
A Systematic Mapping Review: Tracking the Relationships Between Software Artifacts using NLP 321

ECTI Transactions on Computer and Information Technology
Journal homepage: https://ph01.tci-thaijo.org/index.php/ecticit/

Published by the ECTI Association, Thailand, ISSN: 2286-9131

A Systematic Mapping Review: Tracking the Relationships
Between Software Artifacts using NLP

Fedaa khalil1, Ghaida rebdawi2 and Nada ghneim3

ABSTRACT Article information:
In software development, traceability from requirements to realization is
essential, yet manual tracing is labour-intensive and prone to errors. Re-
quirements Traceability (RT) is crucial for e�ective management and im-
pact assessment. This paper explores the application of Natural Language
Processing (NLP) in requirements traceability (RT) through a systematic
mapping review of literature from 2019 to 2023. Out of 209 initial studies,
we selected 49 using stringent criteria. RT approaches were categorised
into ontology-based and embedding techniques. Embedding techniques
have gained prominence for their ability to capture relationships between
artifacts. We identi�ed two primary paradigms in RT: rule-based methods,
which use prede�ned heuristics, and machine learning approaches, includ-
ing traditional classi�ers. Machine learning models signi�cantly improve
accuracy and adaptability, especially when paired with advanced embed-
dings. A notable trend is the increasing reliance on standard datasets,
like the CoEST repository, to validate methods, enhance reproducibility,
and enable robust comparisons. Despite advancements, challenges persist.
Non-functional requirements remain underexplored, and the lack of com-
prehensive benchmarks limits the generalizability of current approaches.
Future research should focus on creating inclusive datasets with diverse re-
quirements and integrating hybrid methods to improve performance. Over-
all, the study underscores the critical role of embedding techniques in RT
while highlighting gaps and opportunities for advancing the �eld.

Keywords: Natural Language

Processing, Requirements

Traceability, Requirements

Representation, Syntax, Seman-

tic

Article history:

Received: October 3, 2024

Revised: March 22, 2025

Accepted: March 29, 2025

Published: April 26, 2025

(Online)

DOI: 10.37936/ecti-cit.2025192.258621

1. INTRODUCTION

In the rapidly evolving landscape of software de-
velopment, ensuring the traceability of requirements
from their initial articulation to their �nal implemen-
tation is critical [1]. Requirements Traceability (RT)
is pivotal in various aspects of software engineering,
including impact analysis, project management, and
quality assurance [2]. Despite its importance, manual
tracing of requirements across various software arti-
facts, such as design documents, source code, and test
cases, remains a labour-intensive, time-consuming,
and error-prone task. As software systems grow in
complexity, the limitations of manual tracing become
more pronounced, leading to increased risks of defects
and project delays.

Natural Language Processing (NLP) has emerged
as a transformative tool for addressing these chal-
lenges. Since developers document most software
requirements in natural language, NLP techniques
are well-suited to automate and enhance RT pro-
cesses. By leveraging advancements in machine learn-
ing (ML) and deep learning (DL), NLP o�ers the po-
tential to signi�cantly improve traceability accuracy,
scalability, and e�ciency. Despite its promise, cur-
rent applications of NLP in RT have yet to fully cap-
italize on these advancements. The representation of
requirements�a key factor in achieving robust and
accurate traceability�remains underexplored, and
gaps persist in integrating state-of-the-art NLP meth-
ods into RT practices.

1,2The authors are with the Department of Informatics, Higher Institute for Applied Sciences and Technology (HIAST), Dam-
ascus, Syria, Email: fedaa.khalil@hiast.edu.sy and Ghaida.rebdawi@hiast.edu.sy
3The author is with the Faculty of Information and Communication Technology, Arab International University (AIU), Damascus,
Syria, Email: n-ghneim@aiu.edu.sy
1Corresponding author: fedaa.khalil@hiast.edu.sy



322 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.19, NO.2 April 2025

A review of existing literature underscores these
limitations. Previous studies [3–8] have primarily fo-
cused on traditional information retrieval (IR) meth-
ods or early ML applications, often overlooking how
advanced NLP techniques and innovative require-
ment representations can enhance RT. Some works
[3, 5] emphasize solution methods and ML applica-
tions but neglect requirement representation strate-
gies, while others [4, 6, and 7] explore IR and basic
NLP techniques. A few studies, such as [8], delve into
specific traceability scenarios like issue-commit trace-
ability but lack a broader analysis of modern NLP’s
potential impact.

This paper aims to fill these gaps by conducting
a systematic mapping review of the literature pub-
lished between 2019 and 2023, focusing specifically
on applying advanced NLP techniques in RT. The
review encompasses 209 papers, from which we se-
lected 49 based on stringent inclusion and exclusion
criteria. Our analysis not only categorises the exist-
ing approaches to RT but also highlights emerging
trends, identifies gaps in current research, and pro-
poses future directions to address these gaps.

The contributions of this paper are threefold:

Comprehensive Analysis: We provide a de-
tailed overview of state-of-the-art NLP-based RT,
highlighting the growing adoption of advanced em-
bedding techniques and standard datasets that en-
hance reproducibility.

Impact of Representations: We demonstrate
the critical influence of requirement representations
on traceability accuracy, offering actionable insights
into optimizing these representations.

Research Gaps and Future Directions: We
identify significant gaps, such as the limited focus on
non-functional requirements, adopting a method of
representing artifacts according to their nature (nat-
ural language or software), and propose targeted re-
search pathways to address these limitations.

By addressing the limited focus on non-functional
requirements and developing methods to represent ar-
tifacts according to their nature—whether as natu-
ral language (e.g., textual requirements) or software
(e.g., code, models)—developers can ensure that soft-
ware can better meet critical quality attributes such
as performance, scalability, security, and usability.
This dual approach enables developers and teams
to establish precise mappings between requirements
and downstream artifacts, ensuring that requirements
are consistently implemented, tested, and validated
throughout the software lifecycle. As a result, issues
can be identified earlier in development, streamlin-
ing processes, reducing rework, and enhancing both
software quality and efficiency.

In summary, this study emphasizes the transfor-
mative potential of modern NLP techniques in ad-
dressing longstanding challenges in RT. By bridging
gaps in current research and providing actionable in-

sights, our work aims to advance the state of soft-
ware engineering, paving the way for more reliable,
efficient, and scalable RT practices.

