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ABSTRACT

Convolutional neural networks (CNNs) have demonstrated impressive per-
formance in image classification tasks but are often criticized for their
black-box nature, which complicates understanding their decision-making
and reliability. Transfer learning with pre-trained CNNs is a widely used
approach for tasks with limited data. This study evaluates the performance
and explainability of popular CNN models on flower image classification
using two custom datasets, Flower-8-One and Flower-8-Zoom. Employing
Explainable AI (XAI) techniques, such as Grad-CAM, this research visu-
alizes CNN decision-making to uncover its alignment with human percep-
tion. A human study assesses trustworthiness by analyzing participants’
confidence scores based on model visualizations. Results indicate strong
CNN performance but highlight disparities between model-extracted fea-
tures and human expectations. Among the models evaluated, Xception
and Inception-v3 consistently earn higher trust ratings. These findings
emphasize the necessity of XAI-driven evaluations to enhance trust and
reliability in CNN-integrated systems, particularly in applications requir-
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1. INTRODUCTION

The success of AlexNet [1] in the ImageNet Large
Scale Visual Recognition Challenge [2] demonstrated
that deep learning networks can be developed and
deployed to address significant computer vision prob-
lems, particularly in image classification [3]. Addi-
tionally, the use of transfer learning techniques with
pre-trained CNN models has become very popular.
This approach allows developers to quickly build a
classifier and apply it to small datasets. Numer-
ous studies have applied CNN-based transfer learn-
ing to various image classification tasks, including
breast cancer detection [4, 5|, glomerulus classifica-
tion in nephropathology [6, 7], brain tumor detection
[8], eye disease classification [9], paddy leaf disease
identification [10], road surface crack detection [11],
and COVID-19 detection [12].

The inherent complexity of CNNs often leads to
their perception as black boxes. When selecting a
CNN model for an image classification task, the pro-

cess can feel like choosing from a series of opaque sys-
tems, with the added challenge of determining which
one is most likely to deliver optimal results. Be-
yond performance, it is equally important to evaluate
which models are reliable and trustworthy for specific
needs.

This research was also motivated by our own ex-
periences with CNNs. During the development of
CNN classifiers using several models and applying
them to our datasets, we found that transfer learning
frequently resulted in strong performance for image
classification tasks. However, when we analyzed how
these models processed and classified input images,
the results were surprising. The models’ interpreta-
tions of the images often deviated significantly from
our expectations, raising critical questions and dimin-
ishing our confidence in their reliability.

These challenges highlight the relevance of explain-
able AI (XAI). As described in [13], XAI methods aim
to create models that are not only high-performing
but also interpretable, enabling users to understand,
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appropriately trust, and effectively manage Al sys-
tems. A survey on XAI by [14] identifies trustworthi-
ness as a key goal, defining it as the confidence that
a model will behave as intended when faced with a
given problem. However, the survey also emphasizes
that not all trustworthy models are inherently ex-
plainable, and trustworthiness is not easy to quantify.
Fortunately, CNNs are better suited for explainability
compared to many other machine learning models, as
humans naturally excel at interpreting visual data.

This study asserts that although CNNs trained via
transfer learning often achieve high classification ac-
curacy, their internal decision-making processes do
not always align with human intuition. Such mis-
alignment can undermine user confidence in model
predictions, especially in applications where inter-
pretability and trust are critical. By combining vi-
sual explanation techniques with human evaluation,
we propose that trustworthiness can be meaningfully
assessed and differentiated across CNN architectures.

This study aims to evaluate and compare the per-
formance of widely used CNN models trained through
transfer learning for image classification tasks and
to assess the trustworthiness of these models using
visual explanation techniques, incorporating insights
from human evaluation. The main contributions of
this work are as follows:

1) To evaluate the effectiveness and trustworthi-
ness of CNN models, we chose flowers as the
primary classification objects. Initially, we re-
viewed several publicly available flower datasets
[15-18], but these often contained images with
inconsistent characteristics, such as single ver-
sus multiple flowers, partial versus complete
flowers, and varying zoom levels. To ensure
a systematic study and draw meaningful con-
clusions, we did not use these public datasets.
Instead, we created two new custom flower
datasets: Flower-8-One and Flower-8-Zoom.
We carefully curated these datasets with well-
defined characteristics to support evaluating
model accuracy and trustworthiness through
heatmap-based explanations.

