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ABSTRACT
Wireless Visual Sensor Network (WVSN) has become a valuable tool in
addressing the evolving needs of modern monitoring systems. Encoding in
WVSNs is a multifaceted process that involves compressing visual data,
optimizing energy consumption, ensuring error resilience, and adapting to
various network and application requirements. The associated lightweight
encoders and the demand for less storage space make block compressive
sensing (BCS) techniques suitable for WVSN applications where energy,
bandwidth, and storage resources are limited. Based on the number of
visual perspectives or camera angles available within a network for data
capture, there are two primary configurations: monoview and multiview.
This paper provides a comprehensive survey of different BCS-based en-
coding schemes used for data-gathering in both monoview and multiview
scenarios within WVSNs. A comparative study of these algorithms based
on compression level, computational complexity, relative gain in encoder
energy, and reconstruction quality is performed. A BCS-based joint en-
coding scheme for multiview configuration that ensures a relatively high
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compression level is also proposed in this paper.
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1. INTRODUCTION

Wireless Visual Sensor Networks (WVSNs) inte-
grate visual sensors with wireless communication to
monitor and capture visual information from remote
environments. The visual configuration of a network
for data capture can be categorized into two types
based on the number of visual perspectives or camera
views available: Monoview and multiview. In both
configurations, transmitting raw data from the sen-
sor node to the sink node demands many network
resources. The encoding process helps optimize the
use of limited resources, such as bandwidth and en-
ergy, while maintaining the integrity and quality of
the visual data to meet various network and appli-
cation requirements [1]. Research is ongoing in de-
veloping efficient, secure, and less complex encoding
algorithms that exploit intra-sensor and inter-sensor
correlations in WVSN data, thereby minimizing the
demand for network resources and increasing network
lifetime [2]-[4].

Video signals often exhibit sparsity in spatial and
temporal domains, and compressive sensing (CS)

leverages this inherent sparsity during the acquisi-
tion and reconstruction of video signals, leading to
more efficient energy utilization. In addition, the
lightweight encoder associated with CS, which min-
imizes computational complexity and resource re-
quirements, makes it preferred over other traditional
compression schemes in WVSN applications [5]. The
adoption of the block compressive sensing (BCS)
technique, in which the sensing of each frame is per-
formed in a block-wise manner, is proposed as a fur-
ther refinement to reduce computational complexity
and memory requirements [6], [7].

This paper presents a comparative study of vari-
ous BCS-based encoding schemes for both monoview
and multiview WVSN scenarios. The comparative
analysis is based on compression level, computational
complexity, relative gain in encoder energy, and re-
construction quality. A new BCS-based joint encod-
ing scheme for multiview configuration is also pro-
posed. The subsequent sections of this paper are
structured in the following manner. Section 2 gives a
basic overview of visual configurations and the BCS
technique. Different BCS-based encoding schemes for
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Fig.1: Visual configurations (a) Monoview (b) Mul-
tiview.

monoview configuration are detailed in Section 3, and
that of multiview configuration in Section 4. Subse-
quently, Section 5 showcases simulation results and
a comparative analysis. Our concluding remarks are
then presented in Section 6.

2. PRELIMINARIES
2.1 Visual Configurations

WVSNs consist of intelligent cameras serving as
sensor nodes that capture images from a designated
area and a sink node that collects the data from
these sensor nodes for further processing. Basically,
two visual configurations exist in WVSNs, namely,
monoview and multiview. In a monoview configu-
ration, as depicted in Fig. 1(a), each sensor node
within the WVSN captures visual information from
a distinct single viewpoint. Monoview setups are
characterized by simplicity in terms of hardware and
data processing requirements. In a multiview envi-
ronment, the WVSN incorporates multiple visual per-
spectives by deploying cameras with overlapped fields
of vision (FoVs) across the monitored area. A mul-
tiview configuration is illustrated in Fig. 1(b) where
sensors C1, C2, and C3 with overlapped FoVs capture
views of a target area, and the same is the case with
sensors C4 and C5. The choice between monoview
and multiview environments in WVSNs depends on
the specific application requirements, cost considera-
tions, and the level of detail and redundancy needed
for effective monitoring and analysis in the given con-
text.

2.2 An Overview of Block Compressive Sens-
ing

Compressive Sensing (CS) is a signal processing
technique that allows for the efficient acquisition and
reconstruction of sparse signals using significantly
fewer samples than traditional methods require [8].
In CS, the signal is acquired in a compressed form
through a linear measurement process, often repre-
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Fig.2: Illustration of (a) Traditional compressive
sensing (b) Block compressive sensing.

sented as a matrix-vector multiplication. The re-
construction is performed by solving an under-
determined system of equations, exploiting the sparse
nature of the signal.