In this study, we addressed six RQs to provide the
current progress of the studies on RT. (RQ stands for
“Research Question.” In academic research, RQs are
specific questions that guide the study and structure
the research process. They help researchers focus on
particular aspects of the topic they are investigating
and aim to answer these questions through their re-
search.)

RQ1: What is the state of the published literature
on RT?

RQ2: What are the proposed representations in
the literature for RT?

RQ3: What are the proposed solutions in the lit-
erature for RT?

RQ4: What are the types of RT in the literature?
RQ5: What are the datasets used in this field?
RQ6: What gaps and potential future directions

exist in this field?
This study is structured as follows. First, section

2 provides a background of RT and NLP. Then we
present our methodology in detail in section 3. Sec-
tion 4 describes and explains the results obtained by
the analysis. In section 5, we showed threats to va-
lidity. We close the report by concluding it in section
5.

2. BACKGROUND

Gotel et al. define traceability as “the ability to
describe and follow the life of a requirement, in both
a forward and backward direction” [5]. Any rela-
tionship between artifacts involved in the software
engineering life cycle is a path from one artifact to
another, and it is called a trace link. RT usually
includes planning and managing traceability strat-
egy, generating, refining, maintaining, representing,
and using trace links. Traceability can be horizon-
tal traceability, which is traceability between require-
ments, or vertical traceability, which is traceability
between requirements and other artifacts [6].

Conversely, NLP, which is part of Artificial Intel-
ligence (AI), enables computers to understand and
process natural language texts to achieve a specific
purpose [7].

An NLP-based approach typically operates at
three primary levels: lexical, syntactic, and seman-
tic.

-Lexical level: It focuses on word analysis and
includes several tasks such as:

Tokenization: splitting a text into a list of tokens,
which can be words, numbers, or punctuation marks.

Lemmatization: identifying base or dictionary
form (lemma).

-Syntactic level: It focuses on analysing the
grammatical structure of sentences and includes sev-
eral tasks:



A Systematic Mapping Review: Tracking the Relationships Between Software Artifacts using NLP 323

Part-of-Speech Tagging (POS-tagging): tagging
each token in a sentence with its corresponding part
of speech tag based on its syntactical context.

Chunking: detecting syntactic components (Noun
Phrases and Verb Phrases).

-Semantic level: It focuses on understanding the
meaning of the text by automatically mapping a nat-
ural language sentence into a formal representation
of its meaning. The literature has proposed different
semantic representations:

Ontology: It is a data model representing a set
of concepts within a domain and the relationships
between those concepts. WordNet is an example of
an ontology.

esentation model depicting text as a term-by-
document matrix. The Bag-of-Words (BOW) model
treats word frequencies as weights and uses words
as features, making it a special case of the Vector
Space Model (VSM). VSM uses other weighting fac-
tors, such as IDF and TF-IDF.

Topic Modelling-Based Representation: It is a sta-
tistical modelling approach used to discover the la-
tent or abstract topics in a set of texts, such as La-
tent Dirichlet Allocation (LDA) and Latent Semantic
Analysis (LSA).

Embedding: It is a method for learning high-
quality vector representations of words from large
amounts of unstructured text data, which allows
words with similar meanings to have similar vector
representations, such as Word2Vec, GloVe, BERT,
etc.

3. OUR METHODOLOGY

The goal of this review is to identify, categorise,
and analyse existing literature published between
2019 and August 2023 that handled NLP-based ap-
proaches to traceability requirements tasks.

3.1 Planning

This section contains the research questions,
method, and the acceptance and rejection criteria
used to filter the results.

3.1.1 Research Questions

We determined the following main research ques-
tions:

RQ1: What is the state of the published literature
on RT?

RQ2: What are the proposed representations in
the literature for RT?

RQ3: What are the proposed solutions in the lit-
erature for RT?

RQ4: What are the types of RT in the literature?
RQ5: What are the datasets used in this field?
RQ6: What gaps and potential future directions

exist in this field?

3.1.2 Search Query and Data Sources

We used six digital libraries as the data sources
for our mapping study: Scopus, IEEE Xplore, ACM
Digital Library, Elsevier, MDPI, and SpringerLink.
We chose them as they host the major journals and
conference proceedings related to software engineer-
ing (SE) and RE.

We used the significant terms “Traceability” (rep-
resenting the context of the research) and “Natural
Language Processing” (representing the intervention
in this context) as the base terms, and we also in-
cluded “Software artifacts”. We enrich each of these
terms by adding synonyms and sub-fields. Table 1
shows the whole set of selected keywords for this
study divided into three groups: A, B, and C. We
used them to create the final search query (A AND
B AND C).

Table 1: Keywords used in our study.
Set Term Derived Keywords
A Traceability Requirements tracking,

artifacts traceability, Trace
link recovery, trace retrieval

B Natural NLP, statistical NLP,
Language machine learning, deep
Processing learning, information

extraction, information
retrieval, text mining, text

analysis, linguistic
instruments, linguistic

approaches
C Software Source code, tests,

artifacts documentation, requirements,
UML diagrams

3.1.3 Acceptance and rejection criteria

Acceptance and rejection criteria serve as a way to
filter out papers that are not related to our research
questions.

We accepted research papers that present an ap-
proach related to the field of RT, published between
2019 and August 2023.

We rejected the papers that are secondary research
(such as literature reviews, summaries, etc.), pub-
lished in languages other than English, duplicated,
or lacking detailed information about the proposed
approach (such as short papers, posters, etc.).

3.1.4 Search Procedure

Starting from the defined data sources, we ob-
tained 209 candidate papers. We manually elimi-
nated duplicated papers by comparing authors, ti-
tles, and abstracts. After removing all duplicates,
155 papers remained. After rejecting secondary re-
search papers and short research papers, 104 papers
remained.

We filtered these papers by applying the selection
criteria based on titles and abstracts. This stage led



324 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.19, NO.2 April 2025

to the selection of 74 papers. We then conducted a
full-text review of those papers to discard documents
that did not satisfy our selection criteria. The re-
maining primary research papers after this stage are
49.

Fig. 1 shows the previously mentioned stages and
the number of selected publications after each stage.

Fig.1: Overview of steps in mapping study planning.

