A Neural Architecture Search CNN for Alzheimer’s Disease Classification

ECT]

=——=Association

ECTI Transactions on Computer and Information Technology
Journal homepage: https://ph01.tci-thaijo.org/index.php/ecticit/
Published by the ECTI Association, Thailand, ISSN: 2286-9131

A Neural Architecture Search CNN for Alzheimer’s Disease
Classification

Nicodemus Songose Awarayi', Frimpong Twum?, James Ben Hayfron-Acquah?®
and Kwabena Owusu-Agyemang®

ABSTRACT

The evolution of automated machine learning (AutoML) is gradually
reengineering the design of deep learning architectures for various imaging
tasks. AutoML effectively develops model architectures and tunes hyper-
parameters through neural architecture search (NAS). Deep learning model
architecture design is generally considered a tedious and time-consuming
task that requires mastery skills to develop robust and better-performing
models for imaging tasks. Again, the model’s hyperparameters must be
well-tuned to ensure optimal performances, which can be tedious and time-
consuming if the hyperparameters are manually selected; using existing
hyperparameter optimization algorithms can be expensive regarding re-
sources. This study addresses these challenges in developing an optimal
convolutional neural network (CNN) for classifying Alzheimer’s (AD). The
study, therefore, adopted a NAS approach to generate a CNN model ar-
chitecture using a customized search space comprising only CNN patterns
implemented with a NAS framework. The search was done for ten (10)
trials, yielding a CNN architecture with an accuracy of 95.85% and a loss
of 0.22. Training the model with a 10-fold cross-validation approach using
a 0.0009 learning rate for 150 epochs improved the model’s performance.
The model recorded 97.17% accuracy, 97.21% precision, 97.14% recall, and
a 0.99 area under the curve (AUC) in classifying AD as one of AD, mild
cognitive impairment (MCI), and normal control (NC). The model ob-
tained 98.06%, 98.66%, and 98.62% accuracy on binary classes of AD/NC,
AD/MCI, and NC/MCI, respectively. The model generally showed robust-
ness and better performance than existing CNN architectures.
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1. INTRODUCTION

learni h.
Convolutional neural network (CNN) has been pri- CATTINE Tesearce

accuracy has been one of the main problems in deep

marily used in analyzing image data in various ways,
such as classification [1]-[3], prediction [4]-[6], ob-
ject detection [7]-[9], image segmentation [10]-[13]
and many more. CNNs have contributed to solv-
ing several research problems in various domains, in-
cluding medical imaging for computer-aided diagno-
sis [14]-[16], plant disease detection [17]-[19], robotic
[14], [20], [21] and many more. In these tasks, it is
pertinent to have very accurately trained models to
achieve optimal benefits from artificial intelligence so-
lutions such as [22], [23]; therefore, improving model

Researchers have identified several approaches to
attaining enhanced model performance in terms of ac-
curacy, with some focusing on building novel model
architectures such as ResNet [24], MobileNet [25],
VGG16 [26], and many others. Some have employed
techniques such as data augmentation [27]-[29], rig-
orous data preprocessing [30], [31], and data sampling
techniques [32] to improve the predictive accuracy of
deep learning models.

Aside from considering these techniques, there is
again a tussle in selecting optimal hyperparameters
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for the model. Tuning hyperparameters of the model
impacts the model’s performance, hence the need to
carefully select these hyperparameters [33], [34]. Hy-
perparameters are model variables that the model re-
lies on during training to learn data examples, which
include the learning rate, batch size, optimizers, num-
ber of epochs and others depending on the selected
model. For instance, the learning rate helps update
the weights and bias of a neural network to reduce the
training loss and increase the model accuracy. The
batch size indicates the number of examples used in
forward and backward propagation during training.
The model trains well when these parameters are cor-
rectly tuned, producing good results. Hyperparam-
eter tuning can be a problem in achieving accurate
models if the optimal hyperparameter values are not
selected; as such, most researchers use various ways
of dealing with them. Some researchers rely on a
try-and-error approach, and others use hyperparame-
ter optimization algorithms, which are expensive and
time-consuming.

