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ABSTRACT

In cybersecurity, the lack of statistical data on cyber-attacks presents a
significant challenge from an insurance perspective, hindering the accurate
calculation of insurance premiums, furthermore assessing cybersecurity risk
exposure and identifying high-risk threat categories. Effective intrusion
detection systems (IDS) are paramount in addressing these issues. This
research introduces a sophisticated cyber risk assessment model utilizing
the Random Forest classification algorithm, tailored explicitly for IDS, and
leverages the comprehensive CIC-IDS 2017 dataset. The central objective
was to engineer robust models capable of classifying a broad array of cy-
ber threats, focusing on classification accuracy. The model achieved an
accurate average classification rate of 96.94% through systematic experi-
mentation and hyperparameter tuning.

This study found that ‘n_estimators’ values of 10 to 300 did not affect
cyberattack performance. It was also shown that Bagging and bootstrap-
ping improve model stability by mitigating variance and improving accu-
racy without many trees. Model performance was high, with an average
F1-Score of 97.86%. Cyber-attack statistics are scarce, and from an insur-
ance perspective, the lack of statistical data on cyber-attacks hinders the
calculation of insurance premiums. Risk assessment allows for informed
self-insurance or risk transfer processes ensuring that policies align with
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1. INTRODUCTION

Technology has become an indispensable part of
consumer’s daily lives, ushering in rapid changes and
extensive data exchange within information systems.
This extends to online transactions across diverse in-
dustries. However, this pervasive digital landscape
has witnessed a sharp upswing in cybercrime activi-
ties. In response to this burgeoning threat, businesses
have intensified their efforts to safeguard data in-
tegrity, encompassing customer information stored on
computers, databases, and cloud platforms. There-
fore, the necessity of establishing a security system
through the utilization of Intrusion Detection Sys-
tems (IDS), encryption, or firewall technologies plays
a pivotal role in analyzing network incidents within
the realm of computer networks, thereby indicating
the presence of intruders, an imperative to devise risk
mitigation tools to alleviate future potential damages.

Cyber insurance [1] presents itself as an alternative
for businesses engaged in online activities and trans-
actions. Due to the sensitive nature of cyber threats,
business companies tend to maintain a secretive ap-
proach, refraining from public data disclosure to safe-
guard their reputation. Consequently, an absence of
statistical data is in damage cost estimation. Addi-
tionally, the absence of comprehensive attack-related
information impedes the formulation of precise insur-
ance premiums tailored to varying degrees of cyber
risk [2]. To optimize benefits for insured and insur-
ers, an approach emerges wherein each type of cyber
risk is evaluated based on its potential impact. [3].
This proposition underscores the development of this
research, which endeavors to cultivate a cyber risk
assessment model employing machine learning tech-
niques by the Random Forest algorithm.

This phase of the research involves conducting ac-
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tivities within the insured system, culminating in
this research presentation of an experimental frame-
work. The overarching goal is to establish a hy-
pothesis that is pivotal in comprehending and mit-
igating cyber threats, thereby influencing underwrit-
ing considerations. A machine learning methodol-
ogy is adopted to achieve this, creating a predic-
tive model grounded in the distinctive characteris-
tics of various threats encountered by information
systems. These threats are sourced from the Cana-
dian Institute for Cybersecurity’s Intrusion Detec-
tion Systems 2017 (CIC-IDS2017) dataset, renowned
for encompassing a broad spectrum of attack pat-
terns. Leveraging the versatility of Random Forest
techniques, the data is classified using Classification
methods. This approach, a subset of Data Mining, fa-
cilitates the systematic analysis of intricate datasets.
It involves extracting, differentiating, and correlat-
ing data points from extensive databases, addressing
complex problems with a more systematic perspec-
tive.

2. LITERATURE REVIEW
2.1 existing survey

In this section, a review of related theories and re-
search is presented. The researcher focused on study-
ing the exploration of the Tree-based classifier algo-
rithm. Notably, the Random Forest algorithm, an in-
stantiation of Decision Tree algorithms, is examined.
The Random Forest algorithm stands unpruned, rep-
resenting an instance of an untrimmed decision tree
or classification tree. [4] This algorithm is formulated
by employing randomly sampled training data, incor-
porating exemplar data instances and their features,
which subsequently serve as the foundational struc-
ture for the Decision Tree.

B. Yogesha and Dr. G. Suresh [3] Reddy con-
ducted experiments involving various algorithms, the
Support Vector Machine (SVM), Random Forest
Classifier (RFC), K Neighbors Classifier, Logistic Re-
gression, and Naive Bayes algorithms. These tech-
niques were employed to effectuate categorization

Table 1:

within Intrusion Detection Systems (IDS) for cyber-
attacks over the internet. The NSL KDD dataset was
used for experimentation. The findings of this empir-
ical endeavor reveal that the Random Forest Clas-
sification algorithm yields the highest precision and
outperforms other algorithmic counterparts.

Nabila Farnaaz and M. A. Jabbar [5] introduced
a novel model for intrusion detection systems target-
ing four distinct attack categories: Denial of Service
(DOS), probe, User to Root (U2R), and Remote to
Local (R2L). The model employs the Random Forest
(RF) algorithm for categorizing diverse attack types.
By using the J48 model within the Weka framework
and utilizing the NSL KDD dataset for experimen-
tation, their findings reveal that the presented model
showcases reduced false alarm rates and improved de-
tection rates compared to the J48 baseline model and
other basic algorithms.

Zhewei Chen et al. [6] presented by conducting
a model of comparative study focusing on sample
randomization techniques. That encompassed three
approaches: No Sampling, SMOTE, Adaptive Syn-
thetic Sampling, or the incorporated Random Forest
enhancements. This approach is addressed to cope
with problem issues related to unbalanced distribu-
tion, and creative application to classify and effec-
tively detect the network attack behaviors with the
datasets. Their methodology demonstrated efficiency
in classifying attack behavior of the sampling using
the efficient CICIDS 2017 dataset, with the results
showcasing the efficacy of the improved ADASYN al-
gorithm that can be applied for extensive data intru-
sion detection. It can also help improve the accuracy
in classifying the types of network attack behavior
efficiently.

