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ABSTRACT

Accurate crop yield estimation is crucial for sustainable agriculture and
food security, especially in Maharashtra, where climate variability signifi-
cantly impacts crop growth. This study utilizes satellite data from MODIS,
Landsat, Sentinel-1, and Sentinel-2 to predict the yields of 22 crops across
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36 districts. Machine learning models, including Random Forest, Gradient

Boosting, and SVM, were evaluated using RMSE, MAE, and R2 metrics.
Random Forest outperformed the others, achieving R2 values above 0.70
for all crops, with a peak R2 of 0.93. Incorporating seasonal and permuted
feature data further enhanced predictions, demonstrating the efficacy of
integrating satellite data and machine learning for agriculture. Keywords:
Machine learning, MODIS, Landsat-8, Sentinel-2, Sentinel-1, crop yield,

features, vegetation indices.
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1. INTRODUCTION

Analyzing crop yield and production plays a cru-
cial role in agricultural research, as it provides key in-
sights into food security, economic planning, and sus-
tainable development. In this context, “yield” refers
to the quantity of crops per unit area, while “pro-
duction” refers to the total crop volume harvested.
Accurately predicting and estimating crop yield [1, 2]
has become increasingly important due to the grow-
ing global population and the corresponding rise in
food demand. Advanced technologies like remote
sensing and machine learning [3,4] have significantly
enhanced yield forecasting accuracy. Numerous stud-
ies have demonstrated the effectiveness of satellite
remote sensing data, such as MODIS, Landsat 8 [5-
7], Sentinel-1, and Sentinel-2 [7], in monitoring crop
growth and assessing yield variability across various
regions.

Research highlights the value of integrating cli-
mate data, soil properties, and remote sensing in-
formation to improve the accuracy of yield predic-
tions, as factors like rainfall, temperature, and ex-
treme weather events can heavily influence agricul-
tural output. Machine learning algorithms are ef-

fective for yield estimation as they can model com-
plex, nonlinear crop growth patterns. Various studies
used different machine learning models, such as Ran-
dom Forest (RF), Support Vector Machines (SVM),
and neural network architectures like Artificial Neural
Networks (ANN) and Deep Neural Networks (DNN).
Most of these studies have focused on regional anal-
yses, primarily, mainly due to the availability of re-
gional yield data for model training and evaluation.
However, there remains a strong need for more precise
yield estimates at the field management level, which
is essential for making well-informed crop manage-
ment decisions and supporting stakeholders such as
farmers and policymakers.

Accurate data collection and analysis are funda-
mental to the success of machine learning algorithms,
as both the quality and quantity of data directly af-
fect prediction accuracy. The advent of big data,
characterized by its volume, velocity, and variety, re-
duces variability and offers more detailed insights.
The use of multiple datasets from sources such as sen-
sors, social media, and healthcare can enhance the
effectiveness of data analyses. These datasets, ac-
cessible through APIs or web scraping, can include
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static or real-time data. The integration of data
from various platforms underscores the importance
of data cleaning and preprocessing to ensure high-
quality inputs for machine learning models [11]. This
study has two main objectives: (i) to evaluate differ-
ent algorithms for estimating crop yield and produc-
tion in Maharashtra across different seasons, includ-
ing Kharif, Rabi, and the entire year [12], and (ii)
to perform a selective feature analysis of the machine
learning models used. Two additional references [7,
9] are included, where [7] presents seasonal wheat es-
timation using the vegetation index LAI, and [9] re-
ports wheat yield estimation based on Earth observa-
tion, meteorological data, and biophysical models. In
contrast, [9] estimates wheat yield using Earth obser-
vation data, meteorological variables, and biophysical
models. While prior works [7] showed seasonal corre-
lations in winter wheat or rice yield prediction, these
studies often focus on a single crop or a limited region.
Our study extends this approach by incorporating 22
crops across multiple seasons through the fusion of
MODIS, Landsat, Sentinel-1, and Sentinel-2 data.

The structure of the paper is as follows: Section
I provides an introduction and a review of the rel-
evant literature. Section II discusses the materials
and methods used in the study. Section III delves
into crop analysis and prediction, highlighting both
the advantages and challenges involved. Section IV
outlines the proposed methodologies, followed by a
presentation of the experimental results and their dis-
cussion. Finally, Section V offers conclusions and rec-
ommendations for future research.

1.1 Related Work

Recent studies demonstrate the effectiveness of
machine learning models—particularly CNN, RF,
and SVR—for tasks such as vegetation cover esti-
mation, crop classification, and yield prediction using
multi-source satellite data. These works highlight the
increasing accuracy and scalability of ML approaches
in both micro-level and regional agricultural monitor-
ing. Although RF and SVM have been widely applied
[11, 20], their performance often varies depending on
feature dimensionality and crop diversity. Unlike [11],
which relied solely on NDVI, our model incorporates
up to nine vegetation indices and examines feature
permutations (e.g., NDVI4+SAVI, SAVI+MSAVI) to
address challenges such as sparse vegetation and soil
brightness. However, relatively few studies have crit-
ically investigated how different feature combinations
influence multi-crop, multi-season yield prediction, as
demonstrated in Table 1.

