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ABSTRACT

Intensive rice cultivation presents significant environmental and economic
challenges. While crop diversification offers potential benefits for agri-
cultural sustainability and financial resilience, farmers face considerable
uncertainty when transitioning to alternative crops. This study assessed
the prediction efficacy of machine learning (ML) models in identifying suit-
able crops for cultivation in a specific geographical area considering various
factors influencing agricultural viability. Through comprehensive experi-
mentation, a decision tree model, an artificial neural network (ANN), and
a Naive Bayes model were used for predictions and rigorously evaluated
for various crops, including rubber, coconut, longan, durian, rambutan,
and mangosteen. Various hyperparameter configurations were tested, and
multiple evaluation indicators were employed to assess the prediction per-
formance of the models. The results consistently demonstrated the su-
periority of the decision tree model, which exhibited high accuracy, pre-
cision, recall, and F-measure across most crops. Its ability to capture
intricate patterns and relationships between crop attributes and suitabil-
ity levels underscores its value as a decision-support tool in agriculture.
While the ANN model performed well for coconut, its effectiveness varied
across the other crops, highlighting the need for tailored model selection.
This study provides valuable insights into the application of ML in agri-
cultural decision-making processes, suggesting potential avenues for future
optimization and enhancement of prediction accuracy.
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1. INTRODUCTION

Regional variations in agricultural practices are
shaped by local environmental conditions. Farm-
ers select crop varieties based on these conditions,
often following conventional cropping patterns and
methods. Efficient crop production systems require
a holistic approach that accounts for multiple inter-
connected factors affecting agricultural productivity.
Successful agricultural planning depends on a com-
prehensive understanding of the complex interactions
among climatic conditions, soil properties, market dy-
namics, and biotic influences. The optimal approach
to crop cultivation is inherently complex, requiring
careful consideration of environmental, economic, and
agronomic factors. Numerous variables influence the

decision-making process of cultivating specific crops.

In addition to understanding the factors influenc-
ing crop selection, farmers must consider their vulner-
ability to economic volatility caused by fluctuations
in prices, demand, and supply [1]. A successful har-
vest can lead to an oversupply, driving down prices
and affecting farmer’s decisions. The time interval be-
tween planting and harvest known as the lead time,
is a critical yet uncontrollable factor.

Intensive rice production in many agricultural re-
gions has resulted in significant challenges, including
excessive water consumption, soil degradation, and
increased vulnerability to climate change. Addition-
ally, rising production costs and fluctuating market
prices pose increasing threats to the economic via-
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bility of rice cultivation. Alternative-crop farming
promotes diversification, reducing the risk of market
oversupply while enhancing agricultural sustainabil-
ity and improving producer profitability. However,
despite these benefits, many farmers hesitate to tran-
sition to alternative crops due to uncertainties regard-
ing feasibility and potential success rates.

Promoting alternative crops and reducing depen-
dency on rice can be facilitated through algorith-
mic methodologies and computer-based modeling sys-
tems, which provide a structured framework for op-
timizing agricultural-land-use transitions. This sys-
tematic approach enables a comprehensive analysis
of key factors influencing agricultural production, in-
cluding soil characteristics, water availability, and cli-
mate.

The integration of scientific technologies into crop
cultivation is increasingly being explored. Advanced
methodologies such as ML and data mining can be
utilized to predict and recommend the most suitable
crops for specific regions [2, 3]. By leveraging cli-
mate data, soil health management techniques, mar-
ket analysis, and pest control strategies, farmers can
optimize the decision-making process and achieve sus-
tainable agricultural outcomes. Additionally, adapt-
ing farming operations to local conditions and in-
corporating traditional knowledge enhances the re-
silience of farming systems, improving their ability
to withstand challenges and generate profits. Culti-
vating crops in unsuitable conditions often leads to
reduced agricultural yields. Prediction models and
decision-support technologies can help farmers navi-
gate the complexities of modern agriculture, provid-
ing valuable insights to improve agricultural produc-
tivity and sustainability.

This article presents a prediction model that in-
tegrates multiple factors influencing agricultural pro-
duction and recommends alternative crop options for
a specific geographical region: the Lower Northern
Province of Thailand. The primary objective of the
research was to identify viable alternatives to rice,
which is particularly susceptible to market surplus
during periods of abundant harvests. To achieve
the objective, alternative crops, including rubber, co-
conut, longan, durian, rambutan, and mangosteen,
were examined. The key contributions of this re-
search are as follows:

e This article introduces an advanced prediction
model that integrates multiple critical agricul-
tural parameters, including temperature, rain-
fall, wind speed, and soil characteristics. Fur-
ther, limitations of previous research are over-
come.

e The study rigorously evaluated optimal hyper-
parameters for individual and ensemble machine
learning (ML) models to enable the accurate
forecasting of the suitability levels of alternative-
crop cultivation in the study region.

2. RELATED WORKS

The application of ML in agriculture has the po-
tential to revolutionize crop cultivation by providing
farmers with precise, data-driven recommendations
tailored to their specific conditions. An ML-based
recommender system can assist farmers in selecting
the most suitable crops by considering various fac-
tors influencing agricultural productivity.

Various scientific methodologies have been ex-
plored for this purpose. Ontologies serve as struc-
tured knowledge bases that provide valuable insights
to support cultivation decisions and agricultural rec-
ommendations related to crop varieties, growth cy-
cles, and climatic conditions [4], and crop pests [5]
that may lead to product losses are included in the
information provided by ontologies. By incorporating
multiple crop-growth-influencing factors, ontologies
facilitate informed crop recommendations for specific
regions.