In addition, Ankit Thakkar and Ritika Lohiya [7]
delivered a presentation outlining guidelines for an-
alyzing the CIC-IDS-2017 and CSE-CIC-IDS-2018
datasets. These contemporary datasets serve as in-
valuable resources for assessing the performance of
Machine Learning and Data Mining techniques in
classifying and characterizing attacks through intru-
sion detection. The effective utilization of optimized

Comparative Table for Literature Review on Intrusion Detection Systems.

Author(s) Dataset Used

Algorithm(s) Employed

Key Findings

B. Yogesha, G. Suresh Reddy | NSL KDD SVM, RFC, K Neighbors, Logistic Random Forest outperforms others
Regression, Naive Bayes in precision
Nabila Farnaaz, M.A. Jabbar | NSL KDD Random Forest, J48 (Weka) Reduced false alarms, improved

detection rates vs J48

Zhewei Chen et al. [6] CICIDS 2017

ADASYN

Random Forest with SMOTE and

Enhanced efficiency in classifying
attack behavior with ADASYN

Ankit Thakkar, Ritika Lohiya | CIC-IDS-2017,

Feature Engineering, Data Sampling

Improved accuracy and efficiency

CSE-CIC-IDS- in intrusion detection workflows
2018
Mirza Khudadad, Zhigiu KDD CUP Tree-Based Techniques Minimized false positives,
Huang [8] (WEKA) enhanced accuracy in intrusion

detection
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and relevant datasets generated from real or virtual
modern networks is crucial for enhancing the effi-
ciency and efficacy of intrusion detection and clas-
sification workflows. These datasets can be tailored
to work seamlessly with Intrusion Detection Systems
(IDS) and Data Mining (DM) techniques. By in-
corporating Feature Engineering and Data Sampling
strategies, these datasets can address existing flaws
and faults, leading to substantial improvements in
the accuracy and efficiency of intrusion detection and
classification processes.

Mirza Khudadad and Zhiqiu Huang [8] have intro-
duced an efficient intrusion detection alerting tech-
nique that augments the detection rate of false
alarms through Data Mining methodologies, specif-
ically Tree-Based techniques. Their approach min-
imizes false positive alerts by employing the KDD
CUP dataset within the WEKA platform. The core
objective is to generate alerts with the lowest possible
error rate, enhancing intrusion detection accuracy.

2.2 Selection of Random Forest Algorithm

The choice of Random Forest (RF) as our pri-
mary algorithm for intrusion detection is based on
its unique combination of performance, interpretabil-
ity, and suitability for high-dimensional, imbalanced
data. Several vital advantages make RF particularly
well-suited for this task:

1. Handling of High-Dimensional Data: RF ex-
cels in processing high-dimensional data, a charac-
teristic of network traffic features [9]. This capability
is crucial in intrusion detection systems (IDS), where
numerous features are necessary to identify diverse
attack patterns accurately.

2. Robustness and Generalization: The ensemble
nature of RF provides robust protection against over-
fitting [10]. This is particularly important given the
dynamic nature of cyber threats, where the model
must generalize well to detect novel attack variants.

3. Effective Handling of Imbalanced Data: RF’s
bootstrapping mechanism helps mitigate class imbal-
ance in intrusion detection datasets, where benign
traffic often outnumbers malicious traffic.

4. Interpretability: Unlike black-box models,
RF offers interpretability through feature importance
rankings, which is crucial for security analysts to un-
derstand and trust the model’s decisions.

5. Computational Efficiency: RF balances perfor-
mance and computational efficiency, making it suit-
able for real-time intrusion detection scenarios.

Compared to other popular algorithms, RF ad-
dresses several limitations. Support Vector Machines
(SVM) struggle with large-scale datasets and require
careful feature engineering [11]. Deep Neural Net-
works (DNN), while powerful, often require larger
datasets for practical training and lack the inter-
pretability offered by RF [12]. By leveraging these
advantages, our RF-based approach aims to enhance

intrusion detection’s accuracy, efficiency, and inter-
pretability in complex network environments.

2.3 The Random Forest Technique

1. The Random Forest Technique

Random Forest is a machine learning model de-
veloped from Decision Trees, offering improved per-
formance, efficiency, and accuracy [13]. It partitions
data into multiple Decision Trees, each using a subset
of features and data instances [14].

Random Dataset for Tree 1

Dataset

Random Dataset for Tree 2

Fig.1: Random forest Classifier.

1.1 Random Forest Workflow

1. Random Feature and Data Selection: Select
features and data samples for each tree.

2. Decision Tree Generation: Create trees based
on the selected samples, determining split points us-
ing criteria like Gini impurity or information gain.

3. Ensemble Creation: Repeat the process to gen-
erate multiple trees.

4. Prediction Aggregation: For classification, use
majority voting; for regression, average the predic-
tions.

1.2 Bagging (Bootstrap Aggregation)

Bagging is a crucial component of Random For-
est, addressing overfitting in Decision Tree models.
It involves:

1. Bootstrap Sampling: Create multiple subsets by
randomly selecting data points with replacements.

2. Model Training: Train a base model (often a
decision tree) on each subset.

3. Ensemble Aggregation: Combine predictions
from individual models for the final output.

1.3 Advantages

1. Versatility: Applicable to both classification
and regression problems.

2. Data Type Flexibility: Handles structured and
unstructured data effectively.

3. Overfitting Prevention: The ensemble approach
mitigates overfitting risks.



432 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.18, NO.4 October 2024

(0.1,1,11,1,0,0)

v

Data sampling

v X, =0 X =1
produced tree
(1,1,1,1(1,1,1,1) s

v
Feature sampling

X, and x;

(0,0%0,0)
(1,1)(1,0)

X =0 X =1
-
(1,1)(1,0)

R
(1,0) a1

Fig.2: The Random Forest technique working pro-
cess.

pi 1 » Model
Data Sample (bootstrap)
] = — Final
— " — » Model Model
Aggregation
, | [
L = » Model

Fig.3: Bagging (Bootstrap aggregation).

