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ABSTRACT

This research work offers three variations of the Whale Optimization Al-
gorithm (WOA) based on exponential chaotic maps, namely Logistic-
Exponential-Logistic WOA (LEL-WOA), Logistic-Exponential-Sinusoidal
WOA (LES-WOA), and Logistic-Exponential-Tent WOA (LET-WOA).
The WOA with an exponential chaos-based mechanism is developed in this
study to overcome the poor rate of convergence of the WOA and to pre-
vent getting caught in local optimal solutions while dealing with the chal-
lenges. An exponential chaotic mechanism was employed in this research
to initialize the agents and control the parameters of the exploration and
exploitation phases of WOA. The proposed methodologies (Exp-WOA) are
evaluated using twenty-three widely recognized test functions. The results
demonstrate that the given solutions can enhance the performance of WOA
by achieving optimal (minimum) values. The findings also indicate that
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1. INTRODUCTION

In numerous optimization challenges, it is essen-
tial to efficiently determine the best possible solu-
tion to a given problem within a reasonable amount
of time, even when faced with intricate constraints
[1]. Modern intelligent algorithms are frequently used
to tackle these optimization challenges [2]. Various
other approaches have been suggested to tackle these
challenges; nonetheless, they are insufficient in pro-
ducing improved results. Metaheuristic optimization
algorithms have garnered significant interest in sci-
entific communities over the past couple of decades
due to their notable advancements in effectively ad-
dressing numerous intricate optimization problems.
Before metaheuristic optimization algorithms, tradi-
tional algorithms such as brute force algorithms [3],
greedy algorithms [4], and network flow algorithms [5]
etc. were used to solve optimization problems. The
conventional methods begin with a single point and
require gradient information, therefore resulting in a
time-consuming process to attain the global optima.
These algorithms proved inadequate in addressing
real-world scenarios, such as the localization prob-
lem, due to their limited relevance and the complex-
ity of the constraints they imposed. Metaheuristic

optimization algorithms mimic biological or physical
processes to solve challenging real-world optimization
problems [6]. Metaheuristic optimization algorithms
have advantages over traditional methods, as men-
tioned below [7]:

e Traditional methods often use local search tech-
niques that can get stuck in local optima and
miss the global best solution. Metaheuristic op-
timization methods, on the other hand, are de-
signed to look through the whole search space,
which makes it less likely that they will get stuck
in local optima and more likely that they will
find the global optimum.

e Traditional methods usually need to be formu-
lated and changed based on the type of problem,
which means they can’t be used for all kinds of
problems. On the other hand, metaheuristic op-
timization methods are very flexible and can be
used for all kinds of problems without having to
make big changes to the core algorithms.

e Traditional methods often make claims about
how simple or linear things are that don’t hold
true in the real world. On the other hand, meta-
heuristic optimization methods may be able
to handle complex, non-linear, and multimodal
problems well.
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e Traditional methods are frequently determinis-
tic and may not adequately explore the search
space, potentially overlooking better answers;
in contrast, metaheuristic optimization methods
use stochastic and heuristic approaches to ex-
plore the search space, which can lead to new
and successful solutions.

e Traditional approaches often focus on single
objective optimization or necessitate sophisti-
cated formulations to handle multiple objec-
tives, whereas metaheuristic optimization meth-
ods may readily accommodate and optimize
many competing objectives at the same time.

e Traditional approaches are frequently less ro-
bust, requiring precise data and conditions to
perform successfully. In contrast metaheuristic
optimization methods are more resilient to un-
certainties and alterations in the issue data or
environment.

In general, metaheuristic optimization algorithms
have several advantages and disadvantages, and the
choice of algorithm depends on the characteristics of
the optimization problem and the available comput-
ing resources [6]. Metaheuristic optimization algo-
rithms are classified into four main categories [6]: i)
bio-inspired algorithms [8], ii)mathematics-inspired
algorithms [9], iii) physics-inspired algorithms [10],
and iv) social-inspired algorithms [11]. Physical al-
gorithms are based on observation and experimen-
tation. Some of the most recognized and widely
used physics-inspired optimization algorithms are i)
the gravitational search algorithm [12], ii) the black
hole optimizer [13], iii) the supernova optimizer [14],
iv)doppler effect mean Euclidean distance threshold
(DE-MEDT) algorithm [15]. v) the vortex search al-
gorithm [16] and vi) the arithmetic optimization al-
gorithm [17].

Bio-inspired algorithms are inspired by the biolog-
ical processes and behaviors of living beings in na-
ture [11]. Genetic algorithms, influenced by Darwi’s
evolution theory, are the most traditional examples
of their kind [18]. Some of the most recognized and
widely used bio-inspired algorithms are: i) particle
swarm optimization (PSO) [19], ii) ant colony opti-
mization (ACO) [20], iii) artificial bee colony (ABC)
[21], iv) whale optimization algorithm [22]. The pri-
mary source of bio-inspired metaheuristic optimiza-
tion algorithms is natural interactions between and
among species, which might take the form of coop-
eration or competition. Therefore, most bio-inspired
algorithms fall within the category of swarm intelli-
gence algorithms [23].

Above all, because the optimization process is
stochastic, the most challenging aspect of developing
any meta-heuristic algorithm is striking the right bal-
ance between exploration and exploitation [24]. The
exploration phase supports the optimizer’s effort to
thoroughly and globally study the search space [25].

During this phase, the population also experiences
some sudden shifts. In contrast, the exploitation
phase involves perfecting the feasible answers uncov-
ered during the discovery phase. The population en-
dures slight, rapid variations in this area [25].

