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ABSTRACT Article information:
Traditional Thai medicine (TTM) is a popular and increasingly accepted
treatment option. In TTM, tongue diagnosis is a highly e�cient method
for assessing overall health, yet its accuracy can vary signi�cantly depend-
ing on the practitioner's expertise. In this work, we hypothesize that deep
learning-based transfer learning (TL) methods can achieve high accuracy
in the Tri-Dhat classi�cation of tongue images, a system that aligns with
TTM principles and categorizes the tongue into three types: Vata, Pitta,
and Kapha. We propose an approach that uses raw pixel data and arti�-
cial intelligence (AI) to support TTM diagnoses. For our analysis, we used
a unique dataset of genuine tongue images collected from our university's
TTM hospital. To prepare the data, we performed class balancing and
data augmentation. We then developed TL techniques with a variety of
pretrained deep learning models. For performance comparisons, we uti-
lized two-tailed paired t-tests and single-factor ANOVA. Our experiments
showed that the DenseNet121 and Xception models produced the most
signi�cant results with cropped image datasets, including both DSLR- and
mobile-taken images. Notably, an ensemble of these models yielded the
highest average predictions. This ensemble achieved an accuracy of 0.96,
a precision of 0.94, an F1 score of 0.96, a sensitivity of 0.96, and a speci-
�city of 0.97. These results were further supported by a p-value of 0.0003
from the ANOVA analysis. We suggest that our methods could be e�ec-
tively deployed in real-world scenarios to aid TTM practitioners in their
diagnoses.
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1. INTRODUCTION

Ancient medical traditions have relied on knowl-
edge accumulated over more than 3,000 years, us-
ing non-intrusive diagnoses of organs, including the
tongue, pulse, and face. These diagnoses help evalu-
ate the overall health of the heart, liver, spleen, lungs,
and kidneys in the human body [1].

Historically, insights into tongue diagnostics have
been primarily informed by two ancient medical tra-
ditions: Ayurveda from traditional Indian medicine

and traditional Chinese medicine (TCM) [2]. TCM
has emerged as the leading methodology in tongue
diagnosis for both diagnosis and classi�cation [1].

Building on this foundation, the realm of Ayurveda
o�ers insights into the functions of internal organs
through the characteristics of the tongue, classi�ed
into three doshas: Vata, Pitta, and Kapha [3] [4] [5].
This classi�cation aligns with the Tri-Dhat concept
in traditional Thai medicine (TTM). Additionally,
Kapha can be called Semha or Saled in the TTM
[6].
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Fundamental inspection methods in TTM consist
of pulse examination, evaluation of the body’s ele-
ments (earth, water, wind, and fire), and Tri-Dhat
functions. Tongue diagnosis, in particular, is a highly
efficient method for determining overall health [7] [8].

Table 1 summarizes the characteristics of the Tri-
Dhat that are relevant to health [7] [9]. Symptoms of
excess Pitta include feeling hot and the presence of
red or black spots. Symptoms of excess Vata include
pain, diarrhea, and movement disorders, which can
lead to the distortion of the body structure or the
displacement of organs. Symptoms of excess Kapha
include feeling full, sleepy, and a sensation of some-
thing covering the heart.

Despite the rich history of tongue diagnosis in
TTM, there is currently a lack of studies and evidence
on its variations. Practitioners typically rely on visual
cues such as color, shape, moisture, movement, and
coating to identify Tri-Dhat imbalances, drawing on
their expertise [6] [10] [11]. Despite its importance,
there is a notable absence of research and in silico
methodologies for analyzing tongue images, as well
as tools or software to support TTM practitioners in
their diagnoses.

In this work, we propose in-silico methods for
Tri-Dhat analysis and classification of tongue images
in TTM using artificial intelligence (AI). We lever-
aged genuine tongue images collected from subjects
at our university’s TTM hospital. We introduce de-
signed datasets and analysis approaches based on TL
techniques of deep learning (DL) methods. The ex-
perimental results and performance evaluations con-
ducted using statistical tools, demonstrate the effec-
tiveness of our proposed approach in supporting TTM
practitioners in their diagnoses.

2. RELATED WORKS

In this section, we review recent related works on
tongue image analysis, particularly those emphasiz-
ing the role of AI, as summarized in Table 2.

Joshi et al. [2] developed a computerized, prag-
matic assessment method for the tridoshas using 120
tongue images collected from adults not undergo-
ing any treatment. They employed K-nearest neigh-
bors (KNN), neural networks, and decision trees
(DTs) [19] for the classification task, with the DT
model demonstrating superior performance, achiev-
ing sensitivities ranging from 0.72 to 0.83.

In parallel to the domain of TCM, Tian et al. [1]
conducted a systematic review of the current sta-
tus and trends in AI research on TCM diagnostic
methods developed since 2007, encompassing tongue,
pulse, and facial diagnoses. Their study revealed that
the majority of research efforts have been concen-
trated on tongue diagnosis and classification, predom-
inantly employing deep neural networks.

To further illustrate this point, Wang et al. [12]
utilized 1,548 tongue images, captured using various

types of equipment, to develop a classification method
aimed at recognizing unhealthy tongues with tooth
marks. This method, based on the ResNet34 [20]
convolutional neural network (CNN) architecture,
achieved an overall accuracy exceeding 0.90. Impor-
tantly, it demonstrated successful model generaliza-
tion across images captured by different devices.