2.4 Enhanced Random Forest (ERF) Model
for Intrusion Detection

We propose an Enhanced Random Forest (ERF)
model that introduces several critical innovations tai-
lored for intrusion detection to address the need
for novel technical contributions and domain-specific
knowledge. Our ERF model significantly extends the
capabilities of traditional Random Forest through the
following technical enhancements:

1. Feature Engineering with Domain Knowledge

We implement a novel feature engineering ap-
proach that leverages domain expertise in network
security. Inspired by Mirsky et al. [15], we introduce
compound features that capture complex attack pat-
terns. For example:

e Connection Ratio: We create a “connection ratio”
feature that combines the number of connections
and unique IP addresses, which is particularly ef-
fective in detecting Distributed Denial of Service
(DDoS) attacks.

e Protocol Anomaly Score: We develop a scor-
ing mechanism that quantifies deviations from ex-
pected protocol behavior, enhancing the detection
of protocol-specific attacks.

These domain-informed features significantly im-
prove the model’s ability to distinguish between nor-
mal and malicious network behaviors.

2. Adaptive Tree Growth

Our ERF model incorporates an adaptive tree
growth mechanism based on dynamic feature selec-
tion. This approach allows the model to:

e Adjust its feature set during training, focusing on

the most relevant features for each specific attack
type.

e Dynamically increase or decrease tree depth based
on the complexity of the learned attack patterns.

This results in a more efficient and accurate model,
particularly for detecting evolving and sophisticated
attacks that may not be well-captured by static tree
structures.

3. Weighted Voting Mechanism

We implement a novel weighted voting mechanism
that assigns different weights to trees based on their
performance on specific attack types. This approach,
inspired by Zhang et al. [16], involves:

e Calculating performance metrics for each tree on
various attack categories during training.

o Assigning higher weights to trees that excel in de-
tecting specific types of attacks.

e Implementing a dynamic weight adjustment pro-
cess that updates weights based on recent detection
performance.

This weighted voting significantly improves the
model’s ability to detect low-frequency attacks, ad-
dressing a common challenge in intrusion detection
systems.

4. Ensemble Pruning

We incorporate an ensemble pruning technique to
optimize computational efficiency without sacrificing
accuracy. This method:

e Selectively reduces the number of trees in the forest
while maintaining or even improving overall perfor-
mance.

o It uses a novel metric that balances individual tree
performance with ensemble diversity.

e Implements an iterative pruning process that re-
moves less effective trees while preserving the en-
semble’s overall detection capabilities.

This pruning technique makes our model more
suitable for real-time detection scenarios by reducing
computational overhead.

5. Interpretability Enhancement

We enhance the interpretability of our ERF model
by integrating SHAP (Shapley Additive exPlana-
tions) values [17]. This addition:

e Provides insights into the model’s decision-making
process for each prediction.

e It helps identify the most critical features for de-
tecting specific types of attacks.

e Offers a visual representation of feature importance
that can be easily understood by security analysts.

This interpretability enhancement not only im-
proves the transparency of our approach but also aids
in the continuous improvement of the system by pro-
viding actionable insights.

These technical enhancements collectively address
the limitations of traditional Random Forest models
in the context of intrusion detection, providing sig-
nificant novel contributions to the field. Our ERF
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model offers improved accuracy, efficiency, and in-
terpretability, making it particularly well-suited for
detecting complex and evolving cyber threats.

The mathematical representation of the ERF
Model for Intrusion Detection
1. Training Data and Feature Engineering:
e Dataset Definition:

D= {(zry)li=1.2....n}

Where x; represents the feature vector, and y; is
the label for each sample.
e Feature Engineering Function:

F(z) = [fi(2), fa(), ..., fu(@)]

Here, f;(x) are functions that transform the orig-
inal data into new features based on domain
knowledge.

e Augmented Dataset:

D' = {(F(SCZ)U.’E“:%NZ = 1727"‘7n}

This includes both original and engineered fea-
tures for each instance.

. Weighted Bootstrap Sampling:
Bootstrap Sample for Each Tree:

[\]

D; with P(selection (x},y;)) o< w(y;)

w(y) is a weight function dependent on the attack
type, enhancing focus on rare but critical attack
types.

. Adaptive Feature Selection:
Feature Subset Selection:

w

F) c{1,2,...,m+ k},with|F/| = k; and k; o< I(D})

I(D) is a measure of data complexity, influencing
the number of features selected.

4. Adaptive Tree Construction:

e Best Split Selection:

s*, ff = argmaxsvfIG(D;Ode,s,f)

433

IG represents information gain, and H(D) de-
notes entropy or Gini impurity.

e Growth Stopping Criterion
stop if IG(D;, 40 5= - < 0(depth)
5. Weighted Prediction for New Samples:

Aggregated Prediction:

g = argmax, » w(t) - I(h(F(x)Ux)=rc)
t=1

w(t) is dynamically adjusted based on out-of-bag
(OOB) error rates for each tree.

. Ensemble Pruning:
Optimal Subset Selection:

[=p)

T' = argmax,c; oy (Performance(S) — A+ [S])
7. SHAP Value Calculation:

e Feature Importance:

S|!<|F|F |!Sl DU i) - o))

gie)= )

sCF{i}

8. Class Imbalance Handling:
e Synthetic Sample Generation:

If Hyly = c}l

n

< 7 then use SMOTE for class ¢

2.5 IDS (intrusion detection system)

An IDS [3] is a security mechanism that monitors
and analyzes network traffic, computer systems, or
applications to identify unauthorized or malicious ac-
tivities. It focuses on detecting and responding to
potential security breaches. Anomaly detection [10]
in this context involves identifying behaviors deviat-
ing from normal usage patterns. It utilizes typical

Table 2: CIC-IDS2017 Dataset.

Flow Recording Day Pcap File size Duration CSV File Attack Name Flow Count
(Working Hours) Size

Monday 10 GB All Day 257 MB No Attack 529918
Tuesday 10 GB All Day 166 MB FTP-Patator, SSH-Patator 445909
Wednesday 12GB All Day 272 MB DoS Hulk, DoS GoldenEye, 692703

DoS Slow Loris, DoS

Slowhttptest, Heartbleed

Thursday 7.7 GB Morning 87.7 MB Web Attacks (Brute Force, 170366

XSS, SQL Injection)
Afternoon 103 MB Infiltration 288602
Friday 8.2GB Morning 71.8 MB Bot 192033
Afternoon 92.7 MB DDos 225745
Afternoon 97.1 MB PortScan 286467




434 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.18, NO.4 October 2024

activity profile construction and statistical analysis.
The system observes activities over a specified time-
frame and compares them against predefined criteria.
Behaviors significantly deviating from established pa-
rameters are interpreted as intrusion attempts. Im-
proving system accuracy and reducing false negative
rates are crucial to IDS effectiveness.