Content-based recommendation systems have also
been investigated [6], which use parameters such as
soil pH, soil type, and mineral content to suggest suit-
able crops. While these systems can identify opti-
mal crop-growing regions, they often do not provide
recommendations tailored to individual landowners’
conditions. To address this issue, improved recom-
mendation systems should offer localized crop advice,
enabling farmers to select crops best suited to their
land. Additionally, various data mining techniques
[7, 8] have been employed to enhance the accuracy
and effectiveness of these recommendation systems.

In [9], the application of ML methods, includ-
ing support vector machines (SVMs), random forest
models, Gaussian Naive Bayes models, and k-nearest
neighbors (kNNs), was explored for crop selection and
prediction. These algorithms were used to evaluate
soil quality, water quality, and agro-climatic variables
to optimize crop management.

In the context of expanding precision agriculture,
which emphasizes “site-specific” farming, a system re-
ported in [10] employed ML methods, including Naive
Bayes and kNN models, to predict crop yield. These
models facilitated the identification of optimal crops
based on site-specific factors, enhancing the precision
and efficacy of recommendations. The study high-
lighted the importance of soil properties such as tex-
ture, pH, and water retention capacity in crop devel-
opment. However, a lack of the proper integration of
diverse data sources into a cohesive model limited the
precision of crop recommendations.

To explore how to utilize ML models in agricul-
ture in greater detail, the study [11] employed diverse
datasets sourced from Kaggle, which included critical
factors such as soil and climate conditions. This data
variety was essential for effectively training ML mod-
els, as it captured key influences of the factors on
crop growth and yield. The study evaluated several
ML algorithms, including a linear regression model,
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Naive Bayes model, lasso regression model, support
vector regression model, decision tree model, random
forest model, k-NN, and gradient boosted regression
tree (GBRT) model. However, the performance of
these algorithms varied significantly depending on the
dataset’s specific characteristics, potentially leading
to different outcomes when applied to other datasets
or agricultural contexts. The bagging technique was
employed in the study to enhance prediction accu-
racy; however, the risk of overfitting remained: the
model performed well on training data but poorly
on unseen data. Meanwhile, the effectiveness of the
modified recursive feature elimination (MRFE) tech-
nique and the corresponding ML model was found to
heavily depend on the quality and completeness of
input data. Inaccurate or incomplete data could lead
to poor feature selection and, consequently, unreliable
crop predictions.

Previous studies indicated that identifying key soil
and environmental factors affecting crop yield could
aid in predicting crop productivity. The study [12]
introduced a novel MRFE technique to identify key
soil and environmental variables involved in predict-
ing crop productivity. The technique aimed to pri-
oritize the most critical dataset elements, improving
the precision of predictions. The MRFE technique
employed a ranking system to assess the significance
of various variables. However, it faced limitations
related to regional variability, data integrity, agricul-
tural system complexity, overfitting risk, and hetero-
geneity in assessed characteristics.

Numerous studies have explored the application of
ML methodologies for forecasting crop productivity.
The study [13] evaluated various ML algorithms to
determine the most effective approach for predicting
crop productivity. However, critical challenges re-
main, including those related to the estimation of the
crop yield, impact of soil properties on predictions,
and overarching goal of improving farmer profitabil-
ity. Prior research has demonstrated the effectiveness
of ML methods in crop recommendation based on soil
characteristics. The study [14] examined ML tech-
niques for crop recommendation, explicitly focusing
on soil factors.

The techniques reported in [15] employed a hybrid
model integrating decision tree, SVM, and RNN al-
gorithms. Further, a comprehensive analysis of soil
variables was incorporated to improve crop-yield pro-
jections and provide farmers with valuable guidance.
Collectively, the techniques aimed to guide the agri-
cultural decision-making process and increase farmer
profitability. However, while the model incorporated
several soil characteristics, including nitrogen con-
tent, phosphorus content, potassium content, mois-
ture, and precipitation, it did not account for all en-
vironmental factors influencing the crop yield. Pests,
diseases, and climate change can significantly impact
agricultural productivity, and yet, they were not fully

integrated into the model’s forecasts. Additionally,
the hybrid model struggled to generalize its predic-
tions across different geographical regions or crop
types. Conditions and farming practices at a loca-
tion may not apply to other locations, limiting the
model’s effectiveness in providing universally relevant
recommendations.

Furthermore, the study [16] introduced an innova-
tive ML algorithm that simultaneously evaluated me-
teorological conditions and soil characteristics for op-
timal crop selection. This approach was distinctive,
as previous models often focused on weather or soil
data but not both concurrently. The study applied
several ML, methods, including a k-NN, Naive Bayes
model, random forest model, and long short-term
memory (LSTM) RNN. The use of the LSTM RNN
for meteorological forecasting was particularly impor-
tant as it effectively captured temporal relationships
in weather patterns, enhancing the prediction accu-
racy. However, the random forest model used in the
second phase required substantial computational re-
sources and processing time due to the construction
of multiple trees for output aggregation. While this
ensemble approach improved the prediction perfor-
mance, it reduced interpretability, making it difficult
to assess the contribution of individual variables.

The literature highlights significant advancements
in applying ML to enhance agricultural operations,
particularly in crop selection and production forecast-
ing. Various ML techniques, including decision trees,
kNNs, SVMs, random forest models, Naive Bayes
models, GBRTSs, and neural networks, have been em-
ployed to analyze factors such as soil quality, climatic
conditions, and nutrient content. Hybrid models and
ensemble methods, such as the MRFE technique and
reinforcement learning, have shown promise in en-
hancing feature selection and prediction accuracy.
Additionally, ontology-driven systems and content-
centric recommendation frameworks have enhanced
the customization of crop suggestions by integrating
agricultural knowledge. Despite these advancements,
challenges remain, including regional heterogeneity,
dataset limitations, and agricultural system complex-
ity, which can lead to overfitting and limited scalabil-
ity.