4. RESULTS AND DISCUSSION

In this section, we describe and explain the re-
sults obtained by analysing our final list, containing
49 unique peer-reviewed research papers, to answer
the research questions posed in the previous section.

RQ1: What is the state of the published
literature on RT?

The vast majority of papers in our final list (more
than 85%) were published between 2019 and 2021.
Fig. 2 shows the distribution of the paper publica-
tions per year.

The publication of papers in our final list is as indi-
cated below: 51% in IEEE International Conference,
10% in Springer Link, 10% in ACM, 6% in MDPI,
6% in Elsevier, and the remaining in other Scopus-
indexed journals.

Fig.2: Number of published papers per year.

Among the selected papers, 35% appeared in jour-
nals, 57% were published in conference proceedings,
6% came from workshops, and one appeared in ACM
SIGSOFT Software Engineering Notes. Fig. 3 and 4
show the distribution of published papers per library
and type, respectively.

Fig.3: Number of published papers per year.

Fig.4: Number of published papers per year.

RQ2: What are the proposed representa-
tions and solutions in the literature for RT?

We found several types of text representation tech-
niques in this study. We can divide these represen-
tation techniques into categories based on the con-
cept: Ontology representation, Lexical and Syntactic
features, Probabilistic Models, VSM representation,
Topic modelling representation, and Advanced Em-
bedding representation. Fig. 5 shows the hierarchy
of papers categorised based on their targeted repre-
sentation method.

-Ontology Representation: Using this type re-
quires the presence of an ontology to cover every
project domain, which can be quite challenging and
poses a significant difficulty in applying this form of
representation. Few works have used ontology as a
representation method. This type comprises 6.1% of
papers (3 out of 49).

-Lexical and Syntactic features: While lexical and
syntactic features provide information about word or-
der and grammatical relationships, they do not ex-
plicitly reveal semantic roles. Strict adherence to syn-
tax may limit the flexibility needed to accommodate
changes in requirements since input is a predefined
set of linguistic features. This type comprises 14.2%
of papers (7 out of 49).

-Probabilistic Models: Probability theory repre-
sents uncertainty in the relevance of documents to



A Systematic Mapping Review: Tracking the Relationships Between Software Artifacts using NLP 325

Fig.5: The hierarchy of papers categorised based on their targeted representation method.

queries. These models rank documents based on
a given query and are often more effective than
non-probabilistic models. JS (Jensen-Shannon diver-
gence) is an example of these models. This type com-
prises 10.2% of papers (5 out of 49).

-VSM (Vector Space Model) representation: VSM
can handle documents of varying lengths and struc-
tures, making it suitable for representing different
software requirements. However, it treats words in-
dependently without considering their semantic rela-
tionships, and longer documents tend to have higher
frequencies, which can skew results. VSM treats doc-
uments as bags of words, without considering the
structural organisation of the text, where input is a
vector of words, tokens, or stems combined with their
weights. Such an approach may limit its effectiveness
in capturing hierarchical relationships or dependen-
cies within requirements. This type comprises 36.7%
of papers (18 out of 49) that use TF-IDF. Some of
the works combine the BOW technique with TF-IDF
(3 out of 49). One paper uses BOW.

-Topic modelling representation: Topic modelling
extracts hidden semantic knowledge from a corpus of
documents, reducing high-dimensional textual data
into a manageable number of latent topics. Input
texts are represented based on discovered latent top-
ics. However, choosing the correct number of topics
is difficult, as incorrect choices lead to suboptimal re-
sults or noisy topics. This type comprises 26.5% of

Fig.6: The used VSM representations with their fre-
quency.

papers (13 out of 49). Six papers use LSA, one only
uses LDA, and the remaining six use both LDA and
LSA.

Fig.7: The used Topic modelling techniques with
their frequency.

Advanced Embedding representation: In general,
embedding techniques rely on the semantic represen-
tation of texts, and usually, embedding reduces the
dimensions of the representation space compared to
traditional methods. Embedding can exist at differ-



326 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.19, NO.2 April 2025

ent levels of detail, from word level to sentence level
or even document level. This flexibility allows re-
quirements to become represented at varying levels
of abstraction. However, the embedding quality de-
pends heavily on the training data, and some embed-
ding generates vectors of fixed size, which can result
in missing information about the varying importance
or complexity of different aspects within the require-
ments. The representations proposed in the relevant
papers include several techniques. This type com-
prises 46.9% of all documents (23 out of 49).

Word embedding: there are several techniques
in this type (16 out of 49): word2vec, Bert, fast text,
USE, Glove, etc. The following table shows the pa-
pers for each of them.

Table 2: Word embedding techniques with their re-
lated papers.

Word Embedding Related Papers
Word2vec [19] [26] [32] [39]
Bert [37] [50] [52] [54] [59] [51]
Fast text [46] [53]
USE [60]
Glove [55]
Embedding layer [40] [58]

Statement embedding: documents that use this
type of representation can be further classified based
on the method used to merge word embedding to rep-
resent statements (5 out of 49). Table 3 shows all
related papers classified into three types of statement
embedding techniques (RNN, CNN, and ANN).

Table 3: The used statement embedding techniques
with their related papers.

Statement Embedding Related Papers
RNN based [58] [32] [19]
CNN based [58] [40]
ANN based [53]

Document embedding: There are eight papers
(16.3% of all papers) that use doc2vec for embedding
input.

Natural language processing (NLP) approaches
have seen significant developments. Where rule-
based approaches and traditional information re-
trieval methods emerged, researchers then explored
using ontologies and semantic networks to enhance
language understanding. Later, the trend began to-
wards statistical methods, leading to the methods of
embedding and transformers.

According to the analysis of studies, a relative de-
cline in traditional and simple methods was observed,
with an increase in the use of embedding methods in
the last two years.

RQ3: What are the proposed solutions in
the literature for RT?

Fig.8: Bubble chart showing the number of papers
related to representation techniques and the year of
publication.

We covered two types of solving methods in this
study, as shown in Fig. 9. 21 out of 49 papers use
the rule-based approach (43% of all documents), and
the remaining papers depend on the ML approach
(57% of all documents). Fig. 10 shows the number of
documents related to solving methods and the year
of publication.

Fig.9: Distribution of solving methods.

Fig.10: Number of papers related to solving methods
and the year of publication.