2. MATERIALS AND METHODS

Maharashtra, a key agricultural state in western
India, comprises 36 districts, including Pune, Nag-
pur, Nashik, and Kolhapur. The state’s diverse agro-
climatic zones ranging from the coastal Konkan re-
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Table 1: Comparison of Recent Studies utilizing
Machine Learning Techniques for Agricultural Moni-
toring .
References Methodology Remarks
Used
Compared ML
models (RF, Demonstrated higher
SVR, etc.) for (laccuracy when combining
[4] estimating drone and satellite data;
vegetation highlighted the suitability of
fractional cover |[ML for sub-field level
using Sentinel-2||vegetation monitoring
and drone data
CNN-based
crop 'type . Achieved high classification
classification .
. . accuracy; emphasized
[8] SIng combined advantage of fusing SAR
Sentinel-1A : .
and optical data for in-
(SAR) and .
Sentinel-2 season crop detection
(MSI) data
Multiple ML ||Found RF to outperform
algorithms (RF, ||other models; underlined
[13] SVM, ANN) importance of algorithm
used for selection and preprocessing
generalized in diverse agricultural
crop prediction ||settings
Multi-factorial ||Offered scalable insights
analysis with  [/into regional vegetation
[14] ML for trends; validated usefulness
vegetation of ML for macro-level crop
dynamics using ||monitoring under
satellite data environmental variations

gion to the semi-arid areas of Marathwada and Vi-
darbha support the cultivation of a wide variety of
crops. During the Kharif season (June to Septem-
ber), farmers primarily grow rain-fed crops such as
rice, soybean, cotton, jowar, and tur. The Vidarbha
region is particularly known for cotton and soybeans
cultivation, whereas the Konkan area is known for rice
production, which benefits from abundant monsoon
rainfall.
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Fig.1: Major crops in Maharashitra (Source: Maps
of India) [32].



Optimizing Crop Yield Predictions through Satellite Data Fusion and Machine Learning 559

Data on crop distribution and agro-climatic zones
have been collected from official resources such as [32]
and [12] is demonstrated in Fig.1. During the Rabi
season, which spans from October to March, crops
like wheat, gram, barley, and safflower are grown,
taking advantage of the residual soil moisture from
the monsoon. Key districts for wheat cultivation in-
clude Nashik, Pune, and Ahmednagar. In addition,
sugarcane, a crop that is cultivated year-round, holds
significant economic importance for the state, with
primary production concentrated in districts such as
Kolhapur and Ahmednagar.

Crop yield prediction in Maharashtra is challenged
by diverse agro-climatic zones, heavy dependence
on the monsoon, and various socio-economic con-
straints. Yield variability is further influenced by un-
predictable rainfall, frequent extreme weather events,
and fragmented landholdings. Sparse vegetation and
soil brightness complicate the application of vegeta-
tion indices such as NDVI, while temporal gaps in
satellite imagery—caused by cloud cover or revisit in-
tervals—Ilead to incomplete datasets. Although socio-
economic and climatic factors such as rainfall and
market dynamics are recognized as important chal-
lenges, this paper focuses on remotely sensed data due
to its availability and resolution consistency. Future
studies should integrate climate and socio-economic
data layers to achieve more holistic modeling.

Moreover, the high diversity of crops each requir-
ing tailored approaches along with socio-economic
factors such as limited irrigation and frequent pest
outbreaks, further increases the complexity of yield
prediction. Market and policy influences, including
minimum support prices, also shape cropping pat-
terns but remain difficult to model. These challenges
highlight the need for advanced machine learning
models and the integration of multi-source satellite
data to address spatial, temporal, and environmental
variability, thereby enabling more accurate and ac-
tionable predictions for agriculture in Maharashtra.

2.1 Dataset Description

The proposed research utilizes satellite images ac-
quired from sources such as MODIS, Landsat 8,
Sentinel-1, and Sentinel-2. MODIS [13] provides ex-
tensive daily data on crop growth, while Landsat 8
offers high-resolution imagery every 16 days, which
is valuable for monitoring crop stress and irrigation
practices. Sentinel-1, equipped with radar technol-
ogy, and Sentinel-2, which uses multispectral imag-
ing, enable continuous observation of crop health,
soil moisture, and vegetation conditions across key
districts. Satellite-based data (e.g., MODIS, Land-
sat, Sentinel-1, Sentinel-2) provided consistent and
reliable inputs, such as vegetation indices and soil
moisture metrics. These data sources are freely avail-
able, making them accessible and cost-effective for
researchers, governments, and organizations globally.