This study aimed to bridge this research gap by de-
veloping a comprehensive model that integrates soil
properties, rainfall, and weather conditions to en-
hance ML-based predictions of land suitability for
cultivation. By addressing the limitations identified
in previous studies, the ML-based prediction model
shows improved prediction accuracy and reliability.
Unlike prior research that primarily classified land
as being suitable or unsuitable for specific crops, the
proposed methodology introduces a graded assess-
ment of suitability levels. This nuanced approach en-
ables landowners to make more informed decisions,
even when land is not optimal but remains viable
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for agriculture. Moreover, while existing models have
demonstrated improved performance, they often lack
transparency in their computational processes. This
study addresses that gap by ensuring methodological
clarity, reproducibility, and adaptability. Addition-
ally, the proposed approach establishes a foundation
for future research by prioritizing flexibility in agri-
cultural recommendations, enabling localized, data-
driven decision-making processes tailored to the di-
verse needs of farmers and agricultural stakeholders.

3. RESEARCH FRAMEWORK AND MET-
HODOLOGY

3.1 Research Framework

A comprehensive analysis of physical factors and
relevant data from 93 districts in Thailand’s Lower
Northern region was conducted to predict the most
suitable alternative crops for this area. To achieve
high accuracy in these predictions, multiple predic-
tion models were evaluated and compared.

Each model underwent a rigorous hyperparameter
tuning process for performance optimization. Hyper-
parameter tuning is a crucial step in ML, where model
parameters are adjusted to enhance the forecast accu-
racy. Through hyperparameter fine-tuning, the mod-
els were better aligned with the unique characteristics
of the dataset.

The prediction models were then systematically
evaluated to identify the most effective one. The eval-
uation process involved analyzing each model’s per-
formance using various criteria, including accuracy,
precision, and overall effectiveness in predicting suit-
able crops. This comparative analysis facilitated the
selection of the most robust forecasting model.

The most effective configuration for each model
was determined through a systematic assessment of
its performance. The selection process involved a
detailed analysis of performance indicators to iden-
tify the model with the highest prediction accuracy.
The most effective model identified from the train-
ing phase was then evaluated using the validation
dataset.

Through rigorous testing and validation, the study
identified the most effective model for predicting suit-
able crops in the study area. This methodological ap-
proach ensured the reliability and effectiveness of the
selected model in practical applications, offering valu-
able insights for agricultural planning and decision-
making in Thailand’s Lower Northern region.

The research began with data collection from the
Provincial Office of Agricultural Extension. A com-
prehensive analysis of the agricultural dataset was
conducted to identify significant trends and insights.
The dataset encompassed various variables, including
temperature, rainfall, moisture content, wind speed,
and soil classification (indicating ten soil types).

A comprehensive preparatory operation was per-
formed to ensure the accuracy and practicality of the

data. This process involved data cleansing, handling
missing values, and transforming the dataset into a
suitable format for analysis. At this stage, key vari-
ables influencing agricultural operations were identi-
fied and selected.

The study employed various ML models, includ-
ing a decision tree model, an ANN, and a Nalve
Bayes model, to predict the most suitable crop. Each
model underwent meticulous hyperparameter fine-
tuning and rigorous training to optimize the predic-
tion performance. A thorough comparison of the
models was then conducted to evaluate their effec-
tiveness.

The prediction algorithms utilized multiple input
variables, including geographical location, soil com-
position, weather characteristics, and farmer prefer-
ences, to recommend the most suitable crop for max-
imizing agricultural productivity in the given area.
This comprehensive approach tailored recommenda-
tions to the specific conditions and needs of farmers.
The research framework is shown in Fig. 1.
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Fig.1: Alternative-Crop Prediction Framework.

3.2 Research Methodology

The research employed ML models to generate pre-
cise predictions and systematically assessed and an-
alyzed the models to identify the most efficient one.
The research process involved data acquisition, data
preprocessing, model training, and model evaluation.

Data Acquisition: In this stage, a comprehen-
sive dataset focused exclusively on crop-related infor-
mation was obtained to ensure accuracy in forecasting
and recommendation processes. The dataset encom-
passed various environmental and soil-related param-
eters, including precipitation, temperature, moisture
content, wind speed, and soil type. These factors sig-
nificantly influence the growth and productivity of
different crop varieties.

The data were obtained from the Agricultural Ex-
tension Office of a Thai province to ensure reliability
and usefulness. A comprehensive investigation was
conducted in the Lower Northern region of Thailand,
covering 93 districts. The investigated data sample
was meticulously selected to ensure diversity and rep-
resentativeness across the region. The primary objec-
tive of data collection was to capture the wide range
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of environmental conditions and soil characteristics
in various districts. This information was crucial for
assessing the viability of cultivating specific crops.

Data Preprocessing: Effective data preprocess-
ing was essential to ensure the accuracy and reliabil-
ity of predictions. The collected data underwent thor-
ough cleaning and preprocessing to maintain integrity
and compatibility, which involved handling missing
data, normalizing numerical features, and convert-
ing categorical variables into a format appropriate for
analysis.

