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ABSTRACT Article information:
Water is an incredibly valuable resource on our earth; however, it could
have threatened if not managed. The agriculture has the highest necessity
for strategies to minimize water usage. Agriculture industry is implement-
ing contemporary farming methods, and farmers are using cutting-edge
digital innovations that are modernize decision-making and pro�tability in
agriculture. Numerous sectors have experienced the e�ective use of deep
learning (DL) in the decision-making. There is impetus to use it in other
signi�cant �elds like agriculture. Estimating yields is essential for manag-
ing crops, water planning, ensuring food safety, and determining how much
work will be needed for the cultivation and storing of crops like wheat. Pre-
dicting wheat crop yield has the potential to diminish energy use like drop
in water consumption. In this study, a deep reinforcement learning (DRL)
model is implemented to forecast wheat crop yield by monitoring the en-
vironment via a DRL agent. Two bidirectional long short-term memory
(BiLSTM) models are applied as the DRL agent for exploring the environ-
ment. One forecasts the water content in the land and other one was active
to calculate the yield considering climate data, growth stage, growing de-
gree days (GD), canopy cover (CC), standard evapotranspiration (ETo),
irrigation level and water content in soil. The agent was trained to plan
watering for a wheat crop, considering a place in Maharashtra, India. DRL
agent provides a schedule identifying irrigation levels. The irrigation level
is incorporated into the time required to water the area, facilitating the
farmer to manage it more easily. The performance of the proposed model
was compared to a �xed base irrigation system. Water use decreased by
35% and wheat crop output increased by 5% when the trained model was
compared to the �xed technique.
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1. INTRODUCTION

The economies of many nations are signi�cantly
in�uenced by agricultural industries. Because of this,
technical developments in the agriculture sector are
seen as having a signi�cant positive impact on the
environment and economic growth. Smart technol-
ogy in farming �elds has enabled farmers to properly
monitor their land and take the required actions to
maintain yield. In order to promote agricultural prac-
tices and improve world food safety, Sowmiya et al.
[1] developed trustworthy automated disease identi�-
cation systems. The number of innovative techniques

and innovations [2], [3] have been investigated and
put into practice to encourage ongoing development
in the agricultural industry. Agriculture is the pri-
mary consumer of freshwater, making it both a source
and a victim of water shortage. Therefore, increasing
agricultural water productivity is crucial to address-
ing global water scarcity and tackling the issues of
insu�cient food supply. The environment variation
has garnered signi�cant interest from research schol-
ars and governments across the globe. Water sup-
plies are becoming increasingly challenged around the
world as a result of population growth, socioeconomic
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ture. Around 90 percent of the water worldwide is
used for agricultural irrigation [4]. The prediction of
future irrigation water demands while taking global
warming into consideration is critical for managing lo-
cal water resources and ensuring safe access to water.
Considering these hurdles, water conservation irriga-
tion and effective management of water resources are
essential for farming.

India continues to closely follow China, maintain-
ing its position as the world’s second-largest source of
wheat [5]. Currently, a large number of authors have
evaluated the cultivation process to predict the wheat
crop yield in conjunction with advanced technology.
Many researchers have recently focused on using ar-
tificial intelligence to identify and locate the spikes
and spikelets in wheat plants. Colour component se-
lection and image analysis approaches, together with
deep learning (DL), were presented to identify and
quantify wheat spikelets in colour photographs. Con-
volution neural network (CNN) successfully estimates
the quantity of wheat spikelets, which adds to un-
derstanding of wheat spike development features [6].
Alkhudaydi and De La lglesia [7] developed a sys-
tem by using a fully convolutional network that uses
a density estimation technique to count spikelets for
predicting wheat yield. Misra et al. [8] implemented
a method for measuring the number of wheat plant
spikes in digital photographs by segmenting the im-
age for spike section recognition. To estimate wheat
yield in the Guanzhong Plain, China, Tian et al. [9]
built a long short- term memory (LSTM) model that
integrated remotely observed indices, vegetation tem-
perature condition index, and leaf area index as the
most critical growth phases with meteorological data.
Di et al. [10] suggested BO-LSTM based on Bayesian
optimization (BO) that combines crop phenology, cli-
matic, and remotely sensed information to estimate
country-level winter wheat yields. Compared to lin-
ear regression, the BO-LSTM model exhibited the
best yield prediction performance with root mean
squared error (RMSE) = 177.84 kg/ha, R2 = 0.82.
By taking into account weather datasets containing
humidity, temperature, rainfall, wind direction, and
evaporation characteristics, a DL based Recurrent
neural networks (RNN) and RNN-LSTM model is
used to estimate wheat crop output in northern Pun-
jab of India. It was found that the RNN-LSTM model
performed well [11]. To predict wheat crop produc-
tion, Kaur et al. [12] constructed the LSTM model
by taking into account a number of variables linked
to weather and soil data. In order to anticipate the
production of soft wheat in Germany, Paudel et al.
[13] executed LSTM approaches, taking into account
the soil’s ability to retain water, biomass features,
moisture levels, and temperature. They discovered
that DL is capable of learning attributes and gener-
ating accurate crop yield predictions. Bari et al. [14]
used LSTM approaches to forecast tomato prices with

varying sequence lengths, demonstrating that LSTM
works well in time-specific data. Sulistianingsih and
Martono [15] revealed that hybrid LSTM with CNN
outperforms in predicting stock from several banks,
displaying diversity in obtaining complicated trends
and offering reliable forecasts.

