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ABSTRACT Article information:
Although the conventional relational database model (CRDB) is bene�cial
to model, design, and implement large-scale systems, it is limited to ex-
press and deal with uncertain and imprecise information. In this paper,
we introduce a new relational database model as an extension of CRDB
where relational attributes may take a value associated with a probabil-
ity interval, named IPRDB, for representing and handling uncertain and
imprecise information in practice. To build IPRDB, we employ three key
methods: (1) Probabilistic values of data types are proposed for expressing
uncertain and imprecise valued attributes; (2) the probabilistic interpreta-
tions of binary relations on sets and operators on probability intervals are
used for computing the uncertain degree of functional dependencies, keys,
and relations on value domains of attributes; and (3) the combination
strategies of probabilistic values are de�ned for developing new relational
algebraic operations. Then, fundamental concepts of the model, such as
schemas, probabilistic relations, and probabilistic relational databases, are
extended coherently and consistently with those of the conventional rela-
tional database model. A set of the properties of the basic probabilistic
relational algebraic operations is also formulated and proven. The built
IPRDB model can represent and manipulate e�ectively uncertain and im-
precise information in real-world applications.
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1. INTRODUCTION

As shown in [1], [2], and [3], the conventional rela-
tional database model (CRDB) is bene�cial to model,
design, and implement large-scale systems. Still,
it is limited to represent and handle uncertain and
imprecise information in practice. Currently, there
have been many non-conventional database mod-
els, including probabilistic relational database models
(PRDB), studied and built to overcome the limita-
tions of CRDB. For instance, in [4], authors proposed
a PRDBmodel to compute the uncertain membership
degree of each tuple in a relation, and in [5], authors
introduced another PRDB model that can compute
the uncertain degree of attribute values of each tu-
ple in a relation. Probabilistic database models also
have been used in many real applications, such as
the works in [6], [7], and [8]. Notably, in [6], proba-
bilistic queries were employed to express and handle

uncertain multidimensional data. In [7], probabilistic
databases were applied for detecting faulty sensors.
And in [8], queries over the relational cross model
were processed by using uncertain databases.

However, no model would be so universal that it
could include all measures and tackle all aspects of
uncertainty and imprecision of information in the real
world.

Probabilistic relational database models are devel-
oped and built as extensions of CRDB based on the
probability theory. There are two main classes of
PRDB models extended from the CRDB model. The
�rst one de�nes a probabilistic relation as a set of
tuples such that each tuple is associated with a prob-
ability to represent its uncertainty degree in the rela-
tion. The second one de�nes a probabilistic relation
as a set of tuples such that each tuple attribute is as-
sociated with a probability to express the uncertainty
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degree of the attribute value.

For the first PRDB model class, as the works in
[9-14], each tuple of a relation was associated with
a probability in the interval [0, 1] to represent the
uncertainty membership degree of that tuple for the
relation and the uncertainty degree of the attribute
values of a tuple inferred from the uncertainty mem-
bership degree of that tuple. However, in many nat-
ural situations, we do not know precisely the proba-
bility as a number in the interval [0, 1]. We can only
estimate it as an approximate number in a subinter-
val of [0, 1]. The extended models in [15-17] over-
came the shortcoming by associating each tuple with
a probability interval.

For the second PRDB model class, as in [18] and
[19], each value of an attribute was assigned to a prob-
ability in the interval [0, 1] to represent the uncertain
level for that attribute taking the value. More flex-
ibly and generally, in [20], each attribute was asso-
ciated with a probability distribution function on a
set of values to express the possibility that the at-
tribute might take one of the values of the set with a
distributed probability. However, in many real cases,
we cannot define precisely the probability distribution
function for each value in a set. We can only estimate
it to be an approximate number in a subinterval of
[0, 1]. The model in [21] overcame the restriction
by using a pair of lower and upper-bound probabil-
ity distribution functions to represent the possibil-
ity of an attribute taking a value in a set with a
computed probability interval from the distribution
function pair. The models in [22] and [23] extended
the model in [21] for uncertain multivalued attributes.
However, when the probabilistic relations have many
attributes, the number of generated probability dis-
tribution functions is too large to lead to low perfor-
mance in manipulating data of the models.

In this paper, we propose a new probabilistic rela-
tional database model, abbreviated to IPRDB, as an
extension of CRDB with interval probability valued
attributes for uncertain and imprecise information to
overcome the limitations of models in [20], [22], and
[23]. The proposed IPRDB model is consistent with
the CRDB model and more flexible than the models
in [20], [22], and [23] by using probability intervals
instead of probability single values and distribution
functions.

To build IPRDB, we adapt probabilistic values in
[24] with data types for representing uncertain and
imprecise valued attributes of relations, employ prob-
abilistic interpretations of binary relations on sets in
[25] and operators on probability intervals in [23], and
propose new combination strategies of probabilistic
values to define the probabilistic relational algebraic
operations for computing and querying uncertain and
imprecise information on IPRDB relations. The built
IPRDB model can represent and manipulate effec-
tively uncertain and imprecise information and it can

be applied to solve the real problems like [26].
The mathematical basis to build IPRDB is pre-

sented in Section 2. The IPRDB data model, includ-
ing the schema, relation, database, probabilistic func-
tional dependency, and the relational schema key is
introduced in Section 3. Section 4 introduces proba-
bilistic relational algebraic operations on IPRDB and
their properties. Section 5 presents the achieved re-
sults and discussions of the IPRDB model. Finally,
Section 6 concludes the paper and outlines further
research directions.