Therefore, developing good-performing CNN mod-
els is an excessively cumbersome activity. A CNN
model consists of one to many layers stacked together,
each with several parameters. The developers must
make several decisions, including the number of layers
and blocks, how the layers are stacked, the number of
filters in a layer, and all other vital hyperparameters.

There has been an attempt to automate these pro-
cesses using neural architecture search (NAS), a sub-
sidiary of automated machine learning. NAS aids
model development by searching a search space using
a search algorithm to automate and eliminate manual
model development processes [35]. The search algo-
rithms recursively search the search space compris-
ing various architectures or components of a model
to formulate a novel model evaluated using an eval-
uation criterion. NAS models have been applied to
various image classification tasks [36]—[38], image seg-
mentation [39], and many more, which, in most cases,
produce competitive results compared to some state-
of-the-art manually developed models.

Though NAS models have shown prominence in
image segmentation and classification tasks in some
medical imaging applications, work still needs to be
done on using NAS-generated models to classify AD
on image datasets. Our search identified a single
study [40] that explored NAS with multimodal fusion
to classify AD from spontaneous speech. The study
used the DARTS model to search for the NAS CNN
model from a speech-recorded AD dataset. Their

method recorded an accuracy of 91.66% in detecting
AD.

Therefore, the motivation of this work is to auto-
mate the development of a CNN model architecture
for classifying AD by leveraging neural architecture
search, which addresses some of the challenges of de-
veloping and tuning model hyperparameters. The

approach deployed in this study showed uniqueness
as NAS is yet to be used to develop AD classifica-
tion models. No existing work has employed NAS to
generate a CNN model for classifying AD using an
image dataset. The main contribution of this study
includes:

e We designed an automated CNN model using
the NAS framework to classify AD. The search
algorithm was configured on a customized CNN
patterns search space.

e A k-fold cross-validation technique sampled the
data used to train the CNN model, further im-
proving its accuracy and significantly boosting
its performance.

The remainder of the study is as follows: Section

2 presents a literature review, delving into current
methods of AD classification. In Section 3, we intro-
duce our proposed method, detailing its implemen-
tation and the criteria for its evaluation. Section 4
presents the results of our model’s evaluation. Sec-
tion 5 offers a discussion, comparing our results with
existing methods. Finally, Section 6 is the conclusion
of the study.

2. LITERATURE REVIEW

Xin et al. [41] contributed to early AD diagno-
sis by proposing a classifier based on CNN and a
swin-transformer. The model could transform 3D
data into 2D features, enhance generalizability, and
train and learn effectively. The model was trained on
the AD Neuroimaging Initiative (ADNI) dataset and
tested on the AIBL datasets, recording an accuracy
of 92.8%.

Thangavel et al. [42] designed an EAD-DNN, an
early AD classifier with the ResNet50 architecture,
which acquires vital information from the network
level. The study also adopted a modified Adam op-
timizer to choose the best features from the image
dataset. The model recorded 98% accuracy in pre-
dicting AD.

Ambili et al. [43] implemented another method
based on label propagation involving deep learning to
classify AD effectively and recorded 97% accuracy on
multiclass. Similarly, the work conducted by Davu-
luri et al. [44] using the VGG19 model also recorded
87% accuracy in classifying AD.

Agarwal et al. [45] implement an effective method
using a proposed fusion of end-to-end and transfer
learning approaches to automate the diagnosis of AD.
The approach obtained a test accuracy of 87.38% on
multiclass classification and 93.10% on binary classes
of mild cognitive impairment (MCI) and AD classes.

Long et al. [46] built a model to predict AD based
on quantifying magnetic resonance imaging (MRI)
deformation. The method computed and analyzed
the regional morphological differences in the brain be-
tween the AD and MCI groups. The model recorded
96.5% accuracy in distinguishing AD from normal
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controls (NC) and 88.99% on MCI versus AD.