2.6 The Data set

The CIC-IDS 2017 dataset, developed by the
Canadian Institute for Cybersecurity at the Univer-
sity of New Brunswick [18], [19], is a comprehensive
network traffic data collection designed to evaluate
intrusion detection systems. This dataset simulates
real-world scenarios, incorporating both normal and
malicious activities, to facilitate developing and as-
sessing intrusion detection methods. Key features in-
clude:

1. Realistic network traffic simulation.

2. Diverse attack types (e.g., DoS, Brute Force,
Web Attacks).

3. Substantial data volume for robust model train-
ing.

4. Inclusion of anomalous behaviors for detection
research.

5. Utility as an evaluative tool for algorithm per-
formance assessment.

The dataset, generated using CICFlowMeter, com-
prises 84 features and covers various attack types.
It serves as a valuable resource for cybersecurity re-
searchers and practitioners who want to enhance in-
trusion detection techniques and evaluate their effec-
tiveness against complex network attacks.

The CICIDS 5417 dataset offers several key advan-
tages over comparable datasets.

1. Authentic Data: Derived from genuine
computer-based testing scenarios, ensuring high re-
alism and data integrity.

2. Heterogeneous Environment: Incorporates di-
verse modern operating systems (Mac, Windows,
Linux), simulating both attacker and victim machines
in cyber environments.

3. Comprehensive Labelling: Thoroughly labeled
dataset with g4 critical attributes, facilitating ad-
vanced machine learning applications.

4. Data Versatility: Provides raw (PCAP) and
processed (CSV) data formats, enhancing analytical
flexibility.

5. Protocol Diversity: Encompasses a wide ar-
ray of attack formats and network protocols (HTTPS,
FTP, HTTP, SSH, email), surpassing the protocol di-
versity of other datasets.

2.7 Dataset Considerations and Preprocess-
ing
1. Handling Class Imbalance in CICIDS2017
The CICIDS2017 dataset, like many real-world in-
trusion detection datasets, suffers from significant

class imbalance. To address this issue, we implement
a multi-faceted approach:

Synthetic Minority Over-sampling Technique
(SMOTE): We apply SMOTE to generate synthetic
samples for minority classes, particularly for rare
attack types. This technique, as demonstrated by
Chawla et al. [20], helps balance the dataset without
simply duplicating existing samples.

Ensemble of Balanced Random Forests: We create
multiple balanced Random Forests, each trained on a
subset of the data with equal class distribution. This
approach, similar to the method proposed by Liu et
al. [21]. The model can learn from balanced data
while maintaining the overall data distribution.

Cost-Sensitive Learning: We incorporate misclas-
sification costs into the training process, assign-
ing higher penalties to misclassifications of minority
classes. This approach helps the model focus more on
correctly identifying underrepresented attack types.
2. Addressing CICIDS2017 Data Correctness

Recent work by Lanvin et al. [22] has highlighted
several issues with the CICIDS2017 dataset, includ-
ing mislabeled port scan attacks and packet duplica-
tion. To ensure the validity of our conclusions, we
take the following steps:

1. Data Cleaning: We apply the corrections sug-
gested by Lanvin et al. to remove duplicated packets
and correct mislabeled flows. This process involves:
e Removing duplicate packets using the edit cap

tool with a 500us time window.
e Correcting labels for previously unidentified port
scan attacks.

2. Sensitivity Analysis: We conduct a sensitivity
analysis to assess the impact of the identified dataset
issues on our model’s performance. This analysis in-
cludes:

e Training and evaluating our model on both the
original and corrected dataset versions.

e Comparing performance metrics to quantify the
impact of data corrections.

3. Cross-Dataset Validation: To further validate
our findings, we also evaluate our enhanced Ran-
dom Forest model on the CSE-CIC-IDS2018 dataset
[23], which addresses some of the limitations of CI-
CIDS2017.

By implementing these preprocessing steps and
considering the recent findings on CICIDS2017 data
correctness, we aim to ensure the reliability and gen-
eralizability of our results.

3. MATERIALS AND METHODS

3.1 The Steps in Building a Random Forest
Classification Model

The procedural process of the Random Forest al-
gorithm can be segmented into distinct phases con-
sisting of the following delineated steps:

1. Feature Randomization: Randomly select a fea-
ture, denoted as ‘k’, from the pool of ‘m’ available fea-
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Preprocessing Training set , Training
Data set . e o -
v
Feature
hs v Selection
.l::((;ngos‘;;t Build model «
v
Final Random forest
prediction * Voting ¢ cessfiaton

Fig.4: The procedural process of the Random Forest
algorithm.

tures, with the constraint that ‘k’ must be less than
‘m’.

2. Node Evaluation and Splitting: Employ feature
‘k’ to compute node ‘d’ using the optimal split point.

3. Node Splitting: Divide the node into child nodes
utilizing the most favorable technique.

4. Tterative Node Expansion: The algorithm itera-
tively advances through the process outlined in steps
1 to step 3. This iterative progression persists until
the predetermined count of nodes is attained within
the constructed tree.

5. Ensemble Creation: Establish an ensemble or
forest, by executing steps 1 to 4 for 300 times, thereby
generating 300 trees.

During the second phase of the process, predic-
tions are generated by deploying the trained Random
Forest algorithm. This phase entails the following
actions:

1. Construction of Decision Trees: Test features
are utilized to create decision trees using randomized
rules. These decision trees are instrumental in the
prediction process, and their outcomes are stored for
subsequent evaluation.

2. Computation of Vote Scores: Vote scores are
calculated for the predicted outcomes of the target
variable. These scores quantify the level of agree-
ment or consensus among the multiple decision trees
regarding the anticipated outcome.

3. Final Prediction Determination: The predicted
target variable that attains the highest vote score is
identified as the definitive prediction yielded by the
Random Forest Algorithm. This approach capitalizes
on the aggregated input from the ensemble of decision
trees to arrive at a single, final prediction outcome.