2. PROBABILITY DEFINITIONS AND NO-
TIONS

This section presents probability definitions and
notions as the mathematical bases to build IPRDB
for representing and handling uncertain and imprecise
information.

2.1 Probabilistic Values

The probabilistic value in [24] is adapted with data
types to express uncertain and imprecise valued at-
tributes in IPRDB as the following definition.

Definition 2.1 Let τ be a data type and D be the
domain of τ , a probabilistic value on the domain of τ is
a finite set of pairs {(v1, [l1, u1]), . . . , (vm, [lm, um])},
where vi ∈ D and 0 ≤ li ≤ ui ≤ 1, for every
i = 1, 2, . . . ,m.

Informally, a probabilistic value pv = {(v1, [l1, u1]),
. . . , (vm, [lm, um])} says that pv’s value is one mem-
ber of the set {v1, . . . , vm} and the probability
that pv’s value is vi lies in the interval [li, ui].
Thus, a probabilistic value represents both the un-
certainty of its value and the imprecision of the
probability of that value. A probabilistic value
pv = {(v1, [l1, u1]), . . . , (vm, [lm, um])} corresponds
with a probability distribution function p over
V = {v1, . . . , vm} such that p(vi) ∈ [li, ui] and∑

vi∈V p(vi) ≤ 1.

Example 2.1 Suppose a patient’s disease is diag-
nosed as hepatitis with a probability between 0.5 and
0.7 or cholecystitis with a probability between 0.3 and
0.5. Then, this information may be represented by
the probabilistic value {(hepatitis, [0.5, 0.7]), (chole-
cystitis, [0.3, 0.5])}.

We note that a probabilistic value can be denoted
by pv = {(v, I)|v ∈ D, I = [l, u] ⊆ [0, 1]}.

2.2 Probabilistic Interpretation of Binary Re-
lations on Sets

To compute the uncertain degree of relations on
attribute values in IPRDB, we use the probabilistic
interpretation of binary relations on sets in [25] as
below.
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Table 1: Definitions of probabilistic combination strategies.
Strategy Operators
Ignorance ([l1, u1]⊗ig [l2, u2]) = [max(0, l1 + l2–1),min(u1, u2)]

([l1, u1]⊕ig [l2, u2]) = [max(l1, l2),min(1, u1 + u2)]
([l1, u1]	ig [l2, u2]) = [max(0, l1–u2),min(u1, 1–l2)]

Independence ([l1, u1]⊗in [l2, u2]) = [l1.l2, u1.u2]
([l1, u1]⊕in [l2, u2]) = [l1 + l2–(l1.l2), u1 + u2–(u1.u2)]
([l1, u1]	in [l2, u2]) = [l1.(1–u2), u1.(1–l2)]

Positive correlation ([l1, u1]⊗pc [l2, u2]) = [min(l1, l2),min(u1, u2)]
(when e1 implies e2, or ([l1, u1]⊕pc [l2, u2]) = [max(l1, l2),max(u1, u2)]
e2 implies e1) ([l1, u1]	pc [l2, u2]) = [max(0, l1–u2),max(0, u1–l2)]
Mutual exclusion ([l1, u1]⊗me [l2, u2]) = [0, 0]
(when e1 and e2 are ([l1, u1]⊕me [l2, u2]) = [min(1, l1 + l2),min(1, u1 + u2)]
mutually exclusive) ([l1, u1]	me [l2, u2]) = [l1,min(u1, 1–l2)]

Definition 2.2 Let A and B be sets, U and V be
value domains, and θ be a binary relation from {=, 6=
,≤,≥, <,>,⇒}. The probabilistic interpretation of
the relation AθB, denoted by Pr(AθB), is a value in
[0,1] that is defined by:

1. Pr(AθB) = p(uθv|u ∈ A, v ∈ B), where A is a
subset of U , B is a subset of V and θ ∈ {=, 6=
,≤, <,≥, >} assumed to be valid on (U × V ),
p(uθv|u ∈ A, v ∈ B) is the conditional proba-
bility of uθv given u ∈ A and v ∈ B.

2. Pr(A ⇒ B) = p(u ∈ B|u ∈ A), where A and
B are two subsets of U, p(u ∈ B|u ∈ A) is the
conditional probability for u ∈ B given u ∈ A.

Intuitively, given propositions “x ∈ A” and “y ∈
B,” Pr(AθB) is the probability for xθy being true.
Meanwhile, Pr(A ⇒ B) is that, given a proposition
“x ∈ A” being true, Pr(A ⇒ B) is the probability
for “x ∈ B” being true.

We note that the probabilistic interpretation of bi-
nary relations in this definition can be applied to ele-
ments of U and V because each element in a set also
considered a subset of that set.
Example 2.2 Some probabilistic interpretations of
the set relations on the domain consisting of natural
numbers are computed as follows.
Pr({3, 4}={4, 5})=p(u=v|u∈{3, 4}, v∈{4, 5})=
0.25.
P r({3, 4}⇒{4, 5})=p(u ∈ {4, 5}|u ∈ {3, 4})=0.5.
P r(3 = 5) = p(3 = 5|3 ∈ {3}, 5 ∈ {5}) = 0.0.
P r(5⇒ {5, 6}) = p(u ∈ {5, 6}|u ∈ {5}) = 1.0.