The novelty of our proposed ML approach lies in
its comprehensive integration of multiple critical pa-
rameters and a unique hyperparameter optimization
strategy. Unlike previous studies [8, 13], which pri-
marily focused on the binary classification of land
suitability or single-parameter analysis, our study in-
troduces a multilevel classification framework that
categorizes cultivation suitability of land into four dis-
tinct grades: A, B, C, and D. This granular classifi-
cation enhances farmers’ decision-making capabilities
by providing more nuanced recommendations. The
model’s architecture is specifically designed to process
the complex interplay of various agricultural param-
eters, including soil classification (ten types), meteo-
rological factors (temperature, rainfall, moisture con-
tent, and wind speed), and regional characteristics
of Thailand’s Lower Northern province. Addition-
ally, our approach involves an innovative systematic
hyperparameter tuning methodology, wherein each
model (decision tree, ANN, and Naive Bayes model)
undergoes rigorous optimization using varying per-
centage splits of the dataset for training and valida-
tion and cross-validation folds.

The hyperparameter optimization methodology
employed herein is manual tuning, which offers a
systematic and controlled approach well-suited for
moderate-scale datasets. This method enhances
computational efficiency by avoiding the resource-
intensive demands of automated optimization tech-
niques such as grid search or Bayesian optimization.
While automated hyperparameter search methods
can be effective in specific contexts, they may inad-
vertently lead to overfitting due to excessive param-
eter optimization on training data. The manual tun-
ing approach undertaken herein facilitates heuristic-
based parameter selection, ensuring model parsimony
and improving model generalization. This approach
aligns with the principle of optimal model complex-
ity, balancing computational efficiency and prediction
performance while mitigating the overfitting risks as-
sociated with exhaustive automated searches.

For the decision tree model, we implemented a
novel parameter tuning strategy with complexity pa-
rameter (C) values of 0.1, 0.25, and 0.5, while the
ANN model incorporated a specialized configuration
with learning rates ranging from 0.01 to 0.2 and
epochs ranging from 50 to 300. This comprehensive

Table 1: Comparison of Data Quantities Before and
After Applying the SMOTE.

Number of data (Pre-SMOTE vs. Post-SMOTE)
Class A B C D
Crop Pre | Post | Pre | Post | Pre | Post | Pre | Post
Rubber 31 31 15 30 13 30 19 30
Coconut 8 18 19 19 6 19 15 18
Longan 14 28 28 28 11 27 20 28
Durian 20 20 13 19 14 19 13 19
Rambutan 18 18 9 18 13 17 12 18
Mangosteen 16 20 17 20 21 21 12 21
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Fig.3:

optimization approach ensured robust model perfor-
mance across different crop types and environmen-
tal conditions, addressing the limitations of previous
models that often used fixed parameter settings.

The dataset was systematically clustered to ensure
a standardized distribution for training and valida-
tion. A classification system was established to assess
the suitability of different regions for specific crops.
This system categorized cultivation suitability into
four levels: high (A), medium (B), fair (C), and low
(D). These classifications were determined based on
the region’s suitability for the listed crops, consider-
ing various environmental and soil conditions.

A significant challenge in this research was ad-
dressing dataset imbalance. To resolve this is-
sue, the synthetic minority oversampling technique
(SMOTE)—an advanced statistical method—was
employed using the Azure ML platform to balance
the dataset by generating synthetic instances of mi-
nority cases while preserving the original distribution
of majority cases.

The instances generated by the SMOTE are not
the exact duplicates of existing minority cases. In-
stead, the method selects samples from the feature
space of each target class and its nearest neighbors,
then synthesizes new instances by combining features
from the target case and its neighbors. This approach
enhances the representation of each class’s character-
istics, improving dataset diversity and resilience.

The SMOTE operates on the entire dataset, focus-
ing on enhancing instances within the minority class.

(e) Rambutan

roup
Group1o
o

€9 Mar;"éosteen

Variable Correlation Heatmaps.

In this study, the number of nearest neighbors was set
to one, ensuring a targeted and efficient oversampling
strategy. Table 1 presents the dataset before and af-
ter applying the SMOTE, demonstrating the impact
of this oversampling technique.

This research effectively addressed imbalance
dataset by applying the SMOTE in the data prepro-
cessing phase, leading to improved accuracy and re-
liability of the prediction models. A thorough data
preparation process is essential for developing a ro-
bust recommendation system that provides accurate
and practical insights into agricultural practices.

Fig. 2 presents a frequency distribution graph
showing changes in data quantity before and after ap-
plying the SMOTE. The graph illustrates alterations
in data distribution, providing insights into SMOTE’s
effectiveness in balancing the dataset.

A comprehensive correlation analysis was con-
ducted to examine relationships between the compo-
nents for prediction to the prediction model. The
Pearson correlation coefficient, calculated using (1),
was employed to determine the associations and in-
terdependencies among the variables under investiga-
tion. This statistical measure identifies the strength
and direction of correlations, providing essential in-
sights into the prediction process of the models.

oo 2@ -2y —g)
V2 (zi = 2)? (i — )2
Here, r represents the correlation coefficient be-
tween variables z and y. The value of z at the i*h

(1)
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data point is denoted i, and the mean of z is repre-
sented as Z. Similar is the case for y, yi, and §.

Fig. 3 presents correlation heatmaps illustrating
the relationships between the variables in the dataset.
Heatmaps are commonly used in statistical analysis
to visually assess the strength and direction of corre-
lations. They provided a comprehensive representa-
tion of variable relationships, facilitating the identifi-
cation of variation patterns, variable interdependen-
cies, and potential multicollinearity issues.