Consider frame X in a video sequence. In BCS,
an image is divided into non-overlapping blocks, and
compressive measurements are taken for each block
separately [8]. Consider the vector &; € RM rep-
resenting the vectorized " block with a block size
of B x B = N. The corresponding M-dimensional
measurement vector (M<N) obtained using mea-
surement basis matrix ¢y, of dimension M x N is
expressed as

Yi = Qux; (1)

The recovery of the image block vector x; from a
reduced set of measurement samples y; is possible
when @x; exhibits sparsity in a specific domain with
an orthonormal sparsity basis ¢ of dimensions N x V.
This is expressed as:

xT; = Ps; (2)

where S;is the sparse data vector corresponding to
;.
Therefore, (1) may be written as

Yi = Gmx; = dpPs; = As; (3)

where A is the M x N dictionary matrix. To re-
construct the image block vector @; from the mea-
surement vector, obtain the s; vector using (3) while
incorporating sparsity constraints.  Subsequently,
determine @; using (2). Various CS reconstruc-
tion algorithms are Orthogonal Matching Pursuit
(OMP) [9], Simultaneous Orthogonal Matching Pur-
suit (SOMP) [10], CoSaMP [11], Gradient Projection
for Sparse Reconstruction (GPSR) [12], Smooth Pro-
jected Landweber (SPL) [13], etc.

The advantage of using BCS over traditional CS
is illustrated in Fig. 2. In traditional CS, an entire
frame of dimension h x w is vectorized to form x €
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Table 1: Comprehensive Analysis of Monoview Uniform Encoding Schemes.

Research Works  Encoding Decoding Correlation Reconstruction ~ Compression  Encoder Trans. Remarks
Scheme Scheme Quality Complexity Cost

Mun et al. [13] Uniform BCS_SPL (IFR)  Spatial Good Less Less High At lower bit rates, reconstruc-
BCS tion quality is less.

S. Mun [14] Uniform MC_BCS_SPL Spatio- Moderate Moderate Less Moderate  Motion estima-
BCS temp. tion/compensation is

employed at the decoder.

Azghani et Uniform MH- Spatio- Moderate Moderate Less Moderate  Multihypothesis strategy is

al. [15) BCS Tikhonov temp. incorporated at the decoder.

Chen et Uniform MH-RTIK Spatio- Moderate Moderate Less Moderate  Robust to imprecise hypothe-

al. [16]) BCS temp. ses.

Banerjee et Partial DCT ~ OMP + Spatial Moderate Moderate High Moderate  Performing DCT prior to CS

al. [T7) + Uniform IDCT necessitates the availability of
BCS input frame in spatial domain.

Hao-quan et Uniform Discriminative Spatio- Moderate Moderate Less Moderate  Performance analysis is lim-

al. [18]] BCS K-SVD temp. ited.

Nezhad et Uniform Deep GAN Spatio- Good Moderate Less Moderate

al. [19] BCS temp.

Zhong et Uniform LLR- Spatio- Moderate Moderate Less Moderate

al. [20] BCS VCSNet temp.

Gu et Uniform Tcmporal Spatio- Moderate Less Less High Requires data (o train the netwo:

al. [21) BCS shift rec. temp.

net

Shi et Uniform VCSNet Spatio- Moderate Moderate Less Moderate

al. [22) BCS temp.

Wei et Uniform STM-Net Spatio- Good Moderate Less Moderate

al. [23) BCS temp.

Yang et Uniform MCNet Spatio- Moderate Moderate Less Moderate

al. [24) BCS temp.

Pei et Uniform FCN+DCT Spatio- Moderate Less Less High

al. [25]) BCS temp.

RM>1 and is then sensed using ¢ € RMF>*M where  partial Discrete Cosine Transform (DCT) is evaluated

Mp is the required number of measurements corre-
sponding to a frame. Whereas, in the case of BCS, in-
dividual image block is sensed using ¢ € RM*B” | the
dimension of which is much less than that required in
traditional CS. Hence, block-wise sending reduces the
computational complexity and memory requirement
compared to the conventional CS approach.

3. MONOVIEW ENCODING SCHEMES
3.1 Uniform Sampling

The encoders based on the conventional BCS tech-
nique detailed in Section 2.2, which use a fixed sam-
pling rate to sense all the image blocks, form the foun-
dation of most of the compression algorithms used for
WVSN. Computational simplicity is the principal ad-
vantage of this uniform sampling scheme. Many re-
searchers have developed efficient reconstruction algo-
rithms that leverage the spatiotemporal correlations
in video frames to jointly reconstruct uniformly sam-
pled measurements. Prominent algorithms among
those are BCS_SPL [13], in which the Smooth Pro-
jected Landweber algorithm is employed for the re-
construction of BCS measurements, MC_BCS_SPL
[14], in which motion estimation/ compensation is
integrated into BCS-SPL, and algorithms in which
multihypothesis (MH) strategy is incorporated with
SPL for reconstruction [15], [16]. In [17], Banerjee
et al. proposed a uniform sampling scheme in which

before BCS. They used orthogonal matching pursuit
followed by inverse DCT for image reconstruction.
The computation of DCT before BCS demands the
availability of an input frame in the spatial domain
at the encoder. The reconstruction scheme based on
discriminative KSVD, as proposed in [18], would ben-
efit from a more thorough study and detailed perfor-
mance analysis. Another class of CS reconstruction
algorithms generally employed nowadays is based on
deep learning techniques [19]-[25]. The lack of train-
ing data in the case of WVSN systems limits the use
of those algorithms in WVSN systems. Among the
existing state-of-the-art algorithms, SPL reconstruc-
tion stands out for its superior quality. It eliminates
blocking artifacts using a Wiener filter and also en-
sures fast reconstruction. A comprehensive analysis
of all monoview uniform encoding schemes, highlight-
ing their pros and cons, is presented in Table 1.