2) We applied transfer learning to 19 pretrained
CNN models, training them on the custom
flower datasets. We tested these models on
the same test dataset to systematically com-
pare their classification accuracy and analyze
their relative performance.

3) To the best of our knowledge, this is the first
study to comprehensively examine the trust-
worthiness of a large number of CNN models,
with a particular focus on 19 architectures. Our
human evaluation study gathered insights into
trustworthiness from a user perspective, pro-
viding valuable guidance on evaluating the re-
liability and trustworthiness of CNN models.

4) Although techniques like transfer learning,

Grad-CAM, and participant-based scoring are
well established, our integration of these com-
ponents into a trust assessment framework for
CNN-based flower classification offers a novel
and practical application. The use of con-
trolled, custom-built datasets and systematic
human evaluation based on intuitive visual cri-
teria (localization and consistency) provides a
unique lens into how model behavior aligns with
human expectations. This human-centered,
explainability-driven methodology contributes
new insights into trustworthiness assessment
and offers actionable guidance for selecting
CNN models in real-world, user-facing appli-
cations.

The findings of this research provide actionable
insights into identifying CNN models that not only
achieve high classification accuracy but also inspire
confidence in their ability to perform as intended in
classification tasks. This study offers practical guid-
ance for selecting CNN models that balance technical
performance with human-centered trustworthiness.

2. RELATED WORK

CNNs have seen remarkable advancements over
the past decade, driving significant progress in var-
ious computer vision tasks. Researchers have devel-
oped numerous CNN architectures, each aiming to
improve performance, efficiency, and interpretability.
This section covers key concepts of CNNs, transfer
learning, and the black box nature of these models.

2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs), a type
of artificial neural network (ANN), are widely used
in image analysis. Popular models like AlexNet [1],
VGG [19], GoogLeNet [20], NASNet [21], DarkNet
[22], EfficientNet [23], ShuffleNet [24], SqueezeNet
[25], DenseNet [26], MobileNet [27], Inception [28],
Xception [29], ResNet [30, 31], and Inception-ResNet
[31] have achieved remarkable success in computer vi-
sion tasks. CNNs learn features from images through
layers such as convolutional, pooling, and fully con-
nected layers. Key design factors include the number
of layers, filter sizes (smaller for local features, larger
for global), and the learning process, which involves
forward and backward propagation to optimize clas-
sification accuracy. Training CNNs requires large, di-
verse datasets and significant time and resources, pro-
ducing pretrained models for reuse in various tasks.

2.2 Transfer Learning

Machine learning models are often task-specific
and require retraining with new data for differ-
ent tasks, limiting real-world applicability. Transfer
learning solves this by leveraging knowledge from a
previously learned task to improve performance on a
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new one [32, 33]. In deep learning, pretrained CNN
models trained on large datasets serve as effective
starting points for smaller datasets, reducing data
and computational demands [34-38]. This method
has become central to CNN research, especially in
image classification, with recent reviews exploring ad-
vancements in deep transfer learning [39, 40].

2.3 The Black Box Nature of CNNs and XAI

CNNs are often called “black boxes” due to their
complex structures, making it hard to understand the
link between input and output. This opacity un-
derscores the need for XAlI, which provides accessi-
ble explanations to clarify model workings and en-
hance trust. While some models are inherently in-
terpretable, CNNs typically rely on post-hoc tech-
niques, such as visual explanations, to highlight im-
age regions influencing predictions and improve sys-
tem transparency.

2.3.1 Visual Explanations of CNNs

Efforts to address the black box nature of CNNs
often focus on visualization techniques that reveal
what the network “sees” when making predictions.
These methods include visualizing feature maps, at-
tention mechanisms, or layer activations to help users
understand how the network processes information.
For instance, Activation Maximization [39] visual-
izes the features learned by hidden layers by generat-
ing images that maximize specific neuron activations,
though it doesn’t capture the complex interactions
among neurons. Similarly, methods like DeconvNet
[38] and Guided Backpropagation [40] offer different
ways to visualize CNN behavior: DeconvNet gener-
ates feature-based visualizations, while Guided Back-
propagation highlights regions in input images that
influence network decisions, often creating more fo-
cused heatmaps.

