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ABSTRACT

Determining low-density polyethylene (LDPE) properties typically requires
extensive laboratory testing, which is time-consuming and costly. For in-
stance, the conditioning phase alone for measuring Vicat softening tem-
perature requires a minimum of 40 hours [1]. Predictive modeling can
reduce these costs. Ensuring accuracy that meets manufacturing stan-
dards, however, is challenging. This paper introduces TopSABoost, a hy-
brid method that combines topological sorting and boosting techniques
to perform sequential predictions of LDPE properties and minimize the
overall laboratory-testing cost. This approach reduces laboratory testing
costs by predicting one property first and using it to predict another. The
complexity analysis demonstrates that the proposed algorithm is ideal for
non-real-time determination of sequential predictions, as it computes the
model offline once for repeated use without requiring recalculations, align-
ing with manufacturing needs. The experimental results demonstrate that
TopSABoost achieves a maximum error of just 0.11%, satisfying strict man-
ufacturing constraints. TopSABoost identifies that prioritizing the predic-
tion of L-value, followed by Density, offers the most cost-efficient sequence
and significantly reduces reliance on direct laboratory testing while main-
taining adherence to error thresholds.
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1. INTRODUCTION

Low-density polyethylene (LDPE) is a widely used
thermoplastic polymer for producing various items,
such as plastic bags, films, containers, and toys, due
to its favorable properties, such as flexibility, chem-
ical resistance, and ease of processing [2]. The per-
formance of LDPE in these applications depends on
a range of chemical and physical properties, such as
melt flow index (MFI), density, tensile strength, and
thermal stability. Accurately determining these prop-
erties is crucial for ensuring product quality, regula-
tory compliance, and customer satisfaction. However,
the traditional approach to obtaining these proper-
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ties through laboratory testing is time-consuming and
costly, posing significant challenges for manufacturers
seeking to optimize production efficiency [3].

The challenges of optimizing LDPE testing costs
using machine learning techniques to predict LDPE
properties arise from several interrelated factors.
Firstly, the chemical properties of LDPE are highly
interconnected, necessitating a comprehensive under-
standing of how different parameters influence one
another. Secondly, high-quality, comprehensive real-
world datasets encompassing a wide range of produc-
tion conditions and resulting properties are often lim-
ited, hindering the development of reliable machine-
learning models. Lastly, constraints on the accept-
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able range of error that manufacturers can further
complicate the implementation of predictive models
for industries.

Previous attempts to estimate LDPE chemical
properties have been constrained by the complex-
ity of interconnected parameters and limitations in
the data used for model construction. For instance,
Zhong [4] employed regression models optimized with
the Whale Optimization Algorithm to predict the me-
chanical properties of linear polyethylene; however,
the reliance on a single input variable (oven residence
time) may restrict the model’s ability to capture more
complex relationships influencing material behavior.
Similarly, Shirazian et al. [5] used tree-based ensem-
ble models optimized with the Firefly Algorithm to
predict LLDPE mechanical properties. Still, their
study was limited by a small dataset of only 25 sam-
ples. [6] depends on artificial neural networks that
were used to predict diesel blends’ cetane index and
sulfur content. However, a small set of 35 samples
were used to predict S50.

Existing hybrid prediction models have demon-
strated effectiveness in various applications. For in-
stance, Srikamdee et al. [22] proposed a collaborative
learning framework for RN A secondary structure pre-
diction, focusing on improving prediction accuracy.
Similarly, Dey et al. [23] introduced a hybrid model
for violence recognition in video streams, emphasizing
real-time performance and accuracy. Jing et al. [24]
presented a multi-granularity self-attention mecha-
nism for few-shot learning, which enhances model
adaptability. These works highlight the potential
of hybrid approaches but underscore the gap in re-
search focusing on cost-effective sequential prediction
models, particularly in industrial contexts like LDPE
property testing.

This paper introduces a hybrid approach that
combines boosting algorithms [7] with a topologi-
cal sorting algorithm [8] to address the challenges of
cost-efficient sequential predictions in LDPE property
testing. Our contributions are threefold:

1) We propose a hybrid method, TopSABoost,
which integrates a topological sorting algorithm
with boosting algorithms to serve as a cost-
efficient sequential prediction model.

2) We construct and validate our model using real-
world data from one of the largest chemical
factories in Thailand, encompassing a diverse
range of LDPE properties and characteristics.

3) The proposed technique effectively reduces the
time and costs associated with laboratory test-
ing of chemical properties while maintaining
high prediction accuracy, ensuring compliance
with manufacturing constraints.

By addressing these challenges, our work offers a
viable alternative for the cost-effective determination
of LDPE properties. This provides substantial eco-
nomic and operational benefits for the chemical man-

ufacturing industries and contributes to the broader
adoption of machine learning techniques in chemical
engineering and industrial processes.

2. BACKGROUND AND RELATED WORK

Petrochemical Process

Petroleum exploration

Ethane

Cracking

Gas Seperation

Fig.1: Overview of petrochemical process.

The petrochemical industry encompasses a range
of processes essential for transforming raw materi-
als into valuable LDPE products, as shown in Fig.
1. Petroleum exploration is the initial phase, focus-
ing on locating and extracting crude oil and natu-
ral gas reserves. Following extraction, gas separation
techniques are employed to refine and isolate vari-
ous hydrocarbons, including ethane, which serves as
a key feedstock. Ethane cracking is a crucial step in
this transformation, where ethane is converted into
ethylene, a fundamental building block for numer-
ous petrochemical products. One significant prod-
uct derived from ethylene is low-density polyethylene
(LDPE), which is widely used in packaging, plastic
bags, and other applications due to its flexibility and
durability.