Marzban et al. [47] used a CNN model to diagnose
AD from tensor images. Aiming for a robust classi-
fication of AD and MCI against NC, they utilized a
cost-effective network with a shallow architecture. A
ten-fold cross-validation approach to train and test
the model obtained 93.5% and 79.6% accuracy for
AD/NC and MCI/NC, respectively.

Punjabi et al. [48] employed a modality fusion
approach using a CNN model, combining MRI and
Positron Emission Tomography (PET) images. This
study illuminated the benefits of modality fusion
for future deep learning models in AD classification,
achieving 92.34% accuracy with a 1.95% standard de-
viation.

Shanmugam et al. [49] used a pre-trained deep-
learning model to aid AD detection. The study fo-
cused on detecting various stages of MCI and AD
by using neuroimages with transfer learning. Differ-
ent pre-trained models such as ResNet, AlexNet, and
GoogleNet were deployed in the experiment, record-
ing accuracy of 97.51%, 94.08%, and 96.39%, respec-
tively.

Shamrat et al. [50] also deployed a pre-trained
model to predict AD. The approach employed an im-
age enhancement algorithm to preprocess the dataset
and data augmentation to manage unbalanced data.
The training and evaluation of the chosen pre-
trained models, MobileNetV2, AlexNet, ResNet50,
and InceptionV3, attained test accuracies of 78.84%,
86.85%, 78.87%, 80.98%, and 96.31%, respectively.

Srinivasan et al. [51] introduced a DHO-based pre-
trained CNN model, utilizing structural MRI data to
combine automatic hippocampus segmentation with
AD categorization. They employed a deer hunting
optimization algorithm for hyperparameter selection
and optimization. Their model achieved 96% accu-
racy in binary classification and 93% in multiclass
categorization.

Hajamohideen et al. [52] proposed a four-way AD
classification using a deep Siamese CNN with a triple-
loss function. They implemented both pre-trained
and non-pre-trained CNNs for image transformation.
The model achieved 91.83% and 93.85% accuracy on
the ADNI and OASIS datasets.

Asgharzadeh-bona et al. [53] presented an AD
classification technique using brain MRI transforms
and deep CNN features. They demonstrated that
feature-level fusion using EfficientNet-B7 and the
ANN classifier was the most effective, achieving ac-
curacies of 82.7%, 89.7%, and 84.3% for CN/MCI,
CN/AD, and MCI/AD, respectively.

Sethi and Ahuja [54] implemented VGG19 and
ResNet50 pre-trained models for AD classification.
The experimental results proved that VGG19 per-
formed better than ResNet50, with an accuracy of
93.89% and 92.89% for AD/NC and NC/MCI, re-
spectively.

Raghul and Kasim [55] developed a dual-tree com-
plex wavelet transform-based AD classification. To
evaluate their performance, the study compared sup-
port vector machine (SVM) and artificial neural net-
works (ANN) models. The SVM performed better,
with an accuracy of 96.3%

Samantha et al. [56] achieved 91.65% accuracy
in detecting early-stage AD using an image enhance-
ment filter combined with CNN. They applied a ran-
dom up sampler and Gaussian filter to the images and
then constructed and trained a simple CNN classifier
with the processed images. Joshi et al. [57] developed
a multilabel classifier for AD using the DenseNet-169
architecture. This model, trained on an MRI im-
age database containing images of patients diagnosed
with AD, achieved an accuracy of 91.80%.

Lu et al. [58] employed the ConvNeXt network
to classify AD by extracting features from AD im-
ages. They further parameterized the subject’s iden-
tity information using Dynamic Multilayer Percep-
tron (DMLP) and mapped it onto the image features
for enhancement. This approach achieved a 78.95%
accuracy rate.

Kaur et al. [59] introduced an AD detection
method using a weighted K-nearest neighbour (KNN)
classifier and compared it to a medium KNN classi-
fier. The weighted KNN classifier reported a mean
accuracy of 96.59%, while the medium KNN reached
94.68%.

