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ABSTRACT
Image denoising using supervised learning effectively removes image noise
by learning from available data. However, it may lack efficiency when faced
with insufficient data, such as in the case of single images or blind noise.
This challenge has led to the adoption of unsupervised learning methods,
which utilize the inherent properties of noise to extract and enhance image
features. This research aims to leverage the benefits of the downsampling
effect for noise removal, even though downsampling may impact image fea-
tures. Therefore, deep learning must be used to restore image details lost
during downsampling. This research proposes the Noisy Low-Resolution
to Noisy Super-Resolution (NLR2NSR) framework, which leverages im-
age downsampling to simultaneously reduce image and noise features. A (Online)
super-resolution network is then used to restore the image features. Ex-
perimental results show that under conditions where noise features are less
prominent than image features, the NLR2NSR can effectively remove noise
and preserve image features using only noisy data for training. However,
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the NLR2NSR has limitations in handling high-level noise.
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1. INTRODUCTION

Noise and low-resolution images can significantly
impair visual quality and hinder image analysis and
processing. Image restoration, an essential process
for enhancing image quality [1-3], involves noise elim-
ination and resolution improvement, making images
suitable for tasks like object recognition, categoriza-
tion, and other applications [4] [5]. These issues
arise in various phases of image processing due to
factors like challenging image acquisition conditions
and compression. Noise interference can occur dur-
ing digital image transmission, and image processing
procedures may further degrade image quality. Image
interpolation methods increase resolution by adding
more pixels, which can lead to edge distortion and
noise-related issues. Denoising techniques are em-
ployed before interpolation to mitigate these prob-
lems. In super-resolution tasks, which involve extend-
ing image resolution beyond its original size, noise
poses a significant challenge. Hence, selecting appro-
priate interpolation and denoising methods is crucial

1,2,

to achieve high-quality results in super-resolution [6]
[7]-

Unsupervised deep learning [8] [9] is widely used in
single image and blind noise reduction. However, the
training model requires at least two images: one as in-
put and another as the validation target for training
the network. Therefore, it is necessary to generate
an extra validation set. Another approach involves
modifying the learning network structure using tech-
niques like dropout [10] or image-related information
to produce specific convolution kernels [11]. How-
ever, these methods only capture the local features of
a single image.

Image downsampling is the process of reducing the
size of an image by skipping or minimising some parts
of the data, which operates similarly to a blurring fil-
ter. Both downsampling and using a filter can reduce
the noise component in the image by filtering out low
signal levels. Downsampling can be done by select-
ing the high-level element in the image, such as using
max pooling, which preserves the essential elements.
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At the same time, a blurring filter adjusts and reduces
some pixel components, resulting in a blurred image
compared to downsampling.

This research aims to leverage the benefits of at-
tempting to downsample noisy images, which not
only diminishes image features such as edge features
but also reduces certain aspects of noise features.
While many studies in image super-resolution often
focus on enhancing the detail of edge features in im-
ages, when confronted with noisy images, the restora-
tion of edge features tends to exacerbate noise fea-
tures, following the Weiner convolution theory [12-
14]. However, considering noise in images as a low-
level component compared to edge features, image
downsampling consequently reduces noise more sig-
nificantly than it affects the image’s edge features.
The behaviour of noise feature reduction through
downsampling is, therefore, beneficial for noise elim-
ination in images.

The main objective of this research is to eliminate
noise in images by leveraging the benefits of image
downsampling processes while preserving the image’s
edge features. This research proposes the Noisy Low-
Resolution to Noisy Super-Resolution (NLR2NSR)
framework, which utilizes the ResNet [15] model as
the restoration network for edge feature restoration.
The NLR2NSR framework can restore a single image
without requiring ground truth for validation. Ad-
ditionally, this research examines the effects of re-
peated restoration within a learning loop to enhance
the quality of the restored image further. The contri-
butions of this research include:

1. Demonstrating the benefits of up- and down-
sampling in noise removal in images and restoring
edge features through the utilization of deep learning
techniques,

2. Introducing a self-learning framework with a
feedback loop, where the output feeds back into the
input, to simultaneously denoise and enhance the
edge of the image without using any ground truth
for validation training.