2.1 Overview of Petrochemical Industries

The petrochemical industry plays a pivotal role
in global commerce by facilitating the production of
essential materials crucial to modern society. Be-
ginning with rigorous exploration and extraction ef-
forts using advanced technologies like seismic imag-
ing and drilling, the industry identifies and extracts
crude oil and natural gas, which undergoes meticu-
lous gas separation processes such as distillation, ab-
sorption, and membrane techniques. These processes
purify feedstocks and yield diverse hydrocarbons tai-
lored for specific applications. Downstream, olefin
cracking transforms heavier hydrocarbons into lighter
olefins like ethylene, which is vital for synthesizing
Low-Density Polyethylene (LDPE). LDPE’s produc-
tion involves controlled polymerization of ethylene
molecules with catalysts, resulting in versatile poly-
mers used in packaging, construction, healthcare, and
agriculture. This journey exemplifies the synergy
of science, technology, and industry expertise, es-
sential for meeting global demand while navigating
environmental sustainability challenges. Efforts to-
ward sustainability include cleaner extraction tech-
nologies, process optimization, alternative feedstock
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exploration, and advances in recycling, promoting a
responsible and resilient petrochemical future.

2.2 Gradient Boosting Machine (GBM)

Gradient Boosting Machine (GBM) is a powerful
ensemble learning technique that builds a model se-
quentially, each iteration aiming to correct the errors
of the previous one. Introduced by Jerome Fried-
man in the late 1990s, GBM combines the predictive
strength of multiple weak learners, typically decision
trees, to create a robust model. The process begins
with constructing an initial model, often a simple
mean of the target variable. Subsequent models are
then fitted on the residual errors of the initial model,
effectively “boosting” its performance.

GBM’s strength lies in its ability to optimize a dif-
ferentiable loss function by iteratively adding models
that minimize this loss. Each new model is trained to
predict the residuals (errors) of the combined previ-
ous models, and the results are aggregated to form the
final prediction. This method reduces bias and vari-
ance, making GBM particularly effective for complex
datasets with nonlinear relationships.

In chemical property prediction [19], GBM has
proven invaluable. It has been used to accurately pre-
dict properties such as solubility, boiling points, and
reaction yields. Studies have shown that GBM can
outperform traditional statistical methods due to its
ability to capture intricate patterns and interactions
within the data, providing a significant advantage in
cheminformatics and materials science applications.

2.3 Extreme Gradient Boosting (XGBoost)

Adaptive Boosting (AdaBoost) is a prominent en-
semble learning technique introduced by Freund and
Schapire in 1995. Unlike other boosting methods,
AdaBoost focuses on enhancing the performance of
weak classifiers, typically decision stumps, by empha-
sizing the instances that are hardest to classify. The
algorithm works iteratively, adjusting the weights of
misclassified instances to ensure that subsequent clas-
sifiers focus more on these complex cases.

The process begins with all instances having equal
weights. After each iteration, the weights of misclas-
sified instances are increased, and a new weak classi-
fier is trained on the reweighted data. This iterative
process continues until a specified number of classi-
fiers are created or the classification accuracy reaches
a satisfactory level. The final model is a weighted
majority vote of the individual classifiers, where each
classifier’s vote is weighted according to its accuracy.

AdaBoost has been effectively applied in various
domains, including chemical property prediction. For
example, it has been used to predict the flash points
of organic compounds and the activity of molecular
structures. Its ability to improve the accuracy of
weak models makes it particularly useful in handling

complex datasets where traditional methods might
struggle.

In chemical property prediction [19], AdaBoost’s
strength lies in its capacity to adaptively enhance the
focus on challenging prediction tasks, leading to more
precise and reliable models. This adaptability and ro-
bustness make AdaBoost a valuable tool for advanc-
ing chemical property prediction and other related
applications.

2.4 Adaptive Boosting (AdaBoost)

Adaptive Boosting, or AdaBoost, is a widely used
ensemble learning technique that enhances the perfor-
mance of weak classifiers to create a reliable model.
Developed by Freund and Schapire in 1995, AdaBoost
operates by iteratively adjusting the weights of train-
ing data based on the classification accuracy of previ-
ous models. Initially, all instances are assigned equal
weights. After each iteration, the weights of misclassi-
fied instances are increased, prompting the next weak
classifier to focus more on these challenging cases.

The core idea behind AdaBoost is to build a se-
ries of weak classifiers, such as decision stumps, each
correcting the errors of its predecessors. This process
continues for a predetermined number of rounds or
until the model achieves the desired accuracy. The
final output is a weighted majority vote of all the
classifiers, where each classifier’s vote is weighted by
its performance.

AdaBoost’s strength lies in its simplicity and ef-
fectiveness in improving classification accuracy. It
is particularly effective for binary classification prob-
lems and has been successfully applied to various do-
mains, including chemical property prediction. For
instance, AdaBoost has been utilized to predict the
flash points of organic compounds and to identify
molecular activities, showcasing its ability to handle
complex datasets.

In chemical predictions [3], AdaBoost’s adaptive
nature allows it to concentrate on difficult-to-classify
chemical properties, thereby enhancing overall pre-
dictive performance. This makes it a valuable tool
for researchers and professionals aiming to achieve
precise and reliable predictions in chemical research
and development.

2.5 Topological sorting

Topological sorting is a fundamental algorithmic
technique to linearly order a directed acyclic graph
(DAG) or a directed graph without cycles. The re-
sult of topological sorting is a linear ordering of the
graph’s vertices, such that for every directed edge
(u,v) in the graph, vertex u comes before vertex v
in the ordering.

The main application of topological sorting is
scheduling tasks that have dependencies. For exam-
ple, in project management, tasks must often be exe-
cuted in a specific order based on their dependencies.
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By performing topological sorting on a graph repre-
senting task dependencies, we can determine a valid
order in which the tasks can be executed without vi-
olating any dependencies.

The algorithm for topological sorting typically
involves systematically traversing the graph, such
as depth-first search (DFS) or breadth-first search
(BFS), while keeping track of visited vertices and
their ordering. During the traversal, vertices are
added to the ordering once all their incoming edges
have been visited.

One crucial property of topological sorting is that
it only applies to directed acyclic graphs (DAGs). If
the graph contains cycles, there is no valid linear or-
dering of the vertices that satisfies all dependencies,
and thus, topological sorting cannot be performed.

2.6 Sequential Machine Learning Models

Sequential prediction in machine learning involves
predicting outcomes over a sequence of steps or peri-
ods, where each prediction relies on previous predic-
tions or observed outcomes. This approach is funda-
mental in tasks where the order of predictions mat-
ters (such as forecasting stock prices and weather
patterns) or in sequential decision-making processes.
Models used for sequential prediction are designed
to iteratively update their predictions based on new
information, adjusting for dependencies and evolv-
ing patterns in the data. This iterative process al-
lows the model to improve its accuracy over time
by learning from past predictions and adapting to
changing conditions. Applications of sequential pre-
diction span various fields, including finance, natu-
ral language processing, and reinforcement learning,
highlighting its significance in modeling complex, dy-
namic systems.

