machine learning
models on the raw spectral data, including

o Random Forest (RF)

o XGBoost
o Gaussian Mixture Model (GMM)

e With MSC, train the same models using
MSC-corrected spectral data to observe per-
formance improvements.

3. Performance Evaluation

e The study assesses the trained models using

three key evaluation metrics.



Ripeness Evaluation Using Near-Infrared (NIR) Spectroscopy and NLP for Interpretability 97

o Classification Report Measures Precision,
Recall, and Fl-score for each ripeness
category.

o A confusion matrix analyzes the number
of correct and incorrect classifications.

o ROC Curves evaluate the model ability
to distinguish between different ripeness
categories.

3.5 Equation for Classification Accuracy

TP+TN (1)
TP+TN+FP+FN

Accuracy = (

Where:

TP = True Positives
TN = True Negatives
F P = False Positives
FN = False Negatives

3.6 Ripeness Interpretation to Natural Lan-
guage

After the system determines ripeness, it converts
the classification results into human-readable text to
support decisions on fruit harvest readiness. The
system derives the interpretation from a ripeness
score calculated using a weighted confidence approach
based on the classification model output probabilities.

1. Ripeness Score Calculation

The system computes the ripeness score using the
formula in (2).

CRipe

100
CRaw + CRipe + C Aged .

(2)
Where:

e C'Raw = The model probability output for the
fruit being raw.

e (C'Ripe = The model probability output for the
fruit being ripe for a week before eating.

e (C'Aged = The model probability output for the
fruit ready-to-eat in 3 days.

Ripenessscore =

This score quantifies the ripeness level on a scale
from 0 to 100, ensuring an objective interpretation of
the spectral data.

2. Table 3 summarizes the interpretation based on
the ripeness score.

By applying this approach, the study enhances the
practical usability of the classification model, allow-
ing farmers, agricultural experts, and supply chain
managers to make informed decisions regarding opti-
mal harvesting time.

This visualization helps explain how the system de-
rives the ripeness score from model confidence values,
ensuring an objective and data-driven interpretation
of ripeness.

Table 3: To provide meaningful insights, the system
categorizes the calculated ripeness score into three lev-
els.

Ripeness Score (%) Interpretation
0 - 40% raw and not ready for harvest.
41 - 80% harvestable and can be stored
for a week before eating.
81 — 100% ready-to-eat and should be
consumed within 3 days.
{ LJ v': 1, 'q 2}
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Fig.4: Derivation of the ripeness score from model
confidence values.

The graph in Figure 4 visually represents the re-
lationship between ripeness score, model confidence
levels, and interpretation categories. The black curve
shows the calculated ripeness score, derived from the
confidence values of different ripeness stages. The
dashed lines indicate the probability trends for Raw
(blue), Ripe (orange), and Aged (red) classifications.
As the fruit ripens, raw confidence decreases, ripe
confidence increases, and aged confidence gradually
rises. The graph separates ripeness into three shaded
regions: 0-40% indicates raw fruit, 41-80% indicates
a maturing stage suitable for near-term harvest, and
81-100% confirms fully ripe fruit ready for harvest.
This structured visualization enables a clear, data-
driven interpretation of fruit ripeness, facilitating in-
formed decision-making for harvest timing.

4. RESULTS AND DISCUSSION

Figure 5 presents the Near-Infrared (NIR) spec-
tral responses of avocados grouped into three ripeness
stages: raw, ripe, and aged. The x-axis shows the 18
wavelength bands measured by the NIR sensor, while
the y-axis indicates the corresponding absorbance in-
tensity. The data reveal distinct spectral variations
among ripeness categories, with pronounced differ-
ences at specific wavelengths.

A key observation is that ripe avocados (category
2, green line) generally exhibit higher spectral in-
tensity in the mid-wavelength region, indicating in-
creased molecular changes associated with ripening.
Aged avocados (category 0, blue line) show similar
patterns but with slight deviations in peak intensi-
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ties, suggesting progressive biochemical transforma-
tions. Raw avocados (category 1, orange line) show
significantly higher absorbance at specific wavelength
bands (e.g., Spectrum16), likely due to unripe tissue
composition and higher moisture content.