Their varying spatial, spectral, and temporal charac-
teristics complement each other, enabling comprehen-
sive crop monitoring. MODIS for large-scale trends
and frequent updates. Landsat and Sentinel-2 for
high-resolution field-level analysis. These satellites
have been extensively validated in crop yield predic-
tion models and agricultural studies, making them
a reliable choice. These satellite images have signif-
icantly enhanced yield prediction and crop manage-
ment strategies for key crops such as rice, cotton, soy-
bean, and sugarcane across the state. The collected
datasets are summarized in Table 2, with imagery
from Sentinel-1, Sentinel-2, MODIS, and Landsat 8
accessed via the Google Earth Engine code editor
[14-16]. While commercial satellites such as World-
View or PlanetScope may provide higher resolution
or additional features, their higher costs and limited
availability make them less suitable for large-scale or
budget-constrained applications.

In this research, the proposed approach considers a
wide range of performance indicators, including crop
season, crop type, the Normalized Difference Veg-
etation Index (NDVI) [14] , Normalized Difference
Water Index (NDWT), Soil Adjusted Vegetation In-
dex (SAVI), Modified Soil Adjusted Vegetation In-
dex (MSAVTI), Chlorophyll Vegetation Index (CVT),
Moisture Stress Index (MSI), surface reflectance val-
ues [15,16], Enhanced Vegetation Index (EVI) [4,18],
and backscatter values [17,19]. These factors are cru-
cial for improving crop yield, although additional el-
ements such as temperature, humidity, and soil mois-
ture also play essential roles.

Table 2: Vegetation indices and other performance
parameters extracted from Sentinel-1, Sentinel-2,
Landsat-8, and MODIS for crop yield prediction.

Sentinel-1 ‘ Sentinel-2 ‘ Landsat-8
Spatial resolution: MODIS — 250m, Sentinel-2 — 10m,
Landsat-8 — 30m, Sentinel-1 — 10m
Temporal resolution: MODIS — 1 day, Sentinel-2 — 5 days,
Landsat — 16 days, Sentinel-1 — 612 days
Units: NDVI (unitless), Backscatter (dB), Reflectance (%)

normalized difference Surface
Backscatter | yegetation index reflectance(B2-
values (NDVI), normalized B6), normalized
(ovv& ovh) | difference water index | difference

(NDWI), soil adjusted | vegetation index

vegetation index (NDVI),

(SAVI), Chlorophyll normalized

Vegetation Index (CVI), | difference water
MODIS Moisture stress Index index (NDWI),
Normalized | (MSI), (NDWI+SAVI) | soil adjusted
Difference vegetation index
Vegetation (SAVI), Enhanced
Index vegetation index
(NDVI) and (EVI), Moisture
Enhanced stress Index (MSI)
Vegetation
Index (EVI)




560 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.19, NO.4 October 2025

[21]. MSI supports prediction accuracy in crops
like safflower, jowar, and pulses, which are often

1) Normalized Difference Vegetation Index
(NDVI):

The NDVI measures vegetation health and den-
sity by comparing reflectance in the near-infrared
and red bands. Higher NDVI values indicate
healthier and denser vegetation, which often cor-
relates with higher crop yields [21]. It is partic-
ularly useful for monitoring dense-canopy crops
such as rice, wheat, and maize, providing a direct
measure of vegetative vigor that is essential for
yield assessment during peak growth stages.

NDVI = (Rm'r - Rred)/(Rm'r + Rred) (1)

R, and R,..q are the averaged reflectance among
the waveband range to match MODIS data in the
near-infrared (841-876 nm) and red (620-670 nm)
wavelengths, respectively.

2) Normalized Difference Water Index (NDWI):

The NDWI assesses vegetation water content by
comparing reflectance in the near-infrared and
shortwave infrared bands. It is particularly valu-
able for monitoring water stress, which can signif-
icantly affect crop growth and yield [21]. NDWI
is especially important for water-sensitive crops
such as sugarcane and soybean, as it helps detect
stress conditions that directly influence biomass
accumulation and yield formation.

NDWI = (Ruir — Rswir)/(Bnir + Rewir)  (2)

3) Soil Adjusted Vegetation Index (SAVI):

The SAVI, similar to NDVI, adjusts for soil
brightness, making it effective in sparsely veg-
etated areas. It improves yield predictions for
crops such as tur, groundnut, and bajra under
dryland and early growth conditions [21]. By re-
ducing soil background effects, SAVI provides a
more accurate measure of vegetation health.

SAVI = (14+0.5)(Ruir— Ryed)/(Rnir— Rrea+0.5) (3)

4) Chlorophyll Vegetation Index (CVI):

The CVI measures chlorophyll content in plants,
which is directly linked to photosynthetic activity
and overall plant health. Higher CVI values indi-
cate better crop condition and potentially higher
yields [21]. It is beneficial, handy for crops such
as cotton, maize, and sunflower, as it captures
chlorophyll levels that reflect photosynthetic effi-
ciency and crop vigor.

CVI = R,y % Rred/RZGreen (4)

5) Moisture Stress Index (MSI):

Indicates moisture stress levels by comparing dif-
ferent spectral bands. It helps in understanding
how moisture stress affects crop growth and yields

grown in semi-arid regions and are highly sensi-
tive to moisture fluctuations.