Utilizing the benefits of the image downsampling
process gives the proposed framework characteristics
like joint image denoising and deblurring. This ap-
proach is necessary because the proposed framework
must remove noise and restore edge features that have
been diminished simultaneously. However, this re-
search only employs the downsampling process to re-
duce noise.

2. LITERATURE REVIEW

In general, for traditional image denoising [16] [17],
a kernel is typically chosen to filter out noise signals,
which are considered low-level components compared
to the edge features of an image. Finding the best
parameters to remove noise signals and preserve edge
features can be challenging, and many researchers
have attempted to use adaptive methods for parame-

ter selection. Traditional image denoising and super-
resolution techniques often yield lower performance
than deep learning techniques due to the difficulty of
selecting appropriate parameters.

In deep learning, supervised learning methods are
typically trained using input pairs and ground truth
validation images. For example, in many image-
denoising tasks [18-20], noisy images are used as in-
put to learning the mapping to the noise-free ground
truth. When noise parameters are estimable, deep
learning methods often outperform traditional tech-
niques. The network learns to transfer and map
the noisy domain inputs into the noise-free domain
output by adjusting the weight training parameters
through a loss function and optimization process [21].
In cases with a small training dataset, data augmen-
tation [22] [23] is often used to increase the amount
of training data, but this can lead to overfitting [24]
[25] as the network is still learning the features of
the existing images, resulting in redundancy in the
dataset. Although some image-denoising approaches
attempt to understand the properties of noise rather
than trying to map noisy input to a noise-free output,
supervised learning often performs poorly in a single
image and blind noise scenarios in real-world data.

In real-world scenarios, the primary challenge is
to address the problem of single image and blind de-
noising in the images [26] [27]. The noise level in
an image is affected by various factors, such as the
surrounding environment and electrical signals in the
device, which may change over time. Additionally,
when capturing an image using a camera and zoom-
ing in on it, the level of noise and resolution can vary,
potentially leading to a loss of detail in the edges of
the image. Therefore, solving the challenges of single-
image denoising and super-resolution is essential for
addressing many real-world applications.

Unsupervised learning methods are widely used
to address real-world problems caused by insufficient
data for learning noise properties. In image denois-
ing, most unsupervised learning algorithms manip-
ulate the network structure or generate new sets of
image data based on existing image datasets. For ex-
ample, many research studies such as Noise2Void [28],
Self2Self [10], Noise2Self [11], and Complex-valued
deep CNN [29] use convolution or network manip-
ulation techniques to adjust the network weight and
remove noise. In Recorrupted-to-Recorrupted [30], a
type of data manipulation, a noise generator model
is used to create new training pair sets that are
then used to train the network. Another approach
is Noise2Noise (N2N) [31], which trains the network
using pairs of noisy images from the same scenario,
but it requires different noisy image pairs for training.
The goal of data manipulation techniques is to bal-
ance the loss of the network and optimize for all pairs
of training sets. Overall, unsupervised image denois-
ing aims to average the results from uncertain data
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to achieve the best possible outcome for all generated
data.

Since this research is related to joint image de-
noising and resolution enhancement, several studies
have addressed this challenge. For instance, [32-34]
have utilized supervised learning with their respec-
tive network structures. However, these approaches
face limitations, particularly concerning the scarcity
of datasets in a single image and blind noise sce-
narios. This research introduces the Noisy Low-
resolution to Noisy Super-resolution (NLR2NSR)
framework, which combines up- and downsampling
techniques with additive noise manipulation to enable
the restoration network to self-learn. By leveraging
these techniques, the proposed framework can simul-
taneously restore image denoising and resolution en-
hancement.

3. THEORETICAL BACKGROUND
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Fig.1: Block diagram of image distortion caused by
joint noise and resolution degradation.

The image distortion illustrated in Figure 1 refers
to the alterations made to an image signal. Typically,
the degradation function caused by processing and
the environmental noise can distort the image signal.

yi = (hi % 2i)y +n (1)

Equation 1 demonstrates that the image signal x;
is convolved with the degradation function kernel h;,
and the noise n; is added to the image. Image restora-
tion aims to reconstruct the original high-resolution
image by eliminating the impact of noise and damage
caused by a damaged image.

