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ABSTRACT Article information:
White blood cells are crucial to the immune system. The irregular struc-
ture of white blood cells, along with the fact that each type has its unique
structure, makes manual identi�cation challenging. Manual identi�cation
is prone to errors due to medical personnel's subjectivity and fatigue from
time and e�ort demands. A fast and accurate method for classifying white
blood cells is needed, but challenges remain regarding the quality and quan-
tity of samples for each cell type. This study proposes the use of SMOTE
and SVMSMOTE to address the issue of data imbalance, as well as a com-
bination of shape features (size, circularity, convexity, solidity) and convo-
lutional autoencoder (CAE) for feature extraction, along with a Gaussian
mixture model for nucleus segmentation. The study �nds that, without
using SMOTE or SVMSMOTE for data balancing, the proposed features
are already su�cient to represent each cell type except eosinophils, achiev-
ing an accuracy of 92.4%, precision of 91.9%, recall of 92.3%, F1-Score of
92%, MCC of 0.862, and CEN of 0.1376 using a polynomial kernel. The
worst results were obtained with the sigmoid kernel.
The combined feature extraction (shape and CAE) outperformed individ-
ual methods. Shape alone achieved 86.8% accuracy, CAE alone 87.8%.
Recall for eosinophil cells improved using SMOTE and SVMSMOTE.
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1. INTRODUCTION

The word �leukocytes� is derived from the Greek
words for �leuko�, meaning white, and �cyte�, mean-
ing cell. White blood cells are an integral part of
the immune system and �ght o� many pathogens in-
vading the body they are major cellular elements of
the in�ammatory and immune response that protect
against infection and neoplasia and help repair dam-
aged tissue [1]. Identifying types of white blood cells
can assist medical professionals in diagnosing various
kinds of diseases related to white blood cells, such as
human immunode�ciency virus (HIV), AIDS, hepati-
tis, immune disorders, and leukaemia [2], [3]. White
blood cells can be categorized into granular leuko-
cytes and agranular leukocytes. Granular leukocytes
contain granules in their cytoplasm and consist of
basophils, eosinophils, and neutrophils. Agranular
leukocytes do not have granules and include mono-
cytes and lymphocytes [4]. Each type of white blood

cell can be identi�ed by its nucleus, size, and the
colour of its granules [5]. Figure 1 shows a diagram
of WBC structure (example using monocyte cell).

Fig.1: Diagram of WBC structure (monocyte cell
example).

1,2 The authors are with the Faculty of Computer Science, Masters in Informatics Engineering, Universitas Bina Darma, In-
donesia, Email: tata.sutabri@gmail.com and celvineadiputra@gmail.com
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Therefore, manually identifying white blood cell
types becomes complex and time-consuming for med-
ical staff, and it is also subject to their interpretation
[2]. In addition to manual methods, a haematology
analyzer machine can be used. However, using this
device requires regular maintenance, calibration con-
trol, and trained medical personnel, these analyzers
often suffer from poor resolution and are limited to
certain classes of leukocyte types, and the machine it-
self is expensive for developing countries [6], [7], mak-
ing it unavailable in all regions, especially those with
limited resources [8].

Designing a model for identifying each WBC type
is essential, as this would benefit the field of medicine
by helping medical teams diagnose diseases quickly
and at low costs. For this, obtaining information re-
garding the type of white blood cells from the patients
in a relatively short time would mean serving as data
for diagnosing the disease being experienced [5]. This
highlights the weakness of previous methods, which
did not account for this imbalance [6], [9]. In the
work, class imbalance will be a problem for the data
used in this study.

Machine learning is one method that can be used
for prediction processes. However, classifying white
blood cells presents challenges, especially regarding
the quality and quantity of the available data [6]. One
issue with data quantity is data imbalance, where one
or more classes have significantly more data than oth-
ers, known as majority and minority classes. Imbal-
anced data can lead to misclassification, especially for
the minority class, making it more difficult to predict
due to its limited representation, which causes bias
toward the majority class [10]. There are two main
approaches to addressing data imbalance: algorithm-
level approaches and data-level approaches. The
data-level approach balances the class distribution,
whether majority or minority, using techniques like
undersampling, oversampling, or both. On the other
hand, the algorithm-level approach involves modify-
ing or optimizing the algorithm itself [10]. The data-
level approach is considered more effective for han-
dling data imbalance issues because it is more flexible
and not dependent on the algorithm used [11].

2. RELATED WORKS

Previous research related to the classification of
white blood cell types was widely implemented using
different methods, both traditional and deep learn-
ing techniques [12]. In traditional techniques, the
first step involved manual feature extraction. Mean-
while, deep learning techniques did not require man-
ual feature extraction but needed many parameters
and a large amount of training data. The dataset
had to be sufficiently large to ensure the model was
trained accurately [13]. Using traditional techniques,
researchers examined which feature extraction meth-
ods were most suitable for white blood cell classifi-

cation and how cell image segmentation could distin-
guish cells from the background or other cells.

In 2023, Lin et al. conducted research using im-
balanced datasets such as “new thyroid1”, Ecoli2,
Wisconsin, and lung cancer. The study used SVM
and various data-balancing techniques. The best re-
sults were achieved using SMOTE for the “new thy-
roid1” dataset, with an accuracy of 96.5%. Simi-
larly, SMOTE achieved the best results for the Ecoli2
dataset, with an accuracy of 88.8%. For the Wiscon-
sin and lung cancer datasets, the best results were
obtained using MMTD-ELM, achieving accuracies of
90.5% and 99.8%, respectively [14].

In 2021, Tavakoli et al. implemented shape feature
extraction (solidity, convexity, circularity) and colour
feature extraction (RGB, HSV, LAB, YCrCb). Using
a Support Vector Machine (SVM) for classification,
they achieved an accuracy of 94.65% [13].

In 2021, Devella et al. implemented saliency to
segment white blood cells and proposed Speeded-Up
Robust Features (SURF) for feature extraction. This
study achieved an accuracy of 78.60% using SVM [15].

In 2021, Yohannes et al. implemented saliency
to segment white blood cells and proposed Scale In-
variant Feature Transform (SIFT) for feature extrac-
tion. This study achieved an accuracy of 77.08% us-
ing SVM [16].

n 2020, Riaz et al. used the Gaussian Mixture
Model for medical image segmentation. The segmen-
tation was applied to three distinct imaging modali-
ties: MRI, dermoscopy, and chromoendoscopy. This
study showed that the proposed method provided
better qualitative and quantitative results than ex-
isting medical image segmentation methods [17].