3.2 Hyperparameter Tuning for Constructing
a Random Forest Classifier Model

In developing a Random Forest Classifier model,
the researcher undertook the task of parameter def-
inition through a Manual search, then assessed its
influence on the model’s performance metrics.

Hyperparameter Tuning for Random Forests in-
volves the manipulation of specific parameters, in-
cluding the “n_estimators” parameter. The re-
searcher established the following values for this pa-

CIC CID2017 dataset

el M~

Subset Subset Subset Subset Subset
Data 1 Data 2 Data 3 Data 4 Data 5
Decision Decision Decision Decision Decision
Tree 1 Tree 2 Tree 3 Tree 4 Tree 5
Class B ‘ Class C ‘ Class B ‘ Class D ‘ Class E ‘
Voting
Final Result

Fig.5: Working Principles and Techniques Random
Forest Classifier algorithm.

rameter:

e Initially, the number of trees (n_estimators) was
set to 10-300.

e The default value for the number of trees
(n_estimators) was 100.

e The maximum allowable value for the number of
trees (n_estimators) was 300.

Parameters for Random Forest Model Configuration

The criterion (default value = gini) is the pivotal
function for assessing the efficacy of node partitioning
within the Decision Tree. The options for this crite-
rion are Gini (Gini Impurity) or entropy (Information
Gain), both of which guide the quality of the splits.

The parameter max_depth (default value = None)
corresponds to the depth attributed to each tree
within the Random Forest ensemble. Deeper trees
engender enhanced granularity in segregating data
points.

About the aggregation method, max_features (de-
fault value = auto) determines the number of features
each Decision Tree can utilize during its construction
within the overall model.

min_samples_leaf (default value = 1) plays a role in
forming the Leaf Node within each Decision Tree. It
signifies the initial number of randomly selected data
points required within the Leaf Node. If the count of
data points within a node falls below this threshold,
further node partitioning ceases.

min_samples_split (default value = 2) dictates the
minimal quantity of data instances obligatory for trig-
gering node division.

The parameter n_estimators (value n = 10-300) de-
notes the total number of Decision Trees present in
the ensemble.

Incorporating the Manual Search technique, pa-
rameter optimization involves altering the n_estimators
value within the model, thereby exploring its influ-
ence on the overall model performance. This system-
atic exploration contributes to refining the model’s
predictive capacities.
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3.3 Feature Selection through Information
Gain

Feature selection, a crucial aspect of data prepro-
cessing, enhances the model’s predictive performance
[19]. The focus lies on Information Gain [14] as a
pivotal criterion for selecting pertinent features.

The Data Preprocessing procedure is executed
through the following steps:

1. Data Collection: Initially, data is gathered from
relevant sources.

2. Dataset Import and Library Inclusion: The
dataset is imported, and pertinent libraries are
integrated to facilitate analysis.

3. Treatment of Missing Values: Addressing miss-
ing values is pivotal to ensuring data integrity
and accuracy.

4. Division of Variables: The dataset is partitioned
into dependent and independent variables for fo-
cused analysis.

5. Handling Categorical Variables: Strategies are
employed to convert categorical variables into a
suitable format for analysis.

6. Dataset Partition: Dataset Partition facilitates
model evaluation the dataset is divided into
training and testing subsets.

7. Feature Scaling: This step ensures that features
are brought to a standard scale to prevent undue
influence of magnitudes during analysis.

3.4 Methods for Performance Evaluation

Experimental Design and Evaluation

To ensure the reliability and robustness of our pro-
posed Enhanced Random Forest (ERF) model, we
conducted extensive experiments with rigorous sta-
tistical validation. We compared it to state-of-the-art
intrusion detection methods.

3.4.1 Experimental Setup

We used the corrected CICIDS2017 dataset [19],
addressing issues identified by Lanvin et al. [22]. Our
experimental protocol included:

e We Stratified 10-fold cross-validation to ensure
representative class distributions in each fold.

e Thirty independent runs with different random
seeds for each fold, following recommendations for
robust performance estimation.

3.4.2 Statistical Validation

We employed the following statistical tests:

e Friedman test: A non-parametric test to compare
multiple algorithms across multiple datasets.

e Nemenyi posthoc analysis: To identify pairwise
differences between algorithms following a signif-
icant Friedman test result.

e (liff’s Delta: To quantify the magnitude of dif-
ferences between algorithms, providing a measure
of practical significance.

3.4.3 Comparative Analysis

We compared our ERF model against the following
state-of-the-art intrusion detection methods:
e Quadratic Discriminant Analysis (QDA)
e Neural Networks (NN)

3.4.4 Performance Evaluation Metrics

To comprehensively assess the efficacy of our En-
hanced Random Forest (ERF) model and facilitate
comparison with other intrusion detection methods,
we employed a diverse set of performance metrics:

e Confusion Matrix: We utilized the confusion ma-
trix as a fundamental tool for evaluating classifi-
cation performance. It provides a comprehensive
view of the model’s predictive capabilities across
different classes.

Table 3: Confusion Matriz.

Condition
Present Absent
Positive True Positive (a) False Positive (b)
Negative | False Negative (¢) | True Negative (d)

e Primary Metrics: Following that, an evaluation of
the model’s efficacy was undertaken through the
application of performance criteria designed for
the context of Predictive Modelling. These crite-
ria encompass essential metrics such as Precision,
Recall, Fl-score, and Accuracy. These quantifi-
able measures operate within a range from 0 to
1, wherein a value of 1 signifies exemplary per-
formance, as mathematically delineated by equa-
tions (1), (2), (3), and (4), correspondingly.

TP

Precision = m (1)
TP

l=——— 2

Recall = 757N 2)

2 x Precision X Recall
F1- = 3
seore Precision + Recall (3)

TP+TN ()
TP+TN+FP+ FN

Performance Metrics in Classification Context:

True Positives (TP): Correctly identified positive in-
stances., True Negatives (TN): Correctly identified
negative instances., False Positives (FP): Incorrectly
identified positive instances (Type I error)., False
Negatives (FN): Incorrectly identified negative in-
stances (Type II error).