The whale optimization algorithm (WOA) is a re-
cently developed nature-inspired meta-heuristic algo-
rithm that imitates the social behavior of humpback
whales [26]. A mathematical model of their hunting
habits serves as the foundation for the WOA. More
specifically, humpback whales use a technique for ex-
ploration known as the bubble-net feeding method.
The goal of humpback whales is to seek small fish
or krill close to the surface. By forming recogniz-
able bubbles along a line that forms a circle or a “9,”
this foraging is carried out. Whales use two strate-
gies to complete this task: upward spirals and double
loops [27]. Three fundamental processes comprise the
principal operation of a WOA: encircling the prey,
searching for the prey, and using the bubble-net as-
sault approach [26]. Research has demonstrated that
this algorithm can outperform other meta-heuristic
algorithms in several real-world scenarios, includ-
ing feature selection, sizing optimization for skele-
tal structures, cluster head selection, optimal power
flow (OPF) in electrical generation systems, and task
scheduling. However the basic WOA exhibits sev-
eral limitations, such as a sluggish convergence rate, a
limited precision of solutions, insufficient population
variety, and a propensity to settle for the local best
solution [1]. To tackle these problems, researchers
have proposed several variants of the WOA.

This research aims to introduce an exponential
map-based whale optimization algorithm, known as
Exp-WOA, for optimization purposes. In this re-
search, the exponential map is introduced to i) gen-
erate the initial population and ii) update the explo-
ration and exploitation stages of the original WOA.
The optimal positions for search agents are then
identified. The proposed Exp-WOA has been evalu-
ated using twenty-three widely recognized benchmark
functions.

The rest of the paper is arranged as follows. Sec-
tion 2 provides an overview of WOA. Section 3 de-
scribes the exponential chaotic map. In Section 4,
the proposed Exp-WOA has been provided. Section
5 presents the experimental outcomes. Finally, Sec-
tion 6 presents the conclusion and future work.

2. THE WHALE OPTIMIZATION ALGO-
RITHM

The whale optimization algorithm (WOA) is a
stochastic optimization approach emulating the hunt-
ing behavior of humpback whales and was created by
Mirjalili et al. in 2016 [26]. Humpback whales be-
long to the baleen whale species and are known for
their high level of intelligence and ability to expe-
rience emotions. The most distinctive attribute of
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these whales is that they are the largest animal in
the world, with a mature length of 39 — 53 feet and a
weight of 25 — 30 metric tons. Spindle cells, charac-
terized by their elongated spindle-shaped bodies, are
present in the brain and play a crucial role in facil-
itating the gregarious, intelligent, and sophisticated
behavior observed in whales. The humpback whales
have a most diverse hunting habit, and the primary
source of their diet is tiny fish. Whales employ the
bubble-net feeding strategy to capture their prey. A
pod of whales encircles their target and creates a bub-
ble barrier around them. The author in [26] exam-
ined the hunting behavior of baleen whale species by
utilizing multi-sensor tags. Two separate movements
of whales, that is, upward spirals and double loops,
were recognized from his investigation. In upward
spirals, the whale glides 12m below and generates a
bubble in a spiral style around the prey and swims
up toward the surface; however, in a double loop, the
whale goes around the prey in three separate pat-
terns: coral loop, lobtail, and capture loop. However,
the original WOA has the following drawbacks:

1) Randomization has a key function in the ini-
tialization, exploration, and exploitation stages
of WOA. So employing the existing randomiza-
tion strategy in WOA would increase computa-
tional time, especially for the very complicated
problem [28].

2) A single control parameter, a, affects both con-
vergence and speed. This setting has a substan-
tial effect on WOA performance. As a result,
WOA has a modest convergence rate during
both the exploration and exploitation phases.
As a result, a proper balance between explo-
ration and exploitation is essential [29].

3) In the search space, WOA uses the encircling
mechanism, which has limited ability to jump
out of local optima. As a result, it produces
poor performance [30].

To address the shortcomings mentioned above, re-
searchers have proposed several variants of it. WOA
variants are mainly developed using two main ap-
proaches, improvement and hybridization [30]. In the
improvement approach, standard techniques such as
opposition based learning [31], Lamarckian learning
[32], quadratic interpolation [33] chaotic map [1], sin-
gle dimensional swimming [34], Laplace crossover op-
erator [35] are used by the researchers to improve
the WOA search strategies. In the hybridization
approach, techniques such as differential evolution,
evolutionary, genetic algorithm, sine-cosine algorithm
[36], Grey wolf optimizer [37], and particle swarm op-
timization (PSO) [19] are used by the researchers to
improve WOA performance. Table 1 shows a few re-
cent variants of WOA. In general, the choice of a
metaheuristic optimization algorithm variant is de-
termined by several criteria, including the nature of
the problem, performance goals, algorithm character-

istics, implementation limitations, the possibility for
hybrid or adaptive methods, and the search space [38]
In [39], the authors have proposed a number of vari-
ants of WOA incorporating chaotic maps, such as:
logistic, cubic, sine, tent etc.

In this research, it was discovered that the hy-
bridization of logistic, sine, and tent maps with ex-
ponential maps helped further to improve the perfor-
mance of the whale optimization algorithm.

2.1 Operation Of WOA

The algorithm operates through a sequence of
three distinct stages: i) prey detection, ii) prey en-
circlement, and iii) prey capture. Humpback whales
exhibit two distinct swimming patterns while pursu-
ing prey: a linear route that gradually narrows or a
spiral movement. The choice between these two mo-
tions is determined by a probability factor, p, which
can flip between them. A balance between explo-
ration and exploitation is maintained by |A| vector,
which declines from 2 to 0 during iterations. In the
early phase, when |A| > 1, the whales explore about
the random prey, whereas as |A| < 1, the whales uti-
lize the search space and swim around the best prey.
Figure 1 shows the principle of WOA.

e,

:

Bubblenet Prey (Fish schools)

Elliptical Path

Humpback Whales

Fig.1:
[50].