India’s winter wheat crop yield depends on the
availability of water, thus it is critical to main-
tain surveillance on the irrigation of the crop con-
stantly. Researchers have developed systems to ad-
dress the irrigation system problem with cutting-
edge technologies like DL. Kelly et al. [16] tested
deep reinforcement learning for irrigation scheduling
and calculated maize crop productivity using weather
data and soil parameters. Dang et al. [17] pre-
sented a water requirement model that estimates wa-
ter demands by combining temperature-based grow-
ing degree days with other meteorological factors and
LSTM-DL technology. According to Du et al. [18],
estimating soil moisture condition using hyperspec-
tral data derived from uncrewed arieal vehicles was
successful. They have made use of 46 distinct near-
infrared narrowbands. They have employed transfer
learning approaches for the assessment of soil mois-
ture. Jin et al. [19] applied several DL models,
including MobilenetV3, VGG16, DenseNet201, and
Residual Net-18, to identify the water stress for cot-
ton crops under drip irrigation using images. Com-
pared to other models, they discovered that Mo-
bilenetV3 accurately detects water stress. Using sim-
ulated data from the AquaCrop model and Land-
sat7 data, Oulaid et al. [20] investigated the Fourier
amplitude sensitivity test and the Morris sensitivity
analysis test for crop canopy cover and yield analy-
sis. However, it was highlighted that AquaCrop is
not suitable for dealing with nutrients or future soil
characteristics. A smartphone application for detect-
ing water stress was created by Chandel et al. [21].
They fixed together a Raspberry Pi chip and a digi-
tal camera to take actual images of wheat and maize
crops. Using a DL neural network, the photos are
analyzed and categorized as having water stress or
not with an accuracy of more than 93%. By con-
sidering soil and environmental data, Padmavathi et
al. [22] created a CNN and LSTM based system
to estimate irrigation and applied optimization al-
gorithm. Compared to the current techniques and
classification systems, they made innovative farming
model, demonstrated higher real-time performance
and achieved better accuracy outcomes. A trans-
former neural network model was created by Perea
et al. [23] to forecast irrigation demand by districts
for water-on-demand management ahead of time. To
optimize the consumption of water and energy, this
model was integrated with a genetic algorithm.

Ghiat et al. used hyperspectral vegetation indices,
meteorological data, and physiological indicators as
inputs to machine learning (ML) algorithms for tran-



236 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.19, NO.2 April 2025

spiration estimation in precision irrigation distribu-
tion [24]. Huang et al. [25] employed BiLSTM,
gated recurrent unit, and LSTM to forecast the wal-
nut crop’s evapotranspiration while taking weather
conditions and the crop’s growth coefficient into ac-
count for micro irrigation techniques. They used ab-
lation of parameters and tested different scenarios to
predict the crop evapotranspiration. They reported
that for every model, the R-squared value is higher
than 0.95. To forecast the moisture content range
using photographs before irrigation and subsequently
calculate irrigation duration based on the projected
soil moisture class, a DL integrated mobile applica-
tion was created. It was demonstrated that research
helped save 27.59% on water use and 27.42% on power
use [26]. Mpakairi et al. [27] classified the Sentinel-2
data for three years between 2019 and 2021 using a
DL model and a random forest method. Using ran-
dom forests, they could identify the type of land cover
with 77% accuracy. Also, at the national level, the
DL model identified croplands that are rainfed and
irrigated with 71% accuracy. Alibabaei et al. [28]
used a deep Q-network to train a model that helped
to plan the irrigation for tomato crop. The model
estimated the water content of the soil and computed
the amount of water needed. The LSTM-DL model
was used by Sami et al. [29] to forecast temper-
ature, humidity, and soil moisture. Using sensors,
they recorded temperature, humidity, and soil mois-
ture. The information they gathered was utilized to
train the model. They showed how closely the pre-
dicted values of LSTM models match actual data. Us-
ing deep neural networks to anticipate soil moisture,
Cordeiro et al. [30] demonstrated management and
optimization of the amount of water utilized in the
irrigation process. K-nearest neighbour was used to
address missing values in datasets. Furthermore, they
tested the model on two original datasets of cashew
and coconut trees, and their results showed potential
for enhancing irrigation water conservation. To eval-
uate soil moisture contents, Cheng et al. [31] consid-
ered the multispectral, Red-Green-Blue, and thermal
infrared remote-sensing image datasets as sources for
different ML methods. The results of their ML model
for the maize crop indicate that the most accurate
soil moisture contents are produced by the random
forest regression method. Sharma et al. [32] esti-
mated evapotranspiration with the DRL algorithm by
utilizing minimum temperature, maximum tempera-
ture, and solar radiation weather parameters. Sar-
avi et al. [33] built a deep neural network (DNN)
to predict plant growth and the quantity of irrigation
required to produce a particular amount of maize har-
vest. They simulated weather and crop data on De-
cision Support System for Agrotechnology Transfer
(DSSAT) from the experimental investigation. In or-
der to expand the training of the DNN model water-
ing applications, ten irrigation treatments were cho-