By expanding the application scope, Xiang et
al. [14] and Li et al. [15] explored the potential of AI
for diagnosing diabetes through tongue analysis. Xi-
ang et al. [14] collected data from 165 subjects across
11 medical institutions in Tianjin, China, focusing
specifically on diabetes mellitus. This study devel-
oped a method that applies the random forest (RF)
algorithm [19] to analyze fundus photography in con-
junction with physical and physiological features of
the tongue and pulse. This approach achieved preci-
sion, sensitivity, and F1 scores of 0.89, 0.67, and 0.76,
respectively.

Conversely, Li et al. [15] adopted a machine learn-
ing approach to specifically analyze tongue features
for diabetes prediction. The study analyzed data
from 570 individuals, including diabetic, prediabetic,
and normal individuals, collected from 2011 to 2019.
It utilized fusion data of color and texture and em-
ployed a ResNet-50-based model optimized with a ge-
netic algorithm (GA) and XGBoost [21] for feature
extraction. The model achieved precision, sensitiv-
ity, and F1 scores of 0.84, 0.81, and 0.80, respectively,
demonstrating the relevance of tongue characteristics
in detecting diabetes.

In 2022, Li et al. [16] used tongue images obtained
from a diagnostic instrument to classify diabetes. A
tongue diagnosis system was utilized to extract fea-
tures from these images, which were then analyzed us-
ing K-means and validated using Vision Transformer
(ViT) [22] incorporating Grad-weighted Class Activa-
tion Mapping (Grad-CAM). ViT achieved the highest
Top-1 classification accuracy of 0.88.

In the domain of cancer, Ding et al. [13] proposed
a method for syndrome classification and prediction
for primary liver cancer (PLC). The method used
10,602 medical records from PLC patients, includ-
ing tongue diagnosis information and other features,
to train SVM and Bayesian networks, which were in-
corporated using particle swarm optimization. Their
method achieved an accuracy of 0.86. Another in-
teresting study was proposed by Shi et al. [17]. The
study collected tongue images from 219 patients with
non-small cell lung cancer (NSCLC), the most com-
mon histological type of lung cancer. They proposed
a method for NSCLC stage classification using tongue
features, tumor markers, and neural networks (NN),
support vector machines (SVM), decision trees, and
logistic regression. The neural network achieved the
highest accuracy of 0.77.

In 2023, the integration of TCM with DL has ad-
vanced towards analyzing more specific pathological
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Table 1: Characteristics of Tri-Dhat relevant to health
Tri-Dhat Pitta Vata Kapha
Other names Dee Lom Semha/Saled
Symbolized Fire Air Water
Physical
structures

The tongue is medium-sized
with a red or dark red color.
It may have red spots, a
red tip, or appear eroded.
A yellow or yellowish-white
coating may be present.

The tongue is typically thin,
dry, and has a pale or light
pink color with no coating.
It may show small cracks
all over or a deep fissure
down the center. A trem-
bling tongue may also be
observed.

The tongue is characteristi-
cally thick and large, with
teeth marks on the sides or
a swollen appearance. It
has a pinkish-white color
and is often covered with a
thick white or sticky coat-
ing. The tongue looks
moist, sticky, or has mucus.

Function It is the source of heat,
digestion, hunger, thirst,
thought, intelligence, mem-
ory, and emotions.

It is the source of power,
movement, speech, and con-
trol of the mind, as well as
the feeling of understanding
and the nervous system.

It makes the body soft,
mellow, strong, and pa-
tient. Semha has a nourish-
ing function and supports
the brain.

Effect of un-
balanced or
excess

Feeling hot like fire, burning
sensations, sourness, pro-
fuse sweating with a bad
odor, and the presence of
red or black spots

Pain, numbness, cracking,
deterioration, splitting,
breaking, a feeling of con-
striction, diarrhea, and
movement disorders. Loss
of senses such as smell,
sound, heat, sweating,
anxiety, sadness

Feeling full, sleepy, bloated,
excessive salivation, weight
gain, a sensation of some-
thing covering the heart,
pale skin, and a heavy feel-
ing

Table 2: Studies on tongue image analysis, particularly emphasizing the role of AI in terms of classification
Author Data Method Target Performance