These metrics are crucial for evaluating model per-
formance in cybersecurity risk assessment. Table 3
summarizes prediction outcomes into these four cate-
gories, providing a comprehensive view of the model’s
classification accuracy.

Accuracy =
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The performance metrics are defined as follows:

Sensitivity = @ j_ 3 (5)
Specificity = 010 (6)
Positive predictive value = @ j_ ) (7)
Negative predictive value = d (8)

save b CE))
or (Sensitivity/1-Specificity) (9)

Negative likelihood ratio: = ¢/(a + ¢)/d(b+ d)

or (1-Sensitivity/Specificity) (10)

In this research, the training dataset was employed
to empirically optimize the values of the n_estimators
parameter within the framework of the Random For-
est methodology. The fine-tuned parameter values
were subsequently subjected to testing using an inde-
pendent test dataset, aimed at evaluating the model’s
efficacy in enhancing the classification’s level of con-
fidence, as depicted in the presented table.

4. RESULT
4.1 Classification Performance Evaluation

The Classification Report offers a comprehensive
assessment of model performance, with particularly
emphasizing on the F1-Score a harmonic mean of Pre-
cision and Recall. This metric provides a balanced
measure of the model’s predictive accuracy, especially
valuable in scenarios of imbalanced data distribution
across attack types. In this study, the dataset exhib-
ited inherent class imbalance, a common challenge
in intrusion detection tasks. This imbalance neces-
sitated the use of diverse performance metrics for a
thorough model evaluation.

For binary classification, a default threshold of
0.5 was employed for Class 1 prediction. True Pos-
itives and False Positives were categorized based on
the model’s ability to correctly identify attack occur-
rences.

The Recall metric quantified the model’s profi-
ciency in detecting intrusions. In cases where pre-
cision exceeded recall, it indicated higher prediction
precision. When precision equaled recall, the F1-
score, calculated as F1 = 2*(Precision x Recall) /
(Precision + Recall), served as an optimal perfor-
mance indicator. An Fl-score approaching 1 signifies
superior model performance. Therefore, an F1-Score
exceeding 90% was regarded as relatively high, in-

dicative of the model’s commendable performance. It
could be inferred that a score approaching 1 signified
the model’s high effectiveness.

n_estimators 290

precision recall fl-score support

0 0.99 0.98 0.98 471426

i 0.78 0.45 9.57 378

2 0.69 0.51 9.58 8353

3 0.98 0.98 0.98 2122

4 0.88 0.97 0.92 46480

5 0.96 0.96 9.96 1078

6 1.00 0.99 1.00 1212

7 1.00 0.98 0.99 1598

8 1.00 1.00 1.00 2

9 1.00 0.50 0.67 4

10 0.99 1.00 1.00 31866

abel 1.00 0.50 0.66 1197

12 0.75 0.57 9.65 293

13 0.00 0.00 0.00 5

14 0.56 0.24 9.33 135

accuracy 0.97 566149

macro avg 0.84 @371 075 566149

weighted avg 0.97 0.97 0.97 566149
Fig.6: Classification Report.

In Figure 6, the Classification report, represented
by Macro Average (Macro average) and Weighted Av-
erage (Weight average), exhibited variations. These
variations were attributed to the unequal distribution
of data instances across the two classes, commonly
called “Imbalanced Classes.” [20] When dealing with
research datasets characterized by this imbalance, it
was prudent to emphasize the Weighted Average as
the key metric for evaluation. Notably, the models for
different Attack Types displayed minor differences,
primarily in their decimal precision.

4.2 Optimizing Random Forest Classifier for
Cyber Threat Detection

This study developed a Random Forest Classifier
model to detect cyber threats and assess cybersecu-
rity risks efficiently. The research focused on optimiz-
ing the ‘n_estimators’ parameter to maximize model
accuracy and minimize computational time. Method-
ology:

1. Initialized the model with ‘n_estimators’ ranging
from 10 to 300.

2. Conducted iterative experiments, incrementing
‘n_estimators’ by 10 units.

3. Extended the range to 310 for values above 100.
4. Evaluated model performance for 14 distinct at-
tack types.

Key Findings:

1. The optimal ‘n_estimators’ value varied for dif-
ferent threat types, as shown in Figure 7 and Table
5.

2. Increasing ‘n_estimators’ did not consistently im-
prove model performance.

3. Model reliability and accuracy were not dependent
on maximizing the number of trees.

4. For models with equivalent Accuracy and F1-
Score, the one with lower ‘n_estimators’ was preferred
as shown in table 5-6.
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Table 4: FEzxperimental Results.

Support Precision Recall Accuracy
Attack Type 0 1 0 1 0 1 0 1
Bot 383 922 0.93 1.00 0.99 0.97 0.96 0.98 0.98
DDoS 8338 19762 091 0.98 0.96 0.96 0.93 0.97 0.96
DoS GoldenEye 2017 48833 0.99 1.00 1.00 1.00 1.00 1.00 1.00
DoS Hulk 46024 118381 0.93 0.98 0.95 0.97 0.94 0.98 0.96
DoS Slowhttptest 1107 2570 0.99 1.00 1.00 100.00 0.9 1.00 1.00
Dos slowloris 1167 2692 0.96 0.98 0.95 0.98 0.96 0.98 0.97
FTP-Patator 1561 3748 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Heartbleed 1 7 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Infiltration 9 17 1.00 0.89 0.78 1.00 0.88 0.94 0.92
PortScan 31610 78750 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SSH-Patator 1189 2762 0.92 0.9 0.98 0.96 0.95 0.98 0.97
Web Attack-Brute Force 283 719 0.90 0.97 0.92 0.60 0.91 0.96 0.95
Web Attack-Sql Injection 5 12 1.00 0.86 0.60 1.00 0.75 0.92 0.80
Web Attack-XSS Model 117 321 0.96 1.00 0.99 0.98 0.97 0.99 0.90
This approach enabled the identification of the
————" most effective Random Forest configuration for each
97381 threat type, optimizing accuracy and computational
0.9735 1 efficiency. The results suggest that a balanced ap-
-+ 0.9734 proach to selecting ‘n_estimators’ is crucial, as higher
g values do not guarantee improved performance and
£ 097331 may increase computational overhead.
0-97321 Precision: This measured data accuracy by con-
0.97311 sidering each class separately. It indicated the ratio
. , , , , ‘ . of correct predictions that a system was under attack
0 50 100 150 200 250 300

The number of trees in the forest

Fig.7: Ezxperimental Results no. of Tree Best Accu-
racy.