3.2 Adaptive Sampling

When an image is subdivided into smaller blocks,
blocks with minimal information can be recon-
structed with fewer observations than those with
more details. Consequently, there is potential to en-
hance BCS reconstruction performance by adaptively
assigning different sampling rates to distinct blocks.
The related works emphasizing their advantages and
disadvantages are listed in Table 2. In [26], the adap-
tive measurement rate is assigned based on the spar-
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Table 2: Comprehensive Analysis of Monoview Adaptive Encoding Schemes.

Research Encoding Adaptive Rate  Correlation Compression  Encoder Trans. Cost Remarks

Works Scheme Param. Comp.

Zhang et Adaptive BCS  Sparseness in DCT  Spatial Good High Less Transforming to DCT domain

al. [26] increases the encoder compu-

) tational complexity.

Wang et Adaptive BCS  Texture info Spatial Moderate Moderate Moderate Temporal correlation is not

al. [27) addressed.

Hadizadeh et  Adaptive BCS  Texture complexity Spatio-temp. Good High Less Encoder computational com-

al. 28] plexity increases due to adap-

o tive sensing rate.
Zhang et Adaptive BCS  Statistical texture Spatial Moderate High Moderate High encoder complexity due
al. [29] to statistical texture analysis.
z v 2 z < . Impractical because spatial
et al. |30] Adaptive S / Spé erate g Moderate 2 < :

Li et al. [30] Adaptive BC Spatial entropy patial Moderate High foderate G i isinot avalih
in a CS framework.

Yang et Adaptive BCS Temporal Spatio-temp. Moderate Moderate Moderate

al. [32] correlativity

Yang et Adaptive BCS ROI detection Spatio-temp. Moderate Moderate Moderate Additional computations are

al. [33] involved at encoder for ROI
detection.

Zhao et Adaptive BCS Channel state Spatio-temp. Good High Less Compression rate and recon-

al. [34) struction quality are low for
videos with fast-moving ob-
jects.

Zhang et Adaptive BCS  Std. deviation Spatial Good Less Less Relatively less computational

al. [35] complexity.

sity of each image block in the Discrete Cosine Trans-
form (DCT) domain. Another approach in [27]-[29]
proposes adaptive image BCS algorithms based on
texture information. The algorithm requires image
reconstruction during sampling to achieve adaptive
sampling rate allocation, which increases computa-
tional complexity on the encoding side. In [30], Li et
al. proposed adaptive sampling rate allocation based
on spatial entropy at the encoder and a linear recon-
struction strategy at the decoder to reduce decoder
complexity. In [31], an image CS algorithm is intro-
duced, utilizing an adaptive learning sparse matrix.
While the algorithm achieves high image reconstruc-
tion quality, the formation of its sparse groups de-
mands extensive training, thereby limiting its practi-
cal deployment. Other similar features used to eval-
uate the adaptive sensing rate include temporal cor-
relativity [32], region of interest (ROI) [33], channel
state [34] etc.

An adaptive sampling scheme with relatively less
computational overhead is proposed in [35], which re-
lies on standard deviations of image blocks to assign
an adaptive sampling rate. Standard deviation acts
as a statistical measure to identify whether the im-
age block is a smooth or non-smooth. A non-smooth
block contains more texture information than smooth
blocks, requiring more measurements for effective re-
construction. Adaptive rates are assigned based on
the percentage standard deviation. Consider a frame
of size h x w, subjected to BCS-based adaptive sam-
pling with block size B x B and sensing rate R. Then,
the overall sampling frequency is

Moyeran = Rhw (4)

A fixed sampling frequency determined by (5) is allot-
ted to every image block to ensure a minimum quality
while reconstructing the image.

W x R x Moverall o WR2B2

M = =
No. of image blocks

(5)

where W(0 < W < 1) is the fixed sampling frequency
distribution parameter and No.of image blocks =
%—13. Block-wise sampling frequency allocation is per-
formed by evaluating the percentage standard devia-
tion and sampling frequency using (6) and (7).

Ox

Z:’L:lio'ﬂi (6)

where o, is the block-wise standard deviation.

P, =

M; = Py,(Moyerann — No. of image blocks x M)
hw

=P,,(Rx B? —M)ﬁ

(7)
An upper limit of 0.4 x B? is set for the adaptive
sampling frequency to ensure it remains lower than
the total number of pixels in an image block. If the
block-wise sampling frequency M; exceeds the upper
limit, then the cumulative excessive frequency is cal-
culated as per (8), and its average is assigned to all
blocks.

Mezcess - excess T (Mz — 04 x Bz)

(8)

Once the block-wise frequency assignment is com-
pleted, the adaptive measurements are evaluated and
concatenated with fixed measurements to form the fi-
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Table 3: Comprehensive Analysis of Multiview Encoding Schemes.

