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ABSTRACT Article information:
The rise of non-fungible tokens (NFTs) has increased the risk of fraud and
market manipulation. This study introduces a method for detecting wash
trading in the NFT marketplace using Graph Neural Networks (GNNs)
applied to Ethereum blockchain transaction data. We constructed a het-
erogeneous graph, used Depth-First Search for labelling, and extracted
graph features, including PageRank and degree centrality. We evaluate
various classi�cation models: Multilayer Perceptron (MLP), Graph Convo-
lutional Neural Network (GCN), and Heterogeneous Graph Convolutional
Neural Network (HeteroGCN). The results show that GNN models, par-
ticularly the feature-enhanced HeteroGCN, exhibit superior performance
compared to featureless models and traditional tabular baselines. The key
contribution of this study is that PageRank and Degree Centrality features
signi�cantly improve the accuracy of identifying transactions involved in
market manipulation.
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1. INTRODUCTION

The use of non-fungible tokens (NFTs) as
blockchain-based proof of ownership for digital assets
is growing in popularity. NFTs allow creative con-
tent providers to generate money outside established
commercial structures. Meanwhile, the public views
NFTs as an alternative investment, expecting their
value to rise in the future.

Despite their growing popularity, concerns persist
about the high levels of speculation and fraud in NFT
trading and investing [1]. The implementation of
blockchain technology, such as cryptocurrencies and
NFTs, can facilitate money laundering and terrorist
�nancing [2] and reduce the tra�cking of illegal drugs
[3]. Trading in the Bitcoin and NFT markets also car-
ries the risk of becoming involved in pump-and-dump
operations [4], [5] and Ponzi schemes [6], [7].

Following a series of viral events, such as Ghozali
Everyday, in which a young man sold hundreds of
collections of daily sel�e photographs captured over
the last �ve years as NFTs, cryptocurrency and NFT
fever spread throughout Indonesia [8]. People have
since begun to battle for their digital assets across
several NFT-speci�c marketplaces, despite a still-low
level of public understanding of NFTs [9].

Some public �gures pro�t from token and coin sales
due to a lack of public knowledge about NFTs and
crypto [10]. Because of their social media celebrity
status, they were able to swiftly sell tokens to the
public despite lacking any strategy that the public
could actually use. Celebrity token sales typically rely
on the fear of missing out (FOMO) hype from fans,
using pump-and-dump tactics. As a result, several
of these coins saw their prices plummet compared to
when the tokens were issued [11]. The declining val-
ues of these tokens have resulted in signi�cant losses
for those who have already purchased them.

This study aims to provide an alternative tech-
nique for detecting NFT market manipulation us-
ing wash-trading schemes. Wash trading is a ma-
nipulation strategy in which investment products are
bought and sold without any actual transfer of own-
ership [12]. This method is frequently used in pump-
and-dump schemes to arti�cially in�ate the price of
an asset. As no unlawful acts are conducted, such as
disseminating �nancial hoaxes or mass raising to tar-
get speci�c e�ects, as in the GameStop short squeeze
[13], manipulation using wash trading techniques is
considerably more challenging to identify. Traders
execute wash trades through legitimate trading activ-
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ities. By designing a specific sequence of buying and
selling actions, manipulators can perform transac-
tions as desired [14]. Before implementing the wash-
trading scheme, the manipulators agreed to form a
network to facilitate transactions. Therefore, identi-
fying such colluding networks is the most critical step
in detecting wash trading activities [15].

Another difficulty is that real-world data, such
as the datasets used in this study, may contain a
high degree of dimensions. On the one hand, high-
dimensional data can reveal a wealth of information.
However, the high dimensionality of the data intro-
duces significant redundancy and noise [16]. Dimen-
sionality reduction can improve classification accu-
racy, minimise redundancy and noise, and simplify
the learning methods. Some dimensionality reduc-
tion techniques used include feature extraction and
selection methods [17]. In practice, identifying and
acquiring features is not easy.

Furthermore, the dataset used in this study con-
sisted of historical transaction data. The most criti-
cal data elements in the dataset are seller accounts,
buyer accounts, transaction values, and the NFT ob-
jects transacted. The data lack any attributes that
would help identify market manipulation, as they are
too general and nonspecific. The dataset cannot yet
be used as input for detecting market manipulation
because the required fraud-detection attributes are
not available. Consequently, an additional feature
engineering process is needed to perform transaction
categorisation.