A more advanced technique, Gradient-weighted
Class Activation Mapping (Grad-CAM) [41], builds
on Class Activation Maps (CAMs) [42] to gener-
ate heatmaps that highlight critical regions in an
image for specific predictions. Grad-CAM achieves
this by using the gradients of the predicted class
score relative to the feature maps of the final con-
volutional layer. These gradients determine how
much each feature map contributes to the output,
and their weighted sum creates the heatmap. Grad-
CAM provides high-resolution visualizations that en-
hance interpretability and localization, working ef-
fectively across different CNN architectures. An ex-
tension, Gradual Extrapolated Grad-CAM [43], im-
proves heatmap sharpness by gradually applying gra-
dient weights from the predicted class to other classes,
though it increases computational overhead.

2.3.2 Trust Assessment of CNNs

Trust in CNNs depends on their interpretability
and the ability to validate predictions. A study in [44]
highlights that interpretability, a multifaceted con-
cept, is crucial for trust as users struggle to rely on
models they cannot understand.

Local Interpretable Model-agnostic Explanations
(LIME) [45] enhances trust by treating models as
black boxes and using local approximations to pro-
vide human-readable explanations for individual pre-
dictions. Similarly, heatmap-based XAI methods, like
Saliency and Deconvolution, improve prediction con-
fidence and reliability. A novel approach, Generative
Augmentative Explanation, boosts confidence by tai-
loring heatmaps to specific datasets, underscoring the
importance of customized XAT techniques [46].

The PRISM framework furthers trust by visualiz-
ing CNN decision-making through principal feature
analysis, offering global insights into feature use, bias
detection, and prediction validation [47]. Inspired by
Grad-CAM’s human evaluation study, which showed
visual explanations enhance transparency, this work
builds on heatmaps to reveal key image regions influ-
encing decisions, fostering user confidence [41].

3. METHODOLOGY

This section outlines the creation of two custom
flower datasets, the development of flower classifiers
using transfer learning with pre-trained CNNs, and
the use of visualization techniques to understand the
decision-making process of CNNs and assess their reli-
ability. Through this methodology, we aim to provide
insights into the inner workings of CNNs, highlighting
both their strengths and limitations in practical ap-
plications. By understanding these aspects, we hope
to foster a deeper discussion about the reliability and
trustworthiness of CNN models.

CNN
Network#1

Globe
amaranth

Red rose Sunflower White

chrysanthemum

Pinwheel Plumeria
jasmine

Madagascar Marigold
periwinkle

Fig.1: Transfer learning of 19 pretrained CNNs with
the Flower-8-One dataset.
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Fig.2: Transfer learning of 19 pretrained CNNs with
the Flower-8-Zoom dataset.

3.1 Flower-8 Datasets

We created two flower datasets, each containing
1,120 images across eight flower types: Globe Ama-
ranth, Madagascar Periwinkle, Marigold, Pinwheel
Jasmine, Plumeria, Red Rose, Sunflower, and White
Chrysanthemum (140 images per type).

e Flower-8-One Dataset: Features single flow-
ers, often off-center, with surrounding context,
designed to test CNNs’ ability to localize and
classify flowers.

e Flower-8-Zoom Dataset: Contains zoomed-
in, centered flowers without surroundings, focus-
ing on how CNNs analyze features and struc-
tures.

We divided each dataset into training, valida-
tion, and test subsets, labeled as Flower-8-One-
Train/Test/Validate and Flower-8-Zoom-Train/Test/
Validate. Table 1 summarizes the subset sizes, while
Fig. 1 and Fig. 2 display sample images. The Flower-
8-One and Flower-8-Zoom datasets used in this study
are available from the corresponding author upon rea-
sonable request, subject to the journal’s data sharing
policy.

Table 1: Details of the Flower-8-One and Flower-

8-Zoom datasets, each containing 1,120 images.
Flower Train Validate Test Total
Globe Amaranth 100 20 20 140
Madagascar Periwinkle 100 20 20 140
Marigold 100 20 20 140
Pinwheel Jasmine 100 20 20 140
Plumeria 100 20 20 140
Red Rose 100 20 20 140
Sunflower 100 20 20 140
White Chrysanthemum 100 20 20 140
Total 800 160 160 1120

of training models from scratch, we fine-tune pre-
trained networks, leveraging their learned features
while customizing them for our flower datasets. This
fine-tuning process involves modifying the final lay-
ers—replacing the fully connected and classification
layers—to suit our task.

We train two sets of CNNs: one using the Flower-
8-One-Train dataset and another using the Flower-
8-Zoom-Train dataset. We use the Flower-8-One-
Validate and Flower-8-Zoom-Validate datasets for hy-
perparameter tuning and performance evaluation.