2.3 Probabilistic Combination Strategies

In many real situations, the probability of an event
may not be defined or computed exactly [27-28].
Then, a probability interval can use instead of a pre-
cise single probability value. Let two events e1 and e2
have probabilities in the intervals [l1, u1] and [l2, u2],
respectively. Then, the probability intervals of the
conjunction event e1 ∧ e2, disjunction event e1 ∨ e2,
and difference event e1 ∧¬e2 can be computed by al-
ternative strategies. In this work, we employ the con-
junction, disjunction, and difference strategies given

in [24] as presented in Table 1, where ⊗, ⊕, and 	
denote the conjunction, disjunction, and difference
operators, respectively.

In the following sections, the notation [l1, u1] ⊆
[l2, u2] is used to denote l2 ≤ l1 and u1 ≤ u2. Also, a
single probability value p can be treated as the prob-
ability interval [p, p] and the operation p.[l, u] com-
puted as [p.l, p.u].

2.4 Conjunction, Disjunction, and Difference
of Probabilistic Values

For building probabilistic relational algebraic op-
erations in IPRDB, such as the projection, join, in-
tersection, union, and difference, we propose opera-
tions of the conjunction, disjunction, and difference
of probabilistic values as the basis for combining the
probability of uncertain and imprecise values of at-
tributes in outcome relations of these algebraic oper-
ations. First, the conjunction of probabilistic values
is defined as follows.
Definition 2.3 Let pv1 and pv2 be two probabilistic
values and ⊗ be a probabilistic conjunction strategy.
The conjunction of pv1 and pv2 under ⊗, denoted
by pv1 ⊗ pv2, is the probabilistic value pv defined by
pv = {(v, I1 ⊗ I2)|(v, I1) ∈ pv1, (v, I2) ∈ pv2}.
Example 2.3 Let pv1 = {(hepatitis, [0.4, 0.6]),
(cholecystitis, [0.4, 0.6])} and pv2 = {(hepatitis, [1.0,
1.0])} be probabilistic values, then pv1 ⊗in pv2 under
the independence probabilistic conjunction strategy
is the probabilistic value pv = {(hepatitis, [0.4, 0.6])}.

Next, the disjunction and difference of probabilis-
tic values are defined as follows.
Definition 2.4 Let pv1 and pv2 be two probabilis-
tic values and ⊕ be a probabilistic disjunction strat-
egy. The disjunction of pv1 and pv2 under ⊕, de-
noted by pv1 ⊕ pv2, is the probabilistic value pv de-
fined by pv = {(v, I1)|(v, I1) ∈ pv1 and ¬∃I2, (v, I2) ∈
pv2}∪ {(v, I2)|(v, I2) ∈ pv2 and ¬∃I1, (v, I1) ∈ pv1}∪
{(v, I1 ⊕ I2)|(v, I1) ∈ pv1 and (v, I2) ∈ pv2}.
Example 2.4 Let pv1 = {(hepatitis, [0.2, 0.5]),
(cholecystitis, [0.3, 0.6])} and pv2 = {(hepatitis, [0.3,
0.5]), (pancreatitis, [0.2, 0.6])} be probabilistic val-
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Table 2: Relation PATIENT.
P ID P NAME P AGE P DISEASE D COST

P104 John {(65, [1, 1])} {(lung cancer, [0.5, 0.5]), {($30, [0.3, 0.6]), ($35, [0.4, 0.7])}
(tuberculosis, [0.5, 0.5])}

P218 Paul
{(43, [0.5, 0.5]), {(hepatitis, [0.3, 0.5]), {($6, [0.4, 0.6]), ($7, [0.4, 0.6])}
(44, [0.5, 0.5])} (cirrhosis, [0.5, 0.7])}

P325 Helen {(36, [1, 1])} {(duodenitis, [0.5, 0.5]), {($8, [0.5, 0.5]), ($9, [0.5, 0.5])}
(gastritis, [0.5, 0.5])}

P412 Anne {(15, [1, 1])} {(bronchitis, [1, 1])} {($7, [1, 1)}

P426 George {(36, [1, 1])} {(duodenitis, [0.4, 0.5]), {($8, [0.3, 0.5]), ($9, [0.5, 0.7])}
(gastritis, [0.5, 0.6])}

ues, then pv1 ⊕in pv2 under the independence
probabilistic disjunction strategy is the prob-
abilistic value pv = {(cholecystitis, [0.3, 0.6]),
(pancreatitis, [0.2, 0.6]), (hepatitis, [0.44, 0.75])}.
Definition 2.5 Let pv1 and pv2 be two probabilis-
tic values and 	 be a probabilistic difference strat-
egy. The difference of pv1 and pv2 under 	, de-
noted by pt1 	 pt2, is the probabilistic value pv de-
fined by pv = {(v, I1)|(v, I1) ∈ pv1 and ¬∃I2, (v, I2) ∈
pv2} ∪ {(v, I1 	 I2)|(v, I1) ∈ pv1 and (v, I2) ∈ pv2}.

3. IPRDB DATA MODEL

IPRDB data model is a structure with fundamen-
tal concepts such as the schema, probabilistic rela-
tion, and database to represent data and relationships
between them.

3.1 IPRDB Schemas and Relations

An IPRDB schema consists of a set of relational at-
tributes respectively associated with domains that de-
fine the probabilistic values of those attributes. The
IPRDB schema is an extension of the CRDB schema
with uncertain and imprecise valued attributes. The
IPRDB schema is defined as follows.
Definition 3.1 An IPRDB schema is a pair R =
(U , ℘), where

1. U = {A1, A2, . . . , Ak} is a set of pairwise dif-
ferent attributes.

2. ℘ is a function that maps each attribute A ∈
U to the set of all probabilistic values on the
domain of A.