Wen et al. [60] presented a fine-grained classifica-
tion for AD using a wavelet convolution unit network.
They introduced a unique wavelet convolution unit to
integrate wavelet analysis with standard convolution
operations for more efficient deep feature extraction.
This novel network achieved an impressive 97.89%
accuracy in AD classification.

Archana and Kalirajan [61] also employed a deep-
learning approach to classify brain neuroimages into
MCI, AD, and CN. The results showed the CNN
model classifying images with 95.82% accuracy.

Xiao Liu et al. [62] developed a neural architecture
search (NAS) model capable of segmenting and clas-
sifying brain tumours. This model features a nested
transformer U-shape NAS network for segmentation,
which predicts tumours from multimodal MRI im-
ages. Additionally, it incorporates multiscale features
in the encoder of the segmentation model, serving as
input features for classification. The model achieves
a classification accuracy of 0.941.

Ji and Wang [63] designed a CNN architecture
model that outperforms some state-of-the-art man-
ually designed CNN models for classifying functional
brain networks. Their CNN model is automated us-
ing a particle swarm optimization algorithm devel-
oped based on a three-phase procedure. This pro-
cedure includes individual expression, which extracts
brain topological features with a convolutional layer,
an evaluation phase that assesses the previous phase,
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Sample of ADNI MRI dataset of AD/MCI/NC.
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Fig.2: Proposed approach for training and testing the NAS model.

and an update phase that optimizes the individuals
in the particle swarm.

A cross-task NAS model by [64] automated the
network structure design across tasks for detect-
ing electroencephalogram (EEG) signals. This NAS
model deployed an efficient search space for cross-
tasks and a search method that effectively addresses
the challenges of EEG signal processing. Ma et al.[65]
also used NAS to design a CNN model to classify ma-
lignant and benign lesions using cone-beam CT im-
ages. Their proposed model performed significantly
better than a tuned ResNet-50 implemented in their
study.

3. METHOD AND MATERIALS
3.1 Subjects/Datasets

The dataset was obtained from the ADNI database
[66], a public access control data repository. This
repository was established through a public-private
collaboration to slow the progression from MCI to
AD using MRI, PET, and other biomarkers. Initially,
the images were in DICOM format and subsequently
converted to JPG. Three class labels were collected
and used in the experiment, comprising 1581 AD im-
ages, 1,310 MCI images, and 1,591 NC images. Each
image was initially dimensioned at 256 x 256 pixels
and later resized to 64 x 64 pixels. Fig. 1 presents
sample images of the dataset.



A Neural Architecture Search CNN for Alzheimer’s Disease Classification 547

DATASET SEARCH SPACE

SEARCH ALGORITHM

EXPORTED MODEL

EVALUATION § §
MODEL ; ;

Fig.3: Neural architecture search procedure for selecting the CNN model.

Again, a Python script generated more data to
augment the existing data and increase the dataset’s
volume. The script used rotation and flipping tech-
niques to create the augmented dataset, increasing
the AD images to 9486, the MCI to 7860, and the
NC images to 9546.

3.2 Method

This study explores using NAS to eliminate the dif-
ficulties in model architecture design, time required
in model development, manual tuning of hyperpa-
rameters, and applying the same to AD classifica-
tion. The study, therefore, leveraged the AutoK-
eras NAS framework to automate the design of a
CNN model for the classification. AutoKeras is an
automated machine learning (AutoML) library that
streamlines model selection and hyperparameter tun-
ing [67]. The training and assessment of the auto-
mated CNN model used the K-fold cross-validation
method. The technique partitions the dataset into
K-folds; one-fold is used for testing, while the rest
are for training. Fig.2 indicates the detailed outline
of the method, including techniques such as data aug-
mentation, k-fold data split, model training, and eval-
uation.