Joshi et al. (2020) [2] 120 images KNN Tridoshas of
Ayurveda

0.83 sensitivity

Wang et al. (2020) [12] 1,548 images ResNet34 Unhealthy tongue
with tooth marks

0.90 accuracy

Ding et al. (2021) [13] Tongue diagnosis infor-
mation

SVM, Bayesian
networks, particle
swarm optimiza-
tion

Liver cancer 0.86 accuracy

Xiang et al. (2021) [14] 165 subjects of fundus
with tongue and pulse

RF Diabetes mellitus 0.89 precision,
0.67 sensitivity,
0.76 F1 score

Li et al.(2021) [15] 570 cases with tongue
features

ResNet50, GA,
and XGBoost

Diabetes 0.84 precision,
0.81 sensitivity,
0.80 F1 score

Li et al. (2022) [16] Tongue images ob-
tained from a diagno-
sis instrument

ViT combined
with Grad-CAM
and K-means

Diabetic tongue 0.88 accuracy

Shi et al. (2023) [17] Tongue images from
219 lung cancer pa-
tients

NN Lung cancer
stages

0.77 accuracy

Lu et al. (2024) [18] 1,083 tongue images
from 741 patients

DenseNet-201 Fibrosis vs. Non-
fibrosis

0.81 accuracy,
0.82 sensitivity,
0.81 specificity
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structures of the tongue. Yan et al. [23] introduced a
novel method for tongue crack segmentation, aimed
at characterizing the pathologies of the spleen and
stomach. The dataset, comprising 176 tongue im-
ages with cracks and 140 images without cracks, was
sourced from Shanghai University of TCM and aug-
mented to train a segmentation model. This model
outperformed several established methods, including
the mask region-based convolutional neural network
(Mask R-CNN) [24], DeeplabV3+ [25], U-Net [16],
UNet++ [27], and semantic segmentation with ad-
versarial learning (SegAN) [28], in comparative anal-
yses.

Similarly, Feng et al. [28] presented a progress re-
port on the objectification of tongue diagnosis over
the past decade, including a comparative analysis of
various segmentation models. The study utilized real
tongue image datasets and found that models based
on the U-Net architecture consistently outperformed
others in terms of precision, sensitivity, and the mean
intersection over union (MIoU) metric. Addition-
ally, the research highlighted the challenges associ-
ated with using mobile device-captured tongue im-
ages in complex environmental conditions.

Another study by Lu et al. [29] presented an early-
stage disease screening method for hepatic fibrosis us-
ing 1,083 tongue images taken from 741 patients with
a DSLR camera, and a neural network model, the
DenseNet201. The authors employed rigorous data
augmentation to generate 13,381 images for training
the model. Ultrasound elastography examinations
obtained from an instrument were used as a refer-
ence standard. The results showed an accuracy of
0.845 and 0.814 in the validation and test sets, re-
spectively.

In this work, we utilized images captured from
both a digital single-lens reflex (DSLR) camera and a
mobile device camera within controlled environment
settings. We proposed a classification method based
on the Tri-Dhat concept from the TTM, which con-
sists of three classes: Vata, Pitta, and Kapha.

3. MATERIALS AND METHODS

This section presents the data acquisition pro-
cesses, data preprocessing steps for the training pro-
cess, analysis approaches and details. All proto-
cols adhered to the Declaration of Helsinki and re-
ceived approval from the Ethics Committee of the
Faculty of Thai Traditional Medicine at Prince of
Songkla University, Thailand (Ethical Application
Ref: EC.66/TTM.01-011). Written informed con-
sent was obtained from individual or guardian partic-
ipants. The approval covers from October 17, 2023
to October 16, 2024.

3.1 Data Acquisition

Data acquisition was conducted with volunteers
aged between 18 and 60 years who visited the Thai

Traditional Medicine Hospital, Prince of Songkla Uni-
versity. Table 3 summarizes the criteria for data
acquisition in our study. The physical and mental
health status of these volunteers was assessed.

The sample size was determined using Yamane’s
formula (1973), as defined in Equation 1 [30], where
N represents the average monthly patient visits to
the hospital (535 patients), with a confidence level of
95% (at α = 0.05) in 2022.

n =
N

1 +N(e)2
(1)

Two sets of tongue images were collected from
each patient: the first set was taken using a DSLR
camera (Nikon D3400 with lens specifications of 18-
55mm f/3.5-5.6G) and the second set was captured
using a mobile phone camera (iPhone 13 with lens
specifications of 1.5-5.1mm F/1.6-2.4). Both sets of
photographs were taken alongside a calibration color
chart to ensure consistency with true-to-life visuals.
A total of 286 patients, including 71 males and 215
females, were included, yielding 572 images, as pre-
sented in Table 4.

Table 3: Data acquisition criteria
Attribute Detail

Target population Tongue images
Study population Cases with age ranges

from 18 to 60 years old.
Inclusion criteria Normal physical condi-

tions
Volunteer gives consent

Exclusion criteria Tongue affected by any
disease
TTM practitioners cannot
identify Tri-Dhat
Volunteer denies consent

Sample size 286 cases

Table 4: Demographic and tongue characteristics
of 286 patients from the Traditional Thai Medicine
Hospital, Prince of Songkla University. The data are
presented as n (%) patient prevalence, min, max, and
mean age

Variable Category Study population

Sex
Male 71 (24.8)
Female 215 (75.2)

Age
Maximum 59
Minimum 18
Mean 21.85

Tri-Dhat of tongue

Pitta 175 (61.6)
Vata 22 (7.8)
Kapha 87 (30.6)



446 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.19, NO.3 July 2025

3.2 Data Preprocessing and Labelling

The tongue images were verified against the cal-
ibration chart for color accuracy. Images captured
with the DSLR camera were saved in Joint Photo-
graphic Experts Group (JPEG) format, while those
taken with the mobile phone camera were stored in
the High Efficiency Image File Format (HEIC). The
HEIC format is advantageous because it maintains
higher image quality at half the file size of JPEG.