sen to produce random scenarios during the growing
period. Alibabaei et al. [34] used LSTM and BiL-
STM models and were able to accurately estimate the
yield of tomato and potato crops by utilizing soil and
weather data. They could also anticipate the quan-
tity of irrigation needed during the growing season.

The notion of modern precision agriculture has
evolved and the agricultural sector has advanced.
Still Indian farmers remain unable to participate in
current technical developments in the agriculture sec-
tor and are dependent on antiquated farming meth-
ods. It is, however, difficult for small farms since
landowners lack the expertise to deal with the water
content of the soil or evapotranspiration, and they
require an expert to assess the data. In the inves-
tigation study based on wheat crop yield prediction,
the authors [35] stated that the majority of the re-
search articles used vegetation indices and weather
measurements, which have a direct impact on wheat
crop yield prediction, while fewer articles explored
water-related characteristics. Existing research on
wheat crop yield prediction focuses on identifying wa-
ter stress and predicting soil moisture; however, a
lack of research has examined water scheduling man-
agement and wheat yield prediction. In the current
study, a DRL model leverages this understanding and
provides farmers with simple irrigation guidance on
how much and when to water a wheat crop farm to
maximize yield while minimizing water waste.

This work presents the aesthetic implementation,
and deployment of an irrigation system for a wheat
crop field in Maharashtra with the aim of identifi-
cation of irrigation level and finally predicting crop
yield. The system takes humidity, precipitation, and
temperature data from a field as inputs. It utilizes
the data to determine other features and how much
water is needed in a field and then relays it directly to
the farmer. The irrigation system then instructs the
landowner on how to irrigate the crops with the time
required for irrigating. By doing this, the farmer can
increase agricultural productivity and conserve water
sources. Fig. 1 demonstrates the combination of BiL-
STM and water scheduling DRL (WASDRL) model
to identify the time required to irrigate winter wheat
before one day and predict wheat crop yield. First,
the system provides a dataset containing meteorolog-
ical characteristics and other information as input,
and the raw data is pre-processed accordingly. Pre-
processed data is fed into one BiLSTM network to
predict gross water content (WCTot), while another
BiLSTM network uses the data to predict crop yield
at season’s end. The anticipated WCTot with other
characteristics are fed into WASDRL as the current
state to determine irrigation level as action, and yield
is used to reward the DRL agent for exploring the
DRL environment and selecting the correct action.
The DRL agent’s exploration of the environment will
continue until it finds an optimal value for the amount
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of irrigation to be applied the next day and also pre-
dicts wheat crop yield. This irrigation level is con-
verted to time required for irrigating wheat crop. In
the following section, each part of the process is ex-
plained in detail.

Fig.1: Process to Determine Irrigation Level with
Time and Estimates Wheat Crop Yield.

2. MATERIALS AND METHODS

2.1 Study Area

The ensemble DL model for wheat crop yield pre-
diction in this article was tested using real data
from a farm located in Dhotarkheda hamlet, taluka
Achalpur, district Amravati, shown in Fig. 2. The
model was trained and validated using 2530 data sam-
ples from the year 2000 to 2022 winter harvesting
seasons, which were simulated using AquaCrop soft-
ware. The dataset was divided into two parts: 70%
was designated for training, and the remaining 30%
was reserved for validation. Testing was conducted
using data from the 2023–2024 season. Within the
Vidarbha region, which is part of Maharashtra State,
India, there are eleven districts, including Amravati
district, ideally located in the northern region of the
state. It is located between north latitudes 20◦32’
and 21◦46’ and east longitudes 76◦27’ and 78◦37’.
12208.77 square kilometers make up the district’s
whole geographical area. The district experiences
extremely hot summers and extremely frigid winters
due to its tropical dry and wet environment. In win-
ter, the average lower temperature is 15.1◦C, while
in summer; the average high temperature is 42.2◦C.

The temperature ranges from 20◦C to 37◦C during
the southwest monsoon, which lasts from July to Oc-
tober. The district typically receives 843.05 mm of
rain.

Fig.2: Place of Study, Winter Wheat Test Zone.