Principle of Whale Optimization Algorithm

The mathematical model inspired by the spiral
bubble-net feeding movement of whales around prey
is outlined as follows:

Step 1: Initiate the population of whales (search
agents) randomly within defined space:

Xi = (Q?i ......... .Z'n) (1)

Where n signifies the space dimension.
Step 2: Evaluate the cost of each whale, and depend-
ing on the problem (minimization or maximization),
find the position of the best whale (X)



446

ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.18, NO.4 October 2024

Table 1: Recent variants of WOA.

Ref. Method Problem Addressed Modifications

[40] MultiModal WOA Difficulty in finding multiple Clustering using k-means and fixed size
(MMWOA) remedies using random number

[39] Chaotic WOA unbalance between exploitation and The initial population is generated using

exploration phase chaotic motion, non-linear control
parameter @ is used as a control parameter

[41] Random hopping Poor convergence rate due to Due to the position update strategy, new
update strategy problems in finding global optima individuals are randomly generated near the
(PWOA) and random optimal individuals, and due to random
control parameter control parameters the convergence factor
strategy (AWOA) can non-linearly adjust the ability of global

search and local search

[42], [43] Opposition-Based Due to the random numbers used Random numbers and their inverses are
WOA (OWOA) for initial population generation, employed concurrently to determine the

they can be either near-to-optimum optimal position of initial search agents.
value or can be very far away from (concept of opposition-based learning
the optimal value. Hence the (OBL))

conversion time increases.

[42], [44] Opposition and Unbalance between the exploitation This version of WOA incorporates the
Exponential WOA and exploration phase concept of Origin-Based Linguistics (OBL)
(OEWOA) to enhance the diversity among search

agents and thereby boost exploration. The
exponentially decreasing function has been
employed to enable the agents to
thoroughly explore in the early iterations
and utilize the search regions towards the
conclusion.

[42] Re-initialization Unbalance between the exploitation Worst particles are removed from the
Based WOA and exploration phase population and then re-initialized in the
(RIWOA) search space, and an exponentially

decaying function is used for parameter a.
The particles whose fitness value is greater
than the median of population are
categorized as the worst particles.

[45] WOA with joint impoverished global search Chaos theory was applied to improve the
search mechanism capability in the early stage, quality of the initial population position,
(JSWOA) sluggish convergence rate at the adaptive inertia weight was used to

later stage enhance the convergence accuracy and
speed, and the opposition-based learning
(OBL) strategy was used to poise the
exploration and exploitation of WOA.

[46] self-adaptive whale low precision, slow convergence, The random number used to select the
optimization and trapped into local optimum due  number of agents was multiplied by a
algorithm (SAWOA) to the shortage of population function 7, which was found using fitness

diversity obtained in the current and previous
iteration

[47], [48] WOA based on Problems in finding the global Based on Lamarck’s evolutionary theory,
Lamarckian learning optimal solution of individuals with more development
(WOALam) high-dimensional complex potential are selected to perform a locally

problems, problems of slow enhanced search.
convergence

[33] whale optimization slow convergence rate, low solution Quadratic interpolation (QI) technique is
algorithm based on accuracy, lack of diversity, and used. QI is a local search operator which
quadratic falling into local optimal for high uses a parabola to fit the shape of a
interpolation dimension optimization problems quadratic function to obtain the intense
(QIWOA) point of the curve. This local search

method has considerable reference value
for WOA. The interpolation helps QIWOA
search more efficiently around the optimal
solution.

[39] Chaotic WOA unbalance between exploitation and The initial population is generated using

exploration phase chaotic motion, non-linear control
parameter a'is used as a control parameter

[49] whale optimization Inconsistent exploration problem, Levy Flight was utilized in the exploration

algorithm based on
Levy flight

that causes a problem of trapping of
local optima

phase of WOA to optimize the search
agent’s diversification

Step 3: Update the constant parameters A and C

using the following equations:

S
a
S
[\)

where 7 is the random number in the range [0, 1]

Step 4: If p < 0.5 and |A| > 1, then select the
random position of the whale (X,.454) in search space
and update the position of the whale around it using
the following equations:

(2)
(3)

D= |C*Xrand_X|

X(t+1)=Xrgna—AxD (5)

and a is iteratively decreased from 2 to 0
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Else if, p < 0.5 and | 4| < 1, then update the position
of the whale around the best search agent (X*) using
the following equation:

D=|CxX*—X| (6)
X(t+1)=X*—AxD (7)

Else, if p > 0.5, then update the position of the
whale using the following equation:

X(t+1) = D" cos(2nl) + X*(t) (8)

where D’ = |X*t — Xt| is the distance between
the whale and best-searched prey (X'(t)), b is the
constant that maintains the shape of the logarithmic
spiral and [ is the random number defined in the range
[—1, 1], is element-by-element multiplication [1].

Step 5: Re-initialize the position of whales that
goes beyond the search space.

Step 6: The algorithm terminates when it
achieves either the smallest error or the maximum
number of iterations specified. Otherwise, repeat
steps (2)—(6).

Step 7: The position of X* represents the global

optimal solution.
Algorithm 1 shows the pseudo code of WOA proposed
by Mirjalili et al. in [26]. As per this algorithm “The
WOA algorithm starts with a set of random solutions
[26]. At each iteration, search agents update their
positions concerning either a randomly chosen search
agent or the best solution discovered so far. The a
parameter is dropped from 2 to 0 to provide explo-
ration and exploitation, respectively [26]. A random
search agent is chosen when |A] > 1, whereas the op-
timal solution is selected when \/ﬂ < 1 for updating
the position of the search agents. Depending on the
value of p, WOA is able to flip between either a spiral
or circular movement. Finally, the WOA algorithm
is ended by satisfying a termination criterion” [26].

3. EXPONENTIAL CHAOTIC MAP

In this section we offer an overview of exponential
chaotic maps. We have combined some of these expo-
nential chaotic maps to introduce Exp-WOA method
in later section.