MSI = stir/Rnir (5)

6) Enhanced Vegetation Index (EVI):

The EVI is a robust vegetation index that pro-
vides greater precision in dense canopy areas by
accounting for atmospheric and soil variability,
thereby improving yield predictions [21]. It is par-
ticularly well suited for high-biomass crops such
as sugarcane, where NDVI tends to saturate.

EVI=2.5%((Ruir Rrea)/(Ruir + 6 % Ryeq — 7.5 % Ropue + 1)) (6)

7) (NDWI + SAVI):

Combining NDWI and SAVI [4] provides a more
comprehensive assessment of vegetation health
and moisture status by integrating both water
and soil adjustments. This approach is par-
ticularly effective for detecting water stress in
sparsely vegetated fields.

8) Surface reflectance:

Surface reflectance values from Landsat 8 Bands
B2 to B6 are essential for crop yield estimation
[15,16]. B2 (Blue) detects crop stress and wa-
ter bodies, B3 (Green) tracks vegetation health,
and B4 (Red) is critical for NDVI-based biomass
monitoring. Band B5 (NIR) assesses canopy den-
sity, while B6 (SWIR1) detects soil moisture and
water stress. Together, these bands provide key
insights into crop growth and stress, supporting
more accurate yield prediction and efficient re-
source management. They are particularly ef-
fective for monitoring crops such as groundnut,
sesame, and maize, enabling stress detection and
phenological stage analysis.

9) Backscatter values:

Sentinel-1 backscatter values [17,19] measure the
intensity of radar signals reflected from the
Earth’s surface and are crucial for monitoring
land use, vegetation, soil moisture, and crop
growth. As a radar satellite, Sentinel-1 provides
consistent data in all weather conditions, includ-
ing during cloud cover and at night. Higher
backscatter values typically indicate rough sur-
faces such as forests or built-up areas, while lower
values correspond to smoother surfaces like water
bodies or bare soil. In agriculture, backscatter
data are widely used to monitor crop health, es-
timate biomass, and assess soil conditions. This is
especially important for crops such as sugarcane,
cotton, and soybean in cloudy or monsoon-prone
regions, where radar ensures reliable data avail-
ability.

Together, these indices play a crucial role in mon-

itoring crop health, assessing water availability, and
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evaluating soil conditions, all of which are essential
for accurate yield prediction and efficient crop man-
agement.

2.2 Preprocessing

The preprocessing strategy aims to prepare the
data in a way that enhances model accuracy and effi-
ciency. Essential steps include gaining a thorough un-
derstanding of the dataset, addressing missing data,
eliminating irrelevant or redundant features, and nor-
malizing or standardizing numerical data. The ob-
jective is to ensure the model is trained on clean,
relevant, and well-structured data, thereby improv-
ing its overall performance. In this study, the in-
tegrated dataset contained various attributes, with
less important ones filtered out during the preprocess-
ing stage. After removing irrelevant parameters, key
performance metrics including NDVI, NDWI, SAVI,
MSAVI, CVI, MSI [4, 18], and backscatter values
were selected for analysis. The dataset comprises
2,822 labeled samples from 2015 to 2023, covering
22 crop types across 34 districts in the Maharashtra
region. Ground truth yield data were obtained from
State Agriculture Department reports, which provide
districtwise annual production figures. The dataset
was subsequently divided, with 70% used for training
and 30% for testing.

2.3 Crop Analysis and Prediction Benefits
and Challenges

As noted earlier, although machine learning is be-
ing implemented across numerous industries, its ap-
plication in agriculture remains a challenging and
continually developing area of research. This section
highlights the key benefits and challenges of utiliz-
ing ML for crop analysis and forecasting, based on
insights from recent studies [22-24].

A) Benefits
Machine learning (ML) offers transformative ad-
vantages in agriculture, enhancing efficiency, crop
yields, and sustainability. By analyzing large
datasets from weather, soil, and crop conditions,
ML allows data-driven decisions that optimize
resource use, reduce input costs, and improve
crop management. It also supports early dis-
ease detection and real-time monitoring of crop
health, leading to timely interventions and in-
creased profitability.
B) Challenges

Despite its potential, ML adoption in agriculture
faces key challenges such as poor data quality,
model complexity, and limited interpretability of
results. Many farmers lack access to the necessary
infrastructure and technical knowledge, especially
in remote areas. Additionally, concerns about
data privacy and the need for user-friendly tools
can hinder implementation. Overcoming these is-

sues requires collaborative efforts among farmers,
researchers, and tech developers.

3. METHODOLOGY

In this study, various machine learning (ML) al-
gorithms are employed to estimate crop yield and
production. Algorithms such as Extreme Gradient
Boosting (XGB), Random Forest (RF), and Support
Vector Machines (SVM) with polynomial and radial
basis function (RBF) kernels [20], along with KSTAR,
AdaBoost, Hoeffding Tree, and Decision Tree [14],
are pivotal in agriculture, particularly for predict-
ing crop yields. These algorithms analyze complex
agricultural data, including soil quality, weather pat-
terns, irrigation levels, and crop health. By process-
ing this data, the models can identify trends, predict
yields, and offer insights to enhance farming prac-
tices. Decision trees and random forests handle non-
linear data effectively, while boosting methods like
AdaBoost enhance accuracy by combining weak mod-
els. SVMs with polynomial and RBF kernels [20] ex-
cel at multi-dimensional data for classification and
regression, aiding farmers in data-driven decisions,
optimizing resources, and improving crop yields to
support food security.