Subsequently, the images were cropped to ensure a
minimum width of 500 pixels and then, annotated to
identify physical structures, including color, shape,
moisture, coating, cracks, and teeth marks. Subse-
quently, these images were classified into their respec-
tive Tri-Dhat categories by three independent TTM
practitioners (T.S., K.M., and P.J.), each with at
least five years of experience. The practitioners fol-
lowed established TTM diagnostic criteria, using the
annotated features to determine the Tri-Dhat classi-
fication (see the physical structures in Table 1). The
initial class label for each image was determined by a
majority vote among the practitioners. From an orig-
inal pool of 286 cases, two were excluded due to lost
image files, resulting in a final dataset of 284 cases
for analysis.

In TTM knowledge, there is a clear correlation be-
tween age and Tri-Dhat types: Kapha dominates for
the age range of 1 to 16 years, Pitta for 17 to 32
years, and Vata for those over 32 years old [31]. This
theoretical distribution aligns with the demograph-
ics of our study. Since most of our volunteers were
university students, staff, and other visitors, the av-
erage age was 21.85 years. As a result, our tongue
Tri-Dhat class distribution was sharply imbalanced,
with a disproportionate number of cases in the Pitta
category.

To assess the consistency of the classification rules
among the practitioners, we measured interobserver
variability using Fleiss’ Kappa [32]. The formula is
defined in Equations 2 to 4, where P̄ is the observed
agreement (the average proportion of times that the
TTM practitioners agreed on a particular category
for an image) and P̄e is the expected agreement by
chance. The variables are defined as follows: nij is
the number of TTM practitioners who assigned the
i-th subject to the j-th category, Pj is the proportion
of all assignments that were to the j-th category, N
is the total number of subjects, n is the number of
ratings per subject, and k is the number of categories.

To assess the reliability of using a majority vote,
we calculated the inter-rater agreement among the
three TTM practitioners using Fleiss’ Kappa. A
value of 1.0 represents perfect agreement, while val-
ues from 0.81–0.99 are considered almost perfect,
0.61–0.80 substantial, and 0.41–0.60 moderate. Our
calculated kappa value was 0.30. This value falls into
the ‘fair’ agreement category (0.21–0.40), indicating
that a simple majority vote would not be sufficiently

Fig.1: (A) Distribution of imbalanced classes for
Tri-Dhat tongue images taken with a DSLR camera
in Dataset D1, featuring 284 images. The classes
were determined by majority voting from three TTM
practitioners, resulting in a Fleiss’ kappa of 0.30. (B)
Balanced distribution of Tri-Dhat classes for tongue
images taken with a DSLR camera in Dataset D1,
comprising 525 images.

reliable and could lead to misclassification due to sig-
nificant minority opinions.

Therefore, we determined that a consensus-based
approach was necessary for the final labels. The
kappa score was not used to decide the labels directly;
rather, the low score justified our decision to move be-
yond majority voting. For every image where there
was disagreement, all three practitioners engaged in
a discussion to finalize the classification, ensuring a
single, validated label for each image, as detailed in
Table 4.

κ =
P̄ − P̄e

1 − P̄e
(2)

P̄ =
1

N · n(n− 1)

N∑
i=1

k∑
j=1

n2
ij − n (3)

P̄e =
1

N · (n− 1)

k∑
j=1

P 2
j (4)

3.3 Dataset Creation

We compiled a dataset named “Dataset D1.” The
image sizes varied according to the physical anatomy
of the subject. A second dataset, “Dataset D2,” was
created where the region of interest (ROI) represent-
ing only the tongue pixels was extracted from each
image, and the background was set to zero.

Considering real-world applications, where a TTM
practitioner typically captures a tongue image and
crops it similarly to that in Dataset D1, extracting
the ROI can be labor-intensive and time-consuming.
To address this, we assembled “Dataset D3,” which
includes images such as those in Dataset D1 accom-
panied by their ground truth ROI masks.

All datasets were rigorously curated to support the
analysis approaches, which will be discussed in the
subsequent section.
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Figure 1 (A) displays the distribution of labeled
tongue images across the imbalanced classes of the
dataset. To address this imbalance, we applied the
RandomOverSampler algorithm [33], achieving a bal-
anced distribution, as shown in Figure 1 (B) with each
class now containing 175 images. Consequently, the
total dataset size increased to 525 images.

The dataset was split into training and testing sets
at a 70:30 ratio. Additionally, 30% of the training set
was further divided into a validation set, resulting in
256, 111, and 158 images for the training, validation,
and testing sets, respectively

Exhaustive empirical experiments were conducted.
Initially, we determined the optimal image size for
model training. A size of 299 × 299 pixels was se-
lected and consistently used for all models except for
ViT b16, which used a default image size of 384 ×
384 pixels.

Data augmentation was configured and performed
during training. A batch of augmented images was
fed into the built-in image preprocessing function of
a pretrained model, then was horizontally flipped.

3.4 Experimental Design

To systematically investigate the effectiveness of
the TL technique for Tri-Dhat classification, we de-
signed a study with three distinct analysis approaches
(A1, A2, and A3). This technique is recognized for its
simplicity and efficiency [34] [35]. Approaches A1 and
A2 focus on classification tasks, as shown in Figures 2
and 3, respectively. Conversely, Approach A3 com-
bines segmentation and classification tasks, utilizing
Dataset D3, as depicted in Figure 4.