3.1 Chaotic Maps

Mathematically, a chaotic map is a complicated,
random phenomenon having a specific interior struc-
ture [51]. In chaotic systems, even minor changes
in starting conditions can lead to significant future
changes. This phenomenon is referred to as the but-
terfly effect in chaos theory [52]. Metaheuristic algo-
rithms use randomness to diversify search processes
and avoid local optimization. A new metaheuristics

Algorithm 1: Pseudo-code of the WOA [26].

1: Initialize the whales’ population X; (1 =1,2,...,n)
2: Calculate the fitness of each search agent
3: X* = the best search agent
4: while ¢ < maximum number of iterations do
5:  for each search agent do
6: Update a, A, C, [, and p
vk if p < 0.5 then
8: if (JA|< 1) then
9: Update the position of the current search agent
by Eq. 7
10: else if (|A > 1) then
11: Select a random search agent (X, n4)
12: Update the position of the current search agent
by Eq. 4
13: end if
14: else if (p > 0.5) then
15: Update the position of the current search agent by
Eq. 8
16: end if
17:  end for
18:  Check if any search agent goes beyond the search space
and amend it
19:  Calculate the fitness of each search agent.
20:  Update X™ if there is a better solution.
21 (t=t+1)
22: end while
23: Return X*

research trend suggests that substituting traditional
pseudo-random number generators with chaotic maps
might create more successful solutions to solve com-
plicated optimization challenges [30]. Thus, to im-
prove the WOA approach, researchers apply differ-
ent chaotic maps such as logistic, sine, Chebyshev,
circle, iterative, skew tent map, gauss/mouse, sinu-
soidal, and singer [30]. These chaotic maps are ap-
plied to create the initial population, producing val-
ues in control parameters and updating the position
of search agents [53],[54]. A few chaotic maps and as-
sociated mathematical equations are shown in Table
2.

Table 2: Chaotic maps and their equations.

Sk Chaotic Map Name — Chaotic Map Formula

1 Logistic zip1 =azi(l —z;)a=4
2 Sine Tir) = %sin(ﬁrl)
3 Circle #ip1 = mod (z; +b— 5= sin(2mzy), 1)
3 Iterative Tip1 = sin(%),a =07
P 1 if z; = 0,
auss/mouse Tip1 = .
i+l { mudl(:l‘l), otherwise.
5 Singer @ip1 = p(7.86z; — 23.3127 + 28.752F — 13.302875z7), p = 1.07
6 Cubic ziq1 = az;(l — z2)

3.2 Exponential Map

The exponential map was proposed by Zhongyun
Hua et al. in [55].

As shown in Figure 2 the exponential map was
constructed using base and exponent maps. The base
map was represented using f(a, z;) and exponent map
was represented using g(b, z;), a and b are their con-



448 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.18, NO.4 October 2024

) g(b. X() +c—> Logarithmic

operation

%  Xis
4 Exponential i

A operation

I

—>

fla,x)

Fig.2:
[55].

Structure of Exzponential Map Proposed in

trol parameters and c is a small bias to balance the
output of g(b, z;) [55].

The mathematical expression for the exponential map
is denoted as:

Tip1 = g(§>) ={(H, §>)1n(}(L,§>)+J) (9)

In [55], the output of the exponential map is gen-
erated in iteration form. The exponential map has
the following characteristics:

e Users have the ability to create a huge num-
ber of chaotic maps by combining the base map
f(a,x;) with the exponent map g(b, x;) [55].

e The base map f(a,x;) and exponent map
g(b,z;) might be equal or distinct one-
dimensional chaotic maps [55].

e By simply altering the values of f(a,z;) and
g(b, z;), completely alternative chaotic maps em-
ploying logistic, sine, or tent maps may be gen-

erated.
The logistic-exponent-logistic (LEL), logistic-exponent-
sine (LES), logistic-exponent-tent (LET), sine-

exponent-sine (SES), sine-exponent-logistic (SEL),
sine-exponent-tent (SET), tent-exponent-sine (TES),
tent-exponent-logistic (TEL), and tent-exponent-
tent (TET) maps are proposed in [55]. We
have employed logistic-exponential-logistic, logistic-
exponential-sine, and logistic-exponential-tent map
to propose Exp-WOA in this work, as presented in
Table 3.

The bifurcation diagrams of these three exponen-
tial maps over the parameter (b,c) space are shown
in Figure 3., where b € [0,1] and ¢ € [2,2.8]. These
three chaotic maps exhibit complicated, chaotic be-
haviors in all parameter values, as can be seen. Their
output values are uniformly dispersed across the en-
tire range. Base and exponent maps display chaotic
behavior in small parameter ranges and do not have
equally distributed outputs [55]. These novel chaotic
maps, with uniform-distribution outputs, are ideal for
various applications, including pseudo-random num-
ber generators.

Table 3: Chaotic maps produced using logistic and
sine maps [55].

Sr. Exponential chaotic map type — Mathematical formula

Tiy1 = (4a1:i(l _ zi))lz)(4bxi(1—zi)+c)
Tip1 = (4a1:i(l _ zi))lﬂ(bﬂﬂ(ﬁzz)+f—‘)
Tiy1 = (4a1:i(l _ Ii))ln(2bmin{zl,l—zl}+c)

1 logistic-exponent-logistic
2 logistic-exponent-sine
3 logistic-exponent-tent

(a) (b) (©

Fig.3: Bifurcation diagrams of (a): LEL map (b):
LES map (c): LET map. [55].