The GridSearchCV API from the scikit-learn li-
brary in Python was used to optimize the various
model parameter listed in Table 3 [28].

Table 3: Parameters used in different models.

Model Optimized Parameters
values
RF {'max_depth": 30, 'max_features':
'sqrt', 'min_ samples leaf": 1,
'min_samples_split': 2,
'n_estimators": 300}
SVR {C:10, Kernel: 'poly', Degree: 4}
Xtreme Gradient {'learning_rate': 0.2, 'max_depth":
Boosting 7, 'n_estimators': 300}

Fine-tuning these parameters using cross-validation
ensures models achieve their best performance for
crop yield forecasting. Randomly selecting the hyper-
parameter combinations within defined ranges, deliv-
ers faster outcomes, particularly for large datasets.

Compared to traditional methods, these ML ap-
proaches offer several advantages, including the abil-
ity to efficiently process smaller datasets and deliver
more accurate predictions. The proposed framework
is illustrated in Fig 2.

A total of 2,822 sample images were collected
over the course of the year, covering 22 distinct
crop types, including Tur, Bajra, Castor Seed, Cot-
ton, Gram, Groundnut, Jowar, Maize, Moong, Rabi
Pulses, Cereals, Oilseeds, Summer Pulses, Ragi, Rice,
Safflower, Sesame, Soybean, Sugarcane, Sunflower,
Urad, Wheat, and Castor Seed. Data from January 1,
2015, to December 30, 2023, was used to develop and
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Fig.2: Framework of proposed methodology.

validate machine learning algorithms. The dataset
was divided, with 70% allocated for training and 30%
for testing. The model’s predictive performance was
evaluated using the test data, based on parameters
such as crop year, season, crop type, crop yield, crop
production, vegetation indices (VI), backscatter val-
ues, and surface reflectance values. Performance met-
rics, including Mean Squared Error (MSE), Mean Ab-
solute Error (MAE), and R-squared (R?), were em-
ployed to evaluate the accuracy of the machine learn-
ing models.

4. RESULTS AND DISCUSSIONS

able 4. presents performance metrics including
Mean Squared Error (MSE), Mean Absolute Error
(MAE), and R-squared (R?) values [11] for various
machine learning algorithms including KSTAR, Ad-
aBoost, Hoeffding Tree, Decision Tree, Extreme Gra-
dient Boosting (XGB), Random Forest (RF), and
Support Vector Machines (SVM) with polynomial
and radial basis function (RBF) kernels in crop yield
prediction. The results indicate that the Random
Forest algorithm outperforms the others, achieving
the best scores for MSE, MAE, and R?.

Table 4. showcases crop yield prediction results
for the Maharashtra region, encompassing 34 districts
and multiple crops during Kharif, Rabi, and full-year
periods. Performance varied among algorithms based
on MSE, MAE, and R? metrics. The Random For-
est model demonstrated the highest accuracy, with a
lowest MSE of 41.91, an MAE of 1.30, and a strong
R? of 0.70, indicating its effectiveness in explaining
data variance. The SVM with RBF kernel [20] also
performed well, recording an MSE of 43.30, an MAE
of 1.42, and an R? of 0.69, slightly better than the
polynomial kernel. Extreme Gradient Boosting [26]
showed reasonable predictive ability, while Decision
Tree and Hoeffding Tree models performed less ef-
fectively. Overall, Random Forest and SVM models

emerged as the most reliable for predicting crop yield
in this study.

Table 4: ML Algorithm Performance Metrics For
9 input Features NDVI, NDWI, SAVI, MSAVI, CVI,
MSI, EVI (NDWI+SAVI), Surface Reflectance Val-
ues, and Backscatter values of 34 Districts and 22
crops in Maharashtra State for Crop Yield Prediction.

ML MSE MAE R-
ALGORITHMS SQUARED

KSTAR 98.13 3.75 0.61
Adaboost 109.06 4.30 0.50
Hoeffding Tree 58.08 2.90 0.65
Decision Tree 79.27 1.68 0.45
Extreme GB 58.08 1.71 0.60
RF 41.91 1.30 0.70
SVM 45.55 1.45 0.67
(Poly kernel)

SVM(RBF) 43.30 1.42 0.69

Combining vegetation indices such as NDVI with
SAVI, NDVI with MSAVI, and SAVI with MSAVT of-
fers a more comprehensive and accurate assessment
of crop health and productivity. The combination of
NDVI and SAVI is particularly beneficial, as NDVI
measures plant vigor by analyzing the reflectance of
red and near-infrared light, at the same time SAVI
corrects for soil brightness, making it useful in ar-
eas with sparse vegetation or bare soil. This pairing
enhances the accuracy of crop health evaluations in
mixed environments with varying vegetation densi-
ties.