The feature engineering process requires special
measures to isolate relevant features and separate
them from the irrelevant features. In the graph-
formatted NFT dataset, selecting appropriate fea-
tures can be achieved by applying graph algorithms,
such as community detection and centrality measures.
Therefore, in this study, we propose a method for de-
tecting manipulation in the NFT market using a GNN
with labelled data stored in the form of graphs.

Data labelling, performed independently, requires
verification against the processed data labels. The
features extracted from the labelled dataset are then
grouped into node-, edge-, and graph-based features.
Thus, the autoencoder helps isolate and ignore ir-
relevant features. In the last step, a Graph Neural
Network is used to classify accounts and addresses as
fraudulent or non-fraudulent based on their transac-
tion history.

This study makes the following three primary con-
tributions to the field of NFT market manipulation
detection.

• Validate the HeteroGCN model’s superior per-
formance for classifying manipulation within
graphically represented NFT data.

• Establish an objective DFS closed-loop detec-
tion method to create verifiable ground truth
for fraudulent transactions.

• Identify key graph features that are essential
for accurately predicting wash trading activity.

2. LITERATURE REVIEW

2.1 Market manipulation

Market manipulation is identical to the price ma-
nipulation of exchanged items [18]. This manipula-
tion is not a new problem; it has existed for decades
and will continue to do so. A purposeful attempt to
steer the market price of an asset from its fair price
is called price manipulation. Market manipulation is
usually carried out to profit financially.

Various manipulation methods may affect an as-
set’s market price [19].

1. Action-based manipulation. Manipulators
misuse assets to manipulate their values.

2. Information-based manipulation: This method
involves spreading incorrect or misleading in-
formation to move prices in the intended di-
rection.

3. Trade-based manipulation. Individuals buy
or sell a particular number of assets with the
hope that prices will move in the desired direc-
tion because of their understanding of asym-
metric information, the trading process, or in-
ventory costs.

All three manipulation methods occurred in the
commodity markets. Historically, the most signifi-
cant type of manipulation has been market power ma-
nipulation (MPM), also known as action-based ma-
nipulation.

In a conventional financial system, a single cen-
tralised authority, such as banks and stock exchanges,
can supervise all transactions. Such supervision is
proper for monitoring, for example, whether a cus-
tomer opens a new account or whether a large num-
ber of transactions occur [12]. However, this kind of
supervision does not exist in a decentralised financial
system, so everyone is free to open a new account (or
wallet) and make large numbers of transactions with-
out third-party oversight. The vulnerability of the de-
centralised financial system to misuse for illegal activ-
ities is an issue. However, anyone can easily view all
transaction details stored on the blockchain network
due to the technology’s transparency. An increas-
ing number of people are conducting transactions in-
volving cryptocurrencies or NFTs on blockchain net-
works, making the detection of illegal activities diffi-
cult and time-consuming.

Several studies have examined various modes of
fraud and scams in cryptocurrency and NFT trading
markets. These modes include pump-and-dump [4],
[20], phishing [21], wash trading [22], Ponzi schemes
[23], and money laundering [24].

Wash trading is the market manipulation scheme
that the study focuses on. According to the US Secu-
rities and Exchange Commission (SEC), wash trad-
ing is a securities transaction that does not involve a
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change in the ownership benefits of the securities in
question [12]. Individuals involved in this scheme con-
duct transactions without any actual asset transfers.
The purpose of the action is to create an illusion that
traders are trading assets so that ordinary investors
are interested in buying them. This scheme is often
part of a pump-and-dump scheme.

2.2 Fraud/anomaly detection

Anomaly detection is the process of identifying
patterns in data that do not conform to expected
behaviour [25]. Anomaly detection aims to identify
unexpected and rare events. Since these rare events
or entities deviate from standard behaviour and pat-
terns, they stand out as anomalies. In data, anoma-
lies often appear as deviations from the mean (stan-
dard deviations), outliers, noise, novelties, or excep-
tions. Anomaly detection is based on two assump-
tions [26]: first, anomalies appear very rarely in the
data; second, the characteristics of the data with
anomalies are significantly different from those of the
other data.

Anomaly detection plays a vital role in several
fields, including market manipulation [27]. The grow-
ing complexity of the problem, with unique chal-
lenges, requires new, more advanced approaches to
anomaly detection.