4. EXPERIMENTAL RESULTS AND EVAL-
UATION

4.1 Experimental Settings

The decision tree model, ANN, and Naive Bayes
model were employed for predictions, each utilizing
distinct techniques and configurations. The models
were evaluated using different percentage splits (60%,
80%, and 90%) and cross-validation folds (5-fold and
10-fold). Additionally, batch sizes of 8 or 16 were set
during model evaluation experiments. The decision
tree model (J48) was tuned using C values of 0.1, 0.25,
and 0.5. For the ANN, learning rates were adjusted
to 0.01, 0.02, 0.03, 0.1, and 0.2, with epoch values
ranging from 50 to 300 with a fixed momentum of
0.2. Data preprocessing involved normalization using
a Z-score during the training phase. These configura-
tions were systematically explored to evaluate model
performance and optimize prediction capabilities in
alignment with the research objectives.

4.2 Experimental Evaluation Metrics

Data Description: The dataset used in this
study was structured into clusters to enhance the
prediction accuracy. It comprised preprocessed at-
tributes, including temperature, rainfall, moisture
content, wind speed, and soil classification, covering
93 districts in the Lower Northern region of Thailand.

Table 2: Attribute Description.

Attribute Description
temperature Average temperature
rain Average amount of rainfall
moisture Average humidity
wind Average wind speed
Soilgroupl Clay soil

Soilgroup2 Acid sulfate soil
Soilgroup3 Coarse loam
Soilgroup4 Deep sandy soil
Soilgroup5 Salty, muddy soil
Soilgroup6 Shallow soil
Soilgroup7 Organic soil
Soilgroup8 Red earth soil
Soilgroup9 Bidder soil group
Soilgroup10 Slope complex soil

This clustering provided a comprehensive and
structured representation of the environmental and

geographical factors identified for the study area, fa-
cilitating robust prediction modeling and analysis.
This study considered key variables affecting crop
production, such as rainfall, humidity, temperature,
and wind speed. Additionally, variations in soil types
across different regions contributed to a precise as-
sessment of crop cultivation suitability. Soil classi-
fication data were obtained from the Soil Research
Survey and Research Division. Table 2 presents the
attributes used in the prediction model.

Model Evaluation: The model was evaluated us-
ing MAE, RMSE, precision, recall, and F-measure.
The MAE, given by Equation (2), quantifies the av-
erage absolute deviation between the predicted and
actual values of the target variable:

n
where y represents the actual value of the target vari-
able, p represents its predicted value, and n is the
number of cases.
The RMSE, defined in Equation (3), measures the
average squared difference between predicted and ac-
tual values of a variable:

)2
RMSE = Z(yzipz). (3)
n
Precision, computed using Equation (4), quanti-
fies the proportion of correctly predicted positive in-
stances among all predicted positive instances:

TP
Precision = W (4)
Recall, defined in Equation (5), assesses a model’s

ability to identify positive instances:

TP
Recall = TP+ N (5)
Here, TP (true positive) denotes correctly identi-
fied positive instances, F'P (false positive) represents
instances incorrectly classified as positive, and FN
(false negative) refers to instances incorrectly classi-
fied as negative.
The F-measure, calculated using Equation (6),
evaluates the balance between precision and recall:

Fomeastre — 2 x Precision * Recall (6)
"~ Precision+Recall

4.3 Experimental Result

Three distinct prediction models—the decision
tree model, ANN, and Naive Bayes model—were
tested for their ability to identify the suitability
of alternative-crop cultivation in the given region.
The models were evaluated using different percent-
age splits and cross-validation folds to optimize the
training and testing datasets.
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Table 3: Performance Evaluation Metrics of the Training Models.
Performance Evaluation Metrics
Model Evaluat Parameter Accuracy P FP Precision Recall F- MAE RMSE
ion (%) Measure
Metrics
Rubber
Decision tree 80% C=0.1 70.83 0.708 0.118 0.751 0.708 0.688 0.1904 0.3359
ANN 80% Hidden =6, LR = 0.2, Momentum | 70.83 0.708 0.092 0.733 0.708 0.695 0.2341 0.3681
= 0.2, Seed = 1, Epochs = 300
Naive Bayes 60% N/A 54.16 0.542 0.182 0.572 0.542 0.523 0.2474 0.4374
Coconut
Decision tree 5-fold C=0.25 71.62 0.716 0.095 0.716 0.716 0.707 0.1711 0.3569
ANN 90% Hidden =4, LR = 0.2, Momentum | 85.71 0.857 0.024 0.929 0.857 0.867 0.1374 0.2792
=0.2, Seed = 1, Epochs =300
Naive Bayes 80% N/A 60.00 0.600 0.127 0.597 0.600 0.593 0.2105 0.3657
Longan
Decision tree 80% C=0.5 90.90 0.909 0.027 0.924 0.909 0.904 0.0647 0.2019
ANN 90% Hidden = 3, LR = 0.1, Momentum | 90.90 0.909 0.034 0.932 0.909 0.900 0.1554 0.2502
=0.2, Seed = 1, Epochs = 250
Naive Bayes 60% N/A 75.00 0.750 0.089 0.738 0.750 0.716 0.1518 0.324
Durian
Decision tree 80% C=0.5 73.33 0.733 0.097 0.800 0.733 0.749 0.1583 0.3736
ANN 5-fold Hidden = 6, LR = 0.2, Momentum | 50.64 0.506 0.165 0.504 0.506 0.504 0.2829 0.438
=0.2, Seed = 1, Epochs = 300
Naive Bayes 5-fold N/A 48.05 0.481 0.174 0.573 0.481 0.471 0.2945 0.4387
Rambutan
Decision tree 90% C=0.1,C=025C=05 85.71 0.857 0.057 0.905 0.857 0.848 0.1508 0.2627
ANN 5-fold Hidden =4, LR = 0.2, Momentum | 57.74 0.577 0.140 0.574 0.577 0.570 0.2515 0.4211
= 0.2, Seed = 1, Epochs = 300
Naive Bayes 5-fold N/A 53.52 0.535 0.155 0.525 0.535 0.517 0.2535 0.4053
Mangosteen
Decision tree 5-fold C=0.1 60.97 0.610 0.129 0.611 0.610 0.610 0.2163 0.3792
ANN 5-fold Hidden = 6, LR = 0.1, Momentum 56.09 0.560 0.145 0.562 0.561 0.560 0.2529 0.3933
= 0.2, Seed = 1, Epochs = 300
Naive Bayes 5-fold N/A 57.31 0.573 0.142 0.571 0.573 0.554 0.2253 0.4175