2.2 Data Collection and Pre-processing

The National Aeronautics and Space Administra-
tion (NASA), power agency provided the climatic
dataset for Dhotarkheda, India, which was analyzed
in this article [36]. In order to better foresee change
and comprehend its implications for existence on the
globe, the agency’s earth science mission is to study,
cognize, and simulate the earth system. The recorded
weather data for the geography of Dhotarkheda, as
provided by NASA was utilized. Location details
with longitude and latitude are presented in Table 1.
Additional parameters required for predicting wheat
crop yield and planning irrigation schedules were sim-
ulated using the AquaCrop software. AquaCrop, de-
signed to model crop yield under varying water avail-
ability, is particularly valuable for research in water-
related environments.

Production of crops and WCTot depending on ir-
rigation were required, along with weather informa-
tion to establish an environment where a DRL agent
operates during the training period. In practice, it
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Table 1: Location Details.
Location Longitude Latitude

Dhotarkheda 77.491018 21.306985

can be very laborious and often unfeasible to mea-
sure crop productivity and WCTot with different ir-
rigation. Consequently, these factors were simulated
using AquaCrop. AquaCrop is an agricultural devel-
opment framework invented by the Food and Agricul-
ture Organization (FAO). FAO highlights the vital el-
ements of the atmosphere, soil and plant as well as the
variables that drive morphology, CC, standard ETo,
and final yield of crop (Y(dry)). Climate data (rain-
fall (mm) and temperature (◦C) (minimum (Tmin),
average (Tavg), and maximum (Tmax)) were col-
lected from NASA [36] for Dhotarkheda region during
year 2000 to 2022 and given to AquaCrop. Winter
wheat has been nominated for model setting. Each
year, a single sowing date is chosen between Dec. 1
and Dec. 31, and the model generates an expected
maturity date based on 110 days period of maturity
length. The selected area’s soil type is silt clay, which
has a minimal to moderate amount of biological ma-
terial, a little reaction from acidic to a neutral value,
is abundant with phosphorus and potassium, and is
salinity-free.

The watering approach used was surface irriga-
tion (furrow), which is customizable in the AquaCrop.
The irrigation schedules were determined using a pre-
determined duration of twelve days and a constant
depth range of 0 to 70 mm. Various watering regi-
mens were employed in each trial year, including no
watering and an assigned irrigation level (Irri) of 20,
30, 40, 50, 60, or 70 mm every twelve days or when-
ever the permitted deficiency exceeded 80%. Consid-
ering the collection of weather knowledge, every day’s
ETo over each period of growth was simulated with
AquaCrop model using the FAO Penman-Monteith
technique. This study additionally incorporates into
account GD, CC, stage of crop growth, and crop tran-
spiration (Tr), which are valuable parameters for de-
termining yield response [37]. The GD and Tr are
simulated using AquaCrop model considers weather
condition over each period of growth which is shown
in Fig. 3(a) and Fig. 3(b) respectively. The im-
pact of temperatures in the air on canopy growth
are simulated using the AquaCrop in terms of GD.
GD estimate requires an initial temperature (under
which growth of crops is unable to proceed) and a
higher temperature (beyond which growth of crops
no longer proceeds). In this study, the initial tem-
perature varies from 0◦C to 8◦C, and the maximum
temperature is computed based on the dataset pro-
vided. In order to simulate Tr, the crop coefficient
and the power of ETo are multiplied while taking tem-
perature and water stressors into account. AquaCrop
expresses vegetation growth via CC, rather than leaf

area index (LAI). CC, represents the percentage of
the soil area occupied by green crops. 25% of the
relative weed cover considered with wheat crop. CC
is simulated using parameters like GD, Tr, ETo, wa-
ter contents, and fixed crop coefficient. The differ-
ent characteristics remained the same. A soil state
containing 70% water availability was chosen as the
basis for the study. AquaCrop simplified the model-
ing process of simulating final crop yield in easy-to-
understand steps. The phases include simulating Tr,
the development of the green crop CC, and the final
yield of the crop. One or more, processes as men-
tioned above are directly impacted by temperature
and water stress. Furthermore, AquaCrop generates
WCTot utilizing the water balance approach, simpli-
fying irrigation control decisions [38] . Existing arti-
cles discuss the details of the AquaCrop model’s es-
sential principles, fundamentals, and theoretical and
mathematical framework [37], [39]–[42]. The Fig. 4
shows the sample dataset for year 2020.

(a)

(b)

Fig.3: (a) GD over Period of Growth for Each Year
(b) Tr over Period of Growth for Each Year.
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The quality of the provided dataset affects the
quality of output that a DL model obtains from the
data. Preprocessing involves a set of operations done
on the data with the goal of preparing it in better way
for detecting features. The technique of moving aver-
ages was used in this study to fill in the missing data
[43]. The min-max normalization procedure, which
is the other pre-processing in this work, aims to har-
monize the numerical contents of the dataset without
affecting the corresponding ranges of values. Nor-
malization for ML becomes necessary when variables
have disparate value ranges.