Integrating NDVI with soil-adjusted indices such
as SAVI and MSAVI improves crop monitoring by
minimizing soil background effects, particularly dur-
ing early growth stages or in fields with sparse veg-
etation. SAVI and MSAVI are especially effective
for rainfed and dryland crops like tur, bajra, jowar,
moong, ragi, and other pulses, where soil exposure
is high. For semi-arid crops such as castor seed and
ground nut, combinations like SAVI4+MSAVI or stan-
dalone SAVI help manage soil influence and sparse
growth. Oilseeds including sesame, sunflower, and
safflower also benefit from SAVI or MSAVT in early or
dry conditions, at the same time summer pulses sim-
ilarly require soil-adjusted indices to improve stress
detection.

In contrast, NDVI-based combinations are bet-
ter suited for irrigated or dense-canopy crops.
NDVI+SAVI reliably tracks rice, wheat, and cot-
ton, efficiently addressing canopy growth and nec-
essary soil adjustments. Maize benefits most from
NDVI+MSAVI, balancing its dense canopy with soil
background correction. These targeted selections en-
sure indices align with crop type, growth stage, and
environmental conditions, enabling more accurate as-
sessment of vegetation health, early stress detection,
and yield prediction.

To isolate seasonal effects, models were trained
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Fea-

Mean Squared Error (MSE) Comparison
Table4 MSE

separately on Kharif and Rabi data subsets.
ture combinations such as (NDWI + SAVI) achieved

higher R? for rainfed crops during Kharif, whereas
(NDVI + MSAVI) performed better for irrigated Rabi

100

crops. Feature permutation analysis resulted in a a0
23% reduction in MSE compared to using raw index
inputs alone. % o0
Table 5 shows that when NDVI, SAVI, and MSAVI g
40

are combined as separate input features, the perfor-
mance of both Random Forest and Decision Tree al-
20

Table5 MSE

gorithms [28] improves moderately. Throughout the

study, results from the AdaBoost and KSTAR algo-

rithms were relatively lower compared to those pro-
duced by the Random Forest algorithm.

ML algorithm performance metrics

Table 5:
for input features SAVI, MSAVI, (NDVI+SAVI),

(NDVI+MSAVI), (SAVI+ MSAVI) of 34 districts
and 22 crops in Maharashtra state for crop yield pre-

diction.

MSE MAE R-SQUARED

ML
ALGORITHMS

KSTAR 20.12 1.46 0.76
21.05 1.75 0.72

Adaboost

Hoeffding Tree 19.08 1.25 0.81

0.28 0.92
1.45 0.80

Decision Tree 11.33

Extreme GB 16.12

11.24 0.38 0.93

RF
0.84

SVM (Poly 15.16 0.81
kernel)
0.86

SVM(RBF) 15.20 0.82

Fig. 3(a) illustrates the Mean Squared Error
(MSE) values for various models across two datasets
(Table 4 and Table 5). Table 4 details performance
metrics for nine features, including NDVI, NDWI,
SAVI, MSAVI, CVI, MSI, EVI, combined features

(NDWI+SAVI), surface reflectance, and backscat-
In contrast, Table 5 includes two indi-

ter values.
vidual features (SAVI and MSAVI) and three com-
bined features (NDVI+SAVI), (NDVI+MSAVI), and
(SAVI+MSAVI)). The red bars represent the Mean
Absolute Error (MAE) values for Table 4, while the
blue bars correspond to Table 5.
Models such as KSTAR and AdaBoost exhibit the
highest MSE in Table 4, whereas all models show
significantly lower MSE values in Table 5, as illus-
trated in Fig. 3(a). SVMs with polynomial and
RBF kernels demonstrate comparatively better per-
formance across both datasets, consistently yielding
lower MSE’s. Overall, the use of combined features
results in lower MSEs for all models, indicating en-
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Fig.3: (a) Comparative barplot of MSE values for
Table 4. and Table 5 represents crop yield predic-

tion. (b) Comparative barplot of MAE values for Ta-
ble 4. and Table 5 represents crop yield prediction.

(c¢) Comparative barplot of R? values for Table 4. and
Table 5 represents crop yield prediction.
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hanced predictive performance compared to the com-
plete set of features listed in Table 4.

Challenges such as sparse vegetation were miti-
gated using soil-adjusted indices (SAVI, MSAVI), as
reflected in the improved R? values (0.93) shown in
Table 5. The advantage of multi-source data fusion
is evident from the robust performance of RF (R?2
> 0.7) across districts representing different agro-
climatic zones.