28 out of 49 papers use the ML approach. In
these, we found the most frequently used algorithms,
as shown in Fig. 11. Other algorithms were also



A Systematic Mapping Review: Tracking the Relationships Between Software Artifacts using NLP 327

Fig.11: ML algorithms with their related papers.

used, such as GBDT [9], RBF and Part [27], GA [36],
Bayesian Network [38], ABC [45], Association Rules
[51], Greedy algorithm [57], FCA [61], and cost esti-
mates [52] [54] [59].

Fig. 12 shows the number of papers related to ML
techniques and the year of publication.

Fig.12: The number of papers related to ML tech-
niques and the year of publication.

Q4: What are the types of RT in the liter-
ature?

In this study, we found two types of RT. The first
concerns traceability between requirements only and
is found in 36.7% of papers (18 out of 49). The
other addresses traceability between other software
artifacts and is found in 51% of papers (25 out of
49). The remaining 12.2% of papers (6 out of 49)
studied the two types. Table 4 represents traceabil-
ity details within related papers based on different
types of artifacts. Fig. 13 displays the frequency of
different artifacts used by researchers to demonstrate
the traceability method.

RQ5: What are the datasets used in this
field?

Our study showed the existence of many used
datasets. We remarked that open-source datasets
are more popular than closed ones. Fig. 14 shows
the most frequently used datasets in the literature.

Table 4: Types of traceability with related papers.
Traceability artifacts Related papers
Use Case to Code [9] [14] [17] [18] [22] [25]

[27] [34] [36] [38] [42]
[55] [56]

Requirements to Code [14] [18] [21] [23] [27]
[28] [38] [42] [45] [46]
[55] [58] [61]

Test Case to Code [14] [15] [16] [17] [21]
[27] [34] [49] [55]

Descriptions of [14] [17] [25] [27] [55]
Interaction Diagrams to
Code
Descriptions of [14] [17] [34] [55]
Interaction Diagrams to
Test Case
Use Case to Test Case [14] [17] [25] [34] [36]

[55]
Use Case-to-interaction [14] [17] [31] [55]
Diagrams
Requirements to Test [36] [38]
Case
Use case to UML [20]
(Class, Sequence)
diagrams
High-level Requirement [17] [25] [34] [36] [55]
to Low-level [59]
Requirement
Functional [26] [29] [30] [61] [33]
Requirements [35] [37] [39] [44] [47]

[50] [51] [53] [54] [57]
[60]

Non-Functional [48]
Requirements
Issue to Commit [19] [32] [41] [43] [52]
Issue to Code, Test Case [21] [40]
Test case [24]



328 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.19, NO.2 April 2025

Fig.13: Frequency of software artifacts used in the
literature to demonstrate the traceability approach.

These open datasets are commonly used in research
to benchmark different approaches, providing devel-
opers with opportunities to contribute to or lever-
age them for evaluating and improving their RT
processes. However, a notable limitation is that
most studies using these datasets focus primarily
on functional requirements, neglecting non-functional
requirements (NFRs), which are crucial for defining
system performance, scalability, and other critical
constraints.

Fig.14: The most frequent datasets used in litera-
ture.

RQ6: What gaps and potential future direc-
tions exist in this field?

Based on our study, we observe that the used
NLP representation impacts the performance of RT.
Ontology-based representation performed well in hor-
izontal and vertical traceability, whereas TF IDF
was the best in vertical traceability. The use of ad-
vanced embedding techniques to represent require-
ments seems to be promising for RT. Case stud-
ies from industries like healthcare or finance could
demonstrate how embedding techniques improve
traceability in compliance-critical projects, where ac-
curacy is paramount.

On the other hand, this study shows that solutions
rely on ML approaches and move more specifically to-

wards DL techniques. Developers could benefit from
adopting hybrid approaches that combine rule-based
and ML methods to address specific challenges in
traceability, such as handling ambiguous or incom-
plete requirements. For example, a telecom company
could enhance traceability between high-level require-
ments and low-level implementation by integrating
DL models with traditional methods.

We noticed that many use open-source datasets
provided by CoEST, allowing for comparing different
approaches. We also noticed that all studies that dis-
covered traceability links between requirements and
code relied only on functional requirements and did
not consider non-functional requirements, constitut-
ing a limitation for these studies. Non-functional
requirements impose numerous constraints that de-
velopers must implement in the code. Therefore,
tracing them in the code before the software deliv-
ery is essential. For example, developers can ex-
tend embedding techniques to identify patterns re-
lated to non-functional requirements, while ontology-
based approaches could incorporate predefined non-
functional requirements taxonomies. Furthermore,
creating standardized datasets with annotated non-
functional requirements could enable machine learn-
ing models to enhance traceability accuracy. Stan-
dardized datasets annotated with NFRs could fur-
ther help organisations and researchers strengthen
the accuracy of machine-learning models for RT. A
practical example includes using such datasets to im-
prove the traceability of security requirements in e-
commerce systems.

Another significant limitation is how word vectors
are combined to formulate representations of require-
ments. Some research uses an RNN that focuses on
predicting the next element in the sequence. This re-
search could benefit from domain-specific representa-
tions or techniques that consider key syntactic roles in
requirements (such as actor, action, objects,. . .) and
semantic aspects of requirements, such as Req2Vec
[39].

We noticed another limitation between the tracing
process and its implementation when dealing with re-
quirements with specific templates, especially in rule-
based methods. Using “template-dependent” meth-
ods decreases accuracy when applied to new written
requirements due to differences with the template or
when using a completely different template, especially
in large industrial and real-world projects.

We noticed a significant limitation concerning the
lack of prioritization of requirements. Many studies
have provided models to discover the relationships be-
tween requirements, such as dependency, causation,
implicit relationships, etc. However, they did not
handle the priority of requirements. For example, in
safety-critical industries such as aerospace, prioritiza-
tion ensures that essential safety features are trace-
able and validated before secondary requirements.



A Systematic Mapping Review: Tracking the Relationships Between Software Artifacts using NLP 329

Case studies are in-depth, detailed explorations of
specific examples or instances examining how the-
ories, methodologies, or technologies apply in real-
world scenarios, so including case studies in our paper
can help:

• Ground theoretical discussions in practical, real-
world examples.