Research Works Encoding Decoding Scheme Correlation Reconstruction Compression  Encoder Trans. Remarks
Scheme Quality Complexity Cost
Ebrahim et al. [37]  Uniform Multi-phase joint recon-  Intraand Inter-  Moderate Less Less High Exploits inter-view and
struction sensor spatio-temporal correla-
tions.
Liu et al. |38] Uniform Disparity comp. total  Spatial, Inter-  Good Less Less High Better reconstruction
variation minim. joint  sensor quality.
decoder
Cen et Uniform Inter-view motion comp. Spatial, Inter-  Moderate Less Less High Blind video quality esti-
al. [39] + GPSR sensor mation is proposed.
Zhu et Uniform Joint optimization using  Spatial, Inter-  Good Less Less High Better reconstruction at
al. [40] ARTV and MNLRT sensor low sensing rates.
Liu et Uniform Disparity and motion  Intraand Inter-  Good Less Less High Recon. scheme is robust
al. [41] comp. total variation  sensor to corrupted data.
minim.
Fei et Uniform Joint recon. based on  Spatial, Inter-  Moderate Less Less High Reduces the effect of
al. [42] spatial correlation and sensor noise.
o low-rank  background
constraints
Song et Uniform Local and nonlocal Intraand Inter-  Moderate Less Less High Less decoding time.
al. [43] constraint-based CS  sensor
recovery model
Yang et al. Adaptive Region of interest detec-  Spatial, Inter-  Good Moderate Moderate Moderate  Additional computations
33] tion sensor at encoder for ROI de-
tection.
Cen et Adaptive Independent LASSO Spatial, Inter-  Good Less Less High Adaptive rate estimation
al. [44] sensor is performed by a cen-

tralized controller at the
decoder end.

nal measurements, which are used to reconstruct the
image in the sink node.

3.3 Joint Encoding

Given that the energy needed to transmit a bit
is higher than the energy required for computation,
it’s important to reduce the encoder’s computational
complexity. Additionally, emphasis should be placed
on enhancing the compression offered by various en-
coding schemes. Although the adaptive sampling
scheme improves reconstruction quality, it still offers
the same level of compression as the uniform sam-
pling scheme. A joint encoding scheme proposed
in [36] overcomes this limitation by performing a
second-level compression in the measurement domain
thereby ensuring a better compression. The better
compression level is achieved by exploiting the cor-
relation between measurement vectors of successive
frames on account of intra-sensor temporal correla-
tion.

In this method, joint encoding is performed
by considering G consecutive frames of a video
{X1,Xo,...... , X} as a group of pictures (GOP).
The first frame of every GOP, i.e., X1, Xg+1, Xog+1,
...... is taken as the key frame (KF) and the re-
maining frames as non-key frames (NKFs). The first
compression phase is BCS with block size BxB, per-
formed independently on every frame. In the second
phase of compression, the measurement vectors corre-
sponding to the NKFs are subjected to joint encoding
with reference to the corresponding KF measurement,
ie, Y1,Ye11,Yoq41, - - as expressed below.

i =2 : (centre index)
corr(y? yWy < T
i = (centre index+1) : (G)

corr(yl(j) , ygjrl) <T

yF) :ygj) for

comp;

where average correlation is set as the threshold T
Finally, the compressed measurement vectors, along
with an index vector containing the indices of the
least correlated blocks, are transmitted to the sink
node.

4. MULTIVIEW ENCODING SCHEMES
4.1 Uniform Sampling

Up to now, most BCS-based encoders designed for
multiview data streaming in WVSNs have relied on
conventional uniform block sensing, as discussed in
Section 2.2. Inter-view correlation is exploited in the
decoder, and researchers have developed many algo-
rithms for efficient reconstruction of uniform sampled
multiview data. A multi-phase joint reconstruction
scheme exploiting intra and inter-sensor correlations
is proposed in [37]. In [38], Liu et al. proposed a to-
tal variation (TV) minimization joint reconstruction
scheme based on disparity compensation (DC), which
resulted in improved reconstruction quality. In [39], a
gradient projection for sparse reconstruction (GPSR)
based joint decoder is proposed that relies on side in-
formation generated through inter-view motion com-
pensation. A joint optimization model (JOM) ex-
ploiting intra and inter-view correlation is proposed
in [40], which jointly optimizes adaptive disparity
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compensated residual total variation (ARTV) and a
multi-image non-local low-rank tensor (MNLRT). Re-
search paper [41] proposes a joint reconstruction ap-
proach based on disparity and motion-compensated
total variation (DC/MC-TV) minimization. To an
extent, the proposed scheme is robust to corrupted
data. Furthermore, [42] introduces a novel CS joint
reconstruction method for multiview images, guided
by spatial correlation and low-rank background con-
straints, which helped to reduce noise in the recon-
structed image. Another joint reconstruction scheme
that could provide a fast convergence is proposed by
Song et al. in [43], which relied on local and non-local
constraints for CS reconstruction. An analysis of the
advantages and disadvantages of these related works
is presented in Table 3.

4.2 Adaptive Sampling

In an image, different blocks have varying levels of
sparsity. Allocating sensing rates at the block level,
based on a given frame-level sensing rate, helps im-
prove reconstruction quality. One such adaptive sam-
pling scheme proposed in [33] performs rate allocation
based on region of interest (ROI) detection. Since the
encoder carries out ROI detection, it increases the
encoder’s complexity. The distinctive BCS-based en-
coder system introduced in [44] represents a novel ap-
proach for multiview scenarios, incorporating a vari-
able block sensing rate. In their work, Cen et al.
[44] presented an encoding and decoding framework
for multiview video systems using BCS comprising a
collaborative sparsity-aware block-level rate-adaptive
encoder, feedback channel, independent decoder, and
a centralized controller located at the decoder.