3.1 Image restoration using deep learning

In this section, we explain the principles of image
edge enhancement. Since this research employs down-
sampling to eliminate noise and utilizes deep learning
to restore image edge features, it parallels training the
restoration network to enhance image edges, similar
to an image deblurring or a super-resolution task.

Typically, in supervised learning, the goal is to
learn how to map inputs from a distorted domain
to their ground truth counterparts such that the
learning loss approaches minimise value after enough
learning cycles. This means that the learning network
strives to reduce the difference between the denoised
output (Yi prea) and the noise-free validation (y; true)
in the loss function defined by

. N
W9 = arggnln Zi,j:o L(yi,prech yj,true) (2)

Where Wy represents the weights of the learning
network with parameters 6 that minimize the loss
value for all training data pairs (y; pred, Yj true)-

If there is not enough training image data avail-
able, many unsupervised learning techniques attempt
to generate additional validation data from the lim-
ited existing dataset (¥ esist). This can be achieved
by manipulating existing images [30], [31] or modi-
fying the structure of the learning network [10] [11]
[28] [29] to create new validation image data (y; pred)-
The goal is to teach the network how to remove noise
from images. This is achieved by assuming that the
network aims to average all the noise in the domain
to achieve the minimum result, as illustrated in

N M
WO = argénin Zi:o L(yi,preda ijo (yj,true)) (3)

Unsupervised learning is highly beneficial for
learning noise reduction since it can decrease the
amount of data required for learning. How-
ever, quality degradation resulting from image pro-
cessing remains a significant challenge in image
restoration. Unsupervised learning approaches, like
the Noise2Noise (N2N) framework [31] and the
Recorrupted-to-Recorrupted (R2R) framework [30],
operate under the assumption that the noise in the
image conforms to a zero-mean distribution. These
methods enable the network to indirectly learn this
distribution by

E{yily;} ~ 2 (4)

Where the estimation E{y;|y; } refers to taking any
given observation of a noisy image y; and mapping it
to another observation of a noisy image y; within the
same observation space. The output of the learning
network, denoted as x;, represents the estimated ob-
servation noise-free result. This process can be seen
as the network averaging all observations y; and y;.
In contrast to supervised learning, where the net-
work learns to minimize the difference between the
predicted output and the actual target, unsupervised
learning optimizes for all possible input observations.

Xi Hi Y,‘

Deblurring or
———| super-resolution |———»
processing

Fig.2: Utilizing deconvolution for image enhance-
ment to restore clarity and sharpness.
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Fig.3: Zero-short super-resolution (ZSSR) framework.

In the field of image resolution enhancement, deep
learning is employed in Figure 2 to train networks to
create deconvolution kernels, aiming to sharpen the
edge features of the image. Generally, deep learning-
based deblurring and super-resolution techniques rely
on training to enhance the dominance of edge features
in images. This implies that the adaptive kernel can
be viewed as a high-pass filter. In the Fourier do-
main, the relationship between image distortion can
be expressed by

Y; = H;X; (5)

H; = DsBy (6)

Where Y refers to the distorted image obtained by
convolving the distortion kernel H; with the original
resolution image X;. In the case of super-resolution,
the distortion kernel H; can comprise a blurring ker-
nel By and a downsampling kernel Dg.

Several works [35-37] have demonstrated that im-
age deblurring kernel can be estimated by analyzing
the gradient variation between the blurred image and
ground truth. In the case of a single image problem,
there may be insufficient image data to estimate the
blurring kernel and remove noise from the image us-
ing Equation 7.

X, ~ '~ X (7)

Where X;- represents the deblurred or super-
resolution output of the network. H; denotes an esti-
mated kernel provided by the network, and it should
be equal to H; to optimize the restoration process.

The Zero-Short Super-Resolution (ZSSR) frame-
work [38] shown in Figure 3 is an unsupervised learn-
ing approach that leverages accurate blurring kernel
estimation to self-learn and successfully increase the
resolution of a single image, even though the learning
network may be overfit to the image used for self-
learning.

{DSBf}netl = {DSBf}net2 (8)

While ZSSR and many other image super-
resolution techniques can learn to enhance image res-
olution on their own, they often overlook the high-

level noise component in the image, which can ulti-
mately enhance the noise and negatively impact the
system. Noise is a significant factor that must be
addressed in the restoration system.