For simplicity, we can use the notation R(U , ℘)
and R to denote R = (U , ℘). The domain of A is
denoted by dom(A).

An IPRDB relation or a probabilistic relation of
IPRDB is an instance of an IPRDB schema, where
each relational attribute is associated with a proba-
bilistic value to represent an uncertain and imprecise
value that the attribute may take, as defined below.
Definition 3.2 Let U = {A1, A2, . . . , Ak} be a
set of k pairwise different attributes. An IPRDB
relation r over the schema R(U , ℘) is a finite
set of elements {t1, t2, . . . , tn}, where each ti =
(pvi1, pvi2, . . . , pvik) is a list of k probabilistic val-
ues pvij = {(vij , [lij , uij ])|vij ∈ dom(Aj), [lij , uij ] ⊆

[0, 1]}, j = 1, 2, . . . , k such that pvij ∈ ℘(Aj) for every
i = 1, 2, . . . , n.

Each element ti in the relation r over R(U , ℘) is
called a tuple on U . The probabilistic value pvij rep-
resents the uncertain and imprecise value of the at-
tribute Aj of the tuple ti. We write ti.Aj or ti[Aj ]
to denote pvij and [ti] to replace (Vi1, Vi2, . . . , Vik),
where Vij = {vij |(vij , [lij , uij ]) ∈ pvij}. For each set
of attributes H ⊆ {A1, A2, . . . , Ak}, the symbol ti[H]
denotes the rest of the tuple ti after eliminating the
values of attributes not belonging to H. In addition,
if we only care about a unique relation over a schema
then we can unify the relation’s name and its schema’s
name.

Example 3.1 In the database about patients at
the clinic of a hospital, a simple IPRDB rela-
tion, named PATIENT, over the IPRDB schema
PATIENT({P ID, P NAME, P AGE, P DISEASE,
D COST}, ℘) can be given as Table 2.

In the relation, the attributes P ID, P NAME,
P AGE, P DISEASE, and D COST describe the in-
formation about the identifier, name, age, disease,
and daily treatment cost of each patient, respectively.
In reality, while diagnosing, the physicians can be un-
sure of the disease of patients. Also, the daily treat-
ment cost for patients is not sure even the patients
learn about their diseases. For instance, the infor-
mation of the patient John says that John’s age is
65, the patient’s disease may be lung cancer or tu-
berculosis with a probability of 0.5, and John has to
pay the daily treatment cost of $30 with a probabil-
ity between 0.3 and 0.6 or $35 with the probability
between 0.4 and 0.7. Note that, for each attribute A
in the schema PATIENT, ℘(A) includes all proba-
bilistic values on the domain of A (Definition 3.1). In
addition, for simplicity, each probabilistic value {(v,
[1, 1])} will be represented as a single value v (such as
probabilistic values for the attribute P ID). Because
if an attribute takes such a probabilistic value, then it
only takes a value v with the probability of 1.0 (Def-
inition 2.1). In other words, the attribute certainly
takes the value v.

The IPRDB relational database is an extension of
CRDB with IPRDB schemas and relations as defined
below.
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Definition 3.3 An IPRDB relational database over
a set of attributes is a set of IPRDB relations corre-
sponding to the set of their IPRDB schemas.

3.2 IPRDB Functional Dependencies

Functional dependencies play an essential role in
CRDB. The probabilistic functional dependent con-
cept in IPRDB is extended from that in CRDB [3]
with probabilistic valued attributes. We first define
the probability measure to determine the equal de-
gree of two probabilistic values of the same attribute
for two different tuples in an IPRDB relation.

Definition 3.4 Let R(U , ℘) be an IPRDB schema,
r be a relation over R and t1 and t2 be two tuples
in r,A be an attribute of U , and ⊗ be a probabilis-
tic conjunction strategy. The probability interval for
the values of the attribute A of two tuples t1 and t2
to be equal under ⊗, denoted by p(t1.A =⊗ t2.A),
is ⊕m

i=1⊕n
j=1 (([l1i, u1i] ⊗ [l2j , u2j ]).P r(v1i = v2j)),

where t1.A = {(v11, [l11, u11]), . . . , (v1m, [l1m, u1m])},
t2.A = {(v21, [l21, u21]), . . . , (v2n, [l2n, u2n])} and ⊕ is
the mutual exclusion probabilistic disjunction opera-
tor.

The probabilistic functional dependency in IPRDB
is an extension of the functional dependency in CRDB
with uncertain and imprecise valued attributes as be-
low.

Definition 3.5 Let R = (U , ℘) be an IPRDB
schema, r be any relation over R,⊗ be a probabilis-
tic conjunction strategy, X and Y be two non-empty
subsets of U . An IPRDB functional dependency of
Y on X under ⊗, denoted by X →⊗ Y , holds if and
only if

∀t1, t2 ∈ r : ⊗A∈Xp(t1.A =⊗ t2.A) ≤ ⊗A∈Y p(t1.A =⊗ t2.A).

One can see that this definition subsumes that of
CRDB. Also, it is easy to see that for every IPRDB
schema R(U , ℘), then U →⊗ Y with Y ⊆ U under
all probabilistic conjunction strategies.

Example 3.2 In every relation r over the schema
PATIENT with the set of attributes U = {P ID,
P NAME, P AGE, P DISEASE, P COST} in Exam-
ple 3.1, the values of the attribute P ID that de-
scribe the identifiers of patients are single and pair-
wise different. Thus, for two tuples t1, t2 ∈ r and
an attribute A ∈ U , then p(t1.A =⊗ t2.A) ≥ 0
and p(t1.P ID =⊗ t2.P ID) = 0. So, p(t1.P ID =⊗
t2.P ID) ≤ ⊗A∈Y p(t1.A =⊗ t2.A) with Y ⊆ U , by
Definition 3.5, there is the IPRDB functional depen-
dency P ID →⊗ Y in the schema PATIENT under
all probabilistic conjunction strategies.