In 2019, Wang et al. conducted a study using a
combination of colour, texture, and parameter val-
ues such as area, solidity, eccentricity, and perime-
ter. They used the Gray Level Co-occurrence Matrix
(GLCM) to extract texture features and used Sup-
port Vector Machines (SVM) for classification. The
study used 200 images, with 40 images for each cell
type. The method achieved a best accuracy of 88.5%
[18].

In 2019, Mery et al. implemented a Convolutional
Autoencoder (CAE) for feature extraction in plant
leaf classification. The features extracted by the CAE
were classified using SVM, achieving an accuracy of
94.74% [19].

3. THE PROPOSED METHODS

3.1 Dataset

The dataset used in this paper was provided by
previous research [5]. There are three files: train.rar,
testA.rar, and testB.zip. Only train.rar and testA.rar
have been labelled manually by two medical profes-
sionals. Therefore, this study will only use these
two files. Each file contains jpg format images with
a resolution of 575 × 575 pixels. These types are
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basophils, eosinophils, neutrophils, monocytes, and
lymphocytes. The data distribution is as follows: For
the test file, there are 212 basophils, 744 eosinophils,
6231 neutrophils, 561 monocytes, and 2327 lympho-
cytes. For the training file, there are 89 basophils, 332
eosinophils, 2660 neutrophils, 231 monocytes, and
1034 lymphocytes. Figure 1 provides an example of
the dataset used.

Fig.2: Example of (a) Basophil, (b) Eosinophil,
(c)Lymphocyte, (d) Monocyte, (e) Neutrophil.

The dataset will undergo further manual selection
to remove damaged or incomplete cell images and
images containing more than one cell type. The re-
sulting data distribution will be as follows: 179 ba-
sophils, 655 eosinophils, 5633 neutrophils, 545 mono-
cytes, and 2375 lymphocytes for the train.rar file; and
77 basophils, 282 eosinophils, 2581 neutrophils, 227
monocytes, and 1028 lymphocytes for the testA.rar
file. Thus, this data will be used for the next step.

3.2 Methodology

Figure 3 demonstrates the overall research method
applied for this study. There will be some main stages
involved in this study. First, the process will be con-
verting the RGB images to HSV. After obtaining the
HSV images, the next process is the segmentation
of WBC nuclei. This segmentation process will pro-
duce images of the same size as the input images.
The next step in the process is feature extraction,
where two kinds of features will be used: shape fea-
tures, such as size, solidity, convexity, and circularity,
and the features obtained from a convolutional au-
toencoder. These extracted features are combined for
the next stage, the testing scenarios. There will be
three testing scenarios: the first without data balanc-
ing, the second using SMOTE, and the third using
SVMSMOTE. Each scenario will be classified using
SVM. The details of the steps will be mentioned in
the next sections.
The explanation of Figure 3 is as follows:

3.2.1 RGB to HSV

In this study, an RGB image of 575 × 575 pixels
will be used as input. The image will be converted to
HSV to facilitate image processing, ensuring the sub-
sequent segmentation process achieves more accurate
clustering results. The following are examples of the
results from the conversion to the S channel for each
cell type.

Fig.3: The Proposed System Flow.

Fig.4: Examples of the conversion results from RGB
to the S channel for each cell type (a) Basophil, (b)
Eosinophil, (c)Lymphocyte, (d) Monocyte, (e) Neu-
trophil.

3.2.2 Segmentation

Four distinct steps were carefully implemented in
this study’s proposed nucleus segmentation phase.
The initial step utilizes a Gaussian Mixture Model
(GMM).

GMM is a probabilistic model used to represent
a dataset as a combination of multiple Gaussian dis-
tributions. Each cluster in the dataset is modelled
as a separate Gaussian distribution, characterized by
its mean and variance. GMM helps estimate the pa-
rameters of these distributions, specifically the mean,
variance, and weight (π) for each cluster. The prob-
ability density function of Gaussian distribution, de-
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fined at 1 [20]:
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The calculation steps for GMM are below [20]:

1. Initialise mean, variance, and weight for all clusters
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2. Suppose the probability xi of belonging to any
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p(xi) =
∑

j
p(xi|cj) · p(cj) (5)

3. Re-estimate the parameter based on the calculated
probabilities

µk =

∑
i p(Ci|xi) · xi∑
i p(Ci|xi)

σ2
k =

∑
i p(Ci|xi) · (xi − µk)2∑

i p(Ci|xi)
(6)

p(Cj) =

∑
i p(Cj |xi)
n

(7)

4. Iterate until convergence

Unlike other clustering algorithms, such as K-
Nearest Neighbours (KNN), the Gaussian Mixture
Model (GMM) provides several advantages. First,
GMM employs a probabilistic approach, which allows
it to model clusters by combining multiple probabil-
ity distributions, leading to a more flexible and ro-
bust identification of cluster boundaries. Addition-
ally, GMM excels in parameter estimation, as it can
accurately estimate the mean and variance of each
cluster’s probability distribution. Another key ad-
vantage is that GMM performs soft clustering, mean-
ing that each data point can belong to more than
one cluster with a certain probability, which provides
a more nuanced and realistic clustering result com-
pared to the hard clustering approach of KNN. These
features make GMM particularly effective in handling
complex and overlapping clusters.

In this study, we apply GMM with three com-
ponents (n components=3), a parameter optimized
through extensive trial and error. This clustering step
is crucial for effectively distinguishing the nuclei from
other structures within the cellular images of white
blood cells.

Fig.5: Example of the clustering result using a
Gaussian mixture model.

As shown in Figure 5, colours do not correspond
to any specific object. This paper introduces an ap-
proach to address this issue: the centroid method
enhances segmentation by employing clustering. It
generates centroids and identifies additional points
around the initial centroid to detect more nuclei. Fig-
ure 6 presents the centroid method in red. Inspired
by the human visual system, it focuses on objects of
interest to obtain a clear perception of them.

Fig.6: Example image centre point.

The next step involves applying morphological op-
erations (opening and closing) and masking. These
operations are intended to refine the clustering re-
sults before proceeding with the masking step.

Morphological operations, such as opening and
closing, are essential techniques in image processing
that improve the structure of objects in binary im-
ages. The opening operation removes small objects or
noise from the foreground while preserving the shape
and size of larger objects, making it particularly use-
ful for separating connected components. Conversely,
the closing operation fills small holes and gaps within
the foreground objects, resulting in a more solid rep-
resentation.

The masking step produces an RGB nucleus image
the same size as the input, which is 575 × 575 pixels.
Figure 7 provides an example of the result of this
process.