3.2 The effect of noise in learning-based con-
volution

Deep learning-based image denoising is similar to
adaptive kernel methods such as image deblurring
and super-resolution. Weiner convolution theory [12-
14] explains the impact of noise in convolution and
noise suppression using Weiner deconvolution. This
method can estimate the deconvolution kernel for re-
moving noise, as shown in

. HX, 1
X_. — 1 1 (9)
) H/- NS/R«L
O R
N, 2
vsn, - N o

Where Y; is the noisy image (X; + Ni).X; is the
denoised image obtained from the deconvolution pro-
cess H;.NSR; is noise to signal ratio, which can be
calculated from the noise-free ground truth X; and
the noise estimation N;. However, in scenarios with
a single image and blind noise, it is challenging to de-
termine the noise parameters and the original signal
from the ground truth. As a result, it can be chal-
lenging to learn or create a denoising kernel without
a ground truth.

From Equation 10, if N; < X;, where the noise sig-
nal is considered as low-level component compared to
the image signal, the NSR; term becomes negligibly
small. This allows the learning process to perform ef-
fectively, approaching an ideal solution. However, if
N; > X, or if the noise signal behaves as a high-level
component relative to the image signal, the learning
kernel may not be as effective for image restoration.

The Wiener deconvolution demonstrates that the
residual noise in the image resulting from downsam-
pling can be amplified by the convolution process of
deblurring or super-resolution processes. This resid-
ual noise may be accentuated and could lead to dete-
riorated results in image edge enhancement.
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4. THE PROPOSED NOISY LOW-RESOLU-
TION TO NOISY SUPER-RESOLUTION
(NLR2NSR) FRAMEWORK

Spyder:

Clean, 512x512
resolution

Noisy, 512x512
resolution

Downsampling to 128x128 and
Upsampling to 512x512

Fig.5: The effects of image down- and upsampling
on noisy images, which can reduce noise and distort
the edges of the image.

According to Wiener convolution theory, as the
noise level increases, convolution may become less ef-
fective at restoring image features. Additionally, it
can amplify the high-level components of the noise
signal. Therefore, this research will set a condition
to consider only cases where the noise remains a low-
level component to address the problem effectively.

Image downsampling is a form of convolution that
filters out low-level components from an image, which
can also reduce the noise component, as seen in the
noise reduction effect in Figure 4. The technique of
downsampling to reduce noise has been utilized in the
SIFT (Scale-Invariant Feature Transform) algorithm
[39]. In practice, Gaussian filtering may also be em-
ployed to find robust features within an image. How-
ever, it distorts the edge features in the image, caus-

n Restoration Learning 41

ing the image to appear blurry. From the observed
noise reduction due to the downsampling of an image,
this research applies this behaviour to noise elimina-
tion together with the restoration of diminished edge
features. In this research, the ResNet model [15] is
implemented to enhance the resolution of images.

Noise reduction using the downsampling technique
resembles employing a convolution filter, which can
eliminate low-level noise in the image. However, it
also distorts image features. Therefore, this research
proposes using the ResNet 16-layer model in Figure
5(A) for self-learning to restore edge features. Since
the ResNet model is a CNN-based architecture that
preserves feature dimensions within the model, it is
well-suited for learning and restoring image details.
Although some noise may persist after downsampling,
due to the low-level feature nature of noise compared
to image features, the noise amplification rate is lower
than image features. Additionally, by repeating the
learning process and feeding the output back as input,
which is then downsampled again, the noise compo-
nent is significantly reduced. By appropriately ad-
justing the downsampling scale to match the noise
level in the image, noise reduction can be effectively
achieved.