• Showcase the effectiveness of the methods (like
NLP in traceability).

• Provide detailed, quantified evidence to support
claims and conclusions.

• Offer a clear comparison with existing studies or
approaches, adding credibility and depth.

We had some case studies like the following:

Case Study 1: Vertical Requirements Trace-
ability Using BERT [60]

Context: This study focused on improving vertical
traceability between requirements and source code in
a software development project. The aim was to en-
hance the accuracy of traceability links using BERT,
a transformer-based model known for its contextual
understanding of natural language.

NLP Technique Used: BERT (Bidirectional En-
coder Representations from Transformers): The
BERT model establishes links between software re-
quirements and corresponding source code segments.

Implementation:

The BERT model uses a dataset of software re-
quirements and annotated code files for training.

The model outputs a similarity score for each pair
of requirements and code, indicating the likelihood of
a traceability link.

Results: The case study shows a moderately
positive correlation between requirements similar-
ity and software similarity, with the pre-trained
deep learning-based BERT language model with pre-
processing outperforming the other models (Fast
Text, Doc2vec, and TF IDF).

Conclusion: The BERT model significantly im-
proved traceability accuracy, demonstrating its effec-
tiveness in handling complex software artifacts.

Case Study 2: Traceability Link Recovery
Using Word2Vec and SVM [19]

Context: This study aimed to recover traceability
links between issue reports and code commits in open-
source projects. The objective was to enhance trace-
ability using word embedding and a Support Vector
Machine (SVM) classifier.

NLP Technique Used: Word2Vec: This model gen-
erated vector representations of words in issue reports
and code commits, capturing semantic similarities.

SVM Classifier: The SVM classifier categorises
whether a link exists between an issue report and a
corresponding code commit.

Implementation: The dataset included issue re-
ports and code commits from the Apache Software
Foundation projects.

Word2Vec embedding converted textual data into
numerical vectors, which we fed into the SVM classi-
fier.

Results: On the ZOOKEEPER project, the model
achieved a precision of 84.7%, a recall rate of 87%,
and an F score of 85.9%.

Conclusion: Word2Vec combined with SVM
proved to be a practical approach for recovering trace-
ability links, offering a balance between precision and
recall, which is suitable for large-scale projects.

Case Study 3: Topic Modelling for Require-
ments Categorisation [44]

Context: This case study classified requirements
into functional and non-functional categories using
Topic Modelling, particularly Latent Dirichlet Allo-
cation (LDA) with K-means algorithm.

NLP Technique Used: LDA (Latent Dirichlet Allo-
cation): We used LDA to discover latent topics in the
requirements documents, which helped classify them
into functional and non-functional categories.

Implementation:

The dataset consisted of 43 requirements from var-
ious documents.

LDA was applied to identify topics, which we then
mapped to functional or non-functional requirements.

Results: The LDA model achieved a topic coher-
ence score of 0.61, indicating a good match between
the discovered topics and actual requirement cate-
gories.

Classification Accuracy: The average precision
score from highest to lowest consecutively is in the
IR + LDA (0.61 and 0.857).

Conclusion: The LDA effectively categorises re-
quirements, particularly in distinguishing between
functional and non-functional requirements. This
categorisation is essential for ensuring that we have
addressed all aspects of the software during develop-
ment.

5. THREATS TO VALIDITY

We may not have been able to find the complete
set of all relevant papers, but we have taken some
measures to mitigate this threat.

• We chose six reputable and well-known data
sources (Scopus, IEEE Xplore, ACM Digital Library,
Elsevier, MDPI, and Springer Link) to maximize the
number of candidate papers.

• Although we made the search list more gen-
eral using several synonyms for each term, the final
search list may not include all synonyms. We there-
fore checked the references of the final papers to add
any additional relevant works.

• When there were doubts or conflicts about in-
cluding an article, the authors discussed the final de-
cision.

• We considered studies that used issue reports or
bug reports. In other words, the studies are diverse,



330 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.19, NO.2 April 2025

and the primary focus of some might not be trace-
ability. For instance, we included bug localization
papers if the papers handled traceability of issue re-
ports. From our point of view, such an inclusion is not
a big deal because bug localization is one of the goals
that traceability studies typically aim to achieve. Ad-
ditionally, to mitigate this threat, we carefully deter-
mined whether the studies were related to traceabil-
ity by checking which “trace” terms appeared in the
studies.

6. CONCLUSION

This study has presented a systematic mapping
review of relationships between software artifacts us-
ing NLP. Starting from 209 papers retrieved from six
well-known digital libraries, we identified 49 primary
documents that met the inclusion criteria. We anal-
ysed these works and classified them based on the
targeted type of traceability, solution, and text rep-
resentation technique.

Our findings reveal that approximately one-third
of the reviewed studies address horizontal traceabil-
ity, focusing on linking artifacts of similar types. At
the same time, half explore vertical traceability, link-
ing artifacts across different abstraction levels. Ma-
chine learning-based approaches dominate the pro-
posed solutions, appearing in over half of the stud-
ies, with deep learning techniques gaining increasing
attention. Advanced embedding methods, including
word and contextualized embeddings, were employed
in more than 45% of the reviewed studies, highlight-
ing a trend toward more sophisticated requirement
representation methods. Additionally, vector space
models (VSM) are becoming more common for mod-
elling requirements.

This review also uncovered key gaps and challenges
in the field. Notably, non-functional requirements re-
main underexplored, and there is limited focus on
adapting traceability techniques to agile workflows.
These gaps point to significant opportunities for fu-
ture research, such as developing methods to handle
non-functional requirements effectively and creating
traceability frameworks tailored to dynamic develop-
ment environments.

The classification and insights derived from the
selected studies provide a valuable reference for re-
searchers and practitioners, offering a clear under-
standing of current trends and emerging directions in
the field. By addressing the identified research gaps,
future studies can further advance the use of NLP for
requirements traceability, improving both the accu-
racy and applicability of these methods in software
engineering practice.

AUTHOR CONTRIBUTIONS

Methodology, G.R. and N.G.; validation, G.R.,
N.G. and F.K.; formal analysis, F.K.; investiga-
tion, G.R., N.G.; writing—original draft preparation,

F.K.; writing—review and editing, G.R., N.G., and
F.K.; visualization, F.K.; supervision, G.R. and N.G.
All authors have read and agreed to the published
version of the manuscript.