Fig.7: Example of the final result of the segmenta-
tion process.

3.2.3 Feature Extraction

In image processing, feature extraction refers to
identifying and isolating key attributes from raw data
to enhance the accuracy of subsequent analysis and
classification.
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In this study, we combine the results of shape fea-
ture extraction (solidity, convexity, circularity, and
size) with the results from convolutional autoencoder
feature extraction.

Shape Feature Extraction: In this work, two
methods of feature extraction will be proposed: the
first one is related to shape features and includes ex-
traction by size, circularity, convexity, and solidity,
based on the statement in the journal [13], [21] which
mentions that each cell type can be distinguished
based on size, shape, and colour of granules. Shape
feature extraction for size provides information about
the size of an object, circularity indicates how close
an object is to a perfect circle with a maximum value
of one (indicating perfect roundness) [22], convexity
describes how close an object is to its convex hull [23],
and solidity indicates the convexity or concavity of an
object [24]. The definitions for circularity, convexity,
and solidity are provided as follows:

circularity = 4π × area

(perimeter)2
(8)

Solidity =
ObjectArea

ConvexArea
(9)

convexity =
Convex perimeter

ObjectPerimeter
(10)

Convolutional Autoencoder as Feature Ex-
traction: An autoencoder, an unsupervised learning
technique, consists of an encoder and a decoder [25].
The former compresses the input data into a lower-
dimensional representation, called latent space, while
the latter reconstructs data from this latent space.
Training for the autoencoder involves reconstruction
errors between the original input and the output cre-
ated by the decoder. One of the many varieties of au-
toencoders is the Convolutional Autoencoder, which
aims to decrease data dimensionality and extract fun-
damental characteristics from images using Convolu-
tional Neural Networks. Convolutional autoencoders
have also been applied in image denoising [26]. The
autoencoder is applied after segmentation to reduce
residual noise and irrelevant features. While segmen-
tation isolates the region of interest, there might still
be imperfections, such as noise or unimportant data
in the segmented region. The convolutional autoen-
coder thus helps refine the features by learning a com-
pact, low-dimensional representation, which aids in
more accurate classification.

Fig.8: Structure from Convolutional Autoencoder.

The process begins with the input image at the
encoder layer, where the encoder translates the in-
put and compresses it into a more straightforward
representation. The output from the encoder is then
passed to the decoder to regenerate the input [27].
Using a Convolutional Autoencoder (CAE) for fea-
ture extraction involves the entire process from the
encoder to the latent space, or it may include us-
ing max pooling2d 2, as shown in Table 1. Table 1
presents the model summary of the CAE used in this
study.

Table 1: Model Summary Convolutional Autoen-
coder.

Layers (Type) Output Shape Parameter
InputLayer [64, 64, 3] 0
conv2d [64, 64, 16] 448
max pooling2d [32, 32, 16] 0
conv2d 1 [32, 32, 8] 1160
max pooling2d 1 [16, 16, 8] 0
conv2d 2 [16, 16, 8] 584
max pooling2d 2 [8, 8, 8] 0
conv2d 3 [8, 8, 8] 584
up sampling2d [16, 16, 8] 0
conv2d 4 [16, 16, 8] 584
up sampling2d 1 [32, 32, 8] 0
conv2d 5 [32, 32, 16] 1168
up sampling2d 2 [64, 64, 16] 0
conv2d 6 [64, 64, 3] 435

The optimizer used in this study is Adam, with 20
epochs and a batch size of 100. Figure 9 presents the
model’s loss results, with the loss values ranging from
0.0379 to a validation loss (val loss) of 0.0396.

Fig.9: Model Loss Convolutional Autoencoder.

The results of shape feature extraction and the
Convolutional Autoencoder (CAE) will be combined,
resulting in the number of features displayed in Ta-
ble 2. This combination results in 516 features, which
will be used in the next stage.

3.2.4 K-Fold Cross Validation

K-Fold cross-validation is a technique used to split
data into training and testing sets. With the k-fold
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Table 2: Sum of Shape Features and CAE Features.
Feature Extraction Sum of Feature
Shape Feature Extraction 4
Convolutional Autoencoder 512

method, data is randomly divided into K-equals sizes.
One subset is used as the testing data, while the re-
maining subsets are used as training data. This classi-
fication process is repeated K times[28]. In this study,
K=5 will be considered for every type of test to be
more fair.

3.2.5   Classification by Support Vector Machine

This section will explain the classification process
using SVM with the kernel trick, based on the com-
bined feature extraction performed in the previous
stage. This process will include three types of test-
ing: the first without class balancing, the second with
SMOTE, and the third with SVMSMOTE.

The primary challenge in this research is the sig-
nificant class imbalance in the white blood cell clas-
sification dataset. Specifically, certain types of white
blood cells are much less represented compared to
others, resulting in a bias in the model toward the
majority classes, which hampers the accurate iden-
tification of minority classes. To address this, data
balancing algorithms such as SMOTE (Synthetic Mi-
nority Over-sampling Technique) and its variation,
SVMSMOTE, have been utilized.

SMOTE is applied to handle the class imbalance
by generating synthetic examples for the minority
class [29], thereby increasing its representation in the
training dataset. The synthetic data is generated by
finding the nearest neighbours of existing minority
samples and creating interpolations, which helps pre-
vent overfitting [30]. This synthetic oversampling en-
sures that the training set is more balanced, allowing
the model to effectively learn the characteristics of
the minority classes rather than being overwhelmed
by the majority class. For this study, SMOTE was
essential to ensure adequate representation of the less
frequent white blood cell types, ultimately improving
classification performance across all cell types.

However, SMOTE has a limitation known as over-
generalization, which refers to its potential ineffec-
tiveness in generating meaningful synthetic samples
when the minority class distribution is complex [31].
To address this limitation, SVMSMOTE, a variant of
SMOTE, was introduced. SVMSMOTE focuses on
samples near the decision boundary between the mi-
nority and majority classes. By leveraging SVM to
identify borderline instances, SVMSMOTE aims to
generate more informative synthetic samples, which
are crucial for distinguishing between classes in chal-
lenging areas. This approach is particularly benefi-
cial in this research, as the decision boundaries be-
tween different types of white blood cells are often

difficult to define clearly due to overlapping charac-
teristics [32].