3.2.1 Choosing Pretrained Networks

Pretrained networks, typically trained on large
datasets like ImageNet, provide a strong starting
point for transfer learning due to their generalized
feature extraction capabilities. Our study utilizes
19 pretrained networks available in MATLAB, all
trained on ImageNet. Table 2 provides details on
these networks, including the number of parameters
and input image sizes.

3.2.2 Replacing Final Layers

The final layers of pretrained networks, which gen-
erate class probabilities and predictions, are replaced
with new layers tailored to classify our flower cat-
egories. This customization enables the networks
to adapt their feature extraction capabilities to our
datasets.

Table 2: Details of 19 networks obtained from the
MATLAB website [hitps://www.mathworks.com].

Parameters
f  Name (Millions) Input Size
1 SqueezeNet 1.24 227-by-227
2 GoogLeNet 7 224-by-224
3 Inception-v3 23.9 299-by-299
4 DenseNet-201 20 224-by-224
5 MobileNet-v2 3.5 224-by-224
6  ResNet-18 11.7 224-by-224
7 ResNet-50 25.6 224-by-224
8  ResNet-101 44.6 224-by-224
9  Xception 22.9 299-by-299
10 InceptionResNet-v2 55.9 299-by-299
11 ShuffleNet 1.4 224-by-224
12 NASNet-Mobile 5.3 224-by-224
13 NASNet-Large 88.9 331-by-331
14 DarkNet-19 20.8 256-by-256
15  DarkNet-53 41.6 256-by-256
16  EfficientNet-b0 5.3 224-by-224
17 AlexNet 61 227-by-227
18 VGG-16 138 224-by-224
19 VGG-19 144 224-by-224

3.2 Transfer Learning Using Pretrained Net-
works

Pretrained networks, designed to classify images
into broad categories, can be adapted to classify the
specific eight flower types in our datasets. Instead

3.2.3 Data Augmentation

To enhance training and prevent overfitting, we
resize input images to match network requirements
and apply data augmentation. Specifically, we apply
random vertical flips, translations up to 30 pixels, and
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scaling up to 10%. These transformations increase
dataset diversity and improve model robustness.

3.2.4 Training Pretrained Networks

We trained each network for 30 epochs using the
SGDM optimizer with a learning rate of 0.0003 and a
batch size of 10. We trained two sets of 19 CNNs: one
with the Flower-8-One dataset and another on the
Flower-8-Zoom dataset, all on NVIDIA DGX-A100
servers.

Despite using consistent hyperparameters, the net-
works achieved high training and validation accuracy
with minimal loss, indicating effective learning with-
out overfitting. Table 3 summarizes the validation
accuracy (%) for these CNN models. Fig. 1 and Fig.
2 illustrate the 38 customized CNNs trained on our
datasets.

Table 3: Validation accuracy of 38 CNNs trained
with Flower-8-One-Train and Flower-8-Zoom-Train
sets.

Flower-8-One Flower-8-Zoom

Validation Validation

f Name Accuracy (%) Accuracy (%)
1 SqueezeNet 100 98.12
2 GoogLeNet 100 100

3 Inception-v3 100 100

4 DenseNet-201 100 100
5  MobileNet-v2 100 100

6  ResNet-18 100 100
7 ResNet-50 100 100

8  ResNet-101 100 100

9  Xception 100 100
10 InceptionResNet-v2  88.75 83.12
11  ShuffleNet 100 100
12 NASNet-Mobile 98.12 100
13 NASNet-Large 99.38 100
14 DarkNet-19 100 100
15 DarkNet-53 100 100
16  EfficientNet-b0 100 100
17 AlexNet 100 100
18 VGG-16 100 100
19 VGG-19 100 100

Fig.3: The Grad-CAM heatmaps, overlaid on the
original Madagascar Periwinkle flower images.

3.3 Visualizing Network Predictions

Visualizing CNN predictions provides valuable in-
sights into how networks make decisions, revealing
their strengths and weaknesses. Grad-CAM, a widely
used visualization method, balances positive gradi-
ent emphasis with some negative influence through

weighting, offering robust interpretations and accu-
rate localization of critical regions. This capabil-
ity is especially useful for the Flower-8-One dataset,
which focuses on flower localization and classification,
and the Flower-8-Zoom dataset, which examines how
CNNs analyze flower features. Grad-CAM heatmaps
overlay directly on images, enabling compact and in-
tuitive visualization of network predictions.