Using the percentage split method, the dataset was
divided into two subsets: a training set and a testing
(or validation) set. The first set was used to train the
prediction model, while the testing set was used to
evaluate model performance. To determine the op-
timal prediction model, the dataset was partitioned
into training and testing sets using different percent-
ages

For cross-validation, the dataset was divided into
K partitions, commonly referred to as folds. The
model was trained on all partitions except one, which
was reserved as the testing set. This process was
repeated “K” times, ensuring that each fold served
as the testing set once. The mean performance of
all K iterations was then computed. The experi-
ment aimed to identify the optimal tuning parameter
“K” to enhance the prediction accuracy. The model
was trained using the K-fold forward chaining cross-
validation procedure.

During the training stage, the three prediction
models were evaluated by varying the percentage
splits (60%, 80%, and 90%) and number of cross-
validation folds (5-fold and 10-fold). The designated
alternative crops were analyzed under these experi-
mental settings.

Fig. 4 presents a comparative analysis of various
hyperparameter tuning settings across different mod-
els, facilitating the identification of optimal hyper-
parameters for each model. Through extensive ex-
perimentation, the most effective configurations were
determined to maximize model accuracy in predict-
ing cultivation suitability. This analysis highlighted

Fig.4: Comparison of Model Accuracy Across Var-
ious Hyperparameter Tuning Settings.

the crucial role of hyperparameter tuning in enhanc-
ing model performance and ensuring the selection of
the most suitable parameters for achieving the high-
est prediction accuracy.

Table 3 shows a comprehensive comparison of
three ML models, highlighting the optimal hyperpa-
rameters identified for each model. It also presents
a detailed evaluation of the performance metrics, of-
fering valuable insights into each model’s prediction
capabilities and effectiveness. The experimental re-
sults demonstrate the effectiveness of the various ML
models in forecasting crop suitability. The decision
tree model was optimized by fine-tuning the C value
and cross-validation folds. Similarly, the ANN model,
in an iterative process, was refined through experi-
ments involving multiple parameters, including the
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number of hidden layers (Hidden), learning rate (LR),
momentum (Momentum), seed (Seed), and epochs
(Epochs). This iterative optimization process was
tailored for each crops to enhance model prediction
performance. The choice of hyperparameters signif-
icantly impacted model effectiveness, as reflected in
the variations in accuracy and performance metrics
across different parameter configurations.

The decision tree model exhibited satisfactory per-
formance for most crops, with accuracy ranging from
60.97% to 90.90%. Notably, it achieved high preci-
sion and recall scores, indicating its ability to make
accurate predictions and effectively identify the most
suitable crops.

The performance of the ANN varied across differ-
ent crops. For crops such as coconut and longan,
precision scores were exceptional, matching or even
surpassing those obtained when using the decision
tree model. However, for durian and rambutan, ac-
curacy of the ANN was lower, ranging from 50.64%
to 57.74%.

Overall, the Naive Bayes model demonstrated
lower accuracy than the decision tree and ANN mod-
els. Prediction performance varied across crops, with
accuracy ranging from 48.05% to 60.97%. While
Naive Bayes performed well for certain crops, it gen-
erally failed to achieve accuracy levels comparable to
those of the other models.

The comparative analysis revealed that the deci-
sion tree model consistently produced reliable and ac-
curate results across different crops. Its widespread
applicability stemmed from its simplicity and adapt-
ability, allowing it to effectively process quantitative
and qualitative data. While the ANN demonstrated
high prediction potential for certain crops, its perfor-
mance was inconsistent, requiring extensive parame-
ter tuning and higher computational resources than
the decision tree model. Although Naive Bayes is
computationally efficient and easy to implement, it
struggled to achieve the same level of accuracy as the
decision tree and ANN models. This highlighted the
limitations of Naive Bayes in capturing complex data
relationships.

The most effective model was subsequently evalu-
ated using a series of testing methods, with the re-
sults presented in Table 4. These findings provide
critical insights into the model’s performance and ef-
fectiveness in practical applications, contributing sig-
nificantly to advancements in this research domain.

The experimental findings (Table 4) demonstrated
the efficacy of various ML models in predicting the
suitability of locations for crop cultivation. The deci-
sion tree model consistently exhibited high accuracy,
precision, recall, and F-measure for rubber, longan,
durian, rambutan, and mangosteen crops. The de-
cision tree model achieved accuracy values ranging
from 85.00% to 94.74%, indicating its effectiveness in
classifying the location suitability level for crop cul-

Table 4: Comparison of ML Model Performance in
Predicting Crop Suitability.