Several studies identifying market manipulation
have presented strategies to detect such actions, par-
ticularly wash trading, using various methods. [14]
employed graph analysis in conjunction with dynamic
programming to identify possible wash trading activi-
ties. Graph analysis maps the structure of the traders
involved. A new method identifies wash trades in fi-
nancial instruments traded on NASDAQ and the Lon-
don Stock Exchange by detecting suspicious match-
ing orders and collusive behaviour among traders who
submitted them. Both steps use a dynamic program-
ming approach. A separate study found that wash
trading activities have various transaction topologies,
including ring, star, tree, and mesh topologies [15].

Furthermore, several studies have corroborated
that transaction patterns in wash trading activi-
ties resemble ring topologies or closed loops [28].
Closed loops in manipulation may be closed-loop to-
ken trades or closed-loop value trades. Using the
Depth-First Search (DFS) algorithm on the transac-
tion graph, graph analysis can identify wash trade
activities that generate closed-loop token trades [29].

In recent years, machine/deep learning has
emerged as a promising method for detecting anoma-
lies, particularly for market manipulation [30]. Ma-
chine learning algorithms were commonly used
in these studies [31], [32] to create transaction-
classification models. In some studies, data graphs
have been combined with deep learning to analyse
transactions and detect anomalies [24], [33]–[37].

2.3 Graph Neural Network

Connectivity is the most prevalent feature of cur-
rent networks and systems worldwide. Networks of
any complexity — from molecular interactions to so-
cial networks, communication systems to power grids,
and shopping experiences to supply chains — are
not random, indicating that connections are neither
equally distributed nor static. Simple statistical anal-
ysis alone cannot adequately describe the behaviour
of interconnected systems, let alone make accurate
predictions [38]. A network or graph is a data struc-
ture representing a collection of objects (nodes) and
their relationships (edges) [39]. Data modelling using
graphs is an ideal technique for analysing data stored
in blockchains, given their connected structure.

A Graph Neural Network is a neural network tech-
nique that processes data in graph form [40]. Graphs
are essential data structures because they can rep-
resent real-world problems for easy analysis. Exam-
ples of graph implementations help solve real-world
problems, such as those in social networks, geographic
maps, and web page links.

A Graph Neural Network is a method that has re-
cently been implemented in several studies [41]. This
method is based on deep learning and operates on
graph-structured data. Owing to its ability to pro-
cess graphs, a Graph Neural Network is widely used
in research on anomalies and fraud detection using
network data [21], [37].

Several studies have used Graph Neural Networks
to detect scams and fraud in blockchain-based digi-
tal asset trading. However, these studies still focus
on detecting scams or fraud in transactions in the
cryptocurrency market [5], [36], [42]. Therefore, this
study aims to fill this gap.

3. DATA AND METHOD

The dataset used in this study comprises histori-
cal data on NFT buying and selling transactions from
April 1 to September 25, 2021. In total, the dataset
contains 15 tables, and the transfer Table, which
serves as the input to the classification model, con-
tains 4,514,729 transactions. The dataset comprises
unlabeled data retrieved directly from the Ethereum
blockchain network. Therefore, data labelling was
one of the main processes performed in this study.
The process of labelling data involves implementing
a graph algorithm, namely Depth-First Search, to de-
tect a cycle or closed loop in a series of buying and
selling transactions for an NFT object.

Before the data labelling process, the historical
data must be grouped by each NFT object’s transac-
tions, which are then represented as graphs generated
via graph data modelling. The flowchart of the study
is shown in Figure 1.
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Fig.1: Research methodology.

3.1 Data Labelling

The graph representation of the labelling process is
a homogeneous graph with one node type (accounts)
and one edge type (transactions). In addition to the
labelling process, graph representation extracts rele-
vant features for inclusion in the model.

Figure 2 shows a Neo4j application that displays
a homogeneous graph schema. The transaction data
per NFT object taken to be labelled are those for
objects with at least seven trading activities on the
related object, because this is the minimum number
of wash-trading patterns that can be observed [15].
The criterion yielded 7,351 NFT objects with at least
seven and up to 272 buying and selling transactions
for each item.

Fig.2: Graph scheme for the data labelling process.