As in CRDB [1-3], the keys of a schema in IPRDB
are the basis for recognizing a tuple of a probabilis-
tic relation. In the model and management systems
of the conventional relational database [3], key at-
tributes cannot take the null value. Similarly, in
IPRDB, we assume that the value of each key at-

tribute is always definite and unique. The concept
of the key of IPRDB schemas is defined using the
probabilistic functional dependency as follows.
Definition 3.6 Let R(U , ℘) be an IPRDB schema,
r be any relation over R, and ⊗ be a probabilistic
conjunction strategy. A set of attributes K ⊆ U is
a key of R under ⊗ if the value of the attributes of
K is definite and there is a probabilistic functional
dependency K →⊗ U such that there does not exist
any proper subset of K holding this property.
Example 3.3 In the relation PATIENT above, if we
assume that each patient has a unique identifier cor-
responding to the value of the attribute P ID, then
P ID is a key of the schema PATIENT under all
probabilistic conjunction strategies.

4. IPRDB ALGEBRA

As the CRDB algebra [1-3], the IPRDB algebra
is a set of basic relational algebraic operations such
as the selection, projection, Cartesian product, join,
intersection, union, and difference. The IPRDB alge-
bra or the probabilistic relational algebra, including
basic probabilistic relational algebraic operations, is
an extension of the CRDB algebra with probabilistic
values of relational attributes to manipulate, handle,
and query uncertain and imprecise information on the
IPRDB data model.

4.1 Selection

The selection operation of IPRDB is an extension
of that of CRDB with uncertain and imprecise val-
ued attributes. Before defining the selection opera-
tion, we introduce the formal syntax and semantics
of selection expressions and conditions as below.
Definition 4.1 Let R be an IPRDB schema, and X
be a set of relational tuple variables. Then, selection
expressions are inductively defined and have one of
the following forms:

1. x.Aθc, where x ∈ X,A is an attribute in R, θ
is a binary relation from {=, 6=,≤,≥, <,>,⇒},
and c ∈ dom(A).

2. x.A1θ⊗x.A2, where x ∈ X,A1, and A2 are two
attributes in R, and ⊗ is a probabilistic con-
junction strategy.

3. α⊗ β, where α and β are selection expressions
on the same relational tuple variable, and ⊗ is
a probabilistic conjunction strategy.

4. α⊕ β, where α and β are selection expressions
on the same relational tuple variable, and ⊕ is
a probabilistic disjunction strategy.

Example 4.1 Consider the schema PATIENT in
Example 3.1. The selection of “all patients who get
cirrhosis and pay the daily treatment cost over 5
USD” can be expressed by the selection expression
x.P DISEASE = cirrhosis ⊗ x.D COST > 5.

Now, selection conditions in IPRDB are formally
defined based on selection expressions as follows.
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Table 3: Relation σϕ(PATIENT).
P ID P NAME P AGE P DISEASE D COST

P218 Paul
{(43, [0.5, 0.5]), {(hepatitis, [0.3, 0.5]), {($6, [0.4, 0.6]), ($7, [0.4, 0.6])}
(44, [0.5, 0.5])} (cirrhosis, [0.5, 0.7])}

Definition 4.2 Let R be an IPRDB schema. Then,
selection conditions are inductively defined as follows:

1. If α is a selection expression and [l, u] is a subin-
terval of [0, 1], then (α)[l, u] is a selection con-
dition.

2. If ϕ and ω are selection conditions on the same
tuple variable, then ¬ϕ, (ϕ ∧ ω), (ϕ ∨ ω) are se-
lection conditions.

Example 4.2 Given the schema PATIENT in Ex-
ample 3.1, the selection of “all patients who are over
40 years old with a probability of at least 0.8 or
have tuberculosis and pay the daily treatment cost
not less than 30 USD with a probability between 0.5
and 0.6” can be done using the selection condition
(x.P AGE > 40)[0.8, 1] ∨ (x.P DISEASE = tubercu-
losis ⊗ x.D COST ≥ 30)[0.5, 0.6].
Definition 4.3 Let R be an IPRDB schema, r be a
relation over R, x be a tuple variable, and t be a tu-
ple in r. The probabilistic interpretation of selection
expressions for R, r, and t, denoted by ProbR,r,t, is
the partial mapping from the set of all selection ex-
pressions to the set of all closed subintervals of [0, 1]
that is inductively defined as follows:

1. ProbR,r,t(x.Aθc) =⊕k
i=1([li, ui].P r(viθc)), where

t.A = {(v1, [l1, u1]), . . . , (vk, [lk, uk])} and ⊕ is
the mutual exclusion probabilistic disjunction
operator.

2. ProbR,r,t(x.A1θ⊗x.A2) = ⊕m
i=1⊕n

j=1(([l1i, u1i]⊗
[l2j , u2j ]).Pr(v1iθv2j)), where t.A1={(v11, [l11,
u11]), . . . , (v1m, [l1m, u1m])}, t.A2 = {(v21, [l21,
u21]), . . . , (v2n, [l2n, u2n])} and ⊕ is the mutual
exclusion probabilistic disjunction operator.