2.7 Related work

Machine learning has proven highly effective for
predicting polymer characteristics by accommodating
the nonlinear, multivariate relationships inherent in
production data. Techniques such as artificial neural
networks (ANNSs), support vector regression (SVR),
and ensemble methods like extreme gradient boosting
(XGBoost) have demonstrated remarkable success.
For example, [9] utilized ANNSs to predict the mechan-
ical and thermal properties of graphene-reinforced
linear low-density polyethylene (LLDPE) composites,
achieving high accuracy in tensile strength and ther-
mal conductivity predictions. Similarly, [10] applied
ensemble manifold learning to real-time melt index
prediction in polyethylene production, demonstrating
the adaptability of data-driven approaches to com-
plex nonlinearities.

Boosting-based techniques have demonstrated no-
table effectiveness across diverse domains. Among
these methods, prior research indicates that Ad-
aboost and XGBoost are particularly promising for

predictive tasks. For example, [11] showed the effi-
cacy of the AdaBoost algorithm in reducing overfit-
ting and enhancing the water temperature prediction.
In [12], an ensemble of seven machine learning algo-
rithms, one of which is XGBoost, was employed to
forecast wheat yields. Moreover, XGBoost has been
shown to excel in several applications, such as esti-
mating surface water quality [13], forecasting retail
sales [14], predicting wave heights [15], developing
predictive maintenance models for wind turbines [16],
interpreting factors affecting crude oil prices [17], and
predicting software maintenance efforts [18]. In [19],
GBM, XGBoost, and AdaBoost have been applied
to predict only one LDPE characteristic, i.e., Vicat
softening temperature.

Prior works on LDPE property prediction, such as
[20] Wells and Ray (2005) utilizing a kinetic scheme to
predict molecular weight distribution. More recently,
[4] explored hyperparameter optimization using the
Whale Optimization Algorithm (WOA) to enhance
the predictive performance of regression models for
LLDPE properties. [21] utilized regression, ensemble,
distance-based, and regularized-based machine learn-
ing methods to predict polymer physical properties,
including thermal, mechanical, and electrical charac-
teristics.

Previous research works, just mentioned, have fo-
cused on predicting individual parameters at a time.
While specific studies explored the prediction of mul-
tiple LDPE parameters, these approaches did not fo-
cus on sequential predictions nor minimizing the over-
all costs associated with predicting all parameters.

3. METHODOLOGY

The overview of our proposed hybrid method of
topological sorting and boosting (TopSABoost) for
cost-efficient sequential prediction is shown in Fig. 2.
The proposed method consists of 4 main modules.
The first module aims to determine the best predic-
tive models among GBM, XGBoost, and AdaBoost
for predicting each LDPE property, together with the
models’ top k important features. The second module
depends on the models and the important features to
construct a graph. The tail of a directed edge repre-
sents a feature utilized by one of the models to predict
one of the target LDPE properties, which is repre-
sented by the associated arrowhead. The next module
prunes the nodes that are not the target LDPE prop-
erties. The last module employs our proposed Min-
imum Cost Prediction Sequence algorithm (MCPS)
to achieve cost-efficient sequential predictions: de-
termining a sequence of predictions that maximizes
the number of predicted properties while satisfying
all factory requirements.

3.1 First-Level Prediction

This subsection explains the first module, called
first-level prediction, as shown in Fig. 2 (a). In this
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Fig.2: Overview of TopSABoost.

work, the LDPE properties a customer requires for
laboratory testing are referred to as target properties
P = {p1,p2,...,pt}, where t is the number of tar-
get properties. Let attr;,p;, and N denote the ith
attribute of data obtained from laboratory tests, a
target LDPE property, and the number of attributes,
respectively. In the first module, the N —1 attributes
of data {attr;|1 <i < N and attr; # p,} serve as fea-
tures for the M models (e.g., GBM, XGBoost, and
AdaBoost) to predict each target property, p;, where
1 < j < t. The model with the best performance is
selected for production, and its predicted property is
incorporated as one of the features into the training
data for the second-level prediction.

The relations between the k-most important fea-
tures of the best-performing model (among GBM,
XGBoost, and AdaBoost) and their associated pre-
dicted p; are represented as a graph generated in the
second module. Table 1 shows the example of the 10
most important features, where P = {Lightness value
(L-value), Density, Vicat Softening Temp}, ¢t = 3, and
k = 10. p;, one of the 10 most important features, is
emphasized in bold and underlined.

Table 1: The example of 10-most important fea-
tures.
Target Best 10-most Important Features
LDPE Model
Property
L-value AdaBoost WI, Tensile at B, MD, YI,
Gloss 200, Tensile at B TD,
COF-Kinetic(48hrs), MFR
190/2.16, Film Thickness,
b-value, Vicat Temp
Density AdaBoost Vicat Temp, Gloss 200,
Tensile at Y TD, Tm, Tensile
at Y MD, L-value, MFR
190/2.16, Impact Failure,
Haze, Elongation at B MD
Vicat XGBoost Density, Tensile at B MD,
Temp Gloss 200, MFR, 190/2.16,
L-value, COF-Kinetic(48hrs),
Tensile at yield, Impact
Failure, COF-Static(48hrs),
Te

3.2 Graph Generation & Pruning

This subsection explains the process of generating
a graph to represent the relationships among all the
attributes and of pruning the graph structure to re-
duce running-time complexity.

The first module yields the k-most important fea-
tures of the best model for predicting the value of each
pj. Such relations could be represented as a graph,
as shown in Fig. 2(b). Our graph-based model ef-
fectively captures dependencies among target proper-
ties and their k-most important features, enabling the
identification of the longest sequence of target prop-
erty predictions and thereby minimizing laboratory
testing costs. Specifically, predicted target proper-
ties can serve as attributes for prediction models to
predict other target LDPE properties. For instance,
in Fig. 2(b), Vicat Temp was among the 10 most
important attributes for AdaBoost in predicting the
values of L-value and Density. L-value was used by
AdaBoost and XGBoost to predict density and Vi-
cat values, respectively. XGBoost utilized density to
estimate Vicat Temp values.