The NLR2NSR framework, as depicted in Figure
5(B), resembles a combination of the unsupervised
N2N framework for noise removal by adding slight
noise to manipulate the training data and the ZSSR
framework for restoring edge features with a weight-
sharing strategy. The NLR2NSR divides its opera-
tion into 2 phases. In phase 1, the restoration network

Skip
conneted

7x7 Conv,
Max pooling
|
v

Restoration Network

Average pooling

(A) ResNetl16 model for image restoration

Fe
Add noise and downsize
(manipulation)

ed the output of the 2™ phase

back to the 1* training phase

(repeating n rounds)

lupsampling

Iterating until
achieving
suitable outcome

Network

Validation target
(Initiate with the existing
single noisy image)

1* ph:
Noisy phase

resolution input

d low-

Weight sharing

Network o9

Final denoised
image

2nd phascA

Denoi

d output
with remained noise

(B) NLR2NSR framework

Fig.4:

The proposed NLR2NSR framework for image denoising.
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is trained by specifying the number of iterations for
training the restoration network. A single noisy im-
age is downsampled to create a noisy, low-resolution
input version, and this single noisy image is used
as the validation target after training for the spec-
ified number of iterations. In phase 2, the restora-
tion network is employed to remove noise, using the
single noisy image as input to eliminate noise. The
NLR2NSR framework defines a reiterative process to
enhance noise removal results.

The NLR2NSR framework operates in two phases,
as illustrated in Figure 5. In the first phase, the
framework generates training input by downsampling
and upsampling the available noisy image to its orig-
inal size, thereby self-generating training data. This
method reduces the impact of noise, particularly
when the noise signal is considered a low-level com-
ponent, resulting in less visible noise in the image.
Furthermore, this approach introduces differing noise
characteristics between the available noisy image used
as training data and the generated noisy image input,
enabling the restoration network to average out the
noise signal during the learning process. The net-
work learns to transform the generated noisy image
input into the available noisy image used as valida-
tion data, continuing this process until convergence is
achieved. Once the learning process in the first phase

is complete, the second phase uses the available noisy
image as input for the trained network, which then
outputs a denoised image. The NLR2NSR framework
can iteratively use the output from phase two to pro-
gressively restore additional image details.

5. EXPERIMENT ON IMAGE DENOIS-
ING AND SUPER-RESOLUTION USING
NOISY LOW-RESOLUTION TO NOISY
SUPER-RESOLUTION (NLR2NSR) FRA-
MEWORK

This research utilizes the ResNet16 model, which
incorporates a 3x3 convolutional kernel with aver-
age pooling and ReLU activation functions between
the hidden layers. For the input layer, a 7x7 con-
volutional kernel is employed to extract key image
features. During training, the Adam optimizer was
used with a learning rate of 0.001. The batch size
was set to a single image per batch, as it simulates
a scenario with a single image. To evaluate the ef-
ficiency of noise reduction and restoration achieved
through downsampling, the images are downscaled
at three different levels: x2, x4, and x8. This section
focuses on restoring real-world noisy images using the
NLR2NSR framework.

The image dataset is cropped to 512x512 pixels
and then downsampled to 256x256 (for the x2 ex-

Table 1: The PSNR and SSIM results of the single noisy image of the NIND dataset on x2, x4 and x8
downsampling.

NIND dataset RO R1 R2 R3 R4 RS R6

PSNR 19.85 | 18.22 15.64 13.12 11.08 9.65 8.71

O +2.86 2.50 +2.35 | £1.97 | £1.44 | £097 | +0.65

SSIM 0.23 0.17 0.11 0.07 0.04 0.03 0.02

+0.11 | +0.08 | +0.06 | +0.04 | +0.03 | +0.02 | +0.02

PSNR 21.82 | 2096 | 20.25 19.17 17.93 16.68 | 15.47

<4 +2.42 | £2.63 | £2.62 | +2.59 | £2.49 | £231 | £2.07

SSIM 0.32 0.28 0.25 0.22 0.18 0.15 0.12

+0.11 | £0.10 | +0.09 | +0.09 | +0.08 | +0.07 | +0.06

PSNR 22.82 | 2548 | 2646 | 2598 | 25.09 | 24.18 | 23.34

8 +4.20 | +3.11 +3.33 +3.46 +3.55 +2.58 | +3.59

SSIM 0.49 0.55 0.68 0.73 0.75 0.75 0.75

+0.15 | £0.11 +0.12 | £0.14 | £0.16 | #0.18 | +0.20

PSNR SSIM
35 1
X 09
30 25?8 25710 48 — 0.8
» ? 19417 L, =) 01
. ; G LT 8:‘
I3 S = 04
10 Y S 03
02
2 01
0 0
RO RI R R R4 RS R6