Using SMOTE or SVMSMOTE enables us to build
a more robust classifier by effectively tackling the
issues associated with class imbalance. By apply-
ing oversampling only to the training subset and
leaving the test subset unchanged, the model is
trained on balanced data while still being evaluated
on realistic, imbalanced data that represents actual
conditions. This approach ensures that the model
can learn features from balanced classes while be-
ing tested in a way that simulates real-world scenar-
ios. Consequently, the model trained with SMOTE
or SVMSMOTE shows improved accuracy in iden-
tifying minority cell types, as evidenced by reduced
misclassification rates and increased recall for under-
represented classes.

Support Vector Machine (SVM): SVM belongs to
the supervised learning category, meaning the data
must be labelled beforehand before training. The
goal of SVM is to obtain the best possible hyper-
plane to separate classes by optimizing the margin
or decision boundary, which can separate classes lin-
early [33]. Initially, SVM could only be used on lin-
ear data, but with its development, it can now be ap-
plied to non-linear data using kernel functions. These
kernel functions map from low to higher dimensions,
with several commonly used types such as radial ba-
sis function (RBF), linear, polynomial, and sigmoid.
The RBF kernel can be defined by equation 11, the
polynomial kernel by equation 12, the linear kernel
by equation 13, and the sigmoid kernel by equation
14.

K(xi, xj) = xTi xj (11)

K(xi, xj) = exp(−γ‖xi − x‖2, γ > 0 (12)

K(xi, xj) = (y · xTi x+ r)2 (13)

K(xi, xj) = tanh(σ(xi, xj) + c) (14)

A key parameter in Support Vector Machines
(SVM) is C, a regularization term that balances the
trade-off between maximizing the margin and mini-
mizing classification errors. A smaller value of C al-
lows for a wider margin while permitting more classi-
fication errors, making the model more resilient to
overfitting by allowing some misclassifications. In
contrast, a larger value of C forces the model to clas-
sify all data points correctly, resulting in a narrower
margin and a more complex model, which can in-
crease the risk of overfitting [34].

Selecting an appropriate C value is essential for op-
timal SVM performance. Cross-validation typically
determines this value, a technique to find the best
balance between model complexity and prediction ac-
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curacy.
Initially, SVM was designed solely for binary clas-

sification problems. However, various strategies have
been developed to address multi-class classification
using SVM. One such strategy is the one-against-
all approach. In this method, one class is evaluated
against all other classes. For example, in a three-class
scenario, SVM would differentiate class 1 from classes
2 and 3, class 2 from classes 1 and 3, and class 3 from
classes 1 and 2. [35].

3.3 Evaluation Matrix

The evaluation metrics used to assess the perfor-
mance of the models for white blood cell classification
in this study are as follows.
1. Accuracy

Accuracy is determined by dividing the number of
correctly predicted data points by the total number
of data points [36]. The formula is as follows:

Accuracy =
TP + TN

TP + Tn+ FP + FN
(15)

2. Precision
Precision is calculated by dividing the number of

true positive (TP) predictions by the total number of
positive predictions [37]. The formula is as follows:

Precision =
TP

TP + FP
(16)

3. Recall
Recall is calculated by dividing the number of true

positive (TP) predictions by the total number of pos-
itive data [37]. The formula is as follows:

Recall =
TP + TN

TP + FN
(17)

4. F1-Score
F1-Score is the harmonic mean of precision and

recall, resulting in a single value that ranges from 0
to 1. A value of 1 represents the best possible preci-
sion and recall, while a value of 0 indicates the lowest
precision and recall. [37]. The formula is as follows:

F1 = 2× Precision×Recall
Precision+Recall

(18)

5. Matthews correlation coefficient (MCC)
The Matthews correlation coefficient (MCC) will

still be calculated using a confusion matrix. The
MCC value ranges from -1 to +1, where +1 indicates
the best performance and -1 indicates the worst. A
value of 0 indicates a useless result or a result equiva-
lent to random guessing [38]. The MCC equation for
multi-class [39] is defined below.

MCC=

∑N

k,l,m=1
CkkCml − ClkCkm√√√√√√∑N

K=1

[
(
∑N

l=1
Clk)(

∑N

f,g=1f 6=k
Cgf )

]√∑N

k=1

[(∑N

l=1
Ckl

(∑N

f,g=1f 6=kCfg

))] (19)

6. Confusion entropy (CEN)
Confusion entropy (CEN) is a metric used to eval-

uate classification performance in machine learning.
CEN can be interpreted as the “average error” in
classification. A low CEN value indicates that the
classification produces few errors, while a high CEN
value indicates that the classification produces many
errors. In addition, CEN becomes one of the evalua-
tion metrics in the imbalanced multi-class case [40],
CEN equation is defined as follows [18]:

CEN =
∑M

i=1
Pi · CENi (20)

Pi =

∑C
K=1mati,k +matk,i

2 ∗
∑C
k,l=1matk,l

(21)

CENi = −
∑C
K=1,k 6=i(P

j
j,k log2(C−1)(P

i
k,k log2(C−1)(P

i
k,i)))

(22)

4. RESULTS AND DISCUSSION

Based on the results of an experiment using four
types of SVM kernels: linear, radial basis function
(RBF), sigmoid, and polynomial. As previously men-
tioned, the experiment involves three types of test-
ing: without data balancing, with SMOTE, and with
SVMSMOTE. Each type of testing uses k-fold cross-
validation with K=5.

4.1 Without data balancing

Table 3 presents the performance of the classifica-
tion model using four different kernel functions: Lin-
ear, RBF, Sigmoid, and Polynomial. Various metrics
such as Accuracy, Precision, Recall, F1-Score, MCC,
and CEN are evaluated for each kernel. The parame-
ters used for each kernel are as follows: Linear kernel
(C=10), RBF kernel (C=100, gamma=Scale), Sig-
moid kernel (C=100, gamma=Scale), and Polynomial
kernel (C=1, gamma=Scale, degree=5).

Table 3: Best Results for Each Kernel Type In Tests
Without Data Balancing.

Linear RBF Sigmoid Poly
Accuracy 91.5% 92.2% 85.8% 92.4%
Precision 91.5% 91.8% 84.2% 91.9%
Recall 91.5% 92.2% 85.9% 92.3%
F1-Score 91.1% 91.9% 84.9% 92%
MCC 0.848 0.860 0.746 0.862
CEN 0.1475 0.1396 0.2036 0.1376

Accuracy: The Polynomial kernel achieved the
highest accuracy (92.4%), followed closely by the
RBF kernel (92.2%) and the Linear kernel (91.5%).
The Sigmoid kernel resulted in the lowest accuracy,
at 85.8%.

Precision: Similar to accuracy, the Polynomial
kernel showed superior precision (91.9%), slightly
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outperforming the RBF (91.8%) and Linear kernels
(91.5%). The Sigmoid kernel also underperformed
here, with a precision of 84.2%.