4. EXPONENTIAL WOA (EXP-WOA)

In this section, we propose three ways to avoid
sluggish convergence and the tendency to slip into lo-
cal optimum solutions by combining LEL, LES, and
LET exponential maps with WOA. These three ap-
proaches are: i) LEL-WOA, ii) LES-WOA, and iii)
LET-WOA. Despite having a high convergence rate,
WOA cannot outperform other algorithms in discov-
ering global optima, which affects the algorithm’s
convergence rate. To mitigate this effect and in-
crease its efficiency, the Exp-WOA algorithm is de-
veloped by including exponential chaotic maps within
the WOA algorithm itself. In general, chaotic is de-
rived from the word 'chaos’, which refers to the prop-
erty of a complex system whose behavior is unpre-
dictable, and map refers to the process of mapping or
correlating chaos behavior in an algorithm with some
parameter via a function. Because of the ergodicity
and non-repetition features of chaos, it can execute
overall searches faster than stochastic searches, which
rely on probabilities [56].

fig:4 shows the flow-chart of Exp-WOA. The initial
section of the flow chart involves the initialization of
different parameters of the WOA. Subsequently, the
whale population has been initiated using the LEL,
LES, or LET chaotic map. The number of chaotic
maps is starting to vary the 'p’ parameter of the
method, leading to chaos [1]. During the following
stage, the total fitness of every whale inside the search
region is examined using multiple defined benchmark
functions. The whale displaying the highest degree
of physical condition is regarded as the most efficient
search agent presently. The optimum search agent
will consistently update its position using Equation
4, as long as the control parameter A is less than 1.
Moreover, when the parameter A exceeds 1, a random
whale is selected [1], and the position of the current
top-performing search agent is adjusted using LEL,
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Initialization of algorithm
parameters (a}’A’ ¢’ p)

Update algorithm
parameters

Update exploration and

exploitation phase using
Exponential map

Evaluate the fitness of each Evaluate the fitness of each
agent agent

! i

Replace the worst search
agent with the best fit
search agent

Determine the best agent

Initialize the iteration
counter t=1
For each agent

Does agent
arrives at
destination?

Output the
results

Fig.4: Flowchart of Optimization Procedure of Exp-
WOA.

LES, or LET chaotic maps created in step 2, but only
if a new search agent surpasses the previous one. The
very versatile whale will sequentially revise its loca-
tion and may finally select the initial position as the
most advantageous alternative. The parameter 'p’ is
modified by the number of iterations, utilizing equa-
tions 2 and 3. The Exp-WOA algorithm will consider
the best search agent as the most optimum solution
at the conclusion of the last iteration. The pseudo-
code of the proposed Exp-WOA algorithm is shown
in Algorithm 2. The mathematical analysis of expo-
nential maps with WOA has been presented in the
next sub-section.

4.1 Mathematical Analysis
Maps

Of Exponential

Instead of initializing the population randomly, the
proposed maps are used to generate the initial popu-
lation as shown in the following Equation:

2;(0) = LB+ (UB — LB) - ChaoticSequence(t)
(10)

where,
e LB and UB are the lower and upper bounds of
the search space
e ChaoticSequence(i) is generated using the pro-
posed exponential chaotic maps
Then, in the position update steps of WOA, the
chaotic sequence is incorporated to enhance the ran-

Algorithm 2: Pseudo-code of Exp-WOA algorithm.

1: Initialize the whales population X; using LEL OR
LES OR LET exponential chaotic maps

2: Calculate the fitness of each search agent

3: X* = the best search agent

4: while t < maximum number of iterations do

5:  for each search agent do

6: Update a, A, C, [, and p

7: if p < 0.5 then

8: if (|A|< 1) then

9: Update the position of the current search
agent by the Eq. 7

10: else if (|A > 1) then

11: Select a random search agent (X,.4;,q4)

12: Update the position of the current search
agent using LEL OR LES OR LET chaotic
maps by Eq. 4

13 end if

14: else if (p > 0.5) then

15: Update the position of the current search

agent by the Eq. 8
16: end if

17:  end for

18:  Check if any search agent goes beyond the search
space and amend it

19:  Calculate the fitness of each search agent.

20:  Update X~* if there is a better solution.

21 (t=t+1)

22: end while

23: Return X*

domness and diversity:

2;(t + 1) =xpest(t) + ChaoticSequence(t)

(@4(t) — 2hent(1) 1D

where,

e 1,;(t) is the position of i** whale at iteration ¢

® Zpest(t) is the position found so far

e ChaoticSequence(t) is the sequence generated

using the proposed exponential chaotic map.

The logistic component in the proposed maps en-
sures that small changes in initial conditions lead to
significantly different trajectories, promoting explo-
ration. The sinusoidal component introduces peri-
odic oscillations, helping the algorithm explore the
search space in diverse directions. The Tent compo-
nent adds piecewise linearity, promoting better space-
filling properties. Exponential chaotic maps provide
more varied and broader initial positions due to the
non-linear exponential term, allowing the algorithm
to more effectively traverse the search space. Fur-
thermore, exponential chaotic maps have vital space
filling properties due to the exponential term, guaran-
teeing that the search space is covered without notice-
able gaps. During the update phase, these sequences
assist in fine-tuning positions by limiting premature
convergence to local optima [57]. Furthermore, due
to above-mentioned properties, these sequences pro-
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Table 4: Benchmark functions.

No.  Function name  Mathematical equation Dim  Range Extreme value
F1 Sphere s ="Ml 30 [—100, 100] 0

F2  Beale fo= 15—z +zimip1)? + (2.25 — m; + iz, ) + (2625 — z; + zizd, )2 2 [~4.5,4.5] 0

F3  Cigar fe=a2+ 30 2? 30 [~100, 100] 0

F4  Step fo = X0 (|z]+0.5)2 30 [~100, 100] 0

F5  Quartic Noice  fr =Y 7" 'z} + N(0.1) 30 [—1.28,1.28] 0

F6  Bohachevsky fo =a?+2022,, — 0.3cos(3mz;) cos(dnziy1) + 0.7 2 [~100, 100] 0

F7 Ackley fz = —20exp(0.02)v/1/D Zle cos(2mx;) + 20 + exp 30 [1.28,1.28] 0

F8  Griewank fo = 155 2o (wi — 100)2 — T2} cos(%) +1 30 [-500,4+500] 0

F9 Levy fz = sin2(mwl) + szjll (wi —1)2[1 + 10sin 2(7wi + 1)] + (wd — 1)2[1 + sin 2(27wd)] 30 [-5.12,5.12] 0