References

[1] A. Tahir and R. Ahmad, “Requirement engineer-
ing practices-An empirical study,” Proceedings of
the 2010 International Conference on Computa-
tional Intelligence and Software Engineering, pp.
1-5, 2010.

[2] A. Aurum and C. Wohlin, “Requirements en-
gineering: Setting the context,” Engineering
and Managing Software Requirements, pp. 1-15,
2005.

[3] X. Li, B. Wang, H. Wan, Y. Deng and Z.
Wang, “Applications of Machine Learning in Re-
quirements Traceability: A Systematic Mapping
Study,” in Proceedings of the 35th International
Conference on Software Engineering and Knowl-
edge Engineering (SEKE), pp. 566-571, 2023.

[4] J. Mucha, A. Kaufmann and D. Riehle , “A
systematic literature review of pre-requirements
specification traceability,” Requirements Engi-
neering, vol. 29, pp. 119-141, 2024.

[5] T. W. W. Aung, H. Huo and Y. Sui, “A liter-
ature review of automatic traceability links re-
covery for software change impact analysis,” in
Proceedings of the 28th International Conference
on Program Comprehension, pp. 14-24, 2020.

[6] B. Wang, H. Wang, R. Luo, S. Zhang, Q. Zhu,
“A Systematic Mapping Study of Information
Retrieval Approaches Applied to Requirements
Trace Recovery,” in Proceedings of the 34th In-
ternational Conference on Software Engineering
and Knowledge Engineering (SEKE), pp. 1-6,
2022.

[7] Z. Pauzi and A. Capiluppi, “Applications of nat-
ural language processing in software traceability:
A systematic mapping study,” Journal of Sys-
tems and Software, vol. 198, p. 111616, 2023.

[8] Y. Lyu, H. Cho, P. Jung and S. Lee, “A System-
atic Literature Review of Issue-Based Require-
ment Traceability,” in IEEE Access, vol. 11, pp.
13334-13348, 2023

[9] T. Li, S. Wang, D. Lillis and Z. Yang, “Com-
bining machine learning and logical reasoning to
improve requirements traceability recovery,” Ap-
plied Sciences, vol. 10, no. 20, p. 7253, 2020.

[10] L. Zhao, W. Alhoshan, A. Ferrari, K. J. Let-
sholo, M. A. Ajagbe, E. V. Chioasca and R. T.
Batista-Navarro, “Natural language processing
for requirements engineering: A systematic map-
ping study,” ACM Computing Surveys (CSUR),
vol. 54, no. 3, pp. 1–41, 2021.

[11] O. C. Z. Gotel and C. W. Finkelstein, “An anal-
ysis of the requirements traceability problem,”
Proceedings of IEEE International Conference



A Systematic Mapping Review: Tracking the Relationships Between Software Artifacts using NLP 331

on Requirements Engineering, Colorado Springs,
CO, USA, pp. 94-101, 1994.

[12] S. Ibrahim, N. B. Idris, M. Munro, and A. De-
raman, “A requirements traceability to support
change impact analysis,” Asian Journal of In-
formation Tech, vol. 4, no. 4, pp. 345-355, 2005.

[13] R. Sonbol, G. Rebdawi and N. Ghneim, “The
use of NLP-based text representation techniques
to support requirement engineering tasks: A sys-
tematic mapping review,” in IEEE Access, vol.
10, pp. 62811-62830, 2022.

[14] R. Tsuchiya, K. Nishikawa, H. Washizaki, Y.
Fukazawa, Y. Shinohara, K. Oshima and R.
Mibe, “Recovering transitive traceability links
among various software artifacts for developers,”
IEICE TRANSACTIONS on Information and
Systems, vol. 102, no. 9, pp. 1750–1760, 2019.

[15] V. Csuvik, A. Kicsi and L. Vidács, “Evalua-
tion of textual similarity techniques in code-
level traceability,” Computational Science and
Its Applications—ICCSA 2019: 19th Interna-
tional Conference, pp. 529–543, 2019.

[16] V. Csuvik, A. Kicsi and L. Vidács, “Source code
level word embeddings in aiding semantic test-
to-code traceability,” in 2019 IEEE/ACM 10th
International Symposium on Software and Sys-
tems Traceability (SST), pp. 29-36, 2019.

[17] C. Mills, J. Escobar-Avila, A. Bhattacharya,
G. Kondyukov, S. Chakraborty and S. Haiduc,
“Tracing with less data: Active learning for
classification-based traceability link recovery,”
Proceedings of the 2019 IEEE International Con-
ference on Software Maintenance and Evolution
(ICSME), pp. 103–113, 2019.

[18] H. Kuang, H. Gao, H. Hu, X. Ma, J. Lü, P.
Mäder and A. Egyed, “Using frugal user feed-
back with closeness analysis on code to improve
IR-based traceability recovery,” Proceedings of
the 2019 IEEE/ACM 27th International Con-
ference on Program Comprehension (ICPC), pp.
369–379, 2019.

[19] R. Xie, L. Chen, W. Ye, Z. Li, T. Hu, D. Du and
S. Zhang, “DeepLink: A code knowledge graph-
based deep learning approach for issue-commit
link recovery,” Proceedings of the 2019 IEEE
26th International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER), pp.
434–444, 2019.

[20] D. Kchaou, N. Bouassida, M. Mefteh and H.
Ben-Abdallah, “Recovering semantic traceabil-
ity between requirements and design for change
impact analysis,” Innovations in Systems and
Software Engineering, vol. 15, pp. 101-115, 2019.

[21] H. Abukwaik, A. Burger, B. K. Andam and
T. Berger, “Semi-automated feature traceability
with embedded annotations,” Proceedings of the
2018 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME), pp.

529–533, 2018.

[22] S. Wang, T. Li and Z. Yang, “Exploring seman-
tics of software artifacts to improve requirements
traceability recovery: A hybrid approach,” Pro-
ceedings of the 2019 26th Asia-Pacific Software
Engineering Conference (APSEC), pp. 39–46,
2019.

[23] D. V. Rodriguez and D. L. Carver, “Comparison
of information retrieval techniques for traceabil-
ity link recovery,” in 2019 IEEE 2nd Interna-
tional Conference on Information and Computer
Technologies (ICICT), pp. 186–193, 2019.