Ripeness Score Interpretation & Confidence Levels

100

80 ~.

= Ripeness Score ~ -
60 Raw (0-40%) ~aeit i
Ripe (41-80%) s -
Aged (81-100%) R
--- Raw Confidence
40 Ripe Confidence
- Aged Confidence

Confidence Levels & Ripeness Score (%)

0 20 40 60 80 100
Ripeness Score (%)

Fig.5:  Spectrum of NIR from Avocado Dataset
Across Three Ripeness Categories.

The spectral trends confirm that specific NIR
wavelengths are highly sensitive to biochemical dif-
ferences in ripeness, reinforcing the suitability of NIR
spectroscopy for non-destructive ripeness classifica-
tion. These findings support further investigation
into optimal feature selection for machine learning-
based ripeness prediction models.

Original NIR Spectra
300 2000 {

NIR Spectra After MSC

1500 {

21000 {

Fig.6: Comparison of Original and MSC-Processed
NIR Spectra Before Model Training.

Figure 6 presents a comparative analysis of the
Near-Infrared (NIR) spectral data before and after
applying Multiplicative Scatter Correction (MSC), a
crucial pre-processing step in spectral analysis. The
left graph displays the raw spectral data, while the
right graph illustrates the corrected spectra after
MSC pre-processing.

The original NIR spectra exhibit substantial inten-
sity variations across samples, accompanied by pro-
nounced spectral scattering. Factors such as light
scattering, variations in sample thickness, and surface
irregularities contribute to these inconsistencies and
introduce unwanted noise into the dataset. Without
preprocessing, such variations increase model com-
plexity and degrade machine learning classification
performance.

After applying MSC, the right graph demonstrates
a significant improvement in spectral consistency.
The MSC method reduces baseline variations and
normalizes intensity differences, leading to more uni-
form spectral responses across samples. This pre-
processing step improves the extraction of relevant
spectral features by minimizing scattering artifacts,
thereby improving the reliability of the input data for
classification models. The improved spectral align-
ment achieved through MSC highlights its impor-
tance in enhancing model generalization and reducing
noise in spectral-based ripeness classification. These
findings confirm that applying MSC before model
training enhances the predictive power of machine
learning algorithms, making it a necessary step in
non-destructive fruit quality assessment.

Scatter Plot Before MSC Scatter Plot After MSC Before Outlier Removal
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Fig.7: Scatter Plot Comparison Before and After
MSC' Pre-processing.

Figure 7 illustrates the scatter distribution of NIR
spectral data across three ripeness categories (Raw,
Harvestable, and Ready-to-eat) before and after ap-
plying Multiplicative Scatter Correction (MSC). The
left scatter plot represents the raw spectral data with-
out MSC pre-processing, while the right plot shows
the spectral distribution after MSC pre-processing
but before outlier removal.

In the scatter plot before MSC (left graph), the
spectral data points exhibit significant clustering with
overlapping distributions, particularly between the
Harvestable (green) and Ready-to-eat (red) cate-
gories. The presence of spectral distortions due to
light scattering and sample inconsistencies results in
less distinguishable class separations, which can re-
duce the effectiveness of machine learning classifiers.

After applying MSC (right graph), the spectra
show a more consistent and well-aligned distribution.
The Raw category (blue) remains well-separated,
while the separation between Harvestable and Ready-
to-eat categories is enhanced, providing a more struc-
tured dataset for classification. In addition, the spec-
tral data show a more uniform distribution, indicat-
ing that MSC effectively reduces baseline variation
and corrects scattering effects, resulting in better-
defined clusters.

The improved spectral alignment achieved through
MSC pre-processing enhances the discriminability of
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ripeness categories, thereby improving classification
accuracy in machine learning models. These find-
ings confirm the importance of MSC preprocessing in
non-destructive fruit quality assessment by minimiz-
ing spectral variation prior to model training.

Figure 8 shows the scatter plot of NIR spec-
tral data following the application of Multiplicative
Scatter Correction (MSC) and improved outlier re-
moval. This version effectively maintains all three
ripeness categories Raw (blue), Harvestable (green),
and Ready-to-eat (red) demonstrating the success of
adjusting the outlier detection threshold.