According to several studies [28], [29], closed-loop
transaction patterns can identify wash trading op-
erations. Specific algorithms can quickly identify
these patterns in data represented as graphs [29].
Consequently, this study examined graph-modelled
NFT transaction data. Graph modelling is an excel-
lent tool for representing data structures linked in a
blockchain network [43]. A large-scale graph model
was used as input to a neural network, a graph neural
network (GNN), for classification.

However, the absence of a dataset containing NFT
transaction data flagged as fraudulent hinders our in-
vestigation. Nevertheless, existing market manipula-
tion studies [15], [29] provided strategies for identify-

ing transaction patterns that suggest fraud. There-
fore, a data labelling process is performed on exist-
ing datasets by detecting a closed cycle/ring topology
pattern that indicates wash trading activity [15], [29]
using the Depth-First Search (DFS) algorithm.

The data labelling process follows the graph anal-
ysis method used to detect suspicious transactions in
NFT trading [29], namely, checking for closed loops
in a series of transactions for each NFT. A closed
loop occurs when an NFT changes ownership multiple
times through a series of buying and selling actions,
eventually returning to the original owner’s hands.
According to the study, a closed-loop transaction in-
dicating fraud occurs when it occurs within 12 hours.

Further data processing shows that the prices of
NFT objects in transactions labelled as fraud form
a pattern that does not fully follow Benford’s Law.
Benford’s Law, also known as the first-digit Law (or
Law of anomalous numbers), states that in an ob-
servation, number 1 as the first digit of a number
should appear in at least 30% of the observations,
and consecutively until number 9 appears at least, or
approximately 5% [44]. According to this Law, if a
quantitative number observation does not follow this
pattern, it indicates an anomaly or fraud within the
data.

Fig.3: Distribution of leading digits according to
Benford’s Law.

An example of a suspected market manipulation
transaction is shown in Figure 4. This indication
of market manipulation is evident across two main
clusters: the upper cluster, centred on an address
such as 0×9428E, shows complex, circular, and fre-
quent transfers between multiple wallets to inflate ap-
parent trading volume artificially. Concurrently, the
lower cluster, particularly the dense network between
0×5b411 and 0xA7311, exhibits an extreme concen-
tration of “TRANSFERRED TO” arrows, demon-
strating that the NFT was rapidly transferred back
and forth multiple times within a short period. This
combined activity serves to manipulate an asset’s per-
ceived value and price data by fabricating a false
record of legitimate sales, ultimately constituting a
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Fig.4: The transaction pattern of an NFT object from the dataset is indicated as fraud.

deceptive market practice.
The data labelling process identified 36,177 trans-

actions suspected of being part of market manipula-
tion. This number is insignificant compared to the
total number of transactions in the dataset, repre-
senting only 0.08%. A sampling strategy can over-
come this imbalance. The B sampling strategy can
balance the classes in the classification model. Two
sampling strategies can address imbalances: oversam-
pling to increase the number of minority classes rel-
ative to the majority, and undersampling to reduce
the number of majority classes relative to minorities.

The sampling strategy in this study used oversam-
pling and undersampling to balance the data between
the two classes. We executed the test with three ratio
scenarios: 0.2, 0.4, and 0.6. The ratio is the propor-
tion of new data in each class relative to the total
amount of data. A ratio of 0.4 means that the fraud
and non-fraud classes account for 40% of the initial
data.

Table 1: Number of entities in each sampling strat-
egy scenario.

0,2 0,4 0,6
Account 659.916 809.108 899.054
NFT 1.970.860 3.337.490 4.353.536
Transaction 1.791.420 3.582.840 5.374.262

Table 1 lists the number of entities in each node
type for each sampling strategy ratio scenario.

3.2 Graph Feature Engineering

The next step after labelling the data was to ex-
tract the relevant features. The process of extracting
this feature involves three graph algorithms to de-
termine the properties of the graph representation:
PageRank, degree centrality, and greedy modularity

communities.

3.3 PageRank Algorithm

The PageRank algorithm is used in one of the net-
work properties, link analysis, to determine the node
attributes. According to its original premise, the
PageRank algorithm helps determine a webpage’s rel-
evance by counting the number of links pointing to
it from other pages [45]. The greater the number of
links that point to a webpage, the more critical the
webpage is; hence, the higher its PageRank score. In
general, the PageRank algorithm is calculated using
the following equation:

PR(u) =
∑

v∈Bu

PR(v)

L(v)
(1)

Where PR(u) is the PageRank score of page u, which
is calculated as the sum of the PageRank values of
page v (pages that point to page u) divided by the
number of links from those coming from page v. The
starting value of the PageRank is determined pro-
portionally based on the initial number of web pages
counted.