Recall: The best recall was achieved by the Poly-
nomial kernel (92.3%), closely followed by the RBF
kernel (92.2%), while the Linear and Sigmoid kernels
had lower recall scores at 91.5% and 85.9%, respec-
tively.

F1-Score: The Polynomial kernel again demon-
strated the best F1-Score (92.0%), while the RBF
(91.9%) and Linear (91.1%) kernels performed simi-
larly. The Sigmoid kernel scored the lowest (84.9%).

MCC: The highest MCC value was achieved by
the Polynomial kernel (0.862), followed by the RBF
(0.860) and Linear (0.848) kernels. The Sigmoid ker-
nel had the lowest MCC (0.746), indicating weaker
performance.

CEN: The lowest CEN value (indicating supe-
rior performance) was observed with the Polynomial
kernel (0.1376), closely followed by the RBF kernel
(0.1396). The Sigmoid kernel exhibited the highest
CEN (0.2036), indicating a less effective classifier.

Based on these results, the Polynomial kernel per-
formed the best overall, with the highest accuracy
(92.4%), MCC (0.862), and lowest CEN (0.1376). Al-
though the Polynomial kernel demonstrates overall
superior performance, it is important to note that it
struggles to identify certain cell types, particularly
eosinophil cells, with the recall dropping to 52.8%, as
shown in Figure 10. However, the recall for other cell
types remains above 80%.

Fig.10: Comparison of precision, recall, and F1-
score using the polynomial kernel without data bal-
ancing, (B) Basophils, (E) Eosinophils, (L) Lympho-
cytes, (M) Monocytes, (N) Neutrophils.

The test results indicate an improvement when
combining shape features and convolutional autoen-
coders, compared to using shape features alone or
convolutional autoencoders alone. The approach us-
ing the combined features achieves an accuracy of
92%. Detailed metrics for precision, recall, and F1-
score are shown in Figure 10.

In contrast, using only shape features results in an
accuracy of 85.2%, with detailed metrics presented
in Figure 11, using a polynomial kernel (C = 0.1,
gamma = 10, degree = 5). Meanwhile, using con-
volutional autoencoders alone yields an accuracy of
87%, with detailed metrics shown in Figure 12, using

a polynomial kernel (C = 0.1, gamma = 5, degree =
5).

Fig.11: Comparison of precision, recall, and F1-
score using the polynomial kernel without data bal-
ancing (shape feature extraction), (B) Basophils, (E)
Eosinophils, (L) Lymphocytes, (M) Monocytes, (N)
Neutrophils.

Fig.12: Comparison of precision, recall, and F1-
score using the polynomial kernel without data bal-
ancing (CAE feature extraction), (B) Basophils, (E)
Eosinophils, (L) Lymphocytes, (M) Monocytes, (N)
Neutrophils.

4.2 SMOTE

Table 4 presents the performance of the classifica-
tion model using four different kernel functions: Lin-
ear, RBF, Sigmoid, and Polynomial. Various metrics
such as Accuracy, Precision, Recall, F1-Score, MCC,
and CEN are evaluated for each kernel. The parame-
ters used for each kernel are as follows: Linear kernel
(C=1.25), RBF kernel (C=100, gamma=Scale), Sig-
moid kernel (C=10, gamma=Scale), and Polynomial
kernel (C=4, gamma=Scale, degree=5).

Table 4: Best Results for Each Kernel Type In Tests
Using SMOTE.

Linear RBF Sigmoid Poly
Accuracy 88% 89.4% 80.4% 89.4%
Precision 91.1% 91% 86.7% 90.9%
Recall 87.8% 89.3% 80.3% 89.3%
F1-Score 88.9% 90% 82.3% 89.9%
MCC 0.803 0.820 0.700 0.819
CEN 0.1794 0.1710 0.2491 0.1729

Accuracy: The highest accuracy was achieved by
the RBF and Polynomial kernels, both at (89.4%),
while the Linear kernel was close behind with 88%.
The Sigmoid kernel had the lowest accuracy (80.4%).
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Precision: The Linear kernel had the highest pre-
cision (91.1%), followed closely by the Polynomial
(90.9%) and RBF (91%) kernels. The Sigmoid kernel
trailed behind with a precision of 86.7%.

Recall: The RBF and Polynomial kernels showed
the highest recall (89.3%), with the Linear kernel
slightly lower (87.8%). The Sigmoid kernel once again
underperformed with a recall of 80.3%.

F1-Score: The RBF kernel produced the best F1-
Score (90%), with the Polynomial kernel closely fol-
lowing at 89.9%. The Linear kernel had an F1-Score
of 88.9%, while the Sigmoid kernel had the lowest
(82.3%).

MCC: The highest MCC was achieved by the
RBF kernel (0.820), followed closely by the Polyno-
mial kernel (0.819) and the Linear kernel (0.803). The
Sigmoid kernel had a significantly lower MCC (0.700),
indicating weaker classification performance.

CEN: The lowest CEN (indicating better classifi-
cation performance) was observed with the RBF ker-
nel (0.1710), followed by the Polynomial (0.1729) and
Linear (0.1794) kernels. The Sigmoid kernel had the
highest CEN value (0.2491), reflecting its poorer per-
formance.

In summary, the RBF and Polynomial kernels per-
formed best overall, particularly with identical accu-
racy (89.4%) and similar F1-Scores, MCC, and CEN
values. However, the RBF kernel slightly outper-
forms the Polynomial kernel regarding MCC (0.820
vs. 0.819) and CEN (0.1710 vs. 0.1729), indicat-
ing that the RBF kernel is marginally more effective
in classification. Additionally, the RBF kernel has a
slightly better F1 Score (90% vs. 89.9%). Based on
these subtle differences, the RBF kernel can be con-
sidered the best overall performing kernel in this sce-
nario. The Linear kernel also demonstrated strong
performance, particularly in precision (91.1%), al-
though its overall results were slightly lower than
those of the RBF and Polynomial kernels. The Sig-
moid kernel, by contrast, consistently yielded the
weakest results across all metrics, with its perfor-
mance noticeably lagging behind the others.

Based on these results, using SMOTE with the
RBF kernel achieved the best accuracy of 89.4%,
an MCC of 0.820, and the lowest CEN value of
0.1710. The comparison between precision, recall,
and F1-Score for each type of cell type with RBF
kernel is presented in Figure 13. These results
clearly show that applying SMOTE improved the re-
call from 52.8% without data balancing to 70.4% with
SMOTE. However, after applying SMOTE, the pre-
cision for eosinophil cells decreased to 48%, indicat-
ing that the model made more errors in predicting
eosinophil cells.