Fig.4: Sample Dataset for the year 2020.

2.3 Deep Learning Techniques

DL, a further cutting-edge subset of ML, processes
data with multiple layers of algorithms to create per-
ceptions or to mimic the cogitation process. It is reg-
ularly attuned to understand spoken language and
discriminate objects visually. Every layer conveys
data to the one below it, with one layer’s output pro-
viding another layer’s input. The basic structure of
each layer is a straightforward, homogeneous algo-
rithm with an activation function. In contrast to clas-
sic ML models, DL techniques are more effective and
quicker, and they are capable of obtaining traits auto-
matically from the given input data. This is why DL
algorithms have gained popularity in the last decade.
In multiple areas of agriculture, including crop yield
prediction and assessing the effects of various meteo-
rological conditions and agricultural practices on to-
tal yields of crops, many ML and DL models have
already been examined. In this work BiLSTM-DL al-
gorithm is applied to predict soil water content and
wheat crop yield, also DRL is employed to determine
irrigation level and finally wheat crop yield.

2.3...1 Bidirectional LSTM

RNN are enhanced version of neural networks
that incorporate the idea of recurrent connections.
The model’s understanding of time is derived from

these connections, which pass through subsequent
time steps. At subsequent steps, recurring links
can build loops that include links returning to the
source neurons. Usually RNN face problems regard-
ing the vanishing gradient problem. This problem
arises when gradients grow too big or too little, mak-
ing it challenging to simulate long-range links in the
input dataset’s structure. The LSTM representation
of RNN is an especially efficient method to overcome
this problem.

LSTM network is made up of a sequence of LSTM
block, each one of having a sequence of input, output,
and forget gates to regulate all data that enters and
leaves the block. The LSTM can preserve long-term
relationships in the input data by using the gates to
forget or keep the data from earlier time steps delib-
erately. Additionally, the LSTM block consists of a
memory section that leverages data from earlier time
steps to affect the outputs at the present time step.
The network passes the result from every LSTM unit
to the subsequent, enabling the LSTM to deal with
and comprehend consecutive data across several time
steps. LSTM-DL network employs supervised learn-
ing to modify their weights. It trains on one input at
a time and gradually in a series of inputs. Inputs have
real values and are transformed into a series of input
node activations. Each non-input element calculates
the present activation at every particular time step.
This activation quantity is calculated as a nonlinear
entity of the cumulative sum of the activations of all
elements connected to it. For every input, the error is
the total of all intended output discrepancies from as-
sociated activations that the network has calculated
[44]. BiLSTM is a modified form of the LSTM ap-
proach that improves performance. The way it works
is composed of two distinct transitional LSTM layers
that use context-specific data from the two sides of
the sequence to transmit an instruction both forward
and reversed to the same result layer [34].

In this research, two BiLSTM models are trained
for irrigation scheduling: one for predicting wheat
yield after maturity days (110 days) and the other
for predicting WCTot one day before the day of irri-
gation (12 days). After discussing with the farmers
from the region considered for this study, it was dis-
covered that it takes 3 - 4 months to mature a wheat
crop from planting to harvesting. Additionally, the
website [45] states that the wheat crop duration from
seed until maturity usually is somewhere between 90
and 100 days. Moreover, farmers said that they plan
to irrigate their wheat fields between 11 to 15 days.
In light of this, the research uses a sequence length of
12 days for the WCTot and 110 days for the yield
prediction model, which are displayed as input to
the BiLSTM model shown in Fig. 5 (a) and Fig. 5
(b), respectively. The architecture of BiLSTM mod-
els for WCTot and yield prediction with the number
of trainable parameters are shown in Fig. 5. The
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512 nodes make up every single layer of a two-layer
BiLSTM network that was created to estimate wheat
yield making use of crop development stage, weather
data, ETo, GD, Tr, CC, and WCTot. In order to
forecast yield, the algorithm gets information regard-
ing these characteristics throughout a season. Every
year, a late sowing window spanning from Dec. 1 to
Dec. 31 is chosen to produce a maturity period of
110 days for wheat. AquaCrop software was used to
simulate and create the dataset.

An additional, BiLSTM model was trained to eval-
uate the agent, environment and predict everyday
WCTot one day before schedule. The following envi-
ronment’s state was forecasted using this model. Us-
ing the crop development stage, meteorological data,
ETo, GD, and Tr, a two-layer BiLSTM model with
512 nodes was employed to forecast the WCTot level.
This effort trains the model to predict WCTot one
day in advance. As was previously noted, BiLSTM
can examine backward several time steps and utilize
this knowledge to anticipate future events. Every
twelve days, irrigation takes place in this implemen-
tation. As a result, the BiLSTM examines past data
spanning 11 days that reflects the current environ-
ment’s state.