In the context of market manipulation, a party en-
gaging in wash trading typically comprises several
individuals who frequently design buying and sell-
ing transactions to create the illusion of spontaneous
transactions. As a result, several transactions led
to these individuals. Consequently, these individu-
als typically have better PageRank scores than other
accounts. However, high-scoring accounts are not al-
ways involved in market manipulation.

3.4 Degree Centrality Algorithm

In a graph network, the Degree Centrality algo-
rithm measures the total number of links pointing
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directly to a node [46]. In other words, a degree is
a measure of the risk that a node will incur because
of its connection to other nodes. The degree central-
ity score of a vertex or node of a graph G := (V,E),
where |V | is the number of vertices and |E| represents
the edges, is calculated as follows:

CD(v) = deg(v) (2)

In the wash trading context, the entity that de-
vises the wash trading plan is usually at the heart of
the engineered transactions. As a result, these indi-
viduals typically have a higher degree centrality score
than other accounts.

3.5 Greedy Modularity Algorithm

The last algorithm used was Greedy Modular-
ity Communities. This algorithm can help identify
a crucial property of a graph: communities. The
greedy modularity community algorithm, commonly
known as the Girvan-Newman algorithm, partitions
a graph’s nodes into communities [47]. In the con-
text of market manipulation, this algorithm groups
accounts that collude to create engineered transac-
tions. Because these accounts work together to en-
gineer transactions, when the data are modeled as a
graph, the algorithm classifies the accounts into the
same community.

3.6 Graph Data Modeling

Another graph representation was created after
labeling the data and extracting features as inputs
for testing the Graph Neural Network classification
model. The graph representation is based on the
same data as the preceding graph; however, it is het-
erogeneous, meaning it has multiple node and edge
types. A schematic representation of this graph is
shown in Figure 3.

Fig.5: Graph scheme for the classification model
input.

All transaction rows are converted into graph
nodes to create the transaction nodes. Account
nodes are produced by merging account data from
the address and to address columns, which are then
combined to provide unique account data after the

removal of duplicate data. Meanwhile, NFT nodes
are constructed by querying all transaction rows and
grouping them by nft address and token id. This
graph representation contains 4,514,729 transaction
nodes, 509,577 account nodes, and 2,860,215 NFT
nodes in total.

3.7 Model Training and Testing

This study includes two main test scenarios: test-
ing a model with a graph representation that already
includes algorithm scores, and evaluating a model
without these features. Three deep learning mod-
els were used to test these two scenarios: Multilayer
Perceptron (MLP), Graph Convolutional Neural Net-
work (GCN), and heterogeneous Graph Neural Net-
work (HeteroGCN).

3.8 Hyperparameters Tuning

Several factors, including the sampling technique,
learning rate, dropout, and weight decay, were exam-
ined during hyperparameter tuning. To counteract
uneven data, the sampling approach employed over-
and undersampling. The learning rate is a hyper-
parameter that controls how quickly the model up-
dates its weights based on its predictions and the
data it trains on. Dropout is a strategy for improv-
ing model accuracy. This hyperparameter prevents
potential overfitting by deactivating a small percent-
age of hidden units during training. Weight decay is
another hyperparameter that can help reduce over-
fitting. The sampling method is a hyperparameter
tested across all models; however, the learning rate
and weight decay are tested only on the MLP and
Heterogeneous GCN models, and dropout is tested
only on GCN models.

Table 2: Candidates of hyperparameters to be tested
in model testing; bold values are default values.

Hyperparameters Candidates
Sampling strategy ratio [0.2, 0.4, 0.6]
Learning rate [0.01, 0.05, 0.10]
Dropout [0.25, 0.5, 0.75]
Weight decay [0.0005, 0.001, 0.005]

3.9 Cross-validation

The validation process must employ a statisti-
cal method to estimate the model’s predictive abil-
ity. Each training/testing process performed by the
model in this study was validated using k-fold cross-
validation. The approach randomises the data before
dividing them into k equal halves, with k = 10. The
initial iteration used nine parts of the data for train-
ing and 1 part for testing. The following iteration
used nine different parts for training and one for test-
ing.
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4. RESULTS AND DISCUSSION

The results of the sampling strategy test using the
HeteroGCN model with the three predetermined sce-
narios were identical, as shown in Table 2. Therefore,
given the time, memory, and computational resources
required for model testing, a sampling ratio of 0.2 was
selected to address data imbalance.