The test results indicate an improvement when
combining shape features and convolutional autoen-
coders, compared to using shape features alone or
convolutional autoencoders alone. The approach us-

Fig.13: Comparison of precision, recall, and F1-
score using the polynomial kernel using SMOTE, (B)
Basophils, (E) Eosinophils, (L) Lymphocytes, (M)
Monocytes, (N) Neutrophils.

ing the combined features achieves an accuracy of
89.4%. Detailed metrics for precision, recall, and F1-
score are shown in Figure 13.

In contrast, using only shape features results in an
accuracy of 85%, with detailed metrics presented in
Figure 14, using an RBF kernel (C = 100, gamma
= 10). Meanwhile, using convolutional autoencoders
alone yields an accuracy of 86.8%, with detailed met-
rics shown in Figure 15, using an RBF kernel (C =
0.1, gamma = 5).

Fig.14: Comparison of precision, recall, and F1-
score using the RBF kernel SMOTE (shape fea-
ture extraction), (B) Basophils, (E) Eosinophils, (L)
Lymphocytes, (M) Monocytes, (N) Neutrophils.

Fig.15: Comparison of precision, recall, and F1-
score using the RBF kernel SMOTE (CAE), (B)
Basophils, (E) Eosinophils, (L) Lymphocytes, (M)
Monocytes, (N) Neutrophils.

4.3 SVMSMOTE

Table 5 presents the performance of the classifica-
tion model using four different kernel functions: Lin-
ear, RBF, Sigmoid, and Polynomial. Various metrics
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such as Accuracy, Precision, Recall, F1-Score, MCC,
and CEN are evaluated for each kernel. The parame-
ters used for each kernel are as follows: Linear kernel
(C=2), RBF kernel (C=100, gamma=Scale), Sigmoid
kernel (C=5, gamma=Scale), and Polynomial kernel
(C=10, gamma=Scale, degree=5).

Table 5: Best Results for Each Kernel Type In Tests
Using SVMSMOTE.

Linear RBF Sigmoid Poly
Accuracy 89.2% 90% 78.5% 90.4%
Precision 90.5% 90.7% 83.8% 90.7%
Recall 89% 90.1% 78.5% 90.3%
F1-Score 89.5% 90.3% 79.7% 90.4%
MCC 0.817 0.832 0.680 0.836
CEN 0.1779 0.1689 0.2680 0.1625

Accuracy: The Polynomial kernel achieved the
highest accuracy (90.4%), slightly outperforming the
RBF kernel (90%) and the Linear kernel (89.2%).
The Sigmoid kernel yielded the lowest accuracy at
78.5%.

Precision: Both the RBF and Polynomial ker-
nels produced the highest precision (90.7%), followed
closely by the Linear kernel (90.5%). The Sigmoid
kernel trailed behind with a precision of 83.8%.

Recall: The Polynomial kernel demonstrated the
highest recall (90.3%), followed closely by the RBF
kernel (90.1%). The Linear kernel had a slightly lower
recall at 89%, while the Sigmoid kernel showed the
weakest recall performance at 78.5%.

F1-Score: The Polynomial kernel again displayed
the highest F1-Score (90.4%), closely followed by the
RBF kernel (90.3%) and the Linear kernel (89.5%).
The Sigmoid kernel had the lowest F1-Score at 79.7%.

MCC: The highest MCC value was achieved by
the Polynomial kernel (0.836), closely followed by the
RBF kernel (0.832). The Linear kernel performed
well with an MCC of 0.817, while the Sigmoid kernel
showed the weakest MCC at 0.680, indicating weaker
classification performance.

CEN: The lowest CEN (indicating better per-
formance) was achieved by the Polynomial kernel
(0.1625), followed closely by the RBF kernel (0.1689).
The Linear kernel showed a CEN value of 0.1779,
while the Sigmoid kernel had the highest CEN
(0.2680), indicating less effective classification.

In summary, while both the RBF and Polyno-
mial kernels performed strongly across most metrics,
the Polynomial kernel slightly outperformed the RBF
kernel, particularly in terms of accuracy (90.4% vs
90%), recall (90.3% vs 90.1%), and MCC (0.836 vs
0.832). The Polynomial kernel also demonstrated the
lowest CEN (0.1625), making it the best overall kernel
for this dataset. Despite the RBF kernel being a close
competitor, the Polynomial kernel can be considered
the best-performing kernel based on these results.

Based on these results, using SVMSMOTE with a
polynomial kernel yielded the best accuracy at 90.4%,

MCC of 0.836, and the lowest CEN value of 0.1625. A
comparison of precision, recall, and F1-Score for each
cell type with a polynomial kernel is shown in Figure
16. The results indicate that the model generated af-
ter using SVMSMOTE still obtained the lowest score
for eosinophil cells. However, there was no significant
difference in precision and recall with SVMSMOTE,
with precision at 63.8% and recall at 56.8%.

Fig.16: Comparison of precision, recall, and F1-
score using the polynomial kernel using SVMSMOTE,
(B) Basophils, (E) Eosinophils, (L) Lymphocytes,
(M) Monocytes, (N) Neutrophils.

The test results indicate an improvement when
combining shape features and convolutional autoen-
coders, compared to using shape features alone or
convolutional autoencoders alone. The approach us-
ing the combined features achieves an accuracy of
90.4%. Detailed metrics for precision, recall, and F1-
score are shown in Figure 16.

In contrast, using only shape features results in an
accuracy of 86.8%, with detailed metrics presented in
Figure 17, using a polynomial kernel (C = 10, gamma
= Scale, degree=5). Meanwhile, using convolutional
autoencoders alone yields an accuracy of 87.8%, with
detailed metrics shown in Figure 15, using a polyno-
mial kernel (C = 10, gamma = Scale, degree = 5).

Fig.17: Comparison of precision, recall, and
F1-score using the polynomial kernel SVMSMOTE
(shape feature extraction), (B) Basophils, (E)
Eosinophils, (L) Lymphocytes, (M) Monocytes, (N)
Neutrophils.

4.4 Comparison of the best result in each sce-
nario

Figure 19 compares the best results across all sce-
narios. The highest accuracy, precision, recall, and
F1-score were achieved using the polynomial kernel
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Fig.18: Comparison of precision, recall, and
F1-score using the polynomial kernel SVMSMOTE
(CAE), (B) Basophils, (E) Eosinophils, (L) Lympho-
cytes, (M) Monocytes, (N) Neutrophils.