—PSNRx2 ——PSNR x4 ——PSNR 18

—SSIM_x2 ——SSIM_x4 ——SSIM x8

Fig.6: PSNR and SSIM comparisons of the NIND dataset downsampled by z2, x4, and x8 in multiple rounds.
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Table 2: The PSNR and SSIM results of the single noisy image of the SIDD dataset on x2, x4 and z8
downsampling.
SIDD dataset RO R1 R2 R3 R4 RS R6
PSNR 21.42 | 1954 | 16.77 14.19 12.20 10.93 | 10.13
O +1.18 | +1.06 | £1.10 | #1.09 | +0.90 | +0.66 | +0.46
SSIM 0.21 0.15 0.10 0.07 0.05 0.04 0.03
+0.05 | +0.03 | +0.02 | +0.02 | +0.01 | +0.01 | +0.01
PSNR 2544 | 2459 | 24.08 | 2295 | 21.54 | 19.97 | 1833
” +1.33 | +1.16 | £1.16 | +1.17 | +1.18 | *1.21 | *1.25
SSIM 0.59 0.43 0.36 0.31 0.26 0.21 0.16
+0.05 | +0.05 +0.05 +0.05 +0.04 +0.04 | +0.03
PSNR 27.24 | 2734 | 28.65 | 27.82 | 27.14 | 26.69 | 26.36
<8 +1.35 | #1.22 | +1.18 | £1.25 | £130 | £1.32 | £1.34
SSIM 0.47 0.56 0.74 0.79 0.80 0.81 0.81
+0.05 | +0.06 | +0.05 | +0.04 | +0.05 | +0.05 | +0.05
PSNR SSIM
35 09 0.79 0.80 0381 081
Wy T 365 R 04w oy 08 I I f { {
Y e 2408 2795 + - — 0.7
25 20147 ‘““l’l&;4~~nv>~-—f"f’::».,,* “}'ﬂw»f}j 1997 0 06
20 16.77 == — 03
B 1220 1093 10.13 ::; 0,26
10 ) - 0.16
02 ———
5 0 : - 005 0.04 S%x
0 0
RO RI R2 R3 R4 RS R6 RO RI R2 R3 R4 RS R6

——PSNR x2 ——PSNR x4 =——PSNR 18

——SSIM x2 ——SSIM x4 ——SSIM x8

Fig.7: PSNR and SSIM comparisons of the SIDD dataset downsampled by x2, x4, and x8 in multiple rounds.

periment), 128x128 (x4 experiment), and 64x64 (x8
experiment) for the respective downsampling levels.
Training is conducted over 100 steps, with 30 itera-
tions per step. In the initial round (RO), the original
distorted images are used for training, and shared
weights are applied for noise and resolution restora-
tion. The outputs from each round (R1-R6) are fed
back into the network every 30 iterations.

The model is evaluated on real-world single-image
datasets, specifically NIND [40] and SIDD [41], us-
ing 512x512 pixel sub-images for training. Ground
truth images are sourced from the lowest ISO set-
tings in the dataset. The results are measured us-
ing peak signal-to-noise ratio (PSNR) as the primary
metric, alongside the structural similarity index mea-
sure (SSIM), to assess the structural quality of the
restored images. Table 1 presents the results for the
NIND dataset, with the corresponding PSNR and
SSIM graphs shown in Figure 6. Similarly, Table 2
shows the results for the SIDD dataset, with PSNR
and SSIM graphs in Figure 7.

The results presented in Table 1 and Table 2 in-
dicate that the NLR2NSR framework can generally
enhance the PSNR and SSIM outcomes since the first
round (RO). Additionally, the restoration outcomes
tend to improve further with an increase in the down-

sampling rate, particularly at x4 and x8. However,
when restoring the output image in rounds R1-R6,
the x2 and x4 setups consistently produced decreas-
ing PSNR and SSIM values and introduced artifacts
in the image. These artifacts were most visible in
rounds R4-R6 of the x2 setup of the composite im-
age shown in Figure 8. In contrast, the results of the
x8 setup demonstrate that restoring the output image
in multiple rounds can lead to an increase in PSNR
results. However, this improvement becomes insignif-
icant after a few rounds and drops towards the end.
However, the SSIM results steadily improve with each
additional round of restoration. These experimental
findings suggest that the NLR2NSR framework can
effectively restore distorted images affected by noise
without needing a ground truth for validation during
the learning process.