3. ProbR,r,t(α⊗β) = ProbR,r,t(α)⊗ProbR,r,t(β).
4. ProbR,r,t(α⊕β) = ProbR,r,t(α)⊕ProbR,r,t(β).
We note that the mutual exclusion probabilistic

disjunction operator ⊕me is used in items 1 and 2 of
Definition 4.3 because the intervals [l1, u1], . . . , [lk, uk]
represent a probability distribution function over
{v1, . . . , vk}, likewise for [l11, u11], . . . , [l1m, u1m] and
[l21, u21], . . . , [l2n, u2n]. Intuitively, ProbR,r,t(x.Aθc)
is the probability interval for the attribute A of the
tuple t having a value vi such that vi θ c, while
ProbR,r,t(x.A1 θ⊗ x.A2) is the probability interval
for the attributes A1 and A2 of the tuple t having
values v1i and v2j , respectively, such that v1iθv2j .
Example 4.3 Let R denote the schema PATIENT
and r denote the relation PATIENT in Example 3.1.
Consider the second tuple in r, denoted by t2. We
have
ProbR,r,t2(x.P DISEASE = cirrhosis)

= [0.3, 0.5].Pr(hepatitis = cirrhosis)
⊕me [0.5, 0.7].Pr(cirrhosis = cirrhosis)
= [0.3, 0.5] × 0.0 ⊕me [0.5, 0.7]×1.0

= [0, 0] ⊕me [0.5, 0.7] = [0.5, 0.7]

The satisfaction of a selection condition in IPRDB
is an extension of that in CRDB with probability in-
tervals as below.
Definition 4.4 Let R be an IPRDB schema, r be a
relation over R and t ∈ r. The satisfaction of selec-
tion conditions under ProbR,r,t is defined as follows:

1. ProbR,r,t |= (α)[l, u] if and only if (iff)
ProbR,r,t(α) ⊆ [l, u].

2. ProbR,r,t |= ¬ϕ iff ProbR,r,t |= ϕ does not hold.
3. ProbR,r,t |= ϕ ∧ ω iff ProbR,r,t |= ϕ and
ProbR,r,t |= ω.

4. ProbR,r,t |= ϕ ∨ ω iff ProbR,r,t |= ϕ or
ProbR,r,t |= ω.

The selection on a relation in IPRDB is defined as
follows.
Definition 4.5 Let R be an IPRDB schema, r be a
relation over R, and ϕ be a selection condition over a
tuple variable in r. The selection on r for ϕ, denoted
by σϕ(r), is a relation r∗ over R specified by

r∗ = {t ∈ r|ProbR,r,t |= ϕ}

Example 4.4 Let r denote the relation PATIENT in
Example 3.1, and R denote its schema. The query
“Find all patients who are over 40 years old with a
probability of at least 0.9, and have cirrhosis and pay
the daily treatment cost not less than 6 USD with
a probability between 0.3 and 0.7” can be done by
the selection operation σϕ(PATIENT), where ϕ =
(x.P AGE > 40)[0.9, 1] ∧ (x.P DISEASE = cirrhosis
⊗in x.D COST ≥ 6)[0.3, 0.7].

Only the second tuple t2 of the relation PATIENT
in Example 3.1 satisfies ϕ because
ProbR,r,t2(x.P AGE > 40)

= [0.5, 0.5]×Pr(43>40)⊕me[0.5, 0.5]×Pr(44>40)
= [0.5, 0.5]× 1.0 ⊕me [0.5, 0.5]×1.0
= [1.0, 1.0] ⊆ [0.9, 1].

ProbR,r,t2(x.D COST ≥ 6)
= [0.4, 0.6]×Pr(6 ≥ 6)⊕me [0.4, 0.6]×Pr(7 ≥ 6)
= [0.4, 0.6]× 1.0 ⊕me [0.4, 0.6]×1.0
= [0.4, 0.6] ⊕me [0.4, 0.6]
= [0.8, 1].

From the result of the computation in Example
4.3, we have
ProbR,r,t2(x.P DISEASE=cirrhosis⊗in x.D COST

≥ 6)
= [0.5, 0.7] ⊗in [0.8, 1] = [0.4, 0.7] ⊆ [0.3, 0.7].

For the other tuples, one has ProbR,r,ti(x.P DISEASE
= cirrhosis ⊗in x.D COST ≥ 6) = [0, 0]6⊂ [0.3, 0.7],
∀i 6= 2. Thus, the result of the query is shown in
Table 3.
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Table 4: Relation
∏
{P AGE,P DISEASE,D COST}⊕in

(PATIENT).

P AGE P DISEASE D COST
{(65, [1, 1])} {(lung cancer, [0.5, 0.5]), (tuberculosis, [0.5, 0.5])} {($30, [0.3, 0.6]), ($35, [0.4, 0.7])}
{(43, [0.5, 0.5]), {(hepatitis, [0.3, 0.5]), (cirrhosis, [0.5, 0.7])} {($6, [0.4, 0.6]), ($7, [0.4, 0.6])}
(44, [0.5, 0.5])}
{(15, [1, 1])} {(bronchitis, [1, 1])} {($7, [1, 1)}

{(36, [1, 1])} {(duodenitis, [0.7, 0.75]), (gastritis, [0.75, 0.8])} {($8, [0.65, 0.75]), ($9, [0.75,
0.85])}

4.2 Projection

The projection of an IPRDB relation on a set of
attributes is an extension of that of a CRDB relation
with interval probabilities such that the projected tu-
ples having the same value should be merged into a
tuple in the result relation by a probabilistic disjunc-
tion strategy. The projection operation of an IPRDB
relation is defined as follows.
Definition 4.6 Let R(U , ℘) be an IPRDB schema,
r be a relation over R,H be a subset of attributes
of U ,⊕ be a probabilistic disjunction strategy. The
projection of r on H under ⊕, denoted by

∏
H⊕(r),

is the relation r∗ over the schema R∗ determined by:

1. R∗ = (H, ℘∗) and ℘∗(A) = ℘(A),∀A ∈H.
2. r∗ = {t∗|t∗.A = u.A ⊕ . . . ⊕ w.A,∀A ∈

H,∃u, . . . , w ∈ r such that [u[H]] = . . . =
[w[H]]}.