The key element at the receiver is the central-
ized controller, primarily responsible for choosing the
reference view (R-view) and assessing the necessary
sparsity and adaptive sampling frequency to be trans-
mitted back to the transmitter. Shifting the process
of adaptive rate estimation to the decoder side en-
sures that the encoder is not burdened with addi-
tional computational complexity. The controller eval-
uates the Pearson correlation coefficient 7;; among
the v views, and the view with the highest coefficient
~* is chosen as the R-view, as expressed below.

Yij = Corr(yivyj) fOT Vi 7&‘77 Zv] = ]-7 s, U
y* = argmax 7; (9)

i=1,...,v

where ; £ U—il Do +; Vij denotes the average Pearson
coefficient of the *" view.

With the aid of a BCS reconstruction algorithm,
a sparse representation Sg+ of R-view is obtained.
From Spg« , the centralized controller assesses the
sparsity and required adaptive sampling rate. Spar-
sity K corresponds to the count of non-zero elements

in Sk« . However, natural images are typically not
entirely sparse in the transform domain. Under the
assumption that p;hw measurements (where ps is a
pre-determined empirical percentile) are sufficient to
recover a view of size h x w, a threshold T is identified
using (10) to make Sg+ precisely sparse.

| max(|Sge| = T,0)lo = pehw (10)

where ||-|| corresponds to LO norm, which is a count of
non-zero elements. An exhaustive search algorithm is
employed to solve this LO norm problem to estimate
T.

Then, block sparsity K is estimated as in (11) by
applying T to every B x B block of Sg« followed by
evaluation of the number of adaptive measurements
using (12).

Kl = I maX(|3}§*

—T,0)llo (11)

Ktlogy, (%2)
M; = hw

fz Ktlogy, (%2)

where R is the frame sensing rate.

hwR (12)

Subsequently, mean value subtraction is performed
at the encoder to further increase compression and
reduce bandwidth demand. The required mean value
is estimated by the centralized controller from the
reconstructed R-view X g as

1 hw
H= @ZXR(Z) (13)
i=1

The adaptive measurement frequency and the esti-
mated mean value are transmitted to the encoder via
a feedback channel to aid adaptive sensing of sub-
sequent frames. Based on the information received
from the centralized controller, the encoder initiates
block-wise adaptive sensing of subsequent frames as

Y, = duT, (14)
where y¢ € RMi*1 is the measurement vector corre-
sponding to the " block, and i, € RMixB” ig the
corresponding sensing matrix.

Thereafter, mean value reduction is performed in
the measurement domain for further compression.
For that, first, a vector € RE**! in which every
element is the same as p is constructed, and then it
is sampled using ¢?,. The sampled version of p vec-
tor is then subtracted from y! to generate the final
measurement vector to be transmitted to the decoder
as in (15).

by =y, — Py (15)
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Table 4: Frame-wise CR of Monoview Encoding
Schemes.
Uniform/ Joint (CR)
Frame #  Adaptive

All Datasets Cont MD News FB CG
1 332 332 332 332 332 332
2 3.32 1549 1829 1732 1625 16.67
3 3.32 2025 2231 2801 94  16.67
4 332 2124 2158 2743 954 1779
5 3.32 209 2025 2484 803  14.96
6 3.32 209 2124 2582 884 1586
2 332 20.57 2351 28.01 9.02 17.1
8 3.32 1995 1479 1804 1176 1531
9 3.32 332 332 332 332 332
10 3.32 1479 1854 1732 1995 16.88
1 3.32 209 1908 2633 961 1625
12 3.32 2124 1667 2351 89  17.32
13 3.32 23.1 1829 21.58 8.72 16.25
14 3.32 27 231 227 961 1667
15 332 227 2394 2351 927  16.88
16 3.32 2194 1804 2158 1176 1625
17 3.32 332 332 332 332 332
18 332 1829 1567 1804 1908 14.63
19 3.32 2351 1755 1667 9.68  14.96
20 3.32 2394 1804 227 961 1447
21 332 2582 2194 2231 878  16.06
22 3.32 2394 2158 227 9.34 16.25
23 3.32 231 231 2194 954 1625
24 3.32 2351 2394 2394 1242 1625

4.3 Joint Encoding

1) Problem Formulation: Determining the adap-
tive sampling frequency in [44] occurs at the sink
node, necessitating a feedback channel from the sink
node to the source node. The total compression
achieved by the adaptive scheme for an image frame
remains equal to that of a uniform sampling scheme.
Hence, it does not reduce transmission cost or en-
ergy gain at the encoder. Additionally, the encoding
process does not account for intra-sensor temporal
correlation. These limitations can be addressed by
implementing a joint encoding scheme for multiview
data compression that takes advantage of both intra-
sensor and inter-sensor correlations.