Table 3: Sampling strategy test results.
Sampling F1 Accuracy Recall Precision
strategy Score
Ratio 0.2 0,994 0,994 0,997 0,990
Ratio 0.4 0,994 0,994 0,997 0,990
Ratio 0.6 0,994 0,994 0,997 0,990

With three models and two scenarios tested, six
experiments were conducted: the MLP model with-
out features (MLP-NF), GCN model without features
(GCN-NF), HGCN model without features (HGCN-
NF), MLP model with features (MLP-F), GCN model
with features (GCN-F), and HGCN model with fea-
tures (HGCN-F). Each tested model underwent vali-
dation using K-fold cross-validation.

Table 4: Test result metrics summary.
Model F1 Accuracy Recall Precision
scenarios Score
MLP-NF 0,0 0,5 0,0 0,0
MLP-F 0,992 0,992 0,994 0,990
GCN-NF 0,0 0,5 0,0 0,0
GCN-F 0,974 0,974 0,970 0,977
HGCN-NF 0,0 0,5 0,0 0,0
HGCN-F 0,994 0,994 0,997 0,990

There is a stark contrast between the models that
include scores calculated by the graph algorithm (as
shown in Tables 3 and 4), because models without
these additional features cannot minimise the loss
function to its minimum, as shown in Figure 6. Fig-
ure 6 shows a critical finding regarding the models
trained without additional graph-based features. The
loss functions for all three models (MLP, GCN, and
HeteroGCN) stagnate at approximately 0.69 after an
initial small drop. This plateau indicates that the
models failed to learn meaningful patterns from the
data because they were unable to minimise their pre-
diction errors during training.

This failure to learn directly results in poor perfor-
mance, as illustrated by the ROC curve in Figure 7.
The ROC curve for the MLP model without features
is a straight diagonal line, indicating a classifier with
no predictive power —equivalent to random guessing
(AUC = 0.5). This visually confirms the quantita-
tive results in Table 4, where the models without fea-
tures (MLP-NF, GCN-NF, HGCN-NF) achieved ac-
curacies of only 0.5 and F1-scores of 0.0. In stark con-
trast, the models enhanced with additional features
achieved near-perfect classification, highlighting the
importance of these features for the model’s success.

Fig.6: Loss function calculation results of each it-
eration for models with no extra features.

Fig.7: ROC curve of the MLP model with no extra
features.

The difference in performance between models
with and without additional features was also evi-
dent in the confusion matrix. A confusion matrix
was used to assess classification quality, recording
both true and false instances for each class [48]. In
this study, models lacking additional features failed
to group samples within each class.

Fig.8: ROC curve of the MLP model with extra
features.

The area under the ROC curve in Figure 7 (0.5),
indicating that it is no better than a random classifier,
corresponds to the findings of the confusion matrix for
models without these additional features.
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In stark contrast to the model performance with-
out additional features, Figure 8 shows the ROC
curve for the MLP model enhanced with these fea-
tures. The curve demonstrates near-perfect classifi-
cation, as it rises vertically to a True Positive Rate of
1.0 while maintaining a False Positive Rate of 0.0.

This ideal shape, which occupies the top-left corner
of the plot, corresponds to an Area Under the Curve
(AUC) of 1.0, which is the maximum possible score.
This confirmed that the model was highly discrimina-
tive and effective. This outstanding performance is a
direct result of incorporating extra features, which en-
abled the model to learn the underlying data patterns
successfully, as further quantified by the high preci-
sion and recall values shown in the confusion matrix
in Table 5.

Table 5: Confusion matrix test results of models
that do not have additional features (top) and that
have extra features (bottom).