For our trust evaluation, participants can effi-
ciently compare prediction results across test images
using Grad-CAM’s heatmap overlays. Its versatil-
ity also allows application across diverse CNN archi-
tectures without modification. For instance, Fig. 3
(Left) illustrates a Madagascar Periwinkle image from
the Flower-8-One-Test set, where Grad-CAM high-
lights critical regions used by the network for classi-
fication. Similarly, Fig. 3 (Right) shows how Grad-
CAM analyzes another Madagascar Periwinkle image
from the Flower-8-Zoom-Test set, revealing how the
network processes flower features.

netTransferngooglenet

globe amaranth vl 0 0 0 ) 0 0 0 18
madagascar periwinkle 0 ] 0 0 0 0 ) 0 16
marigold 0 0 0 0 0 0 0 14
12
pinwheel jasmine 0 0 0 0 0 0 0 0
T 10
plumeria 0 0 ) 0 0 0 0 0 e
red rose 0 0 0 0 0 0 0 0 6
sunflower 0 0 [0 |0 | 0 [ O 0 I 4
2
white chrysanthemum 0 0 0 0 0 0 0 ]
0
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Fig.4: A confusion matriz of mnetwork #2
(GoogLeNet) classifying images from the Flower-8-
Zoom-Test set.

4. EVALUATING CNN PERFORMANCE

We evaluated 19 networks trained on the Flower-
8-One-Train set, validated with the Flower-8-One-
Validate set, and tested on 160 images from the
Flower-8-One-Test set. Similarly, we trained and val-
idated another 19 networks on the Flower-8-Zoom-
Train and Flower-8-Zoom-Validate sets, and tested
them on 160 images from the Flower-8-Zoom-Test set.

We assessed the performance of all 38 networks
using confusion matrices and accuracy rates. For
example, Fig. 4 presents the confusion matrix for
GoogLeNet (f2) trained on Flower-8-Zoom-Train,
showing 100% accuracy for this test set. Due to space
constraints, Table 4 summarizes correct predictions
and overall accuracy, representing the percentage of
correctly classified test images.

5. EVALUATING TRUST OF CNNS

Despite their high classification accuracy, it is es-
sential to assess the trustworthiness of CNN models.
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Table 4: Test accuracy of 38 CNNs trained with

Flower-8-One-Train and Flower-8-Zoom-Train sets.
Flower-8-One Flower-8-Zoom
Test Accuracy Test Accuracy

# Name (%) (%)
1 SqueezeNet 100 98.75
2 GoogLeNet 100 100
3 Inception-v3 100 100
4 DenseNet-201 100 100
5  MobileNet-v2 100 100
6 ResNet-18 100 100
7 ResNet-50 100 100
8  ResNet-101 100 100
9  Xception 100 100
10 InceptionResNet-v2 90 92.5
11 ShuffleNet 100 100
12 NASNet-Mobile 96.88 100
13 NASNet-Large 100 100
14  DarkNet-19 100 100
15 DarkNet-53 100 100
16  EfficientNet-b0 100 100
17 AlexNet 100 100
18 VGG-16 99.38 100
19 VGG-19 100 100

This section evaluates trustworthiness through vi-
sual explanation techniques and a human evaluation
study. Grad-CAM visualizations generated heatmaps
that highlight the areas CNNs focus on during classifi-
cation. We presented these heatmaps to participants,
who rated their confidence in the models’ predictions.

i %o ks
k-
Fig.5: A Madagascar Periwinkle (One) test im-

age along with Grad-CAM heatmaps generated by 19
CNNs.

o
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Fig.6: A Madagascar Periwinkle (Zoom) test im-
age along with Grad-CAM heatmaps generated by 19
CNNs.

5.1 Human Study on CNN Trust Assessment

This study, approved by the Institutional Review
Board (IRB) at the authors’ institution, involved 30

participants aged 18-65 without color blindness. Par-
ticipants provided informed consent and received a
briefing on flower classification using CNNs, the as-
sessment scope involving two groups of 19 trained
models, heatmap visualizations, and confidence scor-
ing criteria. Because the task centered on evaluating
how well highlighted regions in the heatmaps aligned
with recognizable flower objects, it did not require
technical knowledge of CNNs or AIl. We provided
all participants with clear, standardized instructions
and visual examples explaining how to score each
heatmap on the defined set of criteria.
We conducted the evaluation in two stages:

1. Flower-8-One-Test study: Participants re-
viewed 160 image sets, comprising 20 original
test images for each of the eight flower types
(8 sets) and their corresponding Grad-CAM
heatmaps generated by 19 CNNs (152 sets).
Participants used the interface shown in Fig. 7
to assign confidence scores based on the visual
explanations.