2) Proposed Method: In our proposed scheme, the
correlations are addressed in two phases of compres-
sion. Phase-I is performed at individual sensor nodes,
which involves addressing the intra-sensor spatial cor-
relation by sensing the frames using the BCS tech-
nique as detailed in Section 2.2. Phase-II compression
occurs at a cluster head (CH) or in a different sen-
sor in the multi-hop path. Intra-sensor temporal and
inter-sensor spatial correlations are addressed by per-

Table 5: Frame-wise CR of Multiview Encoding
Schemes.
Uniform/Adaptive Joint (CR)
Frame # A}l Datasets  Ballroom  Vassar  Exit
1 332 332 332 332
2 332 24.01 20.96 12.74
3 332 21.84 23.26 15.72
4 332 19.65 24.16 18
5 332 2141 245 19.51
6 332 23.75 23.61 17.52
7 332 26.48 20.51 13.13
8 332 332 332 332
9 332 332 332 332
10 332 25.2 19.78 13.88
11 332 2297 2235 184
12 332 20.73 2335 20.17
13 332 17.88 21.62 20.2
14 332 19.03 20.15 18.64
15 332 20.07 18.2 14.02
16 332 332 332 332
17 332 332 332 332
18 332 19 17.69 14.02
19 3.32 18.09 19.21 19.35
20 332 17.6 20.22 19.6
21 332 17.18 18.39 17.97
22 332 17.59 17.15 15.79
23 332 19.56 16.37 12.19
24 332 332 332 3.32

forming joint encoding of measurements of multiview
frames. The first step of Phase-II involves interleav-
ing the measurement vectors of views corresponding
to a particular frame to create an interleaved ma-
trix J. Interleaving operation is performed so that
the adjacent columns of the matrix created have a
high correlation. {J1, 72, ... .. ,Ja} forms the in-
terleaved matrices corresponding to a GOP of size G.
While we consider the j** column of i*" interleaved
matrix J;, it may possess a significant correlation
with the j** column of J;_1, which is on account of
intra-sensor temporal correlation. Also, J;(:,j) may
hold substantial similarity with J;—1(:,j £ 1) due to
inter-sensor correlation. These correlations are taken
advantage of to compress the data further.

In a GOP, considering 71 and Jg as the reference
matrices, compression is performed on the remaining
matrices as detailed. As the first step, evaluate intra-
sensor and inter-sensor correlation measures denoted
as Yintra and Yinter respectively.
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Yintra = corT(Ti (5, §), Tret (5, §))Vj € 1: C (16)

Vinter = cort(Ji (5, 7), Tret(:, 7 T1)IVj€1:C (17)
[ if2<i< §

Wherejref‘{ Jo fS+1<i<a-1

and C denoted the number of columns in J.

Based on the intra and inter-sensor correlation mea-

sures, a threshold T is evaluated as

T = Yavg + o(Vmax — ’Yavg) (18)

where « is the compression level control parameter,yayg
= Average(’yintraa Fyinter) and Ymax= Ma}dmum(’yintrm
Vinter)- Now, based on the threshold T, compression
is carried out as

jcornpi = \-71(71 < T)
where Yi = {’Yintrm 'Yinter}

(19)

Table 6: Storage Requirement of Monoview En-
coders for GOP Size=8.

Encoding Scheme Cont MD  News FB CG
Uniform 206 206 2.06 206 206
Adaptive 2.11 2.11 2.11 2,11 211

Joint 0.68  0.66 0.64 095 0.75
Table 7: Storage Requirement of Multiview FEn-

coders for GOP Size=8, Views=6.

Encoding Scheme Ballroom  Vassar Exit
Uniform/Adaptive 348 348 348
Joint 12.71 1256  14.26

Finally, for each GOP, the set of compressed mea-
surements  {J1, Jeompy> Jeompys - - - - - - ,Jc}, along
with a vector containing the indices of strongly cor-
related vectors, is transmitted to the decoder. The
suggested approach does not require a feedback chan-
nel. Experimental results in Section 5 reveal that it’s
superior compression and reduced transmission costs,
compared to other methods, lead to efficient energy
usage at the encoder, making the proposed method
well-suited for WVSN.

5. SIMULATION RESULTS AND COM-
PARISON

The appropriateness of an encoding scheme in a
WVSN scenario mainly depends on two factors: (i)
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the compression level and (ii) the encoder computa-
tional complexity. In subsequent subsections, these
two factors are thoroughly analyzed for different en-
coding schemes employed in monoview and multiview
visual configurations. All the encoding schemes under
consideration are BCS-based with block size set to 16
% 16 using random Gaussian matrix as sensing matrix
and sensing rate R = 0.3. Simulations of monoview
visual configuration were conducted on 24 frames
each of size 288 x 352 extracted from five standard
videos, namely Container (Cont), Mother-Daughter
(MD), News, Football (FB), and Coastguard (CG).
In the case of multiview configuration, simulations
were conducted on six views and 24 frames with di-
mensions 480x640 of each view extracted from three
standard multiview datasets, namely Ballroom, Vas-
sar, and Exit. A comparative analysis of the recon-
struction quality is also performed and presented in
Section 5.4.