During preprocessing, the pipeline mistakenly re-
moved the entire raw category because its distinct
spectral characteristics and lower intensity ranges re-
sembled outliers. Strict parameter settings in the In-
terquartile Range (IQR) method or anomaly detec-
tion models such as Isolation Forest caused this issue.

Relaxing the IQR threshold or using feature-
informed anomaly detection allows for the retention
of raw samples with unique yet valid spectral signa-
tures. This change boosts dataset representativeness
and strengthens model robustness.

The updated scatter distribution (right graph)
shows clear class separability, with distinct spatial
grouping for all three ripeness stages. The Raw cate-
gory now stands out as a unique cluster, highlighting
its distinct spectral properties and the importance of
careful outlier management in spectral datasets.

Scatter Plot After MSC After Outiier Re

Scatter Plot After MSC After Outlier Removal

28

Fig.8:
mouval.

Scatter Plot After MSC with Outlier Re-

Additionally, the observed spectral spread between
the Harvestable and Ready-to-eat categories remains
well-structured, confirming that MSC pre-processing
and outlier removal improve class separability. The
complete removal of the raw category indicates that
the preprocessing thresholds require adjustment or
that alternative outlier detection methods should be
considered to retain meaningful raw avocado data
while removing true anomalies. This outcome high-
lights the importance of careful outlier handling in
spectral analysis to preserve class-specific information
and improve data quality for machine learning-based
ripeness classification.

Figure 9 presents the classification reports of three
machine learning models Random Forest, XGBoost,
and Gaussian Mixture Model (GMM) used for av-
ocado ripeness classification. This study evaluates

the models using precision, recall, F1-score, and ac-
curacy to assess their effectiveness in distinguishing
harvestable, raw, and ready-to-eat categories.

This study selects the three models for their ability
to handle classification tasks involving spectral data.

1. Random Forest (RF) — A robust ensemble
learning algorithm that effectively handles non-
linear patterns and is widely used in agricul-
tural classification problems.

2. XGBoost (Extreme Gradient Boosting) — An
optimized gradient boosting algorithm that en-
hances predictive performance with improved
handling of imbalanced data.

3. Gaussian Mixture Model (GMM) — A proba-
bilistic clustering valuable method for unsuper-
vised learning and identifying distinct spectral
patterns.

nl Classification Report Random forest model:

precision recall fl-score support

Harvestable 0.81 0.74 0.78 47

Raw 1.00 1.00 1.00 5

Ready to Eat 0.72 0.79 0.76 39

accuracy 0.78 91

macro avg 0.84 0.85 0.84 91

weighted avg 0.78 0.78 0.78 91
nl Classification Report XGBoost model:

precision recall fl-score support

Harvestable 0.77 0.72 0.75 47

Raw 0.83 1.00 0.91 5

Ready to Eat 0.68 0.72 0.70 39

accuracy 0.74 91

macro avg 0.76 0.81 0.79 91

weighted avg 0.74 0.74 0.74 91

nl Classification Report Gaussian Mixture model:

precision recall fl-score support

Harvestable 0.47 0.57 0.51 47
Raw 1.00 1.00 1.00 5

Ready to Eat 0.29 0.21 0.24 39
accuracy 0.44 91
macro avg 0.58 0.59 0.58 91
weighted avg 0.42 0.44 0.42 91

Fig.9: Classification Performance of Random For-
est, XGBoost, and Gaussian Mizture Models.

Comparison of Classification Results

e Random Forest achieved the highest overall ac-
curacy (78%), with strong performance across
all ripeness categories. It demonstrated the best
balance between precision and recall, making it
the most reliable classification model.

e XGBoost performed slightly worse (74% accu-
racy), though it maintained high recall for the
Raw category. Suggests that XGBoost handles
small sample classes better but may have limi-
tations in distinguishing closely related ripeness
stages.
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e Gaussian Mixture Model (GMM) had the low-
est accuracy (42%), indicating that it struggles
to classify ripeness stages due to its unsuper-
vised nature effectively. The model exhibits low
precision and recall, particularly for the ready-
to-eat category, indicating limited ability to cap-
ture complex spectral variations.