Fig.19: Comparison of the best result in each
scenario, (A) Without data balancing using polyno-
mial kernel, (B) SMOTE using RBF kernel, (C)
SVMSMOTE using a polynomial kernel.

without data balancing, with an accuracy of 92.4%,
precision of 91.9%, recall of 92.3%, and an F1-score
of 92%. Conversely, the lowest scores were recorded
when using SMOTE, with an accuracy of 89.4%, pre-
cision of 91%, recall of 89.3%, and an F1-score of
90%.

In this experiment, when comparing the perfor-
mance of SMOTE and SVMSMOTE, better results
were achieved using SVMSMOTE, with an accuracy
of 90.4%, precision of 90.7%, recall of 90.3%, and an
F1-score of 90.4%.

White blood cell classification using different ma-
chine learning techniques has significant potential to
enhance healthcare services by enabling early detec-
tion and reducing the risks associated with manual
identification errors. This capability will be crucial
in providing medical professionals with information
regarding increases or decreases in the counts of spe-
cific cell types. With further development, accurate
cell count estimation can be achieved. This would
greatly assist in clinical decision-making by enabling
the rapid and precise diagnosis of various haemato-
logical diseases, including leukaemia, AIDS, HIV, im-
mune disorders, and other blood-related conditions.

The experimental results indicate that the devel-
oped model successfully detects all cell types except
eosinophils. This limitation suggests that the model
faces challenges in providing accurate information for
diseases associated with elevated eosinophil counts,
such as asthma, allergic rhinitis, and dermatitis. De-

spite this limitation, the model remains reliable for
detecting other cell types.

Machine learning-based analysis of white blood cell
images not only improves efficiency but also achieves
high accuracy in identifying WBC types. This ad-
vancement opens opportunities for future research to
build upon these findings, contributing significantly
to haematology and medicine.

5. CONCLUSION

Based on the results obtained in this study for
white blood cell classification using the Gaussian
Mixture Model and the proposed image centre point
method for segmentation, combined with shape fea-
ture extraction and a convolutional autoencoder for
feature extraction, and comparing the performance
of SVM with no data balancing, SMOTE, and
SVMSMOTE, this research achieved several key out-
comes.

The proposed feature extraction method effec-
tively represented each type of white blood cell
(WBC), including minority class data such as ba-
sophils, which consisted of only 179 images. The best
results were achieved without data balancing, using
a polynomial kernel, which yielded the highest accu-
racy of 92.4%, the highest Matthews correlation coef-
ficient (MCC) of 0.862, and the lowest cross-entropy
loss (CEN) of 0.1376. However, eosinophils exhibited
the lowest recall, although the application of SMOTE
increased the recall to 70%.

The lowest overall results were observed when us-
ing SMOTE with the RBF kernel, yielding an ac-
curacy of 89.4%, an MCC of 0.820, and a CEN of
0.1710. Among all tested kernels, the sigmoid kernel
performed the poorest, resulting in the lowest scores
across all evaluated metrics.

When comparing the performance of SMOTE
and SVMSMOTE, SVMSMOTE performed bet-
ter, achieving an accuracy of 90.4%, an MCC of
0.836, and a CEN of 0.1625. Additionally, both
SVMSMOTE and SMOTE improved the average re-
call for eosinophils. SMOTE demonstrated a more
significant improvement in recall for eosinophils when
the focus is on recall over precision. In contrast,
SVMSMOTE provided a better balance between pre-
cision and recall, ensuring that the increase in recall
did not significantly reduce precision.

Future Enhancement:
1. Implement feature selection, e.g. Chi-Square, etc.
2. Experiment with more parameters to get other
results.
3. Implement another algorithm for classification.
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Medina-Pérez, “A review of fuzzy and pattern-
based approaches for class imbalance problems,”
Appl. Sci., vol. 11, no. 14:6310, 2021.

[10] L. Wang, M. Han, X. Li, N. Zhang and H.
Cheng, “Review of Classification Methods on
Unbalanced Data Sets,” IEEE Access, vol. 9, pp.
64606–64628, 2021.

[11] M. Koziarski, “Potential Anchoring for imbal-
anced data classification,” Pattern Recognition,
vol. 120, Dec. 2021.

[12] S. Khan, M. Sajjad, T. Hussain, A. Ullah and
A. S. Imran, “A review on traditional machine
learning and deep learning models for WBCs

classification in blood smear images,” IEEE Ac-
cess, vol. 9, pp. 10657–10673, 2021.

[13] S. Tavakoli, A. Ghaffari, Z. M. Kouzehkanan
and R. Hosseini, “New segmentation and feature
extraction algorithm for classification of white
blood cells in peripheral smear images,” Sci Rep,
vol. 11, no. 1, Dec. 2021.

[14] L. S. Lin, C. H. Kao, Y. J. Li, H. H. Chen and
H. Y. Chen, “Improved support vector machine
classification for imbalanced medical datasets by
novel hybrid sampling combining modified mega-
trend-diffusion and bagging extreme learning
machine model,” Mathematical Biosciences and
Engineering, vol. 20, no. 10, pp. 17672–17701,
2023.

[15] S. Devella, Y. Yohannes and C. Adi Putra,
“Penggunaan Fitur Saliency-SURF Untuk Klasi-
fikasi Citra Sel Darah Putih Dengan Metode
SVM,” vol. 8, no. 4, 2021.

[16] Y. Yohannes, S. Devella and W. Hadisaputra,
“Pemanfaatan Scale Invariant Feature Trans-
form Berbasis Saliency untuk Klasifikasi Sel
Darah Putih,” Jurnal Teknik Informatika dan
Sistem Informasi, vol. 7, no. 2, Aug. 2021.

[17] F. Riaz et al., “Gaussian Mixture Model Based
Probabilistic Modeling of Images for Medical Im-
age Segmentation,” IEEE Access, vol. 8, pp.
16846–16856, 2020.

[18] P. Wang, E. Fan and P. Wang, “Comparative
analysis of image classification algorithms based
on traditional machine learning and deep learn-
ing,” Pattern Recognit Lett, vol. 141, pp. 61–67,
Jan. 2021.

[19] M. M. Paco Ramos, V. M. Paco Ramos, A. L.
Fabian, and E. F. Osco Mamani, “A Feature
Extraction Method Based on Convolutional Au-
toencoder for Plant Leaves Classification,” in
Communications in Computer and Information
Science, Springer, pp. 143–154, 2019.