3.3 Model Generation

This study used a NAS approach to build an auto-
mated CNN model using the autoKeras NAS frame-
work. Building a NAS model consists of constructing
a search space, searching the search space to con-
struct a model, and then evaluating the model us-
ing an evaluation criterion to select the best model.
The search space includes a custom search space with
CNN operators for the search process. When select-
ing a model, the autoKeras library relies on a series of
carefully constructed and in-built search spaces com-
prising existing state-of-the-art deep learning models.
The search algorithm implemented for the NAS task
is a novel algorithm inspired by the hill-climbing al-
gorithm.

In designing the automated model, the NAS frame-
work learns from the input dataset and the search
space to generate a suitable NAS model with tuned
hyperparameters. The hill-climbing-inspired search
algorithm carefully examines the search space to con-
struct and evaluate a model over fewer epochs. The

experiment runs recursively, corresponding to the
number of trials indicated. The best model is selected
and exported at the end of the trials. The diagram
in Fig. 3 depicts the model’s selection process.

3.4 Experiment Setup

The experiment was configured and run on a Win-
dows 10 local machine. The machine has an NVIDIA
GeForce GTX 1060 Graphic Processing Unit (GPU)
with 8 GB of memory allocation. The model was
implemented in Python using the TensorFlow frame-
works.

3.5 Evaluation Metrics

Evaluating a deep learning model during training
is essential to gauge its performance on data it has not
seen. Several metrics can quantify a model’s perfor-
mance and help distinguish between models. In this
study, we employed evaluation metrics like accuracy,
precision, and recall derived from the true positives
(TP), true negatives (TN), false positives (FP), and
false negatives (FN) of the model’s confusion matrix.
TP refers to the number of positive class labels ac-
curately predicted as positive, TN signifies those cor-
rectly identified as negatives, FP indicates negatives
mistakenly labelled as positives, and FN denotes pos-
itives incorrectly labelled as negatives.

The accuracy metric presented in (1) aggregates
the model’s correctly predicted labels.

TP+TN (1)
TP+TN+FP+FN

As shown in (2), precision is the ratio of true posi-
tives to the total number of predictions by the model.

accuracy =

TP 2)
Tp+ TN

Recall calculates the true positive rates as pre-
sented in (3).

precision =

TP
recall = m (3)

An additional metric, the area under the curve
(AUC), was utilized to evaluate the model. The AUC
represents the integral of the receiver-operating char-
acteristic curve (ROC). It corresponds to the prob-
ability that a randomly chosen positive sample is
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ranked higher than a randomly chosen negative sam-
ple. Since the ROC curve is formed by successively
connecting coordinates, (4) calculates the AUC.

m—1

Y (@i — i) (yi +yis1)

=1

AUC = (4)

DN | =

During the neural architecture search to design the
CNN model, the best model was selected based on the
loss function result, and the model that recorded the
most minor loss was selected. The search algorithm
generates several models based on the number of tri-
als specified and the best model chosen based on the
loss.

4. RESULTS

This study sought to explore NAS to generate an
automated model for classifying AD into three class
labels: AD, MCI and NC. This experiment used ten
(10) trials to produce the best version of a CNN ar-
chitecture. Each trial produces a unique CNN archi-
tecture with autotuned hyperparameters. The best
architecture presented in Table 1 recorded a loss of
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Table 1: The layout of the best NAS CNN model.
Layer(type) Output Shape Parameters
Input_1(input (None, 46,64,3) 0
Layer)

Cast to float32() (None, 46,643) | 0
Conv2d(Conv2D) (None, 62,62,32) | 896
Conv2d _1(Conv2D) | (None, 60,60,32) | 9248
Max_pooling2d() (None, 30,30,32) | 0
Dropout (Dropout) (None, 30,30,32) | 0
Conv2d 2(Conv2D) | (None, 28,28,32) | 9248
Conv2d 3(Conv2D) | (None, 26,26,16) | 4624

Max_pooling2d 1()

(None, 13,13,16) | 0

Dropout _1(Dropout)

(None, 13,13,16) | 0

Flatten (Flatten) (None, 2704) 0
Dense (Dense) (None, 64) 173120
Re lu(ReLu) (None, 64) 0
Dense 1 (Dense) (None, 32) 2080
Re lu 1(ReLu) (None, 32) 0
Dense 2 (Dense) (None, 3) 99
Classification_head | (None, 3) 0

(Soft max)

Total parameters 199,315
Trainable parameters 199,315
Non-trainable parameters 0

Table 2: Test results on classifying AD, MCI and NC.