.. F-
Accuracy | Precision | Recall
Crop Model (%) (%) (%) me(ﬁ/sure
6)

Rubber | DeCision | ¢ g9 84.80 | 85.00 | 84.50
tree

Coconut ANN 8182 84.80 | 81.80 | 82.10

Longan Detcrfe“’“ 94.74 95.60 | 94.70 | 94.70

Durian Decision | g, 1 9530 | 94.10 | 94.20
tree

Rambutan Detcrje“’“ 86.67 91.10 | 86.70 | 86.30

Mangosteen De;‘:e“’“ 89.47 9040 | 89.50 | 89.30

tivation across different datasets. Its high precision
scores (84.80%-95.60%) reflected its ability to mini-
mize false positives. Similarly, recall values (lying be-
tween 85.00% and 94.70%) demonstrated the model’s
capability to correctly identify a substantial propor-
tion of suitable alternative crops, reducing incorrect
rejections. The F-measure values, which integrates
precision and recall, ranged from 84.50% to 94.70%,
further confirming the model’s reliability in predict-
ing suitable cultivation areas for these crops.

The ANN was the most effective model for estimat-
ing the suitability of a location for coconut cultiva-
tion. The evaluation yielded an accuracy of 81.82%,
with a precision of 84.80%, a recall of 81.80%, and an
F-measure of 82.10%.

The decision tree model’s consistent performance
across multiple crops demonstrated its resilience and
reliability in forecasting suitable cultivation areas in
diverse agricultural settings. This model exhibited
strong adaptability and effectively captured the rela-
tionships between crop attributes and suitability lev-
els across various datasets.

4.4 Comparison Results Based on a Bench-
mark Dataset

This research evaluated the proposed optimal
model using a benchmark dataset to assess its effec-
tiveness in predicting the suitability of locations for
the cultivation of specific crops. The experimental
analysis focused on rubber and coconut, employing
the optimal model with precisely tuned hyperparam-
eters. The benchmark dataset for coconut, available
at DOI:10.21227/12nr-fe03, categorizes locations as
being either suitable or unsuitable without specify-
ing the degree of appropriateness. Meanwhile, our
study identified specific levels of suitability. To enable
comparison between our model and previously pub-
lished research, on the same dataset, we transformed
our output predictions into a binary classification of
“suitable” or “unsuitable” to align with the bench-
mark dataset. Similarly, the rubber dataset (avail-
able at https://datasets.omdena.com/dataset/
crop-yield-prediction) provides crop-yield fore-
casts rather than location suitability for crop culti-
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Table 5(a): Performance Evaluation Metrics When Using the Testing Dataset
Performance Evaluation Metrics
Model Evaluat Parameter Accuracy P FP Precision | Recall F- MAE RMSE
ion (%) Measure
Metrics
Coconut
Decision tree 5-fold C=0.25 71.62 0.716 0.095 0.716 0.716 0.707 0.1711 0.3569
ANN 90% Hidden =4, LR = 0.2, Momentum 85.71 0.857 0.024 0.929 0.857 0.867 0.1374 0.2792
=0.2, Seed = 1, Epochs = 300
Naive Bayes 80% N/A 60.00 0.600 0.127 0.597 0.600 0.593 0.2105 0.3657
Rubber
Decision tree 80% C=0.1 70.83 0.708 0.118 0.751 0.708 0.688 0.1904 0.3359
ANN 80% Hidden = 6, LR = 0.2, Momentum 70.83 0.708 0.092 0.733 0.708 0.695 0.2341 0.3681
=0.2, Seed = 1, Epochs = 300
Naive Bayes 60% N/A 54.16 0.542 0.182 0.572 0.542 0.523 0.2474 0.4374
Table 5(b): Performance Evaluation Metrics When Using the Testing Dataset
Performance Evaluation Metrics
Model Evaluat Parameter Accuracy P FP Precision Recall F- MAE RMSE
ion (%) Measure
Metrics
Coconut
Decision tree 5-fold C=0.25 87.50 0.875 0.125 0.900 0.875 0.873 0.131 0.338
ANN 90% Hidden =4, LR = 0.2, Momentum 100.00 1.000 1.000 1.000 1.000 1.000 0.017 0.019
= 0.2, Seed = 1, Epochs = 300
Naive Bayes 80% N/A 100.00 1.000 1.000 1.000 1.000 1.000 0.0001 0.0002
Rubber
Decision tree 5-fold C=0.25 96.77 1.000 0.067 0.941 1.000 0.970 0.032 0.179
ANN 90% Hidden =4, LR = 0.2, Momentum 100.00 1.000 1.000 1.000 1.000 1.000 0.030 0.036
=0.2, Seed = 1, Epochs = 300
Naive Bayes 80% N/A 100.00 1.000 1.000 1.000 1.000 1.000 0.006 0.015
Table 6: Performance Fvaluation Metrics When Using the Three Crop Datasets
Performance Evaluation Metrics
Model Evaluati Parameter Dataset Accuracy P FP Precision Recall F- MAE RMSE
on (%) Measure
Metrics
Decision 5-fold C=025 Crop Recommendation using Soil 100.00 1.000 0.000 1.000 1.000 1.000 0.000 0.000
tree Properties and Weather Prediction
Dataset (1)
Crop Recommendation Dataset (2) 100.00 1.000 0.000 1.000 1.000 1.000 0.000 0.000
Agriculture Crop Yield Dataset (3) 99.99 1.000 0.000 1.000 1.000 1.000 0.000 0.002
ANN 90% Hidden=4, | Crop Recommendation using Soil 100.00 1.000 0.000 1.000 1.000 1.000 0.007 0.007
LR=0.2, Properties and Weather Prediction
Momentum | Dataset (1)
=0.2, Crop Recommendation Dataset (2) 100.00 1.000 0.000 1.000 1.000 1.000 0.010 0.011
Seed =1, Agriculture Crop Yield Dataset (3) 99.41 0.994 0.006 0.994 0.994 0.994 0.007 0.067
Epochs =
300
Naive 80% N/A Crop Recommendation using Soil 80.57 0.806 0.220 0.810 0.806 0.803 0.189 0.391
Bayes Properties and Weather Prediction
Dataset (1)
Crop Recommendation Dataset (2) 100.00 1.000 0.000 1.000 1.000 1.000 0.000 0.000
Agriculture Crop Yield Dataset (3) 95.42 0.954 0.046 0.954 0.954 0.954 0.078 0.181
Dataset accessible at:
://data.mendeley.com/datasets/8v757rr4st/1
ieee-dataport.org/documents/crop-recommendation-dataset
(3) https://www .kaggle.com/datasets/samuelotiattakorah/agriculture-crop-yield