F10  Michalewitz fo = =30 (sin(z;)) sin?’( 172)2 30 [-32,32] 0.96
F11  Rastrigin fo = (z2 — 10 cos 2mz; + 10) 30 [-600,600] 0

F12  Alpine fo = 2iolzisinz; + 0.2z 30 [—50,50] 0

FI3  Schaffer fo = (@2 + 22, ) 7 (50(a? +22,,)0) + 1) 30 [—50,+50] 0

Fl4  Rosenbrock fo =100(ziq1 — 22)? + (1.0 — z;)? 30 [-65.536,+65.536] 0

F15 Easom fo = cos(x;) cos(ziy1) exp(—(z; — Q)2 — (zig1 — Q)?) 4 [-5,45] 0

F16  Shubert fo= (zf:ll icos(z’l + D)zig1 +1) 2 [-5,5] 0

F17  Schwefel 1.2 Jo = X {5 mi)2 2 [~10,10] 0

F18  Schwefel 221  fi = max(|z;|) 30 [~10,10] 0

F19  Schwefel 222 fp = S0 o |+ [T i 30 [-10,10] 0

F20  Schwefel 226  f = — 2%1:01 T sin \/T; 30  [-10,10] 0

32 QR fo=-— 2;7:1[(1 —ai)(z —ai)T + ]t 4 [0, 10] —10.15
22 - fo=-— Fl[(z —ai)(z —ai)T +c] ™t 4 [0, 10] —10.40
F23 - fo= =22 (@ —ai)(z — a;)T + ¢t 4 [0,10] —10.53

Table 5: Comparison of optimization results obtained for the 23 Benchmark functions.

F PSO WOA L-WOA S-WOA T-WOA LEL-WOA LES-WOA LET-WOA

avg std avg std avg std avg std avg std avg std avg std avg std
Fl  7.67E-63  354E-62  4.33E-69 233E-68  2453E-69  3.545E-62 3.574E-67 2.542E-65 2386E-67 3331E-56  14E-70 440E-69  1.763E-66  3.509E-62  1.655E-61  3.897E-60
F2  576E-48  2.16E43  6.2E-51 249E-50  5.89E-49  2.11E-S0  5.564E45 195E52  5.125E41  276E-50  5.08E-36 9.18E-60  4.342E-55  B.66E38  495E45  8.59E48
F3  65E+5 229E+5  4.36E+4 130E+4  4.54E+3 LI4E+4  477E+3  185E+4  4.55E45 L97E+4  4.10E+3 0.6E+4 4.56E+5 276E+4  473E+5S  2.82E+4
F4  4877E+l  3769E+2  4.526E+1 2743E+1  4376E+1  2287E+l  T65E+l  S062E+1  4454E+1  2359E+1  3.983E+l 2259E+1  3.765E+l  2189E+l  3.553E+l  2.008E+l
F5  4732E+2  5875E+2  2811E+l 5.02E-1 2543E+1  3.26E-1 2767E+1  5.9E-1 2765E+11  436E-1 2356E+1 3.76E-1 5554E+1  9.94E-1 1.976E+1  338E-1
F6  4769E+]  2953E+0 4.22E-1 2.22E-1 SE-3 1.36E-1 1.28E-1 SE-3 4.74E-1 3.64E-1 281E-1 2.11E-1 6E-4 1.55E-1 4.65E-1 3.95E-1
F7  4076E2  6354E2  39E3 5263 1.5E-3 48E3 6.72E-1 437E-1 4E5 3E-4 2.1E3 1.5E-3 47E3 8.9E3 27E3 3E-4
F8  776E+4  19.54E+4  -10.582E+3  1649E+2  -11.234E+2  1217E+2  -25.57E+5 19.76E+2  -976E+4  1855E+2  -1239E+4  6.13E+2  -10.665E+2 12.673E+3  -5.675E+3  12.669E+2
F9  0.001+E0  0.055E+l  0.00E+0 0.00E+0  0.00E+0 0.00E+0  0.00E+0  0.00E+0  0.00E+0  0.00E+0  5.68E-I5 224E-14  3.65E-12 1.5E-14 0.00E+0  0.00E+0
FI0 2347E-13  289E-12  340E-15 244E-14  285E-13 271E-13  296E-14  237E-14  5.1E-16 224E-15  ST77E-15 3.00E-15  489E-16  276E-18  4.38E-17  2.97E-18
FIl  0.003E-1  0.005E+l  0.00E+0 0.00E+0 1.5E+0 21.55E+2  0.78E+2  17.65E+2  0.896E+2  5476E+2  3.70E-18 1.990E-17  26.67E+2  S56.47E+2  45.84E+2  56.32E+2
FI2  4.65E-1 3617E-1  20E-2 1.6E2 5.6E-2 2.6E-2 73E2 6.5E-2 5.7E-2 7.1E2 6.3E2 34E3 45E3 9.2E2 9.8E-2 2.30E-1
FI3  676E+0  462E+0  5.09E-1 2089E-1  6.86E+0 L8TE+0  5.56E+0  7.3E-1 694E+0  3.9E-1 1.24E-1 6.0E-3 4.06-1 1.99E-1 453E-1 1.73E-1
Fl4  2.134E+]  226E+]1  2277E+0  2422E+0  5.127E+0  4.67E+0  3.19E+0  278E+0  3.13E+0  569E+0  LI65E+0 4.49E-1 2.07E+0 L8TE+0  296E+0  1.93E+0
FI5  1.56E-2 787E2  LO3E3 6.0E-4 1OIE-3 7.87E-4 125E-4  5.77E4 1.996E3  4.34E-4 101E-3 8.25E-5 125E-3 5.88E-4 10IE4  5.77E4
Fl6  7.5E+0 134E+0  5.00E-1 2.089E-1  6.76E-1 L6TE+0  4.96E-1 23E-1 1.54E-1 2.39E-1 54E2 1.53E-1 8.7E-2 1.64E-1 4.83E-1 2.72E-1
FI7 534E+0  296E-3  3.978E-1 27E5 5.54E-1 5.76E-5 13.78E+0  643E4  8.77E-1 2.1E-5 3.979E-1 2.0E-4 2.73E-1 2.18E-6 254E-1 3.67E-6
FI8 LI29E+]  0565E-3  3.00009E+0  1E-4 7.76E+0 4E-4 281E+0  075E4  221E+0  0.97E4  300003E+0  7.888E-05 2419E+0  5.73E-5 355E+0  2.19E4
F19 -2963E+0 9.76E-3  -3856E+0  6.8E-3 6.43E+0 LSSE+0  -365E+0  4.63E2  -293E+0  434E4  -3240E+0  413E2  -8.68E+0 17.85E-5  -5.56E+]  5.82E-4
F20 -1495E+0 292E+0  -3206E+0  2295E-1  2.67E+0  93E-l ST4E+0 2.5E-1 SI1L74E0  225E-1 31911E+0  LOO7E-1  -17.62E+0  1.39E-1 726E+0  1.93E-1
F21  -6.564E+0 3378E+l -80B0E+0  24717E+0 -6.63E+0  3.59E+0  -IS87E+0 1.95E+0  -10.84E+0 221E+0  -25003E+0  L4ISE-1  -1576E+0  2.14 9.65E+0  1.79E+0
F22  -5804E+1 4429E+] -7.224E+0  32611E+0 -1676E+0  2.55E+0  -1476E+0 176E+0  -10.69E+0  3.17E+0  -292360E+0 2.167E+0  -1584E+0  1.39E+0  -1932E+0  LI3E+0
F23  -4843E+0 467E+]  -6833E+0  3.4096E+0 -28.64E+0  S5.0E-2 S1953E+0  142E+0  -1039E+0  L74E+0  -10409E+0  1.23E-0  -21.64E+0  3.156E+0  -25.74E+0  2.61E+0