[20] H. Mahmood, T. Mehmood and L. A. Al-Essa,
“Optimizing Clustering Algorithms for Anti-
Microbial Evaluation Data: A Majority Score-
Based Evaluation of K-Means, Gaussian Mixture
Model, and Multivariate T-Distribution Mix-
tures,” IEEE Access, vol. 11, pp. 79793–79800,
2023.

[21] K. Al-Dulaimi, J. Banks, K. Nguyen, A. Al-
Sabaawi, I. Tomeo-Reyes and V. Chandran,
“Segmentation of White Blood Cell, Nucleus and
Cytoplasm in Digital Haematology Microscope
Images: A Review-Challenges, Current and Fu-
ture Potential Techniques,” IEEE Rev Biomed
Eng, vol. 14, pp. 290–306, 2021.

[22] W. F. Lamberti, “Blood cell classification us-
ing interpretable shape features: A Compara-
tive Study of SVM models and CNN-Based ap-
proaches,” Computer Methods and Programs in
Biomedicine Update, vol. 1, Jan. 2021.



White Blood Cell Classification Using SMOTE-SVM Method with Hybrid Feature Extraction and Image Segmentation Using Gaussian87

[23] N. Louanjli et al., “Infiltration of Leukocytes
into the Human Ejaculate and its Association
with Semen Quality and Oxidative Stress with
Sperm Function, and Leukocytospermia Man-
agement,” 2021.

[24] S. Mahajan, A. Raina, X.-Z. Gao and A. K.
Pandit, “Plant Recognition Using Morpholog-
ical Feature Extraction and Transfer Learning
over SVM and AdaBoost,” Symmetry, vol. 13,
no. 2:356, 2021.

[25] M. Irfan, Z. Jiangbin, M. Iqbal, Z. Masood and
M. H. Arif, “Knowledge extraction and reten-
tion based continual learning by using convolu-
tional autoencoder-based learning classifier sys-
tem,” Inf Sci (N Y), vol. 591, pp. 287–305, 2022.

[26] E. Pintelas, I. E. Livieris and P. E. Pinte-
las, “A convolutional autoencoder topology for
classification in high-dimensional noisy image
datasets,” Sensors, vol. 21, no. 22, Nov. 2021.

[27] J. Sonawane, M. Patil and G. Birajdar, “A novel
feature extraction and mapping using convolu-
tional autoencoder for enhancement of Under-
water image/video,” ITM Web of Conferences,
vol. 44, p. 03066, 2022.

[28] M. Asrol, P. Papilo, and F. E. Gunawan, “Sup-
port Vector Machine with K-fold Validation
to Improve the Industry’s Sustainability Per-
formance Classification,” in Procedia Computer
Science, Elsevier B.V., pp. 854–862, 2021.

[29] S. Wang, Y. Dai, J. Shen and J. Xuan, “Re-
search on expansion and classification of imbal-
anced data based on SMOTE algorithm,” Sci
Rep, vol. 11, no. 1, Dec. 2021.

[30] J. H. Joloudari, A. Marefat, M. A. Nematollahi,
S. S. Oyelere and S. Hussain, “Effective Class-
Imbalance Learning Based on SMOTE and Con-
volutional Neural Networks,” Applied Sciences
(Switzerland), vol. 13, no. 6, Mar. 2023.

[31] A. Kim and I. Jung, “Optimal selection of re-
sampling methods for imbalanced data with high
complexity,” PLoS One, vol. 18, Jul. 2023.

[32] M. Khushi et al., “A Comparative Performance
Analysis of Data Resampling Methods on Im-
balance Medical Data,” IEEE Access, vol. 9, pp.
109960–109975, 2021.

[33] D. Mustafa Abdullah and A. Mohsin Abdu-
lazeez, “Machine Learning Applications based on
SVM Classification A Review,” Qubahan Aca-
demic Journal, vol. 1, Nov. 2021.

[34] A. C. Kemila, W. Fawwaz and A. Maki, “Param-
eter Optimization of Support Vector Machine us-
ing River Formation Dynamic on Brain Tumor
Classification,” Open Access Journal, vol. 5, no.
3, pp. 177–184, 2023.

[35] T. Ke et al., “A general maximal margin hyper-
sphere SVM for multi-class classification,”
Expert Syst Appl, vol. 237, p. 121647, 2024.

[36] R. Yuranda, T. Sutabri and D. Wahyuningsih,
“Machine Learning Approach in Evaluating
News Labels Based on Titles: Online Media Case
Study,” Jurnal Sisfokom (Sistem Informasi dan
Komputer), vol. 12, no. 3, pp. 434–439, Nov.
2023.

[37] S. Pertiwi, D. Handoko Wibowo and S. Widodo,
“Deep Learning Model for Identification of Dis-
eases on Strawberry (Fragaria sp.) Plants,” vol.
13, no. 4, 2023.

[38] D. Chicco and G. Jurman, “The advantages of
the Matthews correlation coefficient (MCC) over
F1 score and accuracy in binary classification
evaluation,” BMC Genomics, vol. 21, no. 1, Jan.
2020.

[39] K. Y. Foo et al., “Multi-class classification of
breast tissue using optical coherence tomogra-
phy and attenuation imaging combined via deep
learning,” Biomed Opt Express, vol. 13, no. 6,
pp. 3380–3400, 2022.

[40] B. Krawczyk, C. Bellinger, R. Corizzo and N.
Japkowicz, “Undersampling with Support Vec-
tors for Multi-Class Imbalanced Data Classifica-
tion,” in Proceedings of the International Joint
Conference on Neural Networks, Institute of
Electrical and Electronics Engineers Inc., Jul.
2021.

Tata Sutabri is a dedicated researcher
with expertise in various domains of
computer science. He earned his Mas-
ter’s degree from Gunadarma University
and completed his PhD at the same in-
stitution in 2018. Since 2024, he has
also been an accomplished author, pub-
lishing books in the fields of information
systems and technology. His research in-
terests include Information Systems, Ar-
tificial Intelligence, Blockchain, the In-

ternet of Things (IoT), and Smart Systems, reflecting his com-
mitment to advancing these cutting-edge areas of study.

Celvine Adi Putra received his Bach-
elor’s degree in Information Technology
from Multi Data Palembang University,
Indonesia, in 2021, and his Master’s
degree in Information Technology En-
gineering from Bina Darma University,
Indonesia, in 2024. Since completing
his undergraduate studies, he has been
working as a Software Developer, spe-
cializing in software solutions develop-
ment and system design. His research

interests encompass Machine Learning, Image Processing, IT
Management, and Software Security. He is actively engaged
in various projects, including the application of machine learn-
ing models for image analysis and the development of secure
software systems.