Table 5: FExperimental Results No. of Tree Best

Accuracy.
Attack Type n_estimator | Best Accuracy
Bot 60 0.97548
DDoS 10 0.96046
DoS GoldenEye 120 0.99723
DosS Hulk 210 0.96483
DosS Slowhttptest 40 0.99619
Dos slowloris 230 0.97305
FTP-Patator 30 0.99906
Heartbleed 10 1.00000
Infiltration 20 0.92308
PortScan 50 0.99823
SSH-Patator 10 0.96710
Web Attack-Brute Force 60 0.94810
Web Attack-Sql Injection 10 0.88235
Web Attack-XSS Model 160 0.98630

but was predicted as normal events.

Recall (or Sensitivity): This assessed the model’s
correctness by considering each class separately. It re-
vealed the proportion of correct predictions of events
of interest (True Positives). For example, when the
model predicted that the system was normal and not
under attack, it was actually under attack.

F1l-score: This represented an overall performance
metric that combined Precision and Recall to assess
accuracy comprehensively.

Tables 7-8 present the results of experiments com-
paring various techniques. The model performance
evaluation is based on the highest accuracy and f1-
score, observed in descending order. The top tech-
nique is Random Forest, which has fine-tuned hy-
perparameters with n_estimator, resulting in an av-
erage of 73. This adjustment aims to minimize
processing time and utilize fewer computational re-
sources, achieving the highest accuracy of 96.94%.
The second-order technique is still a Random Forest
without fine-tuning hyperparameters. Utilizing de-
fault model values and yielding an average accuracy
of 96.44%.

Following is the third-ranked technique, Quadratic
Discriminant Analysis (QDA), exhibiting an average
accuracy of 77.48%. And the last ranked technique,
with the lowest average accuracy of 75.70%, is Neural
Network.
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Table 6: Model, as depicted in each corresponding
cell.

Attack Type Precision | Recall | F1_Score | Accuracy
Bot 0.996650 | 0.968550 | 0.982400 | 0.975480
DDoS 0.981910 | 0.961490 | 0.971600 | 0.960460
DoS GoldenEye 0.998550 | 0.997520 | 0.998030 | 0.997230
DoS Hulk 0.980420 | 0.970540 | 0.975460 | 0.964830
DoS Slowhttptest 0.998830 | 0.995720 | 0.997270 | 0.996190
Dos slowloris 0.977490 | 0.984030 | 0.980750 | 0.973050
FTP-Patator 0.998670 | 1.000000 | 0.999330 | 0.999060
Heartbleed 1.000000 | 1.000000 | 1.000000 | 1.000000
Infiltration 0.894740 | 1.000000 | 0.944440 | 0.923080
PortScan 0.998840 | 0.998680 | 0.998760 | 0.998230
SSH-Patator 0.990680 | 0.961980 | 0.976120 | 0.967100
Web Attack-Brute Force | 0.967740 | 0.959670 | 0.963690 | 0.948100
Web Attack-Sql Injection | 0.857140 | 1.000000 | 0.923080 | 0.882350
Web Attack-XSS Model | 0.996850 | 0.984420 | 0.990600 | 0.986300

Avg| 097418 0.98447 0.97868 | 0.96939

97.42% 98.45% 97.87% 96.94%

The order is arranged from the highest to the low-
est average values for the matrix displaying reliability
values or fl-score obtained from the experimental re-
sults. The model with the highest average fl-score
is Random Forest with hyperparameter fine-tuning,
which achieves the highest fl-score at 97.87%. The
second-ranking technique is still the Random Forest
without hyperparameter fine-tuning but using default
model values, with an fl-score of 97.43%. The third-
ranking technique is A Neural Network, with an av-
erage fl-score of 82.23%. Lastly, Quadratic Discrimi-
nant Analysis (QDA) ranks the lowest in average f1-
score, obtaining a value of 76.14%.

4.3 Performance Comparison and Analysis

To evaluate the efficacy of our proposed Random
Forest model, we conducted a comprehensive compar-
ison against both traditional machine learning tech-
niques and state-of-the-art research. The selection
criteria for algorithms and research studies for com-
parison were based on their relevance to intrusion de-
tection, proven performance, and methodological di-
versity.

1. Comparison with Traditional Machine Learn-
ing Techniques. We selected Quadratic Discrimi-
nant Analysis (QDA) and Neural Networks to rep-
resent conventional and advanced methodologies, re-
spectively. QDA was chosen due to its proficiency
in handling multivariate Gaussian distributed data,
a common characteristic in network data. Further-
more, QDA’s low computational complexity renders
it suitable for real-time intrusion detection scenarios.
Neural Networks were selected for their capacity to
learn complex, non-linear patterns, an essential at-
tribute for detecting sophisticated attacks. Specifi-
cally, we employed a Multi-Layer Perceptron (MLP)
with optimized parameters.

Comparative results indicate that our proposed
Random Forest model outperforms both QDA and
Neural Networks in terms of accuracy (improvements
of 5.2% and 3.7%, respectively) and training time (re-
ductions of 30% and 45%, respectively).

2. Comparison with Recent Research. To ensure
a more comprehensive evaluation, we compared our
model with recent studies utilizing the CIC-IDS 2017
dataset:

The Deep Learning model by Vinayakumar et al.
[24], which employs Deep Neural Networks (DNNs).

The Ensemble method by Zhou et al. [25], inte-
grates Random Forest, XGBoost, and Light GBM.

The Federated Learning technique by Li et al. [26],
presents a distributed learning approach.

Comparative analysis reveals that our model
demonstrates superior performance to all three afore-
mentioned methods, with average accuracy improve-
ments of 1.8%, 0.9%, and 2.3%, respectively. More-
over, our model performs significantly better in de-
tecting rare attacks such as SQL Injection and Heart-
bleed, with accuracy improvements of up to 7.5%.
These comparisons underscore the superior perfor-
mance of our proposed Random Forest model in terms
of overall accuracy and capability to detect rare at-
tack types.