To focus solely on the target LDPE properties re-
quired by customers, we removed nodes that did not
represent these target properties from the graph. The
pruned graph, as exemplified in Fig. 2(c), reveals the
direct dependencies and relationships among only the
selected target properties, thereby reducing computa-
tional complexity and enhancing the efficiency of the
analysis. It is important to note that the pruning
process is solely intended to help determine the se-
quence of the target properties to be predicted. It
does not exclude the removed properties from being
used as input features for prediction.

Our graph-based algorithm, detailed in Subsection
3.6, effectively sorts the order of predicting the target
properties to ensure they can be utilized in the most
extended sequence possible while satisfying certain
factor constraints.

3.3 Topological Sorting

Our proposed hybrid method leveraged Kahn’s
topological sorting algorithm [8] to determine the
cost-effective prediction sequence. However, as shown
in Fig. 2(c), the presence of cycles in the pruned
graph made topological soring impossible. To address
such an issue, we applied a brute-force approach and
exhaustively evaluated all possible combinations of
target-property prediction orderings. This technique
allowed us to determine the longest cost-effective se-
quence possible while satisfying the factory’s require-
ments.

3.4 Objective Functions & Constraints

We aim to minimize the costs associated with labo-
ratory testing of chemical parameters while maintain-
ing high prediction accuracy. To ensure that the pre-
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diction outcomes of the models remain within prac-
tical thresholds, we consulted with expert chemists
from the most prominent plastic manufacturing fa-
cility to obtain the error constraints. Specifically,
the error in predicting Density, L-value, and Vicat
softening temperature must not exceed 10%, 10%,
and 2.9°C (approximately 2.9%), respectively. The
key challenge of this research lies in determining the
longest possible prediction sequence that meets these
error constraints, as it would minimize the laboratory
testing costs. The longer the prediction sequence with
the acceptable errors, the greater the cost savings.

3.5 Sequential Prediction

This subsection introduces sequential predictions
where a predicted LDPE property is used as a fea-
ture for the next model in the sequence to predict
another LDPE property. Fig. 3 shows an n-level
sequential prediction. Fig. 3 illustrates an n-level
sequential prediction. All training data at the first
level are obtained from laboratory tests and serve as
features for the three models (i.e., GBM, XGBoost,
and AdaBoost) to predict the first target LDPE prop-
erty. The model with the best performance is selected
for production, and its predicted property is incorpo-
rated as one of the features into the training data for
the second-level prediction. This process is repeated
to the nt" level, where n is the maximum level of pre-
diction that could achieve the accuracy required by

the factory.
/
(=)

level 1

level 2

\
\

Select Optimal
Performer

7 Performer
Fig.3: Sequential Prediction.

3.6 Algorithm & Running-Time Analysis

This subsection analyses the algorithm proposed
in this research and evaluates its running-time com-

plexity.

The proposed algorithm, TopSABoost, enhances
the prediction of chemical parameters by combining
the boosting method with a graph theory. The pri-
mary objective is to determine the most cost-effective
forecasting sequence while ensuring compliance with
the factory’s accuracy requirements, which reduces
laboratory testing costs.

The process begins by splitting the available
dataset into training and testing datasets, follow-
ing a standard 80-20 ratio. Once the data is split,
the algorithm proceeds with the first level of predic-
tion (Lines 3-12 of Algorithm 1). For each chem-
ical parameter in the set of parameters to be pre-
dicted (Target_LDPE_Properties), the algorithm it-
erates over multiple methods, such as XGBoost, Ad-
aBoost, and GBM. The method that provides the
highest accuracy and satisfies the predefined accuracy
constraints is selected as the best model for predict-
ing that particular chemical parameter. In addition,
the algorithm records the k-most important features
used by the model, which are crucial for creating a
graph subsequently.

After identifying the best models and the impor-
tant features for each target chemical parameter, the
algorithm constructs a directed graph G (Lines 15-
18). In this graph, nodes represent features and tar-
get chemical parameters, while a directed edge in-
dicates the dependency of target chemical parame-
ters and the k-most important features. This graph
serves as the foundation for determining the optimal
sequence of predictions and minimizing the overall
laboratory-testing cost.

To reduce the running-time complexity, we sim-
plify the graph structure by pruning (Lines 21-23).
Specifically, the algorithm removes any nodes that
do not represent the target chemical parameters.

To find the optimal prediction sequence, the al-
gorithm employs the Minimum Cost Prediction Se-
quence (MCPS) function (Lines 43-53). This function
evaluates all possible combinations of nodes (repre-
senting target chemical parameters) within the graph,
forming 2¢ subgraphs, to guarantee the determination
of the optimal prediction sequence. MCPS leverages
the Kahn-based topological sorting method, Calcu-
latePredSeq_Cost (Lines 60-93), to determine the de-
pendency orderings and arrange the prediction se-
quence for each subgraph that meets the factory
constraint requirements. CalculatePredSeq_Cost also
calculates the cost of deleting vertices from the graph,
corresponding to the cost of requiring lab testing for
those associated parameters (Lines 89-91). Finally,
after each subgraph is evaluated, the sequence that
results in the lowest total cost and meets the accu-
racy constraints is selected as the optimal prediction
sequence (Lines 48-52).

In certain circumstances where at least one cycle
exists in the subgraph, the order of predicting the
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target properties is unclear. CalculatePredSeq_Cost
does not return the sequence that does not contain all
nodes in the subgraph, which indicates that a cycle
exists in the subgraph (Lines 88-93).