[24] S. Tahvili, L. Hatvani, M. Felderer, W. Afzal and
M. Bohlin, “Automated functional dependency
detection between test cases using doc2vec and
clustering,” in 2019 IEEE International Confer-
ence on Artificial Intelligence Testing (AITest),
pp. 19–26, 2019.

[25] L. Chen, D. Wang, J. Wang and Q. Wang,
“Enhancing unsupervised requirements trace-
ability with sequential semantics,” in 2019 26th
Asia-Pacific Software Engineering Conference
(APSEC), pp. 23–30, 2019.

[26] W. Alhoshan, R. Batista-Navarro and L. Zhao,
“Using frame embeddings to identify seman-
tically related software requirements,” in 2nd
Workshop on Natural Language Processing for
Requirements Engineering, 2019.

[27] A. H. Rasekh, S. M. Fakhrahmad and M. H.
Sadreddini, “Mining traces between source code
and textual documents,” International Journal
of Computer Applications in Technology, vol. 59,
no. 1, pp. 43-52, 2019.

[28] N. Ali, H. Cai, A. Hamou-Lhadj and J. Has-
sine, “Exploiting parts-of-speech for effective au-
tomated requirements traceability,” Information
and Software Technology, vol. 106, pp. 126–141,
2019.

[29] M. Singh, “Using natural language processing
and graph mining to explore inter-related re-
quirements in software artefacts,” ACM SIG-
SOFT Software Engineering Notes, vol. 44, no.
1, pp. 37–42, 2022.

[30] G. Deshpande, C. Arora and G. Ruhe, “Data-
driven elicitation and optimization of dependen-
cies between requirements,” in 2019 IEEE 27th
International Requirements Engineering Confer-
ence (RE), pp. 416–421, 2019.

[31] R. Samer, M. Stettinger, M. Atas, A. Felfernig,
G. Ruhe and G. Deshpande, “New approaches
to the identification of dependencies between re-
quirements,” in 2019 IEEE 31st International
Conference on Tools with Artificial Intelligence
(ICTAI), pp. 1265–1270, 2019.

[32] H. Ruan, B. Chen, X. Peng and W. Zhao,
“DeepLink: Recovering issue-commit links based
on deep learning,” Journal of Systems and Soft-
ware, vol. 158, p. 110406, 2019.



332 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.19, NO.2 April 2025

[33] G. Deshpande, Q. Motger, C. Palomares, I.
Kamra, K. Biesialska, X. Franch and J. Ho,
“Requirements dependency extraction by inte-
grating active learning with ontology-based re-
trieval,” in 2020 IEEE 28th International Re-
quirements Engineering Conference (RE), pp.
78–89, 2020.

[34] T. B. Du, G. H. Shen, Z. Q. Huang, Y. S. Yu and
D. X. Wu, “Automatic traceability link recov-
ery via active learning,” Frontiers of Informa-
tion Technology & Electronic Engineering, vol.
21, no. 8, pp. 1217–1225, 2020.

[35] J. Frattini, M. Junker, M. Unterkalmsteiner and
D. Mendez, “Automatic extraction of cause-
effect relations from requirements artifacts,” in
Proceedings of the 35th IEEE/ACM Interna-
tional Conference on Automated Software Engi-
neering, pp. 561–572, 2020.

[36] B. Wang, R. Peng, Z. Wang, X. Wang and Y. Li,
“An automated hybrid approach for generating
requirements trace links,” International Journal
of Software Engineering and Knowledge Engi-
neering, vol. 30, no. 07, pp. 1005–1048, 2020.

[37] J. Fischbach, B. Hauptmann, L. Konwitschny,
D. Spies and A. Vogelsang, “Towards causal-
ity extraction from requirements,” in 2020
IEEE 28th International Requirements Engi-
neering Conference (RE), pp. 388–393, 2020.

[38] K. Moran, D. N. Palacio, C. Bernal-Cárdenas, D.
McCrystal, D. Poshyvanyk, C. Shenefiel and J.
Johnson, “Improving the effectiveness of trace-
ability link recovery using hierarchical Bayesian
networks,” in Proceedings of the ACM/IEEE
42nd International Conference on Software En-
gineering, pp. 873–885, 2020.

[39] R. Sonbol, G. Rebdawi and N. Ghneim, “To-
wards a semantic representation for functional
software requirements,” in 2020 IEEE Sev-
enth International Workshop on Artificial Intel-
ligence for Requirements Engineering (AIRE),
pp. 1–8, 2020.

[40] L. R. J. Santos, G. Gadelha, F. Ramalho and
T. Massoni, “Improving traceability recovery be-
tween bug reports and manual test cases,” in
Proceedings of the XXXIV Brazilian Symposium
on Software Engineering, pp. 293–302, 2020.

[41] Y. Liu, J. Lin, and J. Cleland-Huang,
“Traceability support for multi-lingual software
projects,” in Proceedings of the 17th Interna-
tional Conference on Mining Software Reposito-
ries, pp. 443–454, 2020.

[42] D. V. Rodriguez and D. L. Carver, “Multi-
objective information retrieval-based NSGA-II
optimization for requirements traceability recov-
ery,” in 2020 IEEE International Conference
on Electro Information Technology (EIT), pp.
271–280, 2020.

[43] M. Rath, M. T. Tomova and P. Mäder, “Spo-

jitr: Intelligently link development artifacts,”
in 2020 IEEE 27th International Conference on
Software Analysis, Evolution and Reengineering
(SANER), pp. 652–656, 2020.

[44] R. Asyrofi, T. Hidayat and S. Rochimah, “Com-
parative studies of several methods for building
simple traceability and identifying the quality
aspects of requirements in SRS documents,” in
2020 10th Electrical Power, Electronics, Com-
munications, Controls and Informatics Seminar
(EECCIS), pp. 243-247, 2020.

[45] D. V. Rodriguez and D. L. Carver, “An IR-
based artificial bee colony approach for trace-
ability link recovery,” in 2020 IEEE 32nd In-
ternational Conference on Tools with Artificial
Intelligence (ICTAI), pp. 1145–1153, 2020.

[46] T. Hey, F. Chen, S. Weigelt and W. F.
Tichy, “Improving traceability link recovery us-
ing fine-grained requirements-to-code relations,”
in 2021 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME), pp.
12–22, 2021.