Hyperparameters for both BiLSTM networks are pre-
sented below:

Number of nodes and hidden layers: 512 nodes with
two hidden layers are selected to predict WCTot and
yield in order to prevent overfitting caused by the
large number of parameters that can be trained and
to speed up and improve the efficiency of the training
process. 64, 128, 256, and 512 nodes with 2 and 3 hid-
den layers have all been used for testing the model.
For each potential pairing of layers and nodes, the
mean absolute error (MAE) score is computed. The
model with 2 layers and 512 nodes was identified to
have a lesser MAE compared to other pairings. The
outcomes were enhanced by following the BiLSTM
layers with a separate dense layer. The nonlinear in-
teraction between input and final result was captured
using the tanh function as an activation function fol-
lowing each BiLSTM layer.

Learning rate: For model training, the 10−3 learning
rate is considered. The model learnt relatively slow
for a learning rate of 10−5, as well as for after 500
iterations, the validation loss remains exceptionally
large. Additionally, training fluctuates due to the
learning rate of 10−2. As a result, learning rate is
maintained above 10−2 and below 10−5.

Epochs: 500 epochs were allotted for training each
model; early stopping was employed to avoid overfit-
ting. The BiLSTM model for WCTot prediction ter-
minated after 162 training epochs, whereas the other
model for yield prediction terminated after 455 train-
ing epochs. The number of epoch where validation
loss stops improving is determined by the early stop-
ping technique’s patience hyperparameter. The ap-

propriate point of patience differs depending on the
problem and model. Plots of model performance met-
rics can be examined to assess patience. Plot analysis
in this study revealed that the WCTot and yield mod-
els’ respective patience values were 10 and 50.
Dropout: Since the validation loss was not improved
by the dropout value of 0.4, it was decided to be less
than or equal to 0.4 and taken from the set {0.1, 0.2,
0.3, 0.4}. For the wheat yield and WCTot estimate
models, adding dropout on the repetitive results with
dropout size 0.1 enhanced the validation loss and was
thus chosen for each model.

(a) WCTot Prediction

(b) Wheat Crop Yield Prediction

Fig.5: Architecture of BiLSTM.

2.3...2 Deep Reinforcement Learning

In dynamic environments, DRL performs effec-
tively in decision-making processes. In order to ac-
complish the objective, an agent trains through mul-
tiple experiences over the environment. These expe-
riences produce data about the results of the agent’s
actions and contribute in performance enhancement.
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The proposed combinatorial approach interacts with
the environment and incorporates the unpredictable
input features to acquire model for predicting with a
deep reinforcement methodology [46].

Water Scheduling Environment for DRL
Agent

In this study, application of DRL is implemented
to determine how an agent experiences with the envi-
ronment, it applies irrigation plan while considering
states. An agent attempts to influence its surround-
ings through interaction. Irrigation levels 0, 20, 30,
40, 50, 60 or 70 mm considered as environment ac-
tions, and the reinforcement learning (RL) agent’s de-
cisions have an apparent effect on the environment.
The agent in this research regulates irrigation by an-
alyzing the development of the crop stage, weather
information, ETo, GD, Tr, CC, and WCTot; the state
has been determined by combining these factors. Ev-
ery twelve days, the agent chooses an action based
on its current state. In every state, the environment
provides judgment to decide if the agent’s activities
are acceptable. It is critical in the context of RL,
because the machine learns entirely on its own and
the only feedback that will support it in learning is
the reward agent obtains. The reward of agent for
watering experiment is designed based on the total
wheat crop yield received at the end of the season.
The future return is the total outcome of crop pro-
ductivity and water cost. The consumption of water
take place repeatedly during a crop season, therefore
the agent receives the reward at the end of the sea-
son. In this context, the reward is defined as the net
return on crop yield minus the cost of water. During
the season, the reward is set to zero.

Water Scheduling DRL (WASDRL) model

The current environmental condition is fed into the
WASDRL model, which inputs the result for every
action. In RL, the concept of exploration versus ex-
ploitation is crucial. The optimal answer needs to be
found by the RL agent as soon as feasible. But if
it jumps too rapidly to a conclusion without doing
acceptable exploration, it can end up at a local min-
imum or unsuccessful [46]. The Epsilon-Greedy ap-
proach [46] was utilized to explore the environment.
This approach involves the agent selecting an arbi-
trary action with chance ε and deciding with proba-
bility 1 − ε. After setting the ε to 1, the value was
dropped by an amount of 0.9997 for every episode and
stopping once it got value of 0.001. During training,
the model chooses an arbitrary batch of events, and
training is done on the selected batch. One hyper-
parameter that needs to be specified during training
is the batch size. In order to expedite training and
prevent the model from being either over fit or un-
der fit, the batch size of 64 was selected. The agent
was evaluated during the year 2023–2024 after be-

ing trained on a dataset of 2000 to 2022, with 1,000
episodes. Eq. (1) was used to determine the rewards
that the DRL agent obtained. The net return was
very high. The net return was normalized by decimal
scaling approach with power of three to avoid exces-
sive computation. The agent’s reward was calculated
using logarithms to achieve convergence in the pro-
cess. Wheat prices have been assigned to be 25200/-
per ton [47], while the cost of irrigation per hectare
was fixed at 297/- per hectare [48]. These are
variables that can be modified. Once the average re-
ward was enhanced, the DRL network’s weights were
stored. This process was repeated every five episodes.
The model predicts the wheat crop yield after each
season. The agent’s reward for irrigating a field is
calculated using Eq. (1) by deducting water expenses
from the total wheat yield value.