Prediction + Prediction -
Actual + 895.710 0 895.710
Actual - 895.710 0 895.710

1.791.420 0 1.791.420
Prediction + Prediction -

Actual + 887.353 8.357 895.710
Actual - 2.220 893.490 895.710

889.573 901.847 1.791.420

Another example is the performance of models
with additional features. In this scenario (Table 5),
the model correctly predicted the classes in 887,353
samples from one class out of 895,710 (99% accuracy)
and in 893,490 samples from the other classes (99.7%
accuracy). This explains why the ROC curves of the
models with the added perfect classification charac-
teristic were prominent (Figure 6).

The model developed in this study significantly
reduces the risks for all parties involved. For in-
vestors, the system minimises the risk of undetected
False Negatives (FN) fraud, preventing manipulators
from artificially inflating NFT prices through wash
trading and subsequent dumping, thereby protecting
investors from financial losses. For regulators, this
low FN rate means fewer instances of illegal market
manipulation go unpunished, thereby upholding mar-
ket integrity. Crucially, the model also shows an ex-
tremely low False Positive (FP) rate, resulting in a
high precision score. This low FP rate is essential for
marketplaces and legitimate users, as it prevents the
system from incorrectly flagging or freezing honest
trading accounts, thereby preserving the user expe-
rience and the platform’s reputation. Overall, the
model is exact and successfully captures nearly all
actual fraud cases, prioritising the reduction of risks
associated with undetected manipulation.

To compensate for the data imbalance, these mod-
els were tested using over- and undersampling. The

Table 6: Report on classification based on the Ran-
dom Forest algorithm.

Precision Recall F1-score Support
Non-fraud 0,98 0,98 0,98 358.585
Fraud 0,98 0,98 0,98 357.983

Accuracy 0,98 716.568
Macro avg 0,98 0,98 0,98 716.568
Weighted 0,98 0,98 0,98 716.568
avg
Train accuracy 0,999
Test accuracy 0,981

classification models examined in this stage used
graph algorithm scores as inputs.

Table 7: Report on classification based on a model
that employs the Decision Tree algorithm.

Precision Recall F1-score Support
Non-fraud 0,98 0,98 0,98 895.600
Fraud 0,98 0,98 0,98 895.821

Accuracy 0,98 1.791.421
Macro avg 0,98 0,98 0,98 1.791.421
Weighted 0,98 0,98 0,98 1.791.421
avg
Train accuracy 0,999
Test accuracy 0,978

Table 6 shows the classification report after apply-
ing the Random Forest technique to evaluate the clas-
sification model. The categorisation model achieved
98% accuracy according to the test results.

Table 8: Report on classification based on the K-
Nearest Neighbour algorithm.

Precision Recall F1-score Support
Non-fraud 0,97 0,94 0,96 357.951
Fraud 0,94 0,97 0,96 358.617

Accuracy 0,96 716.568
Macro avg 0,96 0,96 0,96 716.568
Weighted 0,96 0,96 0,96 716.568
avg
Train accuracy 0,969
Test accuracy 0,956

Meanwhile, Table 7 shows that the classification
model utilising the Decision Tree approach achieved
an accuracy of 97,8%. In contrast, Table 8 shows that
the classification model using the K-Nearest Neigh-
bour technique attained an accuracy of 95,6%.

The classification report indicates that deep
learning-based models outperform machine learning-
based models. However, these advantages are
marginal because the accuracy scores of each model
varied only slightly. This observation was corrobo-
rated by the overlay of the ROC curve of each model
(Figure 9).
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Fig.9: ROC curves of each model based on machine
learning and deep learning.

The area under the precision (AUPR) curve exhib-
ited the same pattern. The AUPR curve, similar to
the ROC curve, measures model performance. This
curve combines precision and recall on the Y- and
X-axes, respectively. The higher the curve on the Y-
axis, the better the performance of the model.

A more detailed summary of the metrics for com-
paring classification model groups based on machine
learning and deep learning is shown in Figure 9.

Figure 11 shows that the HeteroGCN model out-
performed the categorisation models. The model
achieved an F1 Score of 0.994, an accuracy score of
0.994, a recall score of 0.997, and a precision score of
0.99.

The MLP model was the second-best performer,
with an F1 score of 0.992, accuracy of 0.992, recall of
0.994, and precision of 0.990. Notably, GCN models
perform poorly even when compared with machine-
learning-based classification models. This may be be-
cause the GCN model is a Graph Neural Network
that takes homogeneous graphs as input, whereas this
study uses heterogeneous graphs.