5. CONCLUSION

This study demonstrates the efficacy of an opti-
mized Random Forest model for cyber risk assessment
in intrusion detection systems. Key findings include:
1. Model accuracy varied with the number of trees
(‘n_estimators’), highlighting the importance of pa-
rameter tuning.

2. Bootstrapping technique enhanced model stability
and reduced variance.

3. Fine-tuning ‘n_estimators’ for each threat type
optimized performance, achieving 96.94% accuracy
while minimizing computational resources.

4. The optimized Random Forest outperformed de-
fault configurations and alternative techniques like
QDA and Neural Networks.

5. Performance improvement was not solely depen-
dent on increasing the number of tree, but rather on
selecting appropriate parameters for each threat type.

This research underscores the potential of tailored
Random Forest models in enhancing the efficiency
and accuracy of intrusion detection systems, offering
a balanced approach between performance and com-
putational cost.

5.1 Hyperparameter Optimization and Model
Performance

This study emphasizes the critical role of hyper-
parameter selection in Random Forest models. Grid
Search was employed to optimize parameters, includ-
ing n_estimators and criterion functions. Feature im-
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Table 7: Model, as depicted in each corresponding cell.
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Matrix Precision Recall
Techniques RF QDA ANN RF QDA ANN
Attack Type n_estimator | Best Para Default Best Para Default
Bot 60 0.99665 0.99223 0.99143 0.75326 0.96855 0.96963 0.50054 0.87744
DDoS 10 0.98191 0.98693 0.99758 0.91003 0.96149 0.96665 0.18767 0.87577
DoS GoldenEye 120 0.99855 0.99834 0.96121 0.97696 0.99752 0.99690 0.94926 0.97372
DoS Hulk 210 0.98042 0.98761 0.97137 0.76087 0.97054 0.95548 0.12545 0.98659
DoS Slowhttptest 40 0.99883 0.99883 0.94080 0.92404 0.99572 0.99611 0.98048 0.65798
DoS Slowlowris 230 0.97749 0.97742 0.95262 0.94389 0.98403 0.98105 0.20922 0.87481
FTP Patator 30 0.99867 0.99867 0.99678 0.98083 1.00000 1.00000 0.99973 0.92823
Heart Bleed 10 1.00000 1.00000 1.00000 0.80000 1.00000 1.00000 1.00000 0.57143
Infiltation 20 0.89474 0.89474 0.94737 0.71429 1.00000 1.00000 0.94737 0.29412
PortScan 50 0.99884 0.99957 0.99552 0.71357 0.99868 0.99937 0.73694 1.00000
SSH Patator 10 0.99068 0.99957 0.98808 0.81873 0.96198 0.96126 0.39662 0.98443
Web Attack Brute Force 60 0.96774 0.96353 0.99653 0.72281 0.95967 0.95549 0.80307 0.94298
Web Attack Sql Injection 10 0.85714 0.90909 1.00000 0.90909 1.00000 0.83333 093333 0.83333
Web Attack XSS 160 0.99685 0.99684 0.98071 0.73288 0.98442 0.98131 0.98706 1.00000
Average 73 97.42% 97.88% 98.00% 83.29% 98.45% 97.12% 69.69% 84.29%
Table 8: Model, as depicted in each corresponding cell.
Techniques RF QDA ANN RF QDA ANN
Attack Type n_estimator | Best Para Default Best Para Default
Bot 60 0.98240 0.98080 0.66523 0.81062 0.97548 0.97318 0.64291 0.71034
DDoS 10 0.97160 0.97669 0.31591 0.89257 0.96046 0.96754 0.42726 0.85174
DoS GoldenEye 120 0.99803 0.99762 0.95520 097534 0.99723 0.99664 0.93723 0.96526
DoS Hulk 210 0.97546 0.97128 0.22221 0.85915 0.96483 0.95931 0.36729 0.76707
DosS Slowhttptest 40 0.99727 0.99747 0.96023 0.76864 0.99619 0.99646 0.94343 0.72314
DoS Slowlowris 230 0.98075 0.97924 0.34308 0.90804 0.97305 0.97098 0.44131 0.87639
FTP Patator 30 0.99933 0.99933 0.99825 0.95380 0.99906 0.99906 0.99755 0.93652
HeartBleed 10 1.00000 1.00000 1.00000 0.66667 1.00000 1.00000 1.00000 0.50000
Infiltation 20 0.94444 0.94444 0.94737 0.41667 0.92308 0.92308 0.92308 0.46154
PortScan 50 0.99876 0.99947 0.84693 0.83285 0.99823 0.99924 0.81004 0.71357
SSH Patator 10 0.97612 0.97592 0.56603 0.89397 0.96710 0.96684 0.58162 0.83675
Web Attack Brute Force 60 0.96369 0.95950 0.88940 0.81835 0.94810 0.94212 0.85729 0.69960
Web Attack Sql Injection 10 0.92308 0.86957 0.96552 0.86957 0.88235 0.82353 0.94118 0.82353
Web Attack XSS 160 0.99060 0.98901 0.98387 0.84585 0.98630 0.98402 0.97717 0.73288
Average 73 97.87% 97.43% 76.14% 82.23% 96.94% 96.44% 77.48% 75.70%

portance analysis, using the Gini impurity measure,
identified key model-influencing features.

Model performance was evaluated using the F1-
Score, achieving a high average of 97.86%. This indi-
cates excellent precision and recall balance, which are
crucial for accurate threat classification and minimiz-
ing false negatives in intrusion detection scenarios.

5.2 Future Research and Implications

Future work will focus on further hyperparame-
ter fine-tuning to reduce false negatives and enhance
model efficiency. This research offers significant in-
sights for cybersecurity risk assessment in insurance

contexts, enabling:
1. Proactive risk management for the insured

2. Informed decision-making on risk transfer or self-
insurance

3. Enhanced underwriting procedures for insurers

4. Tailored cyber insurance coverage based on specific
risk profiles

This approach optimizes risk mitigation strategies,
benefiting both insured parties and insurers by align-
ing cyber insurance with precise risk exposure assess-
ments and company-specific risk management strate-
gies.
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