The running-time complexity of the algorithm is
primarily dominated by the Minimum Cost Predic-
tion Sequence (MCPS) function, which evaluates all
possible combinations of target chemical parameters
to determine the optimal prediction sequence, O(2?).
The running-time complexity of the Kahn-based Cal-
culatePredSeq_-Cost is O(|V| + |E|). This leads to a
time complexity of O(2!(|V| + |E|)), where |V| the
number of vertices and |FE| is the number of edges
of the graph, G. The first level of prediction, which
involves training models using various methods and
testing their accuracy, has the time complexity of
O(t(B1 + B2+ --- + Bar)), where ¢ is the number of
the target chemical parameters, and B; is the running
time of the i*" selected Boosting method. Graph con-
struction and pruning operations add an additional
complexity of O(¢t|E|). While the overall complex-
ity is exponential due to the combinatorial nature of
MCPS, our algorithm remains efficient as it is de-
signed for small-scale graphs and non-real-time ap-
plications. Optimization techniques that are more ef-
ficient for larger datasets still need to be investigated
in the future.

4. EXPERIMENT RESULTS
4.1 Data Preparation

The dataset in this research is real-world data from
one of the largest chemical factories in Thailand. The
dataset comprises diverse properties and characteris-
tics inherent to LDPE products. Specifically, LDPE
products are to be sampled and tested in the labo-
ratory to assess their properties prior to delivery, as
these properties are essential to determine whether
the products meet customers’ requirements. To pre-
pare the data, we conducted data transformation
where the dataset’s structure is modified to better
suit analytical and modeling requirements as follows.

1. We queried raw data comprising 750,000 rows
and 58 columns from the Lab Information Manage-
ment System, which is sourced from Thailand’s three
major polymer manufacturing factories. The dataset
covers 251 products, 71 testing methods, and 190 pa-
rameters.

2. Then, the columns deemed irrelevant to the
analysis (e.g., test standard names, factory names,
and test method versions) were removed. Of the 58
columns, 6 were selected for analysis: sample ID,
sample status, sample type ID, dataset status, param-
eter ID, and value. Furthermore, duplicate records
are systematically identified and eliminated to pre-
vent redundancy, thereby enhancing the dataset’s re-
liability and quality.

3. Each row of the previous step’s data corre-
sponded to a laboratory testing result of a single
property per sample. We transformed the data fur-
ther by ensuring that each row represents the labora-
tory testing results of all properties for each product
sample. This transformation resulted in a dataset
containing 4,500 rows and 71 columns.

4. In this step, we conducted the data cleansing
by removing missing records.

Additionally, columns with a significant propor-
tion of zero values, potentially including parameters
Density-g/cm3, Density-Displacement, and Density-
g/cm3-Displacement, are removed to reduce noise
and optimize the dataset for accurate predictive mod-
eling. The final dataset comprised 181 rows and 61
columns. Through label encoding, the categorical at-
tributes, i.e., Deflect-detail and other-deflect, were
encoded into 0, representing no defect, and 1, indi-
cating the presence of defects.

4.2 Data Exploration Analysis

Table 2 describes the data. For instance, Density,
ranging from 0.92 g/cm?® to 0.925 g/cm? with an av-
erage of 0.9231 g/cm?, highlights its mass per unit
volume. Hardness, ranging from 43 to 50.7 with an
average of 47.3449, indicates the material’s resistance
to indentation and scratching. Haze, ranging from

Algorithm 1: A hybrid method of topological sorting and boosting (TopSABoost)

Input:

Methods = {m, m>,
Accuracy Constraint = {Cy, Cy, ..., G}, e.g., {0.9, 0.9, .., 0.971}
Output:

Target LDPE Properties = {p;, Py, ..., D¢}, .8, {'L-value', 'Density", 'Vicat'}
..., My}, e.g., {'XGBoost', 'AdaBoost', 'GBM'}

Min_Prediction Sequence, the ordered sequence {p’y, 0, ..., '¢} of the target LDPE properties to be predicted
MinCost, the minimum cost of sequentially predicting all properties in Min_Prediction_Sequence

Accuracy Sorted, the accuracy of sequentially predicting all properties in Min_Prediction _Sequence

Best Model Sorted, the sequence of the best models for predicting p’; in Min Prediction_Sequence

# First Level Prediction

foreach p in Target LDPE_Properties:
max_accuracy[p] =0
C = Accuracy constraint of p
foreach m in Method:
model = m.train(Chemical Parameter Training_Data)

O 01N N W —

if accuracy > C and accuracy > max_accuracy[p]:

{Chemical Parameter Training Data, Chemical Parameter Testing_Data} = Split(Data, 80, 20)

accuracy = model.test(Chemical_Parameter_Testing_Data)
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10 max_accuracy[p] = accuracy

11 bestModel[p] = model

12 Import Features[p] = model.getImportantFeature()
13

14 | # Create a graph, G, based on maximum accuracies and important features
15 | foreach p in Target LDPE Properties:

16 if max_accuracy[p] !=0:

17 foreach f in Import_features[p]:

18 G.add_edge(f, p) # Add the edge (f, p) to the graph
19

20 | # Graph Pruning
21 | foredge e in G:

22 if src_node and dst_node of e are not in Target LDPE_Properties:
23 G.remove_edge(e)
24

25 | # Update the accuracy of the node that could be sequentially predicted

26 | Min_Prediction_Sequence = null

27 | {Min_Prediction_Sequence, MinCost, Accuracy_Sorted, Best Model Sorted} = MCPS(G)
28 | if Min_Prediction_Sequence != null:

29 foreach p in Target LDPE_Properties:

30 if p in Min_Prediction_Sequence:

31 accuracy[p] = Accuracy_Sorted[p]

32 bestModel[p] = Best_ Model Sorted[p]
33 else:

34 accuracy[p] = max_accuracy[p]

35 | else:

36 # cannot determine any prediction sequences
37 return -1

38

39 | # Higher-Level Prediction
40 | NodeSets = the combination of all nodes in G (i.e., the combination of all target LDPE properties)

42 | # Function: Minimum Cost Prediction Sequence (MCPS) using binary representation
43 | def MCPS(G):

44 MinCost = infinite

45 foreach NSet in NodeSets:

46 SubG = a subgraph of G, which contains only nodes in NSet

47 {Prediction_Sequence, Cost, tmp_accuracy, tmp_bestModel} = CalculatePredSeq_Cost(NSet, SubG)
48 if Cost < MinCost:

49 MinCost = Cost

50 Min_Prediction_Sequence = Prediction_Sequence

51 Accuracy Sorted = tmp_accuracy

52 Best_Model_Sorted = tmp_bestModel

53 return {Min_Prediction_Sequence, MinCost, Accuracy Sorted, Best Model Sorted}
54