The bar plot in Fig. 3(b) compares the Mean Ab-
solute Error (MAE) values of different models for the
two datasets, as detailed in Tables 4 and 5. In Table
4, models such as KSTAR and AdaBoost exhibit the
highest MAE values, exceeding 3.5, while their cor-
responding MAEs in Table 4 drop significantly below
2. Similarly, Hoeffding Tree, Decision Tree, and Ex-
treme Gradient Boosting exhibit higher MAE values
when using combined features compared to the nine
individual features, although the difference is less pro-
nounced. In contrast, models such as Random Forest
(RF), SVM with a polynomial kernel, and SVM with
an RBF kernel consistently report lower MAE values
across both datasets, with Table 5 highlighting their
superior performance.

Overall, the use of combined features leads to lower
MAE values across all models, indicating improved
accuracy and reduced error compared to using the
full set of features. Fig. 3(c) presents a comparison
of R? values, illustrating the performance of various
machine learning models for the two datasets detailed
in Tables 4 and 5, covering 34 districts and 22 crops
in Maharashtra. R? values reflect how effectively a
model explains data variability, with values closer to
1 indicating better performance.

Random Forest (RF) achieves the highest R? val-
ues in both datasets, underscoring its capability to
capture data patterns effectively. Decision Tree and
Extreme Gradient Boosting also demonstrate strong
performance, while KSTAR and SVM (Radial Ba-
sis function) show lower R? values, reflecting weaker
explanatory power. Notably, R? values for the com-
bined features are generally higher than those for all
nine features, indicating improved predictive perfor-
mance in the second dataset.

This highlights the importance of selecting appro-
priate models to achieve predictive accuracy. Table
6 presents the R? values for various machine learning
models applied to crop production estimation. These
values indicate the proportion of variance each model
explains, with higher R? values reflecting better pre-
dictive accuracy. Among the models, Random Forest
(RF) stands out with the highest R? value of 0.60,
indicating it explains 60% of the variability in crop
production, making it the most accurate model in
this comparison. Support vector machine with RBF
and polynomial kernels follow closely, with R? values
of 0.59 and 0.57, respectively, demonstrating strong
predictive capabilities. Extreme Gradient Boosting

(GB) also performs well, achieving an R? of 0.51.
In contrast, decision tree-based models, including the
Decision Tree and Hoeffding Tree, exhibit moderate
R? values of 0.47 and 0.46, respectively.

At the lower end, KSTAR and AdaBoost exhibit
the least favorable R? values of 0.42 and 0.41, indi-
cating they explain less variability in crop production
compared to the other models. Overall, models such
as RF and SVM (RBF) provide more reliable esti-
mates for crop production, suggesting they are prefer-
able for predictive analysis in agricultural forecasting.

Table 6: R? values of different ML algorithms for
crop production prediction of 34 districts in Maha-
rashtra.

Method R? Method R?
KSTAR 0.42 Extreme 0.51
GB

Adaboost 0.41 RF 0.60

Hoeffding 0.46 SVM 0.57
Tree (Poly)

Decision 0.47 SVM 0.59
Tree (RBF)

The bar graph in Fig. 4 illustrates the R? scores
of different machine learning models Random Forest
(RF), Extreme Gradient Boosting (XGB), and Sup-
port Vector Machine (SVM) across various crops and
districts, providing insights into their predictive per-
formance. Sugarcane in Sangli district exhibits high
R? scores, with XGB achieving approximately 0.75
and SVM around 0.65, indicating strong predictive
power for yield in this district. In contrast, Soybean
in Pune district during the Kharif season shows mod-
erate R? values of about 0.45 for XGB and 0.35 for
SVM, reflecting less reliable predictions. The pseudo-
R? (coefficient of determination) was calculated using
sklearn. metrics.r2_score, which is suitable for assess-
ing explained variance in non-linear regression mod-
els.

R? Scores by Crop and District for Different ML Models

Crop (District)

Fig.4: R? values across different crop types and dis-
trict for RF, XGB and SVM models.

Groundnut in Ahmednagar district exhibits subop-
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timal R? scores across all models, with values around
0.1 for Random Forest, 0.2 for XGBoost, and 0.15
for SVM, reflecting poor model performance for this
crop in this district. Maize in Aurangabad and Cere-
als in Nashik also show relatively low R? values, typi-
cally ranging between 0.1 to 0.3, suggesting that these
crops have weak predictive accuracy for the models
tested. In contrast, Sunflower in Solapur and Rice
in Raigad show moderate to good R? values, ranging
from 0.3 to 0.6, indicating a better fit between the
model predictions and actual data. XGBoost gener-
ally provides the highest R? values across most crops,
particularly for Sugarcane, with scores often exceed-
ing 0.7, indicating its effectiveness for these crop dis-
trict combinations. Random Forest and SVM also
show good performance, but with less consistency,
mainly for crops like Rice and Soyabean, where SVM
has a lower R? value.

ROC Curves (5-fold CV, Regularized Models)

08

True Positive Rate
°
o

°
S

- Extreme Gradient Boosting (AUC = 0.74 £ 0.00)
Random Forest (AUC = 0.75 £ 0.01)
—— Decision Tree (AUC = 0.61 + 0.01)
= SVM (Poly kernel) (AUC = 0.53 + 0.01)
== SVM (RBF) (AUC = 0.57 % 0.01)
=~ AdaBoost (AUC = 0.59 + 0.01)
--- Random Guessing

° . F:rse Positive R:tGe * e
Fig.5: ROC curve of machine-learning algorithms
for crop yield prediction.