Why Results Differ Across Models?

e Random Forest and XGBoost leverage decision
trees, which are well-suited for categorical clas-
sification with structured spectral data.

e GMM, being an unsupervised model, does not
learn from labeled data, leading to poor classifi-
cation performance. It lacks the feature-learning
capability of supervised models like RF and XG-
Boost.

e Raw category had high recall across all mod-
els, likely due to its distinct spectral signature,
while Harvestable and Ready-to-eat categories
were harder to separate due to overlapping spec-
tral patterns.

Best and Worst Model Performance
e Best Model Random Forest

o Achieved the highest accuracy (78%) and
strong precision-recall balance.

o Outperformed others in correctly clas-
sifying Ready-to-eat avocados, which is
crucial for harvest timing.

o Worst Model Gaussian Mixture Model (GMM)

o Struggled to classify spectral data effec-
tively due to its unsupervised nature.

o Extremely low Fl-score (0.24) for the
Ready-to-eat category, making it unreli-
able for practical use.

The findings indicate that Random Forest is the
most suitable model for avocado ripeness classifica-
tion, offering a good balance between accuracy and
robustness. XGBoost provides comparable perfor-
mance but struggles slightly with precision. GMM
is unsuitable for this classification task, reinforcing
the importance of using supervised learning models
for spectral-based classification.

These results highlight the effectiveness of machine
learning in non-destructive fruit quality assessment,
providing a foundation for further research in opti-
mized spectral feature selection and deep learning-
based classification.

Figure 10 presents the confusion matrices of the
three machine learning models Random Forest, XG-
Boost, and Gaussian Mixture Model (GMM) used to
classify avocado ripeness into Harvestable, Raw, and
Ready-to-eat categories. The confusion matrices pro-
vide a detailed breakdown of actual versus predicted
classifications, highlighting each model performance
in distinguishing between ripeness stages.

Analysis of Confusion Matrices
1. Random Forest (Left Matrix)

e Correctly classified most instances, particu-
larly for the Ready-to-eat category (31 cor-
rect out of 39) and Harvestable category (35
correct out of 47).

e Misclassification occurs mainly between Har-
vestable and Ready-to-eat avocados, with 12
misclassified as Ready-to-eat and 8 Ready-
to-eat misclassified as Harvestable.

e Perfect classification for Raw category (5/5)
suggests distinct spectral features for unripe
avocados.

Confusion Matrix Random forest model __ Confusion Matrix XGBoost Confusion Matrix Gaussian Mixture
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Fig.10: Confusion Matrices for Random Forest,
XGBoost, and Gaussian Mizture Models.

2. XGBoost (Middle Matrix)

e Slightly lower accuracy than Random Forest,
with 34 correctly classified Harvestable and
28 correctly classified Ready-to-eat avocados.

e Higher misclassification rate for Ready-to-
eat avocados, with 10 incorrectly classified as
Harvestable.

e The Raw category remains ideally classified
(5/5), similar to Random Forest.

3. Gaussian Mixture Model (Right Matrix)

e The model shows significantly lower clas-
sification accuracy for ready-to-eat avoca-
dos, misclassifying 31 of 39 samples as har-
vestable.

e Higher confusion between Harvestable and
Ready-to-eat categories, indicating poor
spectral feature separation.

e The Raw category remains correctly classi-
fied (5/5), but this is due to its distinct spec-
tral signature rather than model effective-
ness.

Why the Differences?

e Random Forest and XGBoost are supervised
learning models, allowing them to learn dis-
criminative spectral features effectively.

e GMM is an unsupervised clustering model,
meaning it does not leverage labeled data,
leading to poor classification performance for
closely related ripeness stages.

e The high confusion between Harvestable and
Ready-to-eat in all models suggests overlap-
ping spectral characteristics, making classifi-
cation between these two stages more chal-
lenging.

Best and Worst Performing Models
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e Best Model Random Forest — Achieves the
most balanced classification with the highest
correct classifications.

o Worst Model Gaussian Mixture Model (GMM)
struggles significantly, particularly with Ready-
to-eat avocados, demonstrating that an unsu-
pervised approach is insufficient for this task.