55 | # Function: Detemine the prediction sequence and the cost of deleting vertices

56 | # (i.e., cost of parameter requiring lab testing)

57 | #cost_del(i) = Cost of not including a vertex i in NSet (i.e., the laboratory-testing cost for p;)
58 | # which is the cost of parameter requiring lab testing

59 | #deg(i) = In degree of vertex i (representing the i target LDPE property) in Nset

60 | def CalculatePredSeq_Cost(NSet, G):

61 Q = Queue

62 PS =list()

63 for v in NSet:

64 if deg(v) == 0:

65 Q.push(v) # Push vertex v to the queue

66 while not Q.empty():

67 v = Q.front() # Get the front element of the queue

68 Q.pop() # Remove the front element from the queue

69 for t in NSet:

70 if edge from v to t exists in G:

71 deg(t) = deg(t)-1

72 if deg(t) == 0 and t not in PS:

73 tmp_accuracy[t] =0

74 C = Accuracy constraint of t

75 foreach m in Method:

76 model = Method.train(Chemical Parameter Training Data)
77 accuracy = model.test(Chemical Parameter Testing Data)
78 if accuracy > C and accuracy > tmp_accuracy([t]:

79 tmp_accuracy[t] = accuracy

80 tmp_bestModel[t] = model

81 if tmp_accuracy[t] == 0:

82 # The accuracy for predicting t does not meet the constraint
83 return {null, infinite, null, null}
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85 Q.push(t) # Push the target property, t, to the queue

86 PS.add(t) # Add t to the list prediction sequence

87

88 if size(NSet) == len(PS):

89 foreach i in G but not in NSet

90 total_lab_cost = cost_del(i)

91 return {PS, total lab_cost, tmp_accuracy, tmp_bestModel}

92 else:

93 return {null, infinite, null, null} # Return infinity as the graph is unsortable

5.69 to 9.133 with an average of 6.9611, indicates the
degree of light scattering through the material, essen-
tial for achieving transparency and clarity in applica-
tions such as optical films and protective coatings.
L-value, ranging from 81.71 to 84.66 with an average
of 83.5399, reflects the lightness/darkness of the ma-
terial, influencing its appearance in packaging, con-
sumer goods, and architectural finishes. Melt flow
rate (MFR 190/2.16), ranging from 0.197 to 4.505
g/10min with an average of 2.331 g/10min, assesses
the flowability of products’ melt. Vicat Temperature,
ranging from 86.9°C to 96.333°C with an average of
93.5371°C, signifies the temperature at which prod-
ucts soften under load.

In summary, LDPE products exhibit diverse prop-
erties that collectively define their thermal stability,
mechanical strength, optical clarity, processing char-
acteristics, frictional behavior, chemical composition,
and mechanical performance.

4.3 First-Level Prediction

The experiments are based on a 3.1GHz 6-Core In-
tel Core i5 processor, a Radeon Pro 575X 4GB graph-
ics card, and 32GB of 2667 MHz DDR4 RAM. The
hyperparameter settings are shown in Table 3.

The hyperparameter tuning process involved sys-
tematically testing different values for key parame-
ters in the XGBoost, AdaBoost, and Gradient Boost-
ing Machine (GBM) models to optimize their per-
formance. The parameters included the number of
boosting rounds (n-estimators), the maximum tree
depth (max_depth), the minimum sum of instance
weight needed in a child (min_child_weight), and the
learning rate (learning_rate) for XGBoost, AdaBoost,
and GBM as shown in Table 3.

Table 4 reports the optimal parameters. XG-
Boost, AdaBoost, and GBM were selected for pre-
dicting L-value, Density, and Vicat temperature us-
ing optimized hyperparameters. For L-value predic-
tion, XGBoost achieved an MAE of 0.1576 and R?
of 0.8588, AdaBoost showed an MAE of 0.1239 and
R? of 0.9131, and GBM resulted in an MAE of 0.1589
and R? of 0.8594. For Density, XGBoost had an MAE
of 0.00054 and R? of 0.7461, AdaBoost 0.00039 and
R? of 0.7825, and GBM 0.00041 and R? of 0.8187.
For Vicat temperature, XGBoost yielded an MAE of
0.3038 and R? of 0.9704, AdaBoost 0.3038 and R? of
0.9704, and GBM 0.3090 and R? of 0.9647.

The experimental results demonstrate that Ad-

aBoost consistently outperforms XGBoost and GBM
for most target properties. For predicting Vicat tem-
peratures, XGBoost and AdaBoost perform equally
well, yielding the same MAE and R?, while GBM
shows slightly inferior performance. AdaBoost’s su-
perior performance may stem from its iterative ap-
proach to minimizing errors by focusing on difficult-
to-predict samples, allowing it to capture complex
patterns in the data more effectively than other mod-
els.

According to the results of the first-level predic-
tion, the 10 most important features for the selected
models to predict the values of L-value, Density, and
Vicat Temp are shown in Table 1.

4.4 Graph Generation & Graph Pruning

The dependencies of the predicted values and their
important features (in Table 1) were used to gener-
ate a graph, as shown in Fig. 4. Then, we removed
the nodes representing non-target LDPE properties,
resulting in the pruned graph, as shown in Fig. 5.

Film Thickness Impact Failure

b-value Tensile at yield

. Tensile at B TD

Elongation at Break
Elongation at B MD

Tensile at Y TD

Glozg 200 COF-Static(48hrs)
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MFR 190/2:16 (1SO) . Dust content in PE
COF-Kinetic(48hrs) .
Haze
Vicat Temp .
i

® ¢

Tensile at Y MD

ASH
To
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@ é @

Fig.4: Graph representing the relationship among
target properties and important features.

L-Value Density

Vicat Temp

Fig.5: Pruned Graph.
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Table 2: LDPE property descriptions.