5.1 Compression Ratio and Storage Require-
ment

The compression level offered by different schemes
is compared based on the compression ratio (CR),
evaluated as the size ratio of an uncompressed image
to that of a compressed one. Table 4 and 5 show
the CR values of monoview and multiview configu-
rations for 24 frames of all datasets under considera-
tion. It is observed that uniform and adaptive encod-
ing schemes yield a low, fixed CR value that depends
solely on the sensing rate. The joint encoding scheme
gave a much better CR, and in addition to sensing
rate, CR depends on correlations existing in video
frames. The encoder storage space demanded by dif-
ferent algorithms under consideration is compared in
Table 6 and 7. Results reveal that the joint encod-
ing scheme demands less storage space compared to
others.

Fig. 3(a) and Fig. 4(a) present the frame-wise CR
variations averaged across all datasets. In joint en-
coding, Phase-II compression is performed on NKFs
alone, keeping KFs as reference, and hence, NKF's
have higher CR. Variations of CR for GOP size are
also analyzed and shown in Fig. 3(b) and Fig. 4(b).
In both visual configurations, GOP size does not im-
pact CR values of uniform/adaptive encoding. In the
case of the joint encoding scheme, as GOP size in-
creases, CR also increases. The behaviour of com-
pression for various sensing rates is depicted in Fig.
3(c) and Fig. 4(c). In all encoding schemes, CR
decreases with an increase in sensing rate, but CR
of joint encoding scheme dominates other schemes.
The relatively high CR offered by the joint encod-
ing scheme for higher GOPs and lower sensing rates
makes it the right choice for WVSN applications.
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5.2 Computational Complexity

The computation complexities summarized in Ta-
ble 8 and Table 9 are estimated by considering the
number of views as v, frame size as h X w, block size
as B x B, number of fixed measurements as M, and
number of adaptive measurements as M;. Among
the three encoding schemes, the uniform sampling
scheme always offers the least complexity encoder,
and adaptive/joint encoding schemes involve addi-
tional computations. However, in the case of the
multiview adaptive encoder proposed in [44], the ad-
ditional computations are pushed to the decoder with
the demand of a feedback channel to convey the adap-
tive measurements required by the encoder. Even
though there is an increase in demand for compu-
tational energy, there is a relative gain in energy at
sensor nodes due to the high CR offered by the joint
encoding scheme, which is deduced in Section 5.3.

5.3 Analysis of Gain in Energy

The relative gain in energy at the sensor node for
both visual configurations is evaluated based on the
analysis proposed in [36]. The same for our experi-
mental setup with a GOP size G, frame size h X w,
frame sensing rate R, and block size B x B is de-
duced in subsequent sections assuming N,, = 8 bits
are used to encode each measurement, Er is the av-
erage transmission energy required per bit, and E¢
is the average computation energy per computation.

1) Gain in Energy - Monoview Encoding Schemes:
When comparing uniform and adaptive encoding
schemes, both provide the same level of compression.
However, the adaptive scheme requires more energy
due to the additional computations involved in adap-
tive measurement processing. The adaptive scheme
provides better reconstruction quality compared to
uniform encoding, and if energy should be minimized
by compromising on reconstruction quality, then uni-
form encoding is preferred over adaptive. Now, if we
consider the joint encoding scheme, due to high CR,
the reduction in transmission energy (TERedn..) 18
much higher compared to the additional demand for
computational energy (CFEpy.) as deduced below.

1

TErean. = Ny, |R — —————
fed b|: CRJoint

] GhwEr  (20)

1
C(EJInc. - (G - l)h’w (2R — B2> EC (21)
Er
TBredan. = 1Ny, o= X CBme (22)
C
{R_ CRJloint]

where H1 = m

The resulting range of p7 is 0.38 to 0.48 in our ex-
perimental setup, and average CR variations are ob-
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Table 8: Computational Complezities of Monoview Encoding Schemes.

Encoding Scheme Operations Frame Type Multiplications Additions
Uniform Sampling Yi = oMmT KF/NKF O(Mhw) O(( B—z-j—‘).‘\lhw)
Percentage standard deviation O((E‘s_r + 1)hw) O((ﬁ—)hu -1)
Adaptive sampling frequency O( %‘{y’) 1
Adaptive Sampling KF/NKF 2
Fixed measurement O(Mhw) O( B—Bgl):\lhw)
Adaptive measurement o (82 D B! bl .'\l,) o ((B -1) 2"“1/8 ;\1,)
Yi =y KF O(Mhw) O((B )M hw)
Joint Encoding Correlation NKF O(M x by O((M — 1) x b

Table 9: Computational Complexities of Multiview Encoding Schemes.

Encoding Scheme Operations Frame Type Multiplications Additions
Uniform Sampling ~ y; = ¢pgx;  KF/NKF O(Mhwv) O((E72) Mhwv)
Adaptive Sampling  y; = PariTi KF/NKF ( L’Z:'fl/B A ) (@) ((B2 - 1)v Z:':I/B; M.)
Yi = dMmTi KF O(Mhwv) 0((’3 1) Mhwv)
Joint Encodin -
- Correlation NKF oO( —;—“gf_"'" ) O —;—3("!;?"“ )
served in Table 4. Considering the fact that Er > Fo
and Np, = 8, from (22) it is evident that T Egedn. > o —o— Uniform Encoding - Monoview
CEInc. . Sor —4—?::??;;:;“:0:;40:3.9“
2) Gain in Energy - Multiview Encoding Schemes: .l
A comparative study of the adaptive encoding scheme z
for multiview proposed in [44] with uniform encod- g =
ing shows that both schemes offer the same level of 288

compression. The computational cost remains the
same because, in the adaptive scheme, the additional
computations are performed at the decoder. Hence,
to obtain better reconstruction quality, an adaptive
scheme may be preferred over a uniform, but at the
cost of the feedback channel. The joint encoding
scheme leads to a relative energy gain due to the rel-
atively high CR it offers, which is analyzed below for
a set of views from v multiview cameras.