3.4.1 Approach A1

In Approach A1, we conducted an exploratory
analysis using a combined dataset to identify optimal
classification models. For this purpose, we trained
various candidate pretrained models, incorporating
transferred weights from ImageNet [36]. This ap-
proach utilizes both Dataset D1 (a diverse range of
cropped images that vary in size) and Dataset D2
(images where only the tongue’s highly specific ROI is
extracted). Both DSLR-taken and mobile-taken im-
ages from these datasets were employed to evaluate
whether applying the TL technique to this compre-
hensive dataset could improve the model’s ability to
generalize across different image preprocessing meth-
ods. The classification task for this approach is shown
in Figure 2.

The candidate classification models included
DenseNet121 [37], EfficientNetB7 [38], Inception-
ResNetV2, InceptionV3 [39], MobileNet, Mo-
bileNetV2 [40], VGG16, VGG19 [41] Xception [42] [43],
and the Vision Transformer (ViT) [22]. Each clas-
sification model served as a feature extractor, with
a fixed architecture and configurations across all ap-
proaches (A1, A2, and A3), as illustrated in Figure 5.

3.4.2 Approach A2

In Approach A2, we designed a two-stage train-
ing process to evaluate the effectiveness of TL be-
tween images from different acquisition devices. This
method utilized Dataset D1, which consists of both
DSLR-taken and mobile-taken images. In the first
training stage, a model was trained on the DSLR-
taken images (D1-DSLR), which were chosen due to
their high pixel quality and strong empirical per-
formance. Subsequently, the trained weights from
this stage were transferred to a new model, which
was then fine-tuned on the mobile-taken images (D1-
Mobile). The purpose of this two-stage approach was
to determine if knowledge gained from high-quality
DSLR images could be leveraged to enhance model
robustness and improve classification performance on
mobile-taken images. The classification task for this
approach is depicted in Figure 3.

3.4.3 Approach A3

Approach A3 was created to explore a more prac-
tical, two-stage process, designed with real-world ap-
plications in mind. This approach combines an initial
tongue segmentation task with a subsequent classifi-
cation task, using Dataset D3 for both. For instance,
a TTM practitioner might input a cropped tongue
image, and the model would focus exclusively on the
tongue area to aid in diagnosis. The combined pro-
cess is shown in Figure 4.

Initially, we trained and validated candidate U-
Net-based segmentation models using images and
their respective ground truth ROI masks. This was
to determine the optimal initial weights for models
that demonstrated superior focus on the ROI of the
tongue. The candidates for these U-Net-based mod-
els included our previously proposed segmentation
model [44], HuggingFace Transformers [45], and var-
ious architectures of pretrained segmentation models
enhanced with ImageNet weights [46].

In the subsequent classification task, we employed
the encoder path of the segmentation model as a
backbone to construct the architecture for the clas-
sification task, as illustrated in Figure 5. Only the
trained weights from the encoder path were trans-
ferred to the classification model. This model was
then trained and validated using images from Dataset
D3 (without ground truth masks) and Tri-Dhat class
labels. Ultimately, this resulted in optimally trained
models for Tri-Dhat classification through the use of
TL techniques.

3.4.4     Configurations, Classification Architecture,
and Model Selection

We used a range of pretrained DL models from
both the ViT-based and CNN-based families to con-
duct the TL technique. For all three approaches,
the classification architecture with its configurations
is presented in Figure 5. This architecture consists
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Fig.2: Tongue image analysis for Approach A1 utilizes the D1 and D2 datasets employing a simplicity TL
technique of candidate pretrained models.

Fig.3: Tongue image analysis for Approach A2 consists of two training stages: weights from the trained
model with DSLR images are transferred to a new model, which is then trained using mobile images.

of five dense layers with 1024, 512, 64, 32, and 16
units, each employing a ReLU activation function,
except for the ViT model, which uses a GeLU activa-
tion function. The final output layer, aimed at three
predictive classes, utilizes a softmax activation func-
tion. A dropout rate of 0.2 was applied to all dense
layers. All hyperparameters and their configurations
were frozen for the proposed approaches (details in
the Dataset and code availability section). The four
models that showed the best performance were then
selected for a statistical analysis, and these models
were subjected to further performance analyses on
the unseen testing set.

4. RESULTS

Performance evaluations were conducted for all
approaches using the specifically designed datasets.
Each model, under every approach, was trained and
evaluated three times using distinct random seed
numbers (1337, 42, and 2024). These seeds helped
partition the dataset into training, validation, and
testing sets. The performance metrics consisted of
precision, F1 score, accuracy, sensitivity, and speci-
ficity, each defined in Equations 5 through 9. The per-
formance evaluation results were analyzed using two-
tailed paired t-tests and single-factor analyses [19].
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Fig.4: Tongue image analysis for Approach A3 consists of segmentation and classification tasks. Initially,
candidate U-Net-based segmentation models are employed using images and their respective ground truth ROI
masks. In the subsequent classification task, the encoder path of the segmentation model is used as a backbone
to construct the architecture for the classification task.