Example 4.5 Consider the relation PATIENT over
the schema PATIENT({P ID, P NAME, P AGE,
P DISEASE, D COST}, ℘) as in Table 2, then
the projection of it on the set of the attributes
H = {P AGE, P DISEASE, D COST} under ⊕in

is the relation
∏

H⊕in
(PATIENT) over the schema

R∗({P AGE, P DISEASE, D COST}, ℘∗) computed
as in Table 4, where ℘∗(A) = ℘(A),∀A ∈H.

Note that in the relation PATIENT, we have
[t3[H]] = [t5[H]], thus two tuples, t3 and t5, are pro-
jected on H and merged into the tuple t4 under the
independence probabilistic disjunction strategy ⊕in

in Table 4.

For the Cartesian product of two IPRDB rela-
tions, as in CRDB, we assume the set of attributes
of their schemas are disjoint, and every k-tuple t =
(pv1, pv2, . . . , pvk) of probabilistic values is an un-
ordered list. The Cartesian product of two IPRDB
relations is extended from that of two CRDB rela-
tions with uncertain and imprecise valued attributes
as follows.

Definition 4.7 Let U1, U2 be two sets of attributes
that do not have any common element, R1(U1, ℘1),
R2(U2, ℘2) be two IPRDB schemas, r1, r2 be two
relations over R1 and R2, respectively. The Cartesian
product of r1 and r2, denoted by r1×r2, is the relation
r over R, determined by:

1. R = (U , ℘), where U = U1∪U2, ℘(A) = ℘1(A)
if A ∈ U1 and ℘(A) = ℘2(A) if A ∈ U2.

2. r = {t|t.A = t1.A if A ∈ U1, t.A = t2.A if A ∈
U2, t1 ∈ r1, t2 ∈ r2}.

4.4 Join

The join of two IPRDB relations is an extension
of the natural join of two CRDB relations with prob-
abilistic values as the following definition.

Definition 4.8 Let U1 and U2 be two sets of at-
tributes such that if they have the same name at-
tributes, respectively, in those two sets, then such at-
tributes have the same value domain. Let R1(U1, ℘1)
and R2(U2, ℘2) be two IPRDB schemas, r1 and r2 be
two relations over R1 and R2, respectively, and ⊗ be
a probabilistic conjunction strategy. The join of r1
and r2 under ⊗, denoted by r1 ./⊗ r2, is the relation
r over the schema R, determined by:

Table 5: Relation PATIENT1.
P ID P DISEASE
P421 {(bronchitis, [0.35, 0.45]), (bronchiectasis, [0.55, 0.65)}
P829 {(pancreatitis, [1, 1])}

Table 6: Relation PATIENT2.
P NAME P DISEASE

Peter {(bronchiectasis, [1, 1])}
Selena {(pancreatitis, [0.4, 0.5]), (cirrhosis, [0.5, 0.6])}

Table 7: Relation PATIENT1 ./⊗in
PATIENT2.

P ID P NAME P DISEASE
P421 Peter {(bronchiectasis, [0.55, 0.65)}
P829 Selena {(pancreatitis, [0.4, 0.5])}

4.3 Cartesian Product
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1. R = (U , ℘) where U = U1 ∪U2, ℘(A) = ℘1(A)
if A ∈ U1 −U2, ℘(A) = ℘2(A) if A ∈ U2 −U1

and ℘(A) = ℘1(A) = ℘2(A) if A ∈ U1 ∩U2.
2. r = {t|t.A = t1.A if A ∈ U1−U2, t.A = t2.A if
A ∈ U2−U1, t.A = t1.A⊗ t2.A if A ∈ U1 ∩U2,
t1 ∈ r1, t2 ∈ r2}.

Example 4.6 Given two IPRDB relations PATIENT1

and PATIENT2 as in Tables 5 and 6, then the re-
sult of the join of them under the probabilistic con-
junction strategy ⊗in is the relation PATIENT1 ./⊗in
PATIENT2 computed as in Table 7. Here, the names
of each relation and its schema are identical. The set
℘(A) for each attribute A in the schemas consists of
probabilistic values on dom(A).

4.5 Intersection, Union and Difference

The intersection, union, and difference of two
IPRDB relations over the same schema is an IPRDB
relation over that schema, where two tuples that have
the same key, respectively of those two relations,
should be merged into a tuple in the result relation by
a probabilistic combination strategy. Here, two tuples
have the same key value like two identical tuples in
the conventional relational database. Thus, the op-
erations are the extensions of the intersection, union,
and difference of two CRDB relations with probabilis-
tic valued attributes. The intersection, union, and
difference of two IPRDB relations are defined as fol-
lows.
Definition 4.9 Let R(U , ℘) be an IPRDB schema,
r1, and r2 be two relations over R, K be a key of R,
and ⊗ be a probabilistic conjunction strategy. The
intersection of r1 and r2 under ⊗, denoted by r1∩⊗r2,
is the IPRDB relation r over R defined by r = {t|t.A

= t1.A ⊗ t2.A, t1 ∈ r1, t2 ∈ r2, A ∈ U , such that
t1[K] = t2[K]}.