1

TE =Ny, |[1— ——
Redn. b; |: CRJoint

] GRhwvEr  (23)

1

CEtne. = 3(G — 2)hwv (2R B2> Eo  (24)

Er
TERedn - ,U'ZNb X CEInc (25)
[7- ioR}m]GR
3[2R—25](G-2)
imental setup. From (25), it is clear that T Erean. >
CLine. since Er > E¢ and N, = 8 bits.

where po = ~ 0.21. for our exper-
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Fig.5: Comparison of reconstruction quality based
on PSNR (a) Average PSNR against frame index -
Monoview encoding schemes (b) PSNR against frame
index for view 6 of Ballroom sequence - Multiview
encoding schemes.
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5.4 Analysis of Reconstruction Quality

The reconstruction quality achieved from the com-
pressed measurements of various encoding schemes
is analyzed based on the peak signal-to-noise ratio
(PSNR). To ensure a fair comparison, the same re-
construction scheme is used for all encoders, and it
can be any of the prominent CS reconstruction tech-
niques. In the case of monoview configuration, a mul-
tihypothesis reconstruction strategy based on Smooth
Projected Landweber (MH_BCS_SPL) [15], [16] with
a window size of 3 is applied. The choice of window
size is based on the fact that a broader search win-
dow may lead to the generation of numerous incorrect

hypotheses. The significance of SPL-based schemes
lie in their enhanced reconstruction quality, which is
achieved by removing blocking artifacts through the
use of a Wiener filter, along with their capability for
rapid reconstruction [13], [45].

A comparative study of reconstruction quality is
performed by evaluating frame-wise PSNR for all
datasets under consideration. The average PSNR
values for monoview encoders are graphically repre-
sented in Fig. 5(a). The frame-wise average PSNR
measure reveals that the adaptive encoding scheme
ensures relatively better reconstruction quality with
approximately 0.5dB higher than the uniform encod-
ing. The KFs of the joint encoding scheme (frame
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no.: 1,9 & 17) possess the same PSNR as that of a
uniform encoder, whereas the NKFs have a PSNR of
roughly 0.5dB less owing to the second level compres-
sion performed on NKFs at the joint encoder. The vi-
sual quality of the reconstruction can be subjectively
evaluated for monoview configuration by examining
Fig. 6, which shows the original and reconstructed
frame 5 of the News sequence. The reconstruction
quality of the joint encoding scheme can be improved
further by iterative multihypothesis strategy as pro-
posed in [36].

In the case of multiview configuration, at the de-
coder end, the signal is assumed to be sparse in the
DCT domain, and the Least Absolute Shrinkage and
Selection Operator (LASSO) algorithm [46] is utilized
for reconstruction, inspired by its low complexity.
From the PSNR variation of view 6 of the Ballroom
sequence illustrated in Fig. 5(b), it is evident that
the adaptive encoding scheme resulted in a relatively
better reconstruction. When comparing uniform and
joint encoding schemes, the PSNR of NKFs in the
joint encoder was observed to be slightly lower than
that of the uniform encoder. The visual quality of
the reconstruction for multiview configuration may
be evaluated by examining Fig. 7, in which the orig-
inal and reconstructed view 5 frame 12 of the Vassar
sequence is shown.

6. CONCLUSION

The energy limitations of intelligent camera sen-
sor nodes in WVSNs necessitate the implementation
of efficient data compression algorithms with less en-
coder complexity and higher compression levels to
enhance the lifespan of sensor networks. Video com-
pression schemes based on BCS techniques are widely
used in WVSNs because of their lightweight encoders
and minimal storage space requirements. A compar-
ative study of various BCS-based encoding schemes
in the case of monoview and multiview configurations
is carried out in this paper. A joint encoding scheme
that provides a much higher compression level is also
proposed in this paper. Comparative studies reveal
that uniform encoding schemes ensure the least com-
plex encoder, while adaptive encoders provide rela-
tively better reconstruction quality. The joint encod-
ing scheme became prominent since it can provide a
higher level of compression, thereby reducing the en-
ergy demand. The joint encoder offers high compres-
sion at higher GOPs and lower sensing rates, mak-
ing it well-suited for WVSN applications. Further
work related to data-gathering in WVSN may be fo-
cused on (i) developing an exhaustive and iterative
reconstruction strategy to improve the reconstruction
quality of the joint encoding scheme, (ii) optimization
of the joint encoding scheme to reduce its computa-
tional complexity without compromising compression
efficiency and reconstruction quality, (iii) developing
an optimal camera node selection algorithm to im-

prove network lifetime, and (iv) validation of simula-
tion results by performing real-world testing to ensure
applicability and reliability of proposed schemes.
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