2.  Flower-8-Zoom-Test study: The second
stage followed the same procedure as the first
but used the Flower-8-Zoom-Test dataset. Par-
ticipants again reviewed 160 image sets, focus-
ing on the networks’ ability to analyze structural
flower features.

ot

.2 Trust Assessment from Visualization of
CNN Predictions

We selected Grad-CAM to visualize CNN predic-
tions for both datasets. It generates heatmaps high-
lighting critical areas influencing model decisions.
Fig. 5 and Fig. 6 present examples of Grad-CAM
visualizations for a Madagascar Periwinkle image
from the Flower-8-One-Test and Flower-8-Zoom-Test
sets, respectively. These heatmaps help assess the
networks’ localization and feature analysis capabili-
ties, showing variations in focus areas across different
CNNs.

Participants evaluated the networks on two crite-
ria:

e Localization accuracy: Assessing how well
heatmaps highlight the flower’s position and
shape.

e Consistency: Evaluating uniformity in heatmap
results across the 20 test images for each flower
type.

Each participant scored the CNNs using a five-
point scale: 1 (very low), 2 (low), 3 (medium), 4
(high), and 5 (very high). The analysis compared
confidence scores across networks. For example, the
following observations were noted:

e For Globe Amaranth (One), EfficientNet-b0
achieved higher scores than InceptionResNet-
v2 due to better localization and consistent
heatmaps (Fig. 8 al-a3).
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e For Plumeria (Zoom), DenseNet-201 outper-
formed VGG-16, offering more precise and more
consistent focus on flower structures (Fig. 9 al-
a3).

The findings highlight how explainability tech-
niques, such as Grad-CAM, can provide transparency
into CNN decision-making, fostering trust by en-
abling users to verify the basis for its predictions.

Comparison of classified results from all 19 networks

e the confidence level when you see the visualization of the

lassified results using various networks.

Fig.7: The scoring interface for participants to en-
ter their confidence scores.

5.3 Degree of Trust in CINNs

This section presents the analysis of participant
confidence scores to evaluate trust in CNN models
for flower classification tasks.

5.3.1 Trust Analysis from Flower-8-One-Test Set

In Table 5, we summarize the mean confidence
scores for 19 CNN models that classified test flower
images from the Flower-8-One-Test set and use boxes
to highlight the top five networks with the highest
mean scores for each flower type. For example:

e Madagascar Periwinkle: DarkNet-19 (4.33),
Inception-v3 (4.07), ResNet-101 (3.93), Xception
(3.90), and DenseNet-201 (3.87).

e Plumeria: VGG-16 (4.67), Xception (4.33),
ShuffleNet (4.33), ResNet-101 (4.30), and
EfficientNet-b0 (4.30).

Fig. 8 shows test images of Globe Amaranth,
Madagascar Periwinkle, Marigold, and Pinwheel Jas-
mine (One version), along with the heatmaps of the
networks with the highest and the 2"d lowest mean
confidence scores.

Networks with higher confidence scores demon-
strated effectiveness in localizing flower objects and
consistency across test images of the same flower type.

It is important to note that the networks with the
lowest scores are not displayed in Fig. 8. In most in-
stances, SqueezeNet received the lowest mean scores,
as its heatmaps typically displayed minimal focus ar-
eas, characterized by sparse red pixels. To provide a
broader range of examples, the analysis includes net-
works with the next-lowest scores instead.

When considering overall performance, the top five
most trusted CNNs based on the mean scores across
all flower types were Xception (4.27), Inception-v3

(4.16), ResNet-101 (4.12), EfficientNet-b0 (4.11), and
ShuffleNet (4.03).

5.3.2 Trust Analysis from Flower-8-Zoom-Test Set

Table 6 shows the mean confidence scores for the
same 19 CNNs, this time classifying images from the
Flower-8-Zoom-Test set. For instance:

e Madagascar Periwinkle: MobileNet-v2 (4.50),
DenseNet-201 (4.27), Xception (4.13), Inception-
ResNet-v2 (4.13), and NASNet-Mobile (4.07).

e Plumeria: DenseNet-201 (4.43), Inception-

ResNet-v2 (4.37), NASNet-Mobile (4.37), Inception-

v3 (4.33), and Xception (4.33).