Fold Loss Accuracy Precision Recall AUC
(ACC) (%) (Prec) (%) (Rec) (%)

1 0.14 97.51 97.54 97.43 0.99
2 0.17 97.23 96.99 96.93 0.99
3 0.16 97.38 96.86 96.82 0.99
4 0.19 96.82 97.16 97.14 0.99
5 0.15 97.29 97.08 97.01 0.99
6 0.20 97.02 97.32 97.27 0.99
7 0.16 97.14 96.89 96.80 0.99
8 0.18 96.86 97.41 97.34 0.99
9 0.19 96.93 97.25 97.21 0.99
10 0.15 97.49 97.58 97.49 0.99
Average 0.17 97.17 97.21 97.14 0.99

Standard deviation 0.02 0.24 0.24 0.23 0.001

Model Accuracy Model Loss
104 124 — train

0.9

Accuracy
=] o
< ©
s

o
o
L

0.51

0.4 4

—— test

1.01

0.8 1
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Fig.4: Training accuracy and loss
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curve of the NAS model.
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Table 3: Test results on binary classification of Alzheimer’s disease.

549

Fold AD vs NC AD vs MCI MCI vs NC
Loss ACC | AUC Loss ACC AUC Loss ACC AUC
1 0.09 98.19 | 0.99 0.09 98.50 0.99 0.06 98.97 1.00
2 0.08 98.40 | 0.99 0.10 98.47 0.99 0.10 98.68 0.99
3 0.13 97.82 | 0.99 0.10 98.67 0.99 0.10 98.68 0.99
4 0.10 98.06 | 0.99 0.09 98.59 0.99 0.09 98.39 0.99
5 0.14 97.98 | 0.99 0.12 98.27 0.99 0.10 98.39 0.99
6 0.13 97.90 | 0.99 0.09 98.82 0.99 0.06 98.62 0.99
7 0.09 98.13 | 0.99 0.07 98.82 1.00 0.11 98.59 0.99
8 0.14 97.79 | 0.99 0.07 98.79 1.00 0.06 98.88 1.00
9 0.11 98.27 | 0.99 0.05 98.82 0.99 0.10 98.53 0.99
10 0.10 98.11 | 0.99 0.07 98.88 1.00 0.10 98.56 0.99
Average 0.11 98.06 | 0.99 0.09 98.66 0.99 0.09 98.62 0.99
Standard 0.02 0.19 | 0.002 | 0.02 0.19 0.001 0.02 0.18 0.002
deviation
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Fig.6: Predicted Alzheimer’s disease classification test samples. The green colour represents the true predic-
tion, and the red represents the false prediction.

Table 4: Comparative analysis of proposed model and existing models.

S/No. Models Classification
AD/MCI/NC AD/NC (%) AD/MCI (%) MCI/NC (%)
(%)
1 [40] - 91.66 - -
2 [41] 92.8
3 [42] - 98 - -
4 [43] 97.0 - - -
5 [45] 87.38 - 93.10 -
6 [44] 87 - - -
7 [50] 96.31 - - -
8 [53] - 89.7 84.3 82.7
9 [54] - 93.89 - 92.89
10 [59] - 96.59 - -
11 Proposed model 97.17 98.06 98.66 98.62

0.22 and an accuracy of 95.85%. Fig. 4 presents
the training accuracy and loss curve of the model.
The architecture comprises four convolutional lay-
ers, two max-pooling layers, dropouts, and two fully
connected layers. In the model architecture, every
two convolution layers pair with a max-pooling and
dropout operation. The convolution operations uti-
lized a three-by-three kernel filter, a valid padding, a
rectified linear unit (ReLU) activation and a stride of
1. The fully connected layers comprised two hidden
layers, each with a ReLLU activation.