In the next experiment, we will compare the im-
pact of different noise levels on the NLR2NSR . frame-
work. From the previous experiment, we observed
both the capabilities and limitations of the down-
sampling settings in noise reduction. However, in-
sufficient downsampling levels allowed residual noise
to affect the learning network. Therefore, in this ex-
periment, clean images from the ground truth of the
NIND dataset will be used, and noise will be added
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Clean

PSNR 16.96
SSIM 0.18

Round 0 (initial) Round 1 Round 2

x2

PSNR 19.78
SSIM 0.36

‘ot

PSNR 20.42
SSIM 0.25
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Fig.8: Sample output of NLR2NSR framework for NIND dataset with z2, x4, and x8 downsampling.

at levels of o = 25, 50, and 95 to evaluate the per-
formance of the NLR2NSR framework in various sce-
narios.

The experimental results in Figure 9 show that as
the noise level increases, the ability of NLR2NSR to
remove noise decreases. The resulting images only
have increased resolution, which is a consequence of
using the super-resolution model for training. This
experiment demonstrates that the remaining noise
in the images still affects the noise reduction perfor-
mance of NLR2NSR.

6. COMPARING THE PROPOSED NLR2-
NSR FRAMEWORK WITH STATE-OF-
THE-ART ALGORITHMS

This section will compare the NLR2NSR frame-
work with BM3D [42], which is a filtering-based algo-
rithm, two supervised learning image denoising meth-
ods: JDnDmSR [33] and TENet [34], as well as the
unsupervised learning approach N2N [31], N2S [11]
and SV-N2N [43]. All learning algorithms will be
set for training for 50 epochs and 100 steps using
a learning rate of 0.001. The BSD300 dataset [44]

is utilized for this comparison. The dataset com-
prises images cropped to 256x256 sizes with Gaussian
noise of o = 50. The NLR2NSR framework is estab-
lished by employing x8 downsampling during train-
ing and training is set by training for restoring two
rounds. Specific comparative results are presented in
Table 3, while example images are illustrated in Fig-
ure 10. Based on the comparative results, it is evident
that the NLR2NSR framework successfully restores
noisy images. On average, the results closely resem-
ble those of the N2N algorithm, which is an unsu-
pervised learning method. Although the NLR2NSR
achieves slightly lower noise reduction compared to
JDnDmSR and TENet, which are supervised learning
methods, it can learn noise reduction using a single
image through the proposed manipulation process.

7. DISCUSSION

In Section 5, the NLR2NSR framework is intro-
duced, and the results suggest that training with x8
image downsampling at the initial stage (RO) can ef-
fectively reduce noise and enhance restoration with
more detailed edges compared to x2 and x4 down-
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SSIM 0.01 SSIM 0.11 SSIM 0.16 SSIM 0.16 SSIM 0.17 SSIM 0.17

Fig.9: Comparison of image denoising using the NLR2NSR framework at different levels of Gaussian noise.

Table 3: PSNR and SSIM results of the NLR2NSR with restoration algorithms.

Algorithm Algorithm type PSNR SSIM
BM3D Conventional filtering 23.60 £5.23 0.60 +0.21
JDnDmSR Supervised learning 26.40 +4.84 0.72 +£0.14
TENet Supervised learning 26.48 +4.42 0.72 £0.12
N2N Unsupervised learning 25.52 £2.85 0.75 +0.12
N2S Unsupervised learning 24.92 £3.96 0.69 +0.08
SV-N2N Unsupervised learning 25.38 £2.52 0.74 +£0.08
Proposed NLR2NSR Unsupervised learning 25.56 £3.67 0.71 £0.11
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Fig.10: Ezample of comparison results of NLR2NSR with other restoration algorithms.

sampling. The residual noise left behind by lower
levels of downsampling (x2 and x4) can be trans-
formed and amplified during the restoration process
due to the impact of this residual noise undergoing
Wiener convolution in the deep learning convolution
process, consequently increasing noise power. Con-
versely, x8 downsampling is more effective at reducing
noise, although it may result in the loss of some edge
details. Since the NLR2NSR framework concept is
similar to finding robust features like the SIFT algo-
rithm [39], the x8 downsampling level increases PSNR
in round 2, as seen in the experimental results in Fig-
ures 6 and 7. This sufficiently high downsampling
level can reduce noise while preserving essential im-
age features. Preserving these features enables the
convolution process during training to amplify them,
following Wiener convolution theory.