Fig.5: Classification architecture with configurations utilized for all proposed approaches.

precision =
TP

TP + FP
(5)

F1score =
2TP

2TP + FP + FN
(6)

accuracy =
TP + TN

TP + TN + FP + FN
(7)

sensitivity =
TP

TP + FN
(8)

specificity =
TN

TN + FP
(9)

4.1 Model Evaluations of Approach A1

For Approach A1, Performance evaluation com-
parisons were conducted across the D1 and D2
datasets for all pretrained models, focusing on sensi-
tivity. The DenseNet121 model using the D2-Mobile
dataset achieved the highest sensitivity at 0.85, fol-

lowed by the MobileNetV2 model on the same dataset
(0.84) and the InceptionResNetV2 model on the D2-
DSLR dataset (0.83).

Focusing on specificity performance across the D1
and D2 datasets for all the pretrained models, The
DenseNet121 and MobileNetV2 models outperformed
others on the D2-Mobile dataset with a specificity of
0.92, followed by InceptionV3 and MobileNet (0.91)
and Xception (0.90). For the D1-DSLR dataset, the
DenseNet121 and Xception models performed best,
each achieving a specificity of 0.91.

Regarding the F1 score, the performance trends
mirrored those observed for sensitivity and specificity.
The D2-Mobile dataset showed the highest F1 score of
0.85, while the D1-DSLR, D1-Mobile, and D2-DSLR
datasets each achieved a maximum F1 score of 0.82,
produced by DenseNet121

However, all scores of the trained models and
datasets were statistically analyzed using a two-tailed
paired t-test (with an alpha threshold of 0.05). No
significant differences were found among these met-
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Fig.6: Mean sensitivity and specificity with stan-
dard deviations (SD) for selected models from test
sets under varying random seed numbers in Approach
A2 using Dataset D1 (A2-D1). The Xception model
achieved the highest mean sensitivity and specificity,
0.88 and 0.94, respectively, surpassing those of the
DenseNet121, MobileNetV2, and ViT b16 models.

rics across the designed datasets, as all p-values ex-
ceeded the alpha threshold.

Considering real-world applications where TTM
practitioners may not need to isolate the tongue ROI,
we applied the TL technique from Approach A2. This
approach commenced with first-stage training using
models trained on the D1-DSLR dataset due to its
high pixel quality and continued with second-stage
training using the D1-Mobile dataset.

4.2 Model Evaluations of Approach A2

In Approach A2, the top performances of the four
models trained with Dataset D1 (referred to as ex-
periments A2-D1) are depicted in Figure 6. The
Xception model achieved the highest average sensi-
tivity and specificity, at 0.88 and 0.94, respectively,
outperforming the DenseNet121, MobileNetV2, and
ViT b16 models.

For experiments A2-D2 with the same approach,
the MobileNetV2 model exhibited the best average
sensitivity and specificity (0.84 and 0.92, respec-
tively). This performance was followed by the Incep-
tionResNetV2, MobileNet, and InceptionV3 models,
as illustrated in Figure 7.

After comparing the outcomes of both experiments
A2-D1 and A2-D2, we selected the best-performing
model from each and performed a two-tailed paired
t-test to compare performance across all metrics. The
t-test results revealed significant differences, with a p-
value of 0.0012 (alpha set at 0.05), highlighting the
superior performance of the Xception model from ex-
periments A2-D1, for which the average sensitivity
and specificity were 0.88 and 0.94, respectively.

Fig.7: Mean sensitivity and specificity with stan-
dard deviations (SD) for selected models from test sets
under varying random seed numbers in Approach A2
using Dataset D2 (A2-D2). The MobileNetV2 model
led to the best mean sensitivity and specificity of 0.84
and 0.92, respectively, followed by the InceptionRes-
NetV2, MobileNet, and InceptionV3 models.

4.3 Model Evaluations of Approach A3

In Approach A3, we initially utilized our previ-
ously developed segmentation model [44] to build a
feature extractor for segmentation tasks. After suc-
cessful training on the D3-DSLR dataset (images and
masks), the encoder path with its trained weights was
employed as the feature extractor for the classifica-
tion task. We analyzed the model architecture to
identify the last convolutional layer, marking the end
of the encoder path. The intermediate outputs of the
last convolutional layer (conv2d 155) demonstrated
the effective focus of the encoder path, supported by
segmentation task performance evaluations showing
a Dice coefficient of 0.8524 and precision, sensitivity,
and accuracy of 0.9806.

However, when we utilized the encoder path for
the classification task, its performance significantly
decreased. Consequently, the encoder path of the
segmentation model was deemed suboptimal for this
task.

Considering alternative models, such as Hugging-
Face Transformers [45], performance evaluation re-
sults from the ViT-based model (ViT b16) in Ap-
proach A2 indicated that further training of Hug-
gingFace Transformers is unnecessary due to their
construction on a foundation of transformer blocks
similar to those in the ViT-based model.