[47] M. Aldekhail and M. Almasri, “Intelligent iden-
tification and resolution of software requirement
conflicts: Assessment and evaluation,” Com-
puter Systems Science & Engineering, vol. 40,
no. 2, 2022.

[48] U. Shah, S. Patel and D. C. Jinwala, “Detecting
intra-conflicts in non-functional requirements,”
International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, vol. 29, no. 03,
pp. 435–461, 2021.

[49] A. Kicsi, V. Csuvik and L. Vidács, “Large scale
evaluation of natural language processing-based
test-to-code traceability approaches,” in IEEE
Access, vol. 9, pp. 79089–79104, 2021.

[50] S. Das, N. Deb, A. Cortesi and N. Chaki, “Sen-
tence embedding models for similarity detection
of software requirements,” SN Computer Sci-
ence, vol. 2, pp. 1–11, 2021.

[51] V. Leitão and I. Medeiros, “SRXCRM: Discov-
ering association rules between system require-
ments and product specifications,” in REFSQ
Workshops, 2021.

[52] J. Lin, Y. Liu, Q. Zeng, M. Jiang and J. Cleland-
Huang, “Traceability transformed: Generating
more accurate links with pre-trained BERT
models,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), pp.
324–335, 2021.

[53] A. Nicholson and G. J. LC, “Issue link label re-
covery and prediction for open source software,”
in 2021 IEEE 29th International Requirements
Engineering Conference Workshops (REW), pp.
126–135, 2021.

[54] G. Deshpande, B. Sheikhi, S. Chakka, D. L.
Zotegouon, M. N. Masahati and G. Ruhe, “Is
BERT the new silver bullet? - An empirical



A Systematic Mapping Review: Tracking the Relationships Between Software Artifacts using NLP 333

investigation of requirements dependency clas-
sification,” in 2021 IEEE 29th International Re-
quirements Engineering Conference Workshops
(REW), pp. 36–145, 2021.

[55] J. Zhu, G. Xiao, Z. Zheng and Y. Sui, “En-
hancing traceability link recovery with unlabeled
data,” in 2022 IEEE 33rd International Sym-
posium on Software Reliability Engineering (IS-
SRE), pp. 446–457, 2022.

[56] N. H. Al-walidi, S. S. Azab, A. Khamis and N. R.
Darwish, “Clustering-based automated require-
ment trace retrieval,” International Journal of
Advanced Computer Science and Applications,
vol. 13, no. 12, 2022.

[57] R. Sonbol, G. Rebdawi and N. Ghneim, “Learn-
ing software requirements syntax: An un-
supervised approach to recognize templates,”
Knowledge-Based Systems, vol. 248, p. 108933,
2022.

[58] P. Dai, L. Yang, Y. Wang, D. Jin and Y. Gong,
“Constructing traceability links between soft-
ware requirements and source code based on neu-
ral networks,” Mathematics, vol. 11, no. 2, p.
315, 2023.

[59] J. Tian, L. Zhang and X. Lian, “A cross-level
requirement trace link update model based on
bidirectional encoder representations from trans-
formers,” Mathematics, vol. 11, no. 3, p. 623,
2023.

[60] M. Abbas, A. Ferrari, A. Shatnawi, E. Enoiu,
M. Saadatmand and D. Sundmark, “On the rela-
tionship between similar requirements and sim-
ilar software: A case study in the railway do-
main,” Requirements Engineering, vol. 28, no. 1,
pp. 23–47, 2023.

[61] R. F. Al-Msie’deen, “Requirements traceabil-
ity: Recovering and visualizing traceability
links between requirements and source code
of object-oriented software systems,” arXiv
preprint arXiv:2307.05188, 2023.

[62] L. C. Briand, Y. Labiche and L. O’Sullivan,
“Impact analysis and change management of
UML models,” in International Conference on
Software Maintenance, 2003. ICSM 2003, pp.
256–265, 2003.

[63] G. Lucassen, F. Dalpiaz, J. M. E. van der Werf
and S. Brinkkemper, “Improving agile require-
ments: The quality user story framework and
tool,” Requirements Engineering, vol. 21, pp.
383–403, 2016.

Fedaa Khalil received the B.S. de-
gree in Computer Engineering from the
Al-Wataniya Private University (WPU),
Syria in 2021. She recently received her
M.S. degrees in Information Engineering
at the Higher Institute for Applied Sci-
ences and Technology (HIAST), Syria in
2025. Passionate about advancing tech-
nology, she is now pursuing a PhD in In-
formation Engineering, further deepen-
ing her expertise in the field. Through-

out her academic journey, she has contributed to several re-
search papers and has actively participated in applied projects,
particularly in the realm of artificial intelligence. Her research
interests include natural language processing and software en-
gineering.

Ghaida Rebdawi received the B.S. de-
gree in informatics engineering from the
Higher Institute for Applied Sciences
and Technology, Syria, in 1985, and the
DEA and Ph.D. degrees in applied au-
tomatic and informatics from the Insti-
tut National des Sciences Appliquées de
Lyon, France, in 1987 and 1990, respec-
tively. In 1991, she joined as a Re-
search Assistant Professor at the Infor-
matics Department, Higher Institute for

Applied Sciences and Technology, where she has been a Re-
search director/ Professor, since 2012. She coauthored many
academic books in computer science, and more than 20 articles.
Her research interests include software engineering, require-
ments engineering, natural language processing, and business
process management.

Nada Ghneim received the Ph.D. de-
gree (DEA) in artificial intelligence (im-
age, robotics, vision) from the Na-
tional High School of Computer Science
and Applied Mathematics in Greno-
ble (ENSIMAG), France, in 1993, and
the Ph.D. degree in language sciences
(speech communication) from the Insti-
tut de la Communication Parlée, Stend-
hal (Grenoble III) University, France, in
1997. She is an Assistant Professor with

the Faculty of Informatics Communication Engineering, Arab
International University (AIU), Damascus, Syria. She is also a
Researcher/Lecturer with the Higher Institute for Applied Sci-
ences and Technology (HIAST) and the Information Technol-
ogy Engineering Faculty, Damascus University. She has many
publications in her research areas, including AI, speech and
natural language processing.