Furthermore, the HeteroGCN model was used to
identify which features significantly affected the clas-
sification performance of the grouping model for
fraudulent and non-fraudulent transactions. Six sce-
narios were prepared for testing.

Fig.10: The PR curve compares each recall score
threshold to the average precision score.

Fig.11: Comparison chart between accuracy, F1
score, recall, and precision values for each machine
learning and deep learning-based classification model.

• A model with Degree Centrality (DC) algorithm
score features only,

• A model with PageRank algorithm score fea-
tures only (PR),

• A model with the Greedy Modularity Commu-
nities algorithm score features only (GMC),

• A model with PageRank and Greedy Modular-
ity Communities algorithm score features (PR-
GMC),

• A model with PageRank and Degree Centrality
algorithm score features (PR-DC),

• A model with degree centrality and greedy
modularity community algorithm score features
(DC-GMC).
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The test results of each scenario are summarised
in Table 9

Table 9: Summary of metrics on backtesting for
feature significance.
Scenario Accuracy F1 Recall Precision

Score
DC 0,994 0,994 0,997 0,990
PR 0,992 0,992 0,994 0,991
GMC 0,5 0,0 0,0 0,0
PR-GMC 0,992 0,992 0,993 0,990
PR-DC 0,994 0,994 0,997 0,990
GMC-DC 0,994 0,994 0,997 0,990

Table 9 summarises metrics indicating that feature
pair combinations perform well at predicting trans-
action classes. When testing the model with features
as single scores from each algorithm, models with De-
gree Centrality and PageRank algorithm scores pre-
dicted transaction classification well, whereas models
with greedy modularity community algorithm scores
did not. Graph metrics, specifically PageRank (PR)
and Degree Centrality (DC), are effective for identify-
ing accounts involved in wash trading, as central ma-
nipulator accounts accumulate high scores through
orchestrated circular transactions and numerous in-
teractions with dummy wallets. In contrast, the
Greedy Modularity Communities (GMC) algorithm
performed poorly as a standalone feature, resulting
in a model accuracy of 0.5 and an F1 score of 0.0.
The decentralized, unregulated nature of account cre-
ation on blockchain platforms directly causes this de-
ficiency, as it allows manipulators to create an exces-
sive number of controlled addresses. This spreading
out of shell accounts hides the actual network struc-
ture, preventing the GMC algorithm from reliably
distinguishing between legitimate trading communi-
ties and artificial clusters formed by a single colluding
entity executing ring topology transactions.

The poor model performance with the GMC al-
gorithm score characteristics suggests that commu-
nity attributes in a graph of buyer/seller accounts
that transact NFTs do not play a role in assessing
whether a transaction is fraudulent. This lack of dis-
tinction is possible because the model cannot distin-
guish between accounts that conspire to manipulate
NFT transactions and those that engage in legitimate
NFT transactions. Because there are no constraints
on this in a blockchain network, a person or group
can create an unlimited number of accounts to mask
their identities.

5. CONCLUSION

This study demonstrates how to use a graph-
modelled dataset to build a classification model that
predicts market manipulation behaviour in NFT
transactions. Wash trading —the act of purchasing
and selling NFTs manufactured by a person or group

Fig.12: ROC (top) and PR (bottom) curves from
model testing on several feature scenarios.

to give the impression that a digital asset has a high
selling value —is the NFT market manipulation ac-
tivity on which this study focuses.

This study further shows that adding characteris-
tics to the input data, in the form of scores from the
computation of several graph algorithms, can signifi-
cantly enhance model performance. The test results
suggest that the PageRank and Degree Centrality al-
gorithms improved the classification model’s predic-
tive performance.

Furthermore, the detection system has significant
regulatory implications, as its ability to identify sus-
picious, highly interconnected accounts helps finan-
cial institutions and regulatory bodies meet Anti-
Money Laundering (AML) requirements by targeting
wallets involved in schemes that create the illusion of
active market volume. To fully confirm the generality
and robustness of the Graph Neural Network (GNN)
methodology, future work must focus on two key ar-
eas. First, the detection model must be extended to
assets on multiple blockchain networks to validate its
performance across diverse environments. Second, it
is crucial to validate the model using extended time
ranges of transaction data to mitigate temporal bias,
a significant challenge in the continuous detection of
crypto fraud.
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