vation. We converted crop-yield predictions into bi-
nary classifications, designating locations with above-
average yields as “suitable” and those below average
as “unsuitable.” This preprocessing step enabled a
standardized evaluation of the proposed model across
datasets. The results presented in Table 5(a) for our
testing dataset and Table 5(b) for the benchmark
dataset demonstrated that the proposed model per-
formed effectively across diverse datasets, highlight-
ing its reliability and high prediction accuracy. A
comprehensive validation was conducted using mul-
tiple crop datasets to assess the model’s robustness
and generalizability. The methodological validation
approach incorporated three datasets to rigorously
evaluate the model’s interoperability and prediction
efficacy across various crop types. Each dataset was
systematically assessed using optimal model hyper-
parameters derived from preliminary model develop-

ment. Binary classification results were obtained, in-
dicating whether locations were “suitable” or “un-
suitable” for agricultural intervention.

The experimental approach standardized the hy-
perparameter settings across all three datasets to en-
sure a uniform basis for comparison. The perfor-
mance metrics of the prediction model, which in-
cluded the key statistical indicators, are presented
in Table 6, providing a quantitative assessment of
the model’s transferability and prediction capabilities
across diverse agricultural settings.

This methodology presents a systematic frame-
work for evaluating ML models in agricultural pre-
dictions, emphasizing the critical role of cross-dataset
validation for ensuring the reliability and generaliz-
ability of agricultural models used for predictions.
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5. CONCLUSION AND FUTURE WORK

This study examined the effectiveness of various
ML models in predicting the suitability of different lo-
cations for crop cultivation. Suitability was assessed
on a spectrum, ranging from “high” to “low.” Build-
ing on previous research [13], which focused on three
primary crops and identified the most suitable crops
for a given location, this study expanded those find-
ings by providing a more detailed assessment of lo-
cation suitability for crop cultivation. The proposed
approach classified location suitability on a contin-
uum while incorporating additional critical factors
influencing crop yield. By systematically evaluating
multiple ML models, this research identified the most
effective model for crop selection, contributing to a
precise and data-driven approach toward agricultural
decision-making.

Comprehensive tests were conducted to evaluate
the effectiveness of the decision tree model, ANN,
and Naive Bayes model in predicting the suitability
of cultivation locations for coconut, longan, durian,
rambutan, and mangosteen crops. The models were
assessed using accuracy, precision, recall, and F-
measure.

The experimental results indicated that the ANN
model performed exceptionally well in predicting co-
conut crop suitability but exhibited lower accuracy
for other crops. This underscores the importance of
selecting models tailored to specific agricultural con-
texts. Naive Bayes—with simplicity and low compu-
tational requirements—demonstrated lower accuracy
than the decision tree and ANN models, highlighting
its limited ability to capture complex relationships
within data. The empirical findings demonstrated
the decision tree model’s high efficacy in accurately
predicting suitable cultivation locations across var-
ious crops. This underscores its role as a critical
tool for informed decision-making and strategic plan-
ning in agriculture. By providing precise predictions,
this model aids the decision-making process regard-
ing crop selection and land use, ultimately improving
agricultural productivity and sustainability. Accu-
rate predictions of crop suitability facilitate the effi-
cient allocation of resources such as land, water, and
labor, leading to improved agricultural outcomes and
economic growth.

This research significantly contributes to advanc-
ing agricultural decision-making by demonstrating
the utility of ML models in predicting crop suitabil-
ity. Future studies can explore advanced optimization
techniques, ensemble learning methodologies, or inte-
grating additional features to enhance the prediction
accuracy and better address real-world agricultural
challenges.

The proposed model underwent a thorough evalua-
tion, incorporating various of relevant factors. These
factors included various crop types, distinct soil com-
positions, as well as seasonal weather conditions such

as temperature, moisture content, and rainfall pat-
terns. This comprehensive approach provided a struc-
tured and robust foundation for evaluation. Multiple
interrelated factors influence crop productivity and
soil health. Understanding the interactions between
crop varieties and specific soil characteristics is essen-
tial for optimizing agricultural practices. Compara-
tive analysis with existing models ensured that the
proposed model was rigorously evaluated against es-
tablished benchmarks. This comparative analysis not
only confirmed the reliability of the model but also
highlighted its potential advantages and limitations
in different agricultural contexts. By employing a
comprehensive and multifaceted evaluation method-
ology, this study provided valuable insights into agri-
cultural research, contributing to developing resilient
and adaptable farming systems.

Additional investigation is needed to examine the
factors influencing variations in model performance
across different crops. Analyzing dataset character-
istics, feature importance, and model interpretabil-
ity can provide valuable insights for improving model
prediction accuracy. While decision tree models gen-
erally yield satisfactory results, there remains room
for improvement by developing more advanced mod-
els to improve prediction accuracy and reliability.
Our findings contribute to a deeper understanding of
ML applications in agriculture, supporting informed
decision-making for crop management and optimiza-
tion strategies.
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