The study uses a 10-fold cross-validation data sam-
pling technique to train and improve the model’s clas-
sification accuracy. This sampling technique effec-
tively uses all of the datasets in training and testing.
The 10-fold implies the model trains ten (10) times,
where, at each instance, 1-fold of the data split is

for testing. The model trains for 150 epochs with a
batch size of 112 and learning at a rate of 0.0009.
The test results for each iteration were recorded and
averaged to determine the model’s performance. Ta-
ble 2 presents the test results of the model. The re-
sults indicate that the model classifies the AD with
an accuracy of 97.17% and a standard deviation of
0.24, a precision of 97.21%, a recall of 97.14%, and
an AUC of 0.99. When the classes were binarized, the
model recorded an accuracy of 98.06%, 98.66%, and
98.62% for AD/NC, AD/MCI, and NC/MCI, respec-
tively. The detailed results of the binary classification
are in Table 3. Fig. 5 also presents the confusion ma-
trix of the various trained models. Fig.6 presents the
model’s prediction on a randomized test sample.
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5. DISCUSSION

In this study, we demonstrated using NAS in de-
veloping a CNN model for AD classification. NAS
presents a new dimension in model development, of-
fering the opportunity to automate the process of new
model development for various tasks such as image
classification, image segmentation, objection detec-
tion, and many more. Using NAS in model architec-
ture designs has significantly reduced the time and ex-
pertise required to develop competitive deep-learning
models. It has also proven effective in selecting hy-
perparameters for optimal model performance. We
implemented a NAS approach to generate a model for
classifying AD to address the difficulty in model de-
velopment, eliminating manual hyperparameter tun-
ing and reducing the time required to develop new ar-
chitectures. The results recorded in this experiment
from Table 2 and Table 3 demonstrate the ability of
the NAS to effectively perform an architecture search
for generating deep learning models with outstanding
performance.

Though NAS applications exist for various medi-
cal imaging tasks, exploring a NAS approach to clas-
sifying AD using an image dataset has yet to be
done. Chatzianastasis et al. [40] attempted to use
the NAS with multimodal fusion to predict AD from a
speech/audio dataset and made good headway. Their
method achieved an accuracy of 91.66% in identifying
two class labels, including AD and non-AD. Though
their method was used on a speech/audio dataset
as opposed to an image dataset, comparatively, our
proposed approach showed superior performances in
terms of the accuracy metric.

Comparing the proposed automated model with
existing manually designed CNN model architectures
showed that the NAS procedure can generate compet-
itive architectures for classifying AD. We compared
the works of [41]-][45], [50], [53], [54], and [59], who
manually created various CNN models to classify AD.
The comparative analysis presented in Table 4 in-
dicates the performance of the proposed NAS CNN
model against the existing manually designed models.
The results suggest that NAS effectively develops and
tunes new deep-learning models for AD and other im-
age classification tasks.

6. CONCLUSION

This study explored NAS for generating a convo-
lutional neural network for classifying AD. A cus-
tom CNN search space was designed and searched
using a NAS framework based on the hill-climbing
algorithm to generate the NAS CNN model. This
approach addresses the time-consuming challenges of
manually designing CNN models and optimizing hy-
perparameters. Using a 10-fold cross-validation to
train and evaluate the NAS-generated CNN model, it
achieved an accuracy of 97.17% in classifying AD into
three categories: AD, MCI, and NC. The model also

achieved accuracies of 98.06%, 98.66%, and 98.62%
for AD vs NC, AD vs MCI, and MCI vs NC, respec-
tively. These results surpass some existing manually
configured models for classifying AD, demonstrating
the effectiveness of NAS in automating model design.
Future studies will examine other NAS frameworks to
create a broad search space and explore new search
algorithms.
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