Reward = Y ield ∗ Price of Y ield–Water amount ∗ Price of water (1)

Where, Yield – predicted value by an agent after ex-
ploring the environment, Price of Yield – price in

/ton, Water amount – total action taken by the
agent in a season during environment exploration,
Price of water – price in / hectare.

3. RESULTS AND DISCUSSIONS

3.1 Evaluation of the BiLSTM models

The BiLSTM model training took place over a
maximum of 500 epochs for wheat yield estimation.
In addition, the WCTot BiLSTM prediction model
was trained for a maximum of 500 epochs. Training
is terminated after a particular number of iterations if
the validation loss remains unchanged. The number
of iterations during which the loss of validation sub-
stantially grows is controlled by the hyperparameter
patience in the early stopping approach. The spe-
cific range of patience depends on the problem and
model. The model performance metrics can be exam-
ined with graphs to assess patience [49]. The graph
analysis of WCTot and wheat crop yield model’s loss
shown in Fig. 6 (a) and Fig. 6 (b) respectively, the
present study revealed the values of 50 and 10 for pa-
tience of the wheat yield and WCTot prediction mod-
els respectively. The WCTot and Yield prediction
models were fully trained after 162 and 455 epochs,
as shown in Fig. 6 (a) and Fig. 6 (b), respectively.
RMSE and MAE are used to assess the WCTot and
wheat yield prediction BiLSTM model. MAE anal-
ysis of WCTot and wheat yield BiLSTM models are
shown in Fig, 7(a) and Fig 7(b) respectively. From
Fig. 7, it is noticed that the error in the model for
training and validation data is very small. Using
the wheat yield experimental data, the yield model
obtained an RMSE of 67.93 (kg/ha) and an MAE
of 48.55 (kg/ha). The WCTot model produced an
RMSE of 19.01 mm and MAE of 13.48 mm per

₹

₹

₹

₹
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(a) Loss Analysis- WCTot BiLSTM Model

(b) Loss Analysis- Yield BiLSTM Model

Fig.6: Loss Analysis of BiLSTM Models.

hectare.

(a) MAE Analysis: WCTot BiLSTM Models

(b) MAE Analysis: Yield BiLSTM Models

Fig.7: MAE Analysis of BiLSTM Models.

3.2 Evaluation of the WASDRL network

The weights of the DRL network are updated dur-
ing training after every five epochs. The DRL model
is evaluated with an accuracy metric. The accuracy of
the DRL network is displayed in Fig. 8(a), where the
accuracy is lowest after 100 epochs of operation. The
accuracy of the DRL network improves when saved
weights are used for subsequent runs. Fig. 8(b) shows
that accuracy ranges from 90% to 98% for several re-
cent epochs. The DRL model’s loss in terms of mean

squared error as a training function is also seen to
decrease once the network has trained for the succes-
sive 100 epochs, as illustrated in Fig. 9(a) and Fig.
9(b). This occurs when the model first explores the
environment during training and eventually converge
to an ideal course of action. The LSTM performs
better as it can improve time-series data predictions
by using data from previous data inputs and cycles
throughout the LSTM layers. [50]. The average re-
wards received by an agent over the DRL network’s
training are displayed in Fig. 10. Epsilon during DRL
network training is depicted in Fig. 11. As illustrated
in Fig. 10 and Fig. 11, the model investigates the sur-
roundings at the same time, epsilon is high and then
begins to exploit when epsilon falls.

(a)

(b)

Fig.8: (a) Accuracy of WASDRL Model (b) Accu-
racy of WASDRL for Next Iterations.

(a)
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(b)

Fig.9: (a) Loss of DRL (b) Loss of WASDRL for
Next Iterations.

Fig.10: Reward Obtained by DRL Agent.

Fig.11: Epsilon during DRL Network Training.

Fig. 12(a) depicts the precipitation from Dec.
2023 to Apr. 2024. It is observed that there is 4.5
mm of rainfall on the 12th step, and Fig. 12(b) shows
that the water content is sufficient. As a result, the
DRL agent selected irrigation of 0 mm on the 12th

day, as indicated in Fig. 12(c). The DRL model by
itself acquired to adapt irrigation levels depending on
precipitation, adjusting the amount of water or none,
as demonstrated in Fig. 12. The DRL model recom-
mended the following water schedule for 2023–2024:
[40 mm, 0 mm, 30 mm, 60 mm, 60 mm, 50 mm, 40
mm, 20 mm, 50 mm] every twelfth day until the 96th
day after seed sowing.