The confusion matrix comparison confirms that
Random Forest is the most effective model for
ripeness classification, while XGBoost provides com-
parable but slightly lower performance. The Gaus-
sian Mixture Model is unsuitable for this classifica-
tion due to high misclassification rates. These results
highlight the importance of supervised learning ap-
proaches in spectral-based fruit ripeness classification
and suggest further refinement in feature selection to
improve separation between closely related ripeness
stages.

The confusion matrices for Random Forest, XG-
Boost, and Gaussian Mixture Model (GMM) show
consistent misclassification between the Harvestable
and Ready-to-eat categories, indicating a notable
overlap in their spectral features. Random Forest
misclassified 12 Harvestable avocados as Ready-to-
eat and eight the other way, while XGBoost had a
similar issue with 13 and 10 misclassifications. The
bidirectional confusion indicates that the spectral sig-
natures of these two ripeness stages are closely re-
lated, likely due to gradual biochemical transitions
like softening and moisture reduction, which are hard
to distinctly capture with a limited 18-band NIR sen-
sor. The Raw category showed clear spectral separa-
tion, with perfect classification in the RF and XG-
Boost models, highlighting that the spectral differ-
ences between unripe and mature avocados are dis-
tinct and more straightforward for models to learn.

ROC Curves for Ripeness Random forest model  ROC Curves for Ripeness XGBoost model ROC Curves for Ripeness Gaussian Mixture model
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Fig.11: ROC Curves for Random Forest, XGBoost,
and Gaussian Mizture Models.

Figure 11 presents the Receiver Operating Char-
acteristic (ROC) curves for three machine learning
models Random Forest, XGBoost, and Gaussian Mix-
ture Model (GMM) used for avocado ripeness classi-
fication. The Area Under the Curve (AUC) values
are provided for each ripeness category (Harvestable,
Raw, and Ready-to-eat) to assess model performance
in distinguishing between these classes.
Interpretation of ROC Curves and AUC Scores

1. Random Forest (Left Graph)

101

e Achieved an AUC of 0.93 for all ripeness cate-
gories, demonstrating excellent classification
ability.

e The ROC curves remain close to the top-left
corner, indicating a high actual positive rate
and low false positive rate.

e Suggests that Random Forest effectively dif-
ferentiates between ripeness stages with firm
decision boundaries.

2. XGBoost (Middle Graph)

e AUC values of 0.91 across all categories,
slightly lower than Random Forest, but still
demonstrating strong classification capabil-
ity.

e The curves follow a similar trend to Ran-
dom Forest, though minor deviations indicate
slightly reduced sensitivity in distinguishing
ripeness stages.

e Overall, XGBoost is a highly effective model
but slightly less precise than Random Forest.

3. Gaussian Mixture Model (Right Graph)

e AUC values of 0.58 for all ripeness categories,
indicating poor classification performance.

e The ROC curves remain close to the diag-
onal (random classification line), meaning
the model does not effectively separate the
classes.

e Confirms that GMM cannot accurately clas-
sify avocado ripeness due to its unsupervised
nature, leading to significant overlap in spec-
tral data.

Why the Performance Differences?

e Random Forest and XGBoost are supervised
learning models that leverage decision trees
and boosting techniques to extract relevant
spectral features for classification.

e GMM, an unsupervised clustering model,
lacks labeled training data, making it ineffec-
tive for classification tasks that require dis-
tinct decision boundaries.

e The high AUC values for Random Forest and
XGBoost confirm their suitability for ripeness
classification, while GMM poor performance
suggests that clustering methods alone are in-
sufficient for this task.

The ROC analysis highlights the superior perfor-
mance of Random Forest and XGBoost, with high
AUC values indicating strong classification capabil-
ity. Random Forest performs best, followed closely
by XGBoost, while GMM achieve only marginal clas-
sification accuracy. These results confirm that su-
pervised machine learning models are essential for
reliable spectral-based ripeness classification, ensur-
ing more accurate predictions for harvest decision-
making.

Figure 12 presents the Natural Language Pro-
cessing (NLP)-generated interpretations of avocado
ripeness predictions, providing a human-readable
output based on the model classification results. The



102 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.20, NO.1 January 2026

2 NLP Ripeness Interpretations:

Sample Index Interpretation
65 The fruit is 93.0% ready to eat and should be ...
30 The fruit is 96.0% harvestable and can be stor...
68 The fruit is 67.0% harvestable and can be stor...
84 The fruit is 81.0% ready to eat and should be ...
5 The fruit is 100.0% raw and not ready for harv...