vide a balance between randomness and deterministic
patterns, enhancing the algorithm’s capacity to avoid
local minima and converge to global optima.

5. RESULTS AND DISCUSSION

Every novel optimization approach must deal with
several mathematical test functions to be examined
and tested. Several experiments on optimization
benchmark issues are carried out in this portion to
validate the performance of the proposed Exp-WOA
algorithms. A population size of 30 and a maximum
iteration equal to 500 have been utilized. Twenty-
three well-known benchmark functions were used to
test Exp-WOA’s performance. These functions are

characterized as either unimodal or multimodal [26].
Unimodal benchmark functions contain a single op-
tima and are particularly suited for benchmarking
[1]. Multimodal benchmark functions, on the other
hand, have more than one optima, making them more
complex than unimodal functions [1]. One optima
is known as the global optima, while the others are
known as local optima [26]. The main qualities of
any robust meta-heuristic algorithm should be avoid-
ing local optima and determining the global optimum
[1]. As a result, multimodal benchmark functions are
in charge of testing exploration and preventing en-
trapment in local optima [1]. Table 4 defines the test
functions that reflect the cost function, Dim specifies
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the dimension of the function, the range represents
the range of variation of optimization variables, and
the extreme value represents the final optimal value.
In this section, Exp-WOA was also compared to var-
ious non-exponential map based approaches.

5.1 Performance Comparison Of Exp-WOA

The experiments conducted with Exp-WOA in-
volve a population size of 30 whales and 500 it-
erations.  The outcomes are subsequently com-
puted by taking the average of thirty separate
rounds. Logistic-WOA (L-WOA), sinusoidal-WOA
(S-WOA), tent-WOA (T-WOA), LEL-WOA, LES-
WOA, LET-WOA utilize to logistic, sine, tent,
logistic-exponential-logistic, logistic-exponential-sine
and logistic-exponential-tent maps, respectively, as
shown in Table 2 and Table 3. It can be seen
from Table 5 that LEL-WOA performs better for
10 benchmark functions (F1, F3, F7-F8, F13-F16,
F21-F22), LES-WOA performs better for 6 bench-
mark functions (F2, F6, F10, F12, F18, F20)
and LET-WOA performs better for 5 benchmark
functions (F4, F5, F17, F19, F23) as compared
to WOA. In other words, exponential maps such
as logistic-exponential-logistic, logistic-exponential-
sine, and logistic-exponential-tent maps can enhance
the effectiveness of the WOA algorithm. From the
data in Table 5, it is proven that the exponential-
based WOA algorithm delivers the best results on
all test functions except for F9 and F11. It can also
been seen from Table 5 that, the proposed approaches
outperforms the state of the art algorithm, such as
particle swarm optimization (pso) algorithm [58] for
almost all benchmark functions.

5.2 Qualitative Analysis

A qualitative study has been conducted on sev-
eral benchmark functions to evaluate the performance
of Exp-WOAs further. Figs. 5-10 indicate the
co-relation between convergence speed of proposed
methods (LEL-WOA, LES-WOA, and LET-WOA)
with the existing methods (WOA, L-WOA, S-WOA,
and T-WOA). The convergence curves of Exp-WOAs
have been displayed across 500 iterations to facili-
tate straightforward observation and analysis. Table
5 indicates that LEL-WOA, LES-WOA, and LET-
WOA outperform other approaches on twenty-one
benchmarks for function minimum search. L-WOA,
S-WOA, and T-WOA are the second best algorithms,
performing best on fifteen out of twenty-three bench-
mark functions. These data represent average func-
tion optimum values obtained from thirty runs. Here,
all the values represent accurate function values.