Two separate 25 m2 patches on a same field were
treated identically in the current analysis to compare
the water usage of the proposed approach with the
conventional one. One patch was watered convention-
ally with fixed irrigation level while the other patch
was watered using the proposed approach. A sum-

(a) Precipitation in Season of Wheat (Year
2023-2024)

(b)Predicted WCTot with BiLSTM Model

(c)Irrigation Action Obtained by DRL Agent during
Season

Fig.12: DRL Efficiently Determines Irrigation
Level.

mary of the gross profit with various irrigation levels
is displayed in Table 2. The proposed approach pro-
duced more profit when assessed against other fixed
irrigation levels, as the table demonstrates. Table 2
also shows the actual and expected yields for 2022-
23 and 2023-24. It is observed that the actual and
expected yield fluctuate significantly; yet, resultant
water schedule assists to reduce water waste in agri-
culture without hampering the crop yield when com-
pared with fixed irrigation. The model that had been
trained performed better than the conventional fixed
irrigation system on the data collected in year 2023-
2024. The irrigation schedule provided by the WAS-
DRL model is shown in Table 2, and utilized to irri-
gate the farm. The wheat yield is calculated in two
patches by quantifying the amount of grain. In ex-
perimental land of 25-m2, the actual yield obtained is
9 kg per 25-m2 area, whereas with a fixed irrigation
level of 60 mm, the actual yield obtained is 8.6 kg
per 25-m2 area. Thus, compared to fixed irrigation,
the proposed approach increases actual output by 5%
while using 30% to 35% less water. The drop in water
volume is noticeable.
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Table 2: Summary of Gross Profit.
Irrigation Total

Predicted
Actual

after Irrigation
Yield

Year every 12th during
day Season

(kg) per

(in mm) (in mm)
acre

Yield

2022- 60
540 1,573

1500
2023 (Fixed) kg/acre

2023- 60
8.6 kg in

540 1,075 25m2 area
2024 (Fixed)

(1,390/acre)
[40, 0, 30,

350 1,570
9 kg in

2023- 60, 60,
25m2 area

2024 50, 40,
20, 50]

(1,460/acre)

3.3 Time Needed for Irrigation:

The amount of time taken to provide the desired
watering depth in mm is known as irrigation duration
in minutes or hours. The area of the land that needs
to be watered in hectare (ha), the required irrigation
level in millimeter (mm), and the rate of flow in liter
per second all affect how long irrigation occurs. The
research calculated the rate of water flow in the farm,
which turned out to be 10 liter per second. After de-
termining the level of irrigation, the proposed work
presents the time required for irrigating the land area
in hours. Eq. (2) [51] is applied for determining irri-
gated duration.

Irrigation T ime(hours)

=
2.78 ∗ Irrigation area (ha) ∗ Level of irrigation(mm)

Flow of irrigation (liter/second)

(2)

where, Irrigation area - measurement of a farm in a
hectare, Level of irrigation - the amount of water in
mm, Flow of irrigation - a rate of flow in liters per
second (10 liters/second).

The duration needed for the 25-m2 land patch
that was examined under a particular irrigation level
for the study assignment is shown in Table 3. The
translation of irrigation level to irrigation time makes
it easier for farmers to irrigate their land. Thus,
this study assists farmers in planning water manage-
ment and predicting wheat crop yield. The proposed
method will be able to predict wheat crop yield and
obtain irrigation schedules by varying the meteoro-
logical data for various regions.

Table 3: Time Required to Irrigate 25-m2 Land.
Level (mm) Time required to irrigate (seconds)

70 180
60 150
50 128
40 102
30 80
20 60
10 30

4. CONCLUSIONS

In this article, a DRL approach is applied to pre-
dict wheat yield by generating a water schedule for
winter wheat. This schedule is converted into irriga-
tion time to make things easier for the farmer. The
DRL model was trained with 22 years of data and
tested using one year of data. The DRL network
adapted to forecast the irrigation level ahead of time
and prevent water waste during season. Addition-
ally, the model could modify the watering schedule in
response to seasonal variations in precipitation and
weather. The WASDRL model’s findings were com-
pared to those obtained with fixed irrigation. It is
found that wheat yield (Year 2023-2024) is enhanced
by 5% in test fields compared to fixed irrigation,
notwithstanding a disparity between anticipated and
actual yields. As a result, RL can be utilized in this
study to schedule watering to reduce water waste in
agriculture while maintaining the yield of crops.

A limitation of the proposed study is that it was
trained on simulated data. The alternative is to train
the model with both field and simulated data to make
it more accurate for real-world applications. Another
challenge is that the proposed model does not account
for soil fertility and nutrient deficiencies on crops,
which the researchers can consider in the future.
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