These scores reflect the networks’ ability to analyze
and capture flower features consistently.

Similarly, Fig. 9 omits the networks with the low-
est scores. SqueezeNet consistently received the low-
est mean scores in all cases, so the analysis includes
networks with the next-lowest scores instead.

The overall top five most trusted CNNs for the
Flower-8-Zoom-Test set were NASNet-Mobile (4.23),
Xception (4.13), DenseNet-201 (4.09), Inception-v3
(3.99), and MobileNet-v2 (3.89).

6. DISCUSSION

This study examined the performance and trust-
worthiness of 19 CNN models trained through trans-
fer learning for flower classification tasks. The
Flower-8-One dataset enabled the evaluation of
CNNs’ ability to localize and classify flowers, while
the Flower-8-Zoom dataset provided insights into how
CNN models analyze flower features.

The study provided insights into CNN perfor-
mance and trustworthiness:

e Performance: The results demonstrated that
CNNs achieved near-perfect accuracy rates
for flower classification, except for Inception-
ResNet-v2, which showed relatively lower perfor-
mance. These findings confirm the effectiveness
of CNNs as robust models for image classification
tasks.

e Visualization for Trust: Visualization tech-
niques, such as Grad-CAM, played a crucial
role in helping users understand CNN decision-
making, effectively mitigating the black-box na-
ture of these models.

e Human Alignment: While CNNs deliver high
accuracy, their analysis methods may not align
with human expectations, influencing trust.

e Top Performers in Flower-8-One: For the
Flower-8-One dataset, models like Xception and
Inception-v3 consistently focused on flower re-
gions, aiding in accurate classification. Examina-
tion of test images and corresponding heatmaps,
as shown in Fig. 8, revealed that the top-
performing networks maintained a high degree of
accuracy in localizing flowers and delivering con-
sistent results. The most trusted models for this
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dataset were Xception, Inception-v3, ResNet-
101, EfficientNet-b0, and ShuffieNet.

e Top Performers in Flower-8-Zoom: In the
Flower-8-Zoom dataset, networks like DenseNet-
201 and NASNet-Mobile excelled at analyzing
flower structures and demonstrated consistency
across test data. Visualized heatmaps, as il-
lustrated in Fig. 9, highlighted the networks’
ability to focus on critical flower features effec-
tively. The most trusted models for this dataset
were NASNet-Mobile, Xception, DenseNet-201,
Inception-v3, and MobileNet-v2.

e Consistent Top Performers: Xception
and Inception-v3 emerged as consistently top-
performing models across both datasets. These
findings underscore their reliability and effective-
ness in localizing and analyzing flower structures,
reinforcing their suitability for flower classifica-
tion tasks. This study highlights the value of
visualization tools and user-centered evaluations
in assessing the trustworthiness of CNNs

7. CONCLUSION

This study systematically evaluated the perfor-
mance and trustworthiness of 19 convolutional neu-
ral network (CNN) models trained using transfer
learning on two custom flower datasets, Flower-8-
One and Flower-8-Zoom. By employing visual expla-
nation techniques such as Grad-CAM, we provided
insights into the decision-making processes of these
models, bridging the gap between technical accu-
racy and human-centered trust. The study revealed
that while most CNN models achieved high classifi-
cation accuracy, their trustworthiness varied signifi-
cantly based on localization accuracy and consistency
as perceived by human evaluators. Models such as
Xception and Inception-v3 emerged as not only high-
performing but also consistently trustworthy across
various flower types. These findings highlight the
importance of explainability techniques in fostering
confidence in CNN-based classification systems and
offer actionable guidance for model selection in ap-
plications requiring both accuracy and reliability.

Future research can extend this study by explor-
ing the reliability of trusted networks across diverse
object types and domains, such as medical imag-
ing or agriculture. Expanding dataset diversity and
incorporating real-world complexities like occlusions
or mixed arrangements will improve model robust-
ness. Investigating advanced explainable Al tech-
niques and analyzing network architectures could pro-
vide deeper insights into CNN decision-making and
effectiveness.  Additionally, developing interactive
trust metrics for dynamic user engagement with pre-
dictions and heatmaps will enhance interpretability
and foster trust in practical applications.
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Table 5: Mean confidence scores from 19 networks classifying the Flower-8-One-Test set. Bozes highlight
the top 5 mean confidence scores for each flower test set and the top 5 most trusted models.