Regarding pretrained segmentation models [46],
the performance results from traditional pretrained
models in Approach A2 provided sufficient evidence
to conclude that further training is unnecessary, as
segmentation models are built using the backbones
of these traditional pretrained models.
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4.4 Model Selection Method

Based on their performance across all metrics,
we selected the three best models for Dataset D1:
A2-D1-Xception, A2-D1-DenseNet121, and A1-D1-
DSLR-Xception. Single-factor ANOVA revealed a
p-value of 0.0108 (F-critical = 3.48, at p < 0.05),
indicating significant differences in the performances
of these models. The A1-D1-DSLR-Xception model,
trained solely on DSLR-taken images, was found to
lack robustness and was therefore not selected. Con-
versely, the two best models from Approach A2 (TL),
A2-D1-Xception and A2-D1-DenseNet121 were cho-
sen for deployment.

For Dataset D2, MobileNetV2 with the A1-D2-
Mobile experimental setting achieved the best per-
formance. However, this model was not selected be-
cause its training data, taken exclusively from a mo-
bile phone camera, typically lack robustness across
various data sources. Additionally, its reliance on
tongue ROI images would necessitate labor-intensive
preprocessing steps for deployment. Nevertheless, the
encoder of the segmentation model from Approach A3
was also not chosen for application due to its poor
performance across all the metrics.

We summarize the performance scores of the pro-
posed approaches in Figure 8. Among the four mod-
els, the DenseNet121 and Xception models from the
A2-D1 experiment were selected for application based
on a two-tailed paired t-test that yielded a p-value of
0.0012 (t-Stat = -8.28, at p < 0.05), indicating sig-
nificant differences among them.

Additionally, we conducted model ensemble (ME)
performance evaluations for these chosen models. To
thoroughly assess the ME, we compared the A2-
D1-DenseNet121 and A2-D1-Xception models, along
with their ensembles that included both DSLR-taken
(DSLR-ME) and mobile-taken images (Mobile-ME).
We used unique test sets, generated with different
seed numbers, across three evaluation rounds, as de-
picted in Figure 9.

Notably, the DSLR-ME evaluations yielded the
highest average predictions, achieving impressive
scores: precision of 0.94, F1 score of 0.96, accuracy
of 0.96, sensitivity of 0.96, and specificity of 0.97. A
subsequent single-factor ANOVA reported a p-value
of 0.0003 (F-critical = 3.24, at p < 0.05), which con-
firmed statistically significant differences among the
various evaluation methods. Based on these results,
we selected the ME evaluation method for inference
on the unseen testing set.

4.5 Model Ensemble Evaluations of a Testing
Set

Figure 10 presents two confusion matrices from the
ME evaluations using a test set (seed 1337) from the
D1-DSLR dataset. These matrices are shown in both
absolute numbers of predicted cases and normalized

Fig.8: A comparison of approaches A1, A2, and A3
highlights that the A2-D1-DenseNet121 and A2-D1-
Xception models were selected for application. This
decision was based on a two-tailed t test, which yielded
a significant p-value of 0.0012 (t-stat = -8.28, p <
0.05).

Fig.9: Performance evaluation comparisons for
the A2-D1-DenseNet121 and A2-D1-Xception mod-
els, along with their model ensemble (ME), using
both DSLR-taken and mobile-taken images (denoted
as DSLR-ME and Mobile-ME, respectively). The text
in bold highlights the highest average values achieved
by the MEs with DSLR image predictions.

forms. The dataset, comprising Tri-Dhat tongue im-
ages, initially had imbalanced classes (as shown in
Figure 1), with Pitta being the most prevalent at 175
cases, followed by Kapha at 87, and Vata at 22. This
imbalance was addressed by data augmentation, bal-
ancing each class to 175 cases. The test set included
48 Pitta, 64 Kapha, and 46 Vata images.

Our ME correctly predicted 41 cases for Pitta, with
seven cases misclassified, resulting in a sensitivity of
0.85 for Pitta. For the other classes, the ME correctly
predicted all cases for Vata and Kapha, each achiev-
ing a sensitivity of 1.00. Overall, the ME achieved
an average sensitivity of 0.95 across all classes. Re-
markably, even without data augmentation particu-
larly through the omission of the RandomOverSam-
pler algorithm. Pitta’s sensitivity of 0.85 was notable
as an unbiased and satisfactory score, reflecting the
robustness of our designed datasets and experimental
methodologies.

Furthermore, we are the first team to analyze
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Fig.10: Two confusion matrices of model ensemble evaluations using the test set (seed 1337) for both
visualization styles, including numbers of predicted cases and normalization

Table 5: Performance comparisons with related works
Author Method Performance

Joshi et al. (2020) [2] KNN 0.83 sensitivity
Wang et al. (2020) [12] ResNet34 0.90 accuracy
Lu et al. (2024) [18] DenseNet-201 0.82 sensitivity
Our proposed Transfer learning of DenseNet121,

Xception, and their model ensemble
0.94 precision,
0.96 sensitivity,
0.96 F1 score

tongue images using AI based on TTM knowledge.
As a result, we compared our results with indirectly
related works, especially those related to the classi-
fication of tongue images, as presented in Table 5.
Our ME method surpassed the sensitivity of Joshi et
al. [2] and the accuracy of Wang et al. [12].