We note that the value of each key attribute is
definite under the definition 3.6. Thus, the notation
t1[K] = t2[K] can be used in the definition 4.9. More-
over, we can uniquely determine a tuple of a relation
under every key of the relation. So, the result relation
is unique under all the keys.

Definition 4.10 Let R(U,℘) be an IPRDB schema,
r1 and r2 be two relations over R, K be a key of R, ⊕
be a probabilistic disjunction strategy. The union of
r1 and r2 under ⊕, denoted by r1∪⊕r2, is the IPRDB
relation r over R defined by r = {t1 ∈ r1|∀t2 ∈
r2, t1[K] 6= t2[K]} ∪ {t2 ∈ r2|∀t1 ∈ r1, t2[K] 6= t1[K]}
∪ {t|t.A = t1.A ⊕ t2.A, t1 ∈ r1, t2 ∈ r2, A ∈ U such
that t1[K] = t2[K]}.
Example 4.7 Given two IPRDB relations DIAGNOSE1

and DIAGNOSE2 over the same schema DIAG-
NOSE({P ID, D ID, P DISEASE, D COST}, ℘) as
in Tables 8 and 9, where {P ID, D ID} is the key of
this schema and the set ℘(A) for each attribute A
in DIAGNOSE consists of all probabilistic values
on dom(A). Then, the union of DIAGNOSE1 and
DIAGNOSE2 under ⊕in is the relation DIAGNOSE1

∪⊕in
DIAGNOSE2 computed as in Table 10.

We note that the tuple t2 in Table 8 and the tuple
t2 in Table 9 have the same key value coalesced into
the tuple t4 under ⊕in in Table 10.

Definition 4.11 Let R(U , ℘) be an IPRDB schema,
r1 and r2 be two relations over R, K be a key of
R, and 	 be a probabilistic difference strategy. The
difference of r1 and r2 under 	, denoted by r1 ∪	
r2, is the IPRDB relation r over R defined by r =
{t1 ∈ r1|∀t2 ∈ r2, t1[K] 6= t2[K]} ∪ {t|t.A = t1.A 	

Table 8: Relation DIAGNOSE1.
P ID D ID P DISEASE D COST

P226 D014
{(lung cancer, [0.3, 0.6]), {($30, [0.3, 0.4]), ($35, [0.6, 0.7])}
(tuberculosis, [0.4, 0.7])}

P255 D020
{(hepatitis, [0.3, 0.8]), {($8, [0.6, 1])}

(pancreatitis, [0.2, 0.7])}

Table 9: Relation DIAGNOSE2.
P ID D ID P DISEASE D COST
P228 D016 {(lung cancer, [1, 1])} {($30, [1, 1])}

P255 D020
{(hepatitis, [0.4, 0.8]), {($7, [0.2, 0.4]), ($8, [0.4, 0.8])}

(cholecystitis, [0.2, 0.6])}
P262 D022 {(dyspepsia, [1, 1])} {($5, [1, 1])}

Table 10: Relation DIAGNOSE1 ∪⊕in DIAGNOSE2.
P ID D ID P DISEASE D COST

P226 D014
{(lung cancer, [0.3, 0.6]), {($30, [0.3, 0.4]), ($35, [0.6, 0.7])}
(tuberculosis, [0.4, 0.7])}

P228 D016 {(lung cancer, [1, 1])} {($30, [1, 1])}
P262 D022 {(dyspepsia, [1, 1])} {($5, [1, 1])}

P255 D020
{(hepatitis, [0.58, 0.96]),
(pancreatitis, [0.2, 0.7]), {($7, [0.2, 0.4]), ($8, [0.76, 1.0])}
(cholecystitis, [0.2, 0.6])}
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t2.A, t1 ∈ r1, t2 ∈ r2, A ∈ U such that t1[K] = t2[K]}.
We note that the result relation in the definitions

4.10 and 4.11 does not depend on choosing the key of
its schema.

4.6 Property of Algebraic Operations

The basic properties of the algebraic operations in
IPRDB are the extensions of those in CRDB with
probabilistic values. These properties say that the
IPRDB model is sound and coherent.
Proposition 4.1 Let r be a relation over the schema
R in IPRDB, and ϕ and ω be two selection conditions.
Then,

σϕ(σω(r)) = σω(σϕ(r)) (1)

Proof: Let s = σω(r). By Definition 4.4 and 4.5, we
have σϕ(σω(r)) = {t ∈ s|ProbR,s,t |= ϕ}

= {t ∈ r|(ProbR,r,t |= ω) ∧ (ProbR,s,t |= ϕ)}
= {t ∈ r|(ProbR,r,t |= ω) ∧ (ProbR,r,t |= ϕ)}
= {t ∈ r|ProbR,r,t |= ϕ ∧ ω} = σϕ∧ω(r).

Thus, the equation σϕ(σω(r)) = σω∧ω(r) is proven.
The equation σω(σϕ(r)) = σω∧ω(r) is similarly
proven, since ω ∧ ϕ ⇔ ϕ ∧ ω. So, Proposition 4.1
is proven.
Proposition 4.2 Let R be an IPRDB schema, r be
a relation over R, ⊕ be a probabilistic disjunction
strategy, A and B be two subsets of attributes of
R,A ⊆ B. Then,

ΠA