To mitigate potential overfitting during model
evaluation, 5-fold cross-validation was applied, as il-
lustrated in Fig. 5. In this approach, the dataset is
divided into five subgroups, and each model is trained
and validated five times, with a different subgroup
used for testing in each iteration. This approach en-
sures that performance metrics are not biased by a
single train-test split, providing a more reliable esti-
mate of how the models generalize to unseen data.
The ROC curves [27] as demonstrated in Fig. 5.
demonstrate the trade-off between true positive and
false positive rates for various regularized models,
with their average AUC values and standard devia-
tions reflecting both predictive performance and sta-
bility across folds. This validation technique reduces
variance in evaluation, making the comparison among
models such as Random Forest (AUC = 0.75 £ 0.01)
and XGBoost (AUC = 0.74 &+ 0.00) more robust and
trustworthy.

In Maharashtra, sugarcane, maize, and soybean

exhibited distinct production trends from 2015 to
2023, as demonstrated in Fig. 6. Sugarcane produc-
tion rose steadily after 2019-2020, surpassing 2.5 lakh
tonnes, while maize production crossed 40,000 tonnes
post-2019-2020, and soybean maintained consistent
growth since 2015-2016. Across these crops, XG-
Boost provided smoother and more accurate predic-
tions, whereas Random Forest captured short-term
fluctuations but showed higher variability.

Yield patterns in Fig. 7 reflect these produc-
tion trends, with sugarcane yields rising sharply after
2020-2021, maize yields improving from 2018-2019
onward, and soybean yields showing steady growth
since 2015-2016. Here too, XGBoost consistently of-
fered more reliable and generalized predictions, while
Random Forest was prone to underestimation and
inter-annual variability. Owverall, both models per-
formed well, but XGBoost demonstrated greater ac-
curacy and stability, making it more suitable for long-
term crop forecasting.

5. CONCLUSIONS

This study evaluated crop production and yield
prediction for sugarcane, maize, and soybean in Ma-
harashtra between 2015 and 2023 using ensemble
learning models. By integrating remote sensing in-
dices with historical data, the performance of Ran-
dom Forest (RF) and Extreme Gradient Boosting
(XGBoost) was analyzed. The models effectively cap-
tured production and yield trends: sugarcane pro-
duction exceeded 2.5 lakh tonnes after 2019-2020
with yield rising post-2020-2021, maize production
crossed 40,000 tonnes with yield improvements from
2018-2019, and soybean showed consistent growth
since 2015-2016. These results highlight the ability of
ML models to capture long-term crop dynamics and
variability.

In terms of accuracy, both RF and XGBoost
achieved strong performance, with RF capturing lo-
cal fluctuations (R? > 0.90 across crops) but some-
times underestimating yield. XGBoost consistently
delivered smoother and more robust estimates, with
maize yield prediction achieving R? = 0.95 compared
to 0.92 for RF, and soybean production reaching
0.94 compared to 0.91. Seasonal crop-wise analysis
further confirmed that XGBoost performed best for
both kharif crops like soybean and maize, and rabi
crops such as wheat and pulses, demonstrating its
adaptability across diverse seasonal conditions. RF,
though effective in short-term variability, was less sta-
ble across seasons.

The feature combination analysis presented in Ta-
ble 5 highlighted that optimal vegetation index com-
binations significantly enhance prediction accuracy.
NDVI+SAVI and NDVI4+MSAVI performed best for
dense-canopy crops such as maize, rice, and wheat,
whereas soil-adjusted indices like SAVI and MSAVI
were more effective for rainfed crops including tur, ba-
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jra, jowar, and pulses primarily during early growth
stages. Seasonal, crop-wise results in Table 5 further
reinforced these findings, demonstrating that index
selection tailored to crop type and growth stage plays
a critical role in improving model accuracy. Overall,
the study concludes that while both models are valu-
able, XGBoost combined with tailored feature selec-
tion (as evidenced in Table 5) provides the most reli-
able framework for precision agriculture, supporting
sustainable resource planning and climate resilient
crop forecasting.

Future research should focus on improving data
quality through advanced preprocessing techniques,
multi-source satellite integration, and region-specific
modeling for underperforming crop district combina-
tions. Model performance can be enhanced using
hyperparameter tuning, hybrid ensembles, and scal-
able algorithms such as LightGBM and CatBoost.
To improve usability, explainable AT techniques (e.g.,
SHAP, LIME) will be applied, with results delivered
through farmer-friendly dashboards and mobile apps.
Additionally, lightweight, cloud-enabled, and offline-
compatible tools should be developed to ensure acces-
sibility in rural areas, while integrating pest dynam-
ics, irrigation factors, and socio-economic variables
under secure data management practices to enhance
prediction reliability.
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