PARAMETER NAME MIN MAX AVERAGE TYPE PARAMETER NAME MIN MAX AVERAGE TYPE
%ASH 0.0450 0.1180 0.0759 Number Haze 5.6900 9.1330 6.9611 Number
2 <PSD <4.0 mm 99.0200 100.0000 99.7492 Number Impact Failure 96.0000 272.2500 131.7554 Number
a-value -0.6300 -0.3100 -0.4559 Number L-value 81.7100 84.6600 83.5399 Number
Appearance 88.0000 88.0000 88.0000 Number LC 85.6900 88.0200 86.9904 Number
ASH 446.0960 1181.8000 759.7143 Number MEFR 190/2.16 (ISO) 0.1970 4.5050 2.3310 Number
b-value -2.0800 -1.2500 -1.6389 Number Other deflect - - - String
Blown film - - - String PSD <2.0 mm 0.0000 0.1000 0.0061 Number
COF-Kinetic(48hrs) 0.0740 0.1420 0.1026 Number PSD >4.0 mm 0.0000 0.9800 0.2447 Number
COF-Static(48hrs) 0.0820 0.1560 0.1115 Number Secant Modulus 181.2000 269.2000 226.0138 Number
Deflect detail - - - String Tc 91.3000 97.2500 94.6999 Number
Density 0.9200 0.9250 0.9231 Number Tensile at B MD 16.8200 31.5000 22.2555 Number
Dust content in PE 0.0000 28.4860 5.6171 Number Tensile at B TD 15.0000 32.4800 20.4504 Number
Elongation at B MD 347.0000 660.0000 508.3991 Number Tensile at break 9.6000 21.0000 13.5531 Number
Elongation at B TD 565.4000 799.8000 708.6219 Number Tensile at Y MD 9.5200 13.7000 11.4746 Number
Elongation at Break 452.0000 728.2000 556.8985 Number Tensile at Y TD 9.4000 14.2800 11.3853 Number
Elongation at Y MD 11.0000 22.8000 16.3319 Number Tensile at yield 9.0000 12.0000 10.7745 Number
Elongation at Y TD 8.8000 17.4000 13.5024 Number Tm 108.8000 115.9100 112.3668 Number
Elongation at yicld 13.0000 18.6000 15.5860 Number Vicat Temp 86.9000 96.3330 93.5371 Number
Film Thickness 48.0000 70.3330 51.9485 Number WI 68.5200 74.5600 71.4746 Number
Gloss 200 36.9670 104.3330 81.8883 Number YI -5.1300 -2.9900 -3.9631 Number
Hardness 43.0000 50.7000 47.3449 Number
Table 3: Summary of hyperparameters. {50, 200, 50}.

XGBoost AdaBoost GBM
50, 100, 150, 200, 250 50, 100, 150, 200, 250 50, 100, 150, 200, 250
4.5.6.7 N/A 4.5.6.7
11,12, 13,1415 N/A N/A
learning_rate 0.51, 0.52, 0.53, 0.54, 0.55 ]0.51, 0.52, 0.53, 0.54, 0.55 [0.51, 0.52, 0.53, 0.54, 0.55
loss (N/A

Hyp erparameter

n_estimators

max_depth

min_child_weight

linear, square, exponential  |N/A

4.5 Sequential Prediction

A. Minimum Cost
(MCPS)

Minimum Cost Prediction Sequence (MCPS),
which identifies that the most cost-effective sequence
is {L-value — Density}, offers valuable insights into
optimizing the prediction of Low-Density Polyethy-
lene (LDPE) properties. By adopting this approach,
businesses can deliver precise, high-quality results to
customers in a more cost-effective manner, reduc-
ing both resource consumption and overall expenses
without compromising the reliability and accuracy of
the predictions.

The predictive sequence {L-value — Density} sug-
gests that the L-value, which is associated with flow
or viscosity properties, serves as a crucial precursor
for accurately determining density. Predicting the L-
value first may simplify or streamline the subsequent
prediction of density, as these properties are inher-
ently related. This approach demonstrates that the
L-value provides valuable intermediate information,
enhancing both the accuracy and efficiency of density
predictions while minimizing the need for additional
complex computations. In contrast, Vicat prediction
was not included in the sequence. This might be be-
cause it caused errors more than the expected thresh-
old.

Prediction Sequence

B. Prediction Density and use Predicted L-
value

Table 5 reports the optimal parameters for the 2-
level model candidates. XGBoost, AdaBoost, GBM
were configured with a learning rate of {0.53, 0.55,
0.55}, a maximum depth of {5, N/A, 7}, a min child
weight of {1.1, N/A, N/A}, a loss function of {N/A,
exponential, N/A}, and the number of estimators of

The above configuration resulted in a mean
absolute error (MAE) of 5.44x107%, 3.61x1074,
3.42x10~%, a mean squared error (MSE) of {5.17x ",
4.17x1077, 2.9x1077}, a root mean squared error
(RMSE) of {7.19x107%, 6.45x107%, 5.4x107*}. R?
was {0.75, 0.8, 0.86}. The maximum error observed
was {0.002, 0.002, 0.001} with a percentage maximum
error of {0.22%, 0.22%, 0.11%}.

The AdaBoost model showed slightly better per-
formance than XGBoost in terms of lower error met-
rics and a higher R? value, likely due to its itera-
tive reweighting mechanism that prioritizes correct-
ing high-error predictions, enhancing its ability to
capture complex patterns. The GBM model out-
performed both XGBoost and AdaBoost in terms of
MAE, MSE, RMSE, and maximum error, as its abil-
ity to capture feature interactions allowed for superior
predictive accuracy and reliability in density predic-
tion.

5. DISCUSSION

A. Impact on accuracy if the predicted values
obtained from the previous model are used

In Section 4, the L-value attribute in the train-
ing dataset for the sequential prediction model was
obtained from laboratory testing. This section dis-
cussed the effect on accuracy if we instead used the
predicted values obtained from the previous model in
the training dataset.

Table 6 reports the optimal parameters for the 2-
level model candidates. XGBoost, AdaBoost, GBM
were configured with a learning rate of {0.53, 0.55,
0.53}, a maximum depth of {5, N/A, 6}, a min child
weight of {1.1, N/A, N/A}, a loss function of {N/A,
exponential, N/A}, and the number of estimators of
{50, 200, 50}.