Figs. 5-10 exhibits the data collected by exponen-
tial maps, and other maps such as logistic, sinusoidal
and tent on various mathematical functions. Accord-
ing to Fig. 6, LEL-WOA suppresses all other ap-
proaches for the F1 function, and according to Fig.
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function.
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7, LEL-WOA has the quickest convergence rate for
the F4 function. According to Fig. 8, LES-WOA
suppresses all other approaches for the F6 function,
and according to Fig. 8, LES-WOA, and LET-WOA
show the fastest convergence rate and overtake all
other methods for the function F8. According to Fig.
9, LES-WOA converges faster for the function F12,
and according to Fig. 10, LET-WOA shows a faster
convergence rate and overtakes all other methods for
the function F20.

Testing a metaheuristic optimization method with
unimodal, multimodal, and continuous mathematical
functions is one of the criteria for determining its va-
lidity and correctness [59]. From Table 5 and Figs.
5-10 it can be concluded that LEL-WOA and LES-
WOA perform better in terms of their convergence
speed as compared with WOA, L-WOA, S-WOA, and
T-WOA on twenty-one benchmark functions out of
twenty-three.

5.3 Time Complexity Of Proposed Method-
ologies

The time complexity of the algorithms under study
for F1-F23 benchmark functions has been presented
in Table 6. The time complexity of all the pro-
posed algorithms using exponential maps is higher
than that of the original WOA for nearly all math-
ematical benchmark functions, as shown in Table 6.
The increased time complexity of the whale optimiza-

Table 6: Time complexity (in seconds) of the algo-
rithms under study.

Function WOA L-WOA  S-WOA T-WOA LEL-WOA LES-WOA LET-WOA
Fl1 1.62E-1 1.43E-1 1.25E-1 1.15E-1 3.52E-1 5.43E-1 6.75E-1
F2 1.35E-1 1.74E-1 1.45E-1 1.95E-1 5.74E-1 6.61E-1 7.94E-1
F3 5.77E-1 4.32E-1 6.15E-1 7.28E-1 6.18E-1 6.74E-1 7.12E-1
F4 4.41E-1 5.17E-1 5.92E-1 6.39E-1 6.57E-1 5.12E-1 7.27E-1
F5 1.93E-1 2.85E-1 2.63E-1 2.91E-1 3.44E-1 2.17E-1 3.32E-1
F6 LI9E-1 L71E-1 2.745E-1  2.59E-1 1.72E-1 2.24E-1 4.33E-1
F1 2.48E-1 2.37E-1 2.10E-1 1L17E-1 2.48E-1 1.82E-1 4.37E-1
F8 1.02E-1 1.18E-1 1.94E-1 1.015E-1  221E-1 2.29E-1 2.05E-1
F9 1.09E-1 1.28E-1 1.99E-1 1.26E-1 2.02E-1 3.14E-1 2.07E-1
F10 1.72E-1 1.84E-1 1.94E-1 2.71E-1 3.17E-1 4.17E-1 4.45E-1
F11 2.23E-1 2.48E-1 241E-1 2.98E-1 2.99E-1 3.07E-1 2.39E-1
F12 5.75E-1 5.93E-1 6.73E-1 7.64E-1 6.41E-1 6.10E-1 7.27E-1
F13 4.99E-1 5.33E-1 5.98E-1 5.65E-1 5.02E-1 6.21E-1 6.94E-1
Fl4 6.75E-1 6.92E-1 6.85E-1 7.05E-1 7.31E-1 7.27E-1 6.19E-1
F15 5.42E-1 5.12E-1 5.73E-1 4.15E-1 4.18E-1 4.13E-1 4.11E-1
Fl6 2.96E-1 3.07E-1 3.76E-1 3.52E-1 3.19E-1 4.15E-1 5.19E-1
F17 2.52E-1 2.04E-1 2.06E-1 2.31E-1 2.14E-1 2.38E-1 2.08E-1
F18 7.55E-1 7.40E-1 6.99E-1 6.925E-1  6.71E-1 8.49E-1 7.96E-1
F19 1.85E-1 1.97E-1 2.05E-1 2.32E-1 2.98E-1 3.01E-1 3.23E-1
F20 2.25E-1 2.653E-1  3.05E-1 3.10E-1 3.34E-1 3.19E-1 3.18E-1
F21 9.74E-1 10.63E-1  10.23E-1  10.16E-1 ~ 9.96E-1 10.12E-1 10.45E-1
F22 10.92E-1  10.05E-1 ~ 11.20E-1  11.57E-1  11.42E-1 11.85E-1 11.81E-1
F23 10.54E-1  11.15E-1  11.58E-1  12.06E-1  11.93E-1 12.50E-1 12.87E-1

tion algorithm integrated with chaotic maps com-
pared to its basic form arises from additional compu-
tational steps, the complexity of chaotic systems, en-
hanced search mechanisms, the generation of chaotic
sequences, and the need for parameter tuning. While
these additional computations can improve the al-
gorithm’s performance in discovering global optima,
they also lead to a more considerable computational
cost.

6. CONCLUSION AND FUTURE SCOPE

This study presents three variations of WOA that
use chaotic maps: LEL-WOA, LES-WOA, and LET-
WOA. These variants use an exponential map, a sine
map, and a tent map, all combined with WOA. The
performance of these three variations was evaluated
against twenty-three benchmark functions. The ex-
perimental results reveal that LEL-WOA and LES-
WOA outperform the original WOA, L-WOA, S-
WOA, T-WOA, and PSO algorithms regarding con-
vergence time and fitness value. For a few benchmark
functions, LET-WOA performs marginally worse
than other methods. The experimental results re-
veal that the proposed approaches have a larger time
complexity than the original WOA and the other
chaotic map-based approaches presented in this re-
search. The chaos generated by the chaotic maps dur-
ing the initial phase is the primary rationale behind
Exp-WOA'’s superior performance. The chaos helps
to manage better the exponential and exploratory
phases, which increases the algorithm’s convergence
rate. In the future, it would be exciting to apply the
Exp-WOA algorithm to real-world engineering prob-
lems.
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