Globe  Madagascar . Pinwheel . Red White
# Name Amaranth Periwinkle Marigold Jasmine Plumeria Rose Sunflower Chrysanthemum Overall
1 SqueezeNet 1.63 1.03 1.03 1.20 123 137 1.17 133 125
2 GoogLeNet 320 327 327 247 337 357 287 2.40 3.05
3 Inception-v3 4.10 4.07 433 [ 377 | 417 [427] 450 4.10
4 DenseNet-201 3.57 3.87 3.90 3.10 400 [430] 440 387 388
5 MobileNet-v2 343 353 397 3.10 343 393 413 353 363
6 ResNet-18 3.63 3.83 4.07 3.13 383 373 387 3.73 373
7 ResNet-50 4.27 3.43 4.27 327 397 [437] 350 433 3.93
8 ResNet-101 417 3.93 4.47 330 430 [440| 387 4.50 4.12
9 Xception [ 423 3.90 4.40 4.27 433 [430] 440 433 427
10 InceptionResNet-v2 180 367 1.83 2.20 407 383 400 223 295
11 ShuffleNet 343 [ 433 3.43 433 | 373460 | 407
12 NASNet-Mobile 2.67 3.83 2.47 3.73 413 323 373 2.17 325
13 NASNet-Large 423 347 3.53 3.63 420 353 3.70 3.83
14 DarkNet-19 447 433 | 410 2.40 417 317 400 3.87 381
15 DarkNet-53 3.60 367 2.67 3.00 373 393 [ 433 3.70 3.58
16 EfficientNet-b0 3.73 2.93 430 | 407 427 447 [ 411 |
17 AlexNet 347 337 3.40 143 407 287 407 317 323
18 VGG-16 3.60 3.10 3.10 1.13 403 430 410 3.50
19 VGG-19 3.53 323 417 1.67 183 230 353 417 3.05

Table 6: Mean confidence scores from 19 networks classifying the Flower-8-Zoom-Test set. Boxes highlight
the top 5 mean confidence scores for each flower test set and the top 5 most trusted models.

# Name Globe Madaga scar Marigold meh.eel Plumeria Red Sunflower White Overall
Amaranth Periwinkle Jasmine Rose Chrysanthemum
1 SqueezeNet 1.30 1.03 1.13 1.20 103 113 1.03 120 1.13
2 GoogleNet 2.87 1.90 2.70 3.50 310 347 320 3.03 2.97
3 Inception-v3 3.03 393 3.87 4.47 433 [390] 4.10 430 3.99
4 DenseNet-201 3.20 4.27 353 3.97 443 [427] 4.60 443 4.09
5 MobileNet-v2 3.67 450 353 4.20 347 370 423 3.83 3.89
6 ResNet-18 3.60 397 3.63 3.97 303 [387] 467 3.93 383
7 ResNet-50 3.00 2.73 3.13 4.17 340 333 377 373 341
8 ResNet-101 2.77 3.53 3.00 3.90 397 363 377 3.90 3.56
9 Xception [ 3.63 4.13 4.27 4.40 433 [4.03 3.87 433 [ 403 |
10 InceptionResNet-v2 1.53 4.13 2.13 4.27 4.37 3.27 4.07 220 325
11 ShuffleNet 2.60 2.90 2.80 3.07 273 317 2.83 2.57 2.83
12 NASNet-Mobile | 417 | 407 | 463 | 440 | 437 [410] 387 | 4.27 | 423 |
13 NASNet-Large 227 333 2.57 3.40 287 237 233 237 2.69
14 DarkNet-19 2.03 3.67 2.87 3.80 410 280 347 337
15 DarkNet-53 233 3.07 223 3.10 407 300 250 333 295
16 EfficientNet-b0 2.87 3.40 2.90 3.90 373 367 3.30 4.00 347
17 AlexNet 1.77 283 2.03 1.40 300 163 3.10 1.77 2.19
18 VGG-16 2.50 3.40 3.50 323 197 310 227 1.90 273
19 VGG-19 2.50 1.90 3.00 3.57 263 217 3.60 2.03 2.68
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Test images of Globe Amaranth, Madagascar Periwinkle, Marigold, and Pinwheel Jasmine (One
version), along with the heatmaps of the networks with the highest and the 2** lowest mean confidence scores.
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Test images of Plumeria, Red Rose, Sunflower, and White Chrysanthemum (Zoom version), along

with the heatmaps of the networks with the highest and the 2% lowest mean confidence scores.
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