The above configuration resulted in a mean ab-
solute error (MAE) of {5.44x107%, 3.89x107%, 4.06
%1074}, a mean squared error (MSE) of {5.17x1077,
4.44x1077, 3.27x10~7}, a root mean squared error
(RMSE) of 7.19x107%, 6.67x107%, 5.72x107%. R?
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was {0.75, 0.78, 0.84}. The maximum error observed
was {0.002, 0.002, 0.001} with a percentage maximum
error of {0.22%, 0.22%, 0.16%}.

Similar to the results in Section 4.5, the results
show that GBM is superior in terms of predictive ac-
curacy and reliability for density prediction. How-
ever, all measures confirm that using the laboratory-
testing values in the training dataset yields bet-
ter prediction performance than using the predicted
ones. This might be because laboratory-testing val-
ues are direct, empirical measurements, which inher-
ently contain less noise and uncertainty than pre-
dicted values. Predicted values may carry accumu-
lated errors or approximations from earlier steps in
the prediction process, which can reduce the overall
accuracy when used as input in subsequent predic-
tions. The precise nature of laboratory measurements
thus provides a more reliable foundation for model-in-
the-sequence training, leading to improved predictive
performance.

B. Limitation

TopSABoost determines the topologically sorted
sequence of all graph combinations to resolve cy-
cles and identify the optimized prediction sequence.
While this exhaustive approach ensures accuracy,
its computational complexity increases exponentially
with the number of LDPE properties and target pa-
rameters. It is well-suited for non-real-time predic-
tion tasks, as the computation is performed only
once, and the resulting sequence can be reused un-
til new properties or parameters are required to be
tested. Nevertheless, its scalability makes it imprac-
tical for large-scale or real-time applications. Fu-
ture work could explore more efficient alternatives,
such as heuristic-based optimization methods, dy-
namic programming, or machine learning-driven ap-
proaches for sequential prediction. Additionally, par-
allel computing or distributed processing techniques
could be leveraged to reduce runtime and enable scal-
ability. These advancements would enhance the al-
gorithm’s applicability to larger datasets and more
complex industrial settings.

6. CONCLUSION

This paper introduces TopSABoost, a hybrid
method that combines topological sorting with boost-
ing techniques. The method comprises four modules:
first-level prediction, graph generation, graph prun-
ing, and sequential prediction. Its primary objec-
tive is to determine the cost-effective prediction se-
quence while adhering to the accuracy constraints of
the manufacturing process, all while minimizing lab-
oratory testing costs. Using an LDPE property (pre-
dicted by a former model) as an input for the next
predictive model in the sequence effectively reduces
reliance on costly laboratory tests. Experimental re-
sults demonstrated that the proposed method suc-

cessfully identifies cost-effective predictive sequences
and achieved a maximum error of 0.11%. Future work
will focus on refining the algorithm by reducing the
running time complexity, enabling its application to
larger datasets and more complex scenarios, thereby
broadening its utility in various manufacturing con-
texts.
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Table 4: Summary of predicting evaluated value.

XGBOOST

Prediction Parameter | learning_rate | max_depth | min_child_weight| n_ MAE MSE RMSE R2 MAX_ERROR | %_MAX_ERROR
L-value 0.51 4 1.1 50 0.15755 0.04033 0.20082 0.85880 0.59406 0.71056
Density 0.53 5 1.1 50 0.00054 5.2E-07 0.00072 0.74607 0.00204 0.22101
Vicat 0.51 7 1.1 50 0.31893 0.16246 0.40306 0.96377 0.84879 0.90835
MFR 0.515 6 1.1 200 0.17775 0.09597 0.30979 0.94752 1.25402 523698

ADABOOST

Prediction Parameter | learning_rate | max_depth loss n_ MAE MSE RMSE R2 MAX_ERROR [%_MAX ERROR
L-value 0.52 N/A square 250 0.1239 0.0248 0.1575 0.9131 0.3300 0.3947
Density 0.55 N/A exponential 200 0.0004 4.4E-07 0.0007 0.7825 0.0020 0.2167
Vicat 0.53 N/A exponential 200 0.3038 0.1326 0.3641 0.9704 0.7000 0.7491
MFR 0.51 N/A linear 250 0.0523 0.0062 0.0786 0.9966 0.2310 9.6469

GBM

Prediction Parameter | learning_rate | max_depth | min_child_weight| n_e MAE MSE RMSE R2 MAX_ERROR |%_MAX_ERROR
L-value 0.51 4 N/A 250 0.15886 0.04017 0.20043 0.85935 0.53399 0.63871
Density 0.55 7 N/A 200 0.00041 3.7E-07 0.00061 0.81868 0.00152 0.16446
Vicat 0.53 4 N/A 50 0.30904 0.15810 0.39761 0.96474 0.91464 0.97882
MFR 0.54 6 N/A 100 0.14716 0.12778 0.35747 0.93012 2.00247 83.6258

Table 5: Density Prediction Errors (The train dataset contained the L-value obtained from Laboratory tests).

Algorithm | Prediction Parameter | learning rate max_depth | min_child_weight loss n_estimators MAE MSE RMSE R2 MAX ERROR | % MAX ERROR

XGBOOST Density 0.53 5 1.1 N/A 50 5.44E-04 5.17E-07 7.19E-04 7.47E-01 2.04E-03 2.21E-01

ADABOOST Density 0.55 N/A N/A exponential 200 3.61E-04 4.17E-07 6.45E-04 7.96E-01 2.00E-03 2.17E-01

GBM Density 0.55 7 N/A N/A 50 3.42E-04 2.90E-07 5.39E-04 8.58E-01 1.02E-03 1.11E-01

Table 6: Density Prediction Errors (The train dataset contained the L-value predicted by the selected model).

Algorithm | Prediction Parameter | learning rate | max_depth | min_child_weight loss n_estimators MAE MSE RMSE R2 MAX _ERROR | % MAX ERROR
XGBOOST Density 0.53 5 1.1 N/A 50 5.44E-04 5.17E-07 7.19E-04 7.47E-01 2.04E-03 2.21E-01
ADABOOST Density 0.55 N/A N/A exponential 200 3.89E-04 4.44E-07 6.67E-04 7.82E-01 2.00E-03 2.17E-01
GBM Density 0.53 6 N/A N/A 50 4.06E-04 3.27E-07 5.72E-04 8.40E-01 1.47E-03 1.59E-01
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