The proposed NLR2NSR, framework uses additive
noises injected into a noisy image to generate input
and validation pairs for learning restoration. Addi-
tionally, the low magnitude of the additive noises
compared to the existing noise in a single image
dataset, and the presence of remaining noises in the
x2 and x4 downsampling setups can negatively im-
pact the performance of resolution enhancement. In
contrast, the x8 downsampling setup removes most
of the original noise signal, resulting in more effec-
tive restoration. The feeding back of the restored
output to improve restoration performance can in-
crease PSNR and SSIM results in the x8 downsam-
pling setup. However, excessive feeding back of the
restored image can lead to lower PSNR, values due to
the high-pass filter property of deep learning, causing
distortion and artifacts in the image. This effect is
particularly evident in the x2 and x4 downsampling
setups, as shown in Figures 8 and 9, despite enhanc-
ing edge features in the x8 setup with higher SSIM
values.

The results shown in Figure 9 demonstrate that
different noise levels affect the optimal downsampling
settings of the NLR2NSR framework. If the down-

sampling is too low compared to the amount of noise,
such as in the experiment using Gaussian noise with
o = 95, residual noise will remain in the image. It
may enhance unwanted features, leading to incom-
plete noise removal. However, if the downsampling
level is too high, the denoised image may experience
distortion of image features, which can also impact
the evaluation metrics such as PSNR and SSIM.

The comparison of results in Section 6 reveals
that the proposed NLR2NSR framework excels in
noise removal and resolution enhancement. Com-
pared to supervised learning, the NLR2NSR frame-
work offers advantages in scenarios where clean im-
ages for validation sets are unavailable due to data
limitations. Moreover, the training process of the
NLR2NSR framework does not require network struc-
ture reconfiguration or image augmentation to simu-
late validation sets, reducing complexity compared
to unsupervised learning methods used in the exper-
iment.

8. CONCLUSION

To overcome the challenge of limited training data
for restoring noisy images, this research proposes an
unsupervised learning approach called the Noisy Low-
Resolution to Noisy Super-Resolution (NLR2NSR)
framework.  The framework combined the con-
cepts of Zero-Short Super-Resolution (ZSSR) and
Noise2Noise (N2N) by employing downsampling, up-
sampling, and noise addition to generate a training
set for self-learning. In the first experiment, the re-
stored output was fed back into the restoration pro-
cess for further enhancement. The results demon-
strated that NLR2NSR effectively restored denoising
and resolution enhancement by reducing image noise
through the downsampling and upsampling processes
and enhancing image details through the learning
ResNet network. As a result, the proposed frame-
work successfully overcame the limitation of insuffi-
cient training data. In the subsequent experiment, by
comparing the addition of noise to images at differ-
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ent levels, o = 25, 50, and 95, it was shown that the
increased noise levels negatively impacted the per-
formance of the NLR2NSR framework. When us-
ing a low downsampling level, the effectiveness of the
framework decreases as the noise level increases, mak-
ing it challenging to distinguish image details. This
is similar to noise having more prominent or higher-
level components than the image features. Conse-
quently, the super-resolution network used in the ex-
periment enhances the resolution of the noise features
more than the image features and fails to remove
the noise even after multiple iterations. Furthermore,
compared with state-of-the-art algorithms, the results
demonstrated that NLRSNSR could restore noisy im-
ages. However, it showed lower performance in repet-
itive repairs compared to state-of-the-art algorithms.
In future studies, it will be crucial to analyze the re-
lationship between noise intensity and the number of
learning iterations, as this factor could significantly
impact the restoration of images affected by high-level
noise.
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