PWNR S

Fig.12: NLP-Based Interpretation of Avocado
Ripeness Predictions.

system derives interpretations from the ripeness score
by assigning probabilities to the raw, harvestable, and
ready-to-eat stages and converting these numerical
outputs into descriptive text. The inclusion of con-
fidence percentages ensures transparency in predic-
tion reliability, offering actionable insights for harvest
decision-making.

The output format effectively bridges the gap be-
tween machine learning predictions and user compre-
hension, making it easier for farmers, agricultural ex-
perts, and stakeholders to understand the classifica-
tion results. For example, the model classifies sam-
ples 0 and 3 as ready-to-eat with confidence scores of
93.0% and 81.0%, indicating suitability for near-term
consumption. In contrast, the model labels samples 1
and 2 as harvestable with confidence levels of 96.0%
and 67.0%, suggesting that they can be stored before
consumption. Sample 5 receives a 100.0% raw clas-
sification, indicating that it is not ready for harvest
and demonstrating the model’s ability to deliver clear
harvest recommendations.

This NLP-enhanced interpretation approach im-
proves trust and usability in Al-driven fruit classifi-
cation systems, ensuring that spectral-based ripeness
assessments can be easily integrated into agricultural
workflows. Future work could explore multi-language
NLP integration, confidence interval refinement, and
voice-based advisory systems, further enhancing ac-
cessibility and decision-making support in innovative
farming applications.

5. CONCLUSIONS

This study expands on previous work regarding
NIR-based avocado ripeness classification by broad-
ening the task from binary (Raw/Harvestable) to
three stages: Raw, Harvestable (Ripe), and Ready-
to-Eat, utilizing the same low-cost hardware setup
[26]. This research improves user interaction by us-
ing Natural Language Processing (NLP) to provide
clear, human-readable descriptions of ripeness, mov-
ing away from the previous LED indicator system
that required training to understand color codes.
This enhances accessibility and simplifies the learn-
ing process for users. This enhancement tackles the
usability issue observed in practical applications, es-
pecially for smallholder farmers.

Despite the limited dataset of 120 kg of Buccaneer
avocados, the models achieved strong performance.
Random Forest reached 78% accuracy with an AUC

of 0.93, while XGBoost delivered comparable results.
The preprocessing stage exposed the risk of excessive
outlier removal, as it eliminated the entire raw cate-
gory. To address this issue, the study adjusted IQR
thresholds to preserve minority-class samples. Fur-
ther error analysis showed spectral overlap between
Harvestable and Ready-to-Eat classes, highlighting
the necessity for improved feature extraction and a
possible transition to ordinal or regression-based clas-
sification in future research. This study benchmarks
three classical machine learning models; future work
will extend the comparison to lightweight deep learn-
ing models (e.g., 1ID-CNN and ResNet) and incorpo-
rate explainability methods to improve insight and
fairness.

This study proposes a roadmap for practical de-
ployment: quantizing trained models for offline in-
ference on low-cost IoT devices, allowing operation
without 5G or cloud access. The sensor hardware
is still a prototype, utilizing an 18-band NIR sen-
sor (410-940 nm) that needs additional calibration
and casing improvements. The limitation of seasonal
data and a single cultivar (Buccaneer) underscores
the necessity for multi-season, multi-variety datasets
to enhance generalizability, as noted by both review-
ers. Future iterations will focus on farmer validation
of NLP interpretations, incorporate Thai/local lan-
guage support, and examine policy alignment with
national postharvest standards and innovative farm-
ing frameworks.

This study demonstrates its feasibility of combin-
ing affordable NIR sensing, machine learning, and
NLP to develop a precise, non-invasive method for
classifying avocado ripeness. This is a significant
step forward in making Al-driven precision agricul-
ture more accessible, promoting digital inclusion, and
helping small-scale farmers make better harvest de-
cisions. The classification process, from spectral ac-
quisition to NLP interpretation, takes less than 5 sec-
onds per sample with a cloud-based system, showing
it feasible for real-time use in agriculture.
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