5. DISCUSSION

5.1 Ablation Analysis

Since we utilized only the RandomOverSampler al-
gorithm for the D1, D2, and D3 datasets, increasing
their minority classes (Vata and Kapha) to match
the majority class, Pitta, in this section, we cre-
ated another balanced dataset for D1 using both the
RandomUnderSampler and RandomOverSampler al-
gorithms. With an average class size of 94.67, we
selected 100 images for each class. First, we reduced
the Pitta class from 175 to 100. Then, we increased
the Vata class from 22 and the Kapha class from 87
to 100 each.

The DenseNet121 and Xception models were
trained and evaluated three times using different ran-
dom seed numbers. The performance comparisons
revealed the average metric scores obtained from
the D1-175 dataset surpassed those from the D1-
100 dataset for both models. Additionally, two-tailed
paired t-tests revealed that the model performances
for D1-100 dropped significantly, with p-values of
0.0010 and 0.0015 (alpha set at 0.05). This indicates
that dataset organization is a crucial factor affecting
model performance.

5.2 Dataset Limitations

The subjects or cases involved imbalanced classes
and exhibited a lower kappa agreement score of 0.30,
which falls at the lower end of the fair agreement cat-
egory. This suggests a need to review the classifica-
tion criteria or provide additional training for TTM
practitioners to ensure a higher level of consistency in
their evaluations. In addition, we suggest increasing
the number of subjects from multiple clinical sites to
cover all age ranges for handling the degree of data
imbalance.

The source devices used in this study were a DSLR
camera and a mobile phone camera, with files saved
in JPEG and HEIC formats, respectively. These for-
mats are highly compressed and result in the loss of
pixel information. We recommend capturing images
in a raw pixel data format and then processing them
into less compressed file types such as TIFF or PNG
files to better analyze their performance.

The Tri-Dhat classification of individuals can vary
periodically depending on their physical and men-
tal conditions. We recommend periodic and follow-
up data collection in future studies to accommodate
these variations.

5.3 Methodological Limitations

The proposed Approach A2 represents an optimal
TL technique given our current constraints, paving
the way for new and complex analytical techniques in
the future. However, for real-world deployment and
application, we recommend using a DSLR camera as
the primary source and a mobile phone camera as a
secondary option.
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Based on the literature review, another model from
the DenseNet family, DenseNet201, was also trained
and evaluated. Its performance was close to that of
the DenseNet121 model, catching our attention for
potential optimization of this model family in future
work.

Raw pixels of tongue images, along with data aug-
mentation, were used to train the models in this work.
We also have ground truth for other physical condi-
tions of these images, such as color, shape, moisture,
coating, cracks, and teeth marks, which will be in-
corporated to support the Tri-Dhat classification in
future work.

Only the RGB color space of the raw pixels was
used in this work. Analyzing tongue images using
various color spaces and chromatic features, as well
as edge and contour detection techniques, is superior
for potential feature engineering and selection [11].
Additionally, edge and contour detection techniques
aligning with state-of-the-art DL and traditional ma-
chine learning approaches such as DeepLabV3+ [25],
UNet++ [27], SegAN [28], and XGBoost [21] have at-
tracted our attention for further analysis which can be
forwarded to disease classification in future work [47].

6. CONCLUSION

In this work, we focused on tongue image anal-
ysis using raw pixels and AI to support TTM di-
agnoses, specifically targeting the Tri-Dhat classifi-
cation: Vata, Pitta, and Kapha. We collected 572
tongue images from subjects at our university’s TTM
hospital using both DSLR and mobile phone cam-
eras in a calibrated environment. These images were
cropped, assessed, and labeled for Tri-Dhat physi-
cal conditions by three experienced TTM practition-
ers, with interobserver variability measured by Fleiss’
kappa, resulting in a kappa value of 0.30, indicating
fair agreement. However, a consensus-based approach
was used for the final labels.

We utilized these labeled images to design and
create three distinct datasets to support our three
proposed analysis approaches. We addressed issues
of class imbalance and data augmentation in these
datasets.

Approach A1 focused on classification tasks, Ap-
proach A2 integrated classification with transfer
learning techniques, and Approach A3 combined seg-
mentation with classification tasks. Various pre-
trained models were trained for these approaches, and
their performances were evaluated using two-tailed
paired t-tests and single-factor ANOVA. The null hy-
pothesis for the ANOVA was that there was no sig-
nificant difference in performance across the various
approaches, while the alternative hypothesis was that
a significant difference did exist.

Approach A2 provided the most significant re-
sults, with the DenseNet121 and Xception models
demonstrating exceptional performance with the D1

dataset, which featured cropped images. ME evalua-
tions for these models incorporated both DSLR-taken
and mobile-taken images. Notably, the ME evalu-
ations that utilized DSLR-taken images yielded the
highest average predictions, achieving a precision of
0.94, an F1 score of 0.96, an accuracy of 0.96, a sensi-
tivity of 0.96, and a specificity of 0.97. The ANOVA
result, with a p-value of 0.0003, indicated that we
could reject the null hypothesis, confirming a statisti-
cally significant difference in performance among the
approaches.

Notably, even without data augmentation, the un-
biased sensitivity of 0.85 for Pitta was considered sat-
isfactory, reflecting the robustness of our designed
datasets and experimental methodologies. We sug-
gest that our methods could be effectively deployed
in real-world scenarios to aid TTM practitioners in
their diagnoses.
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in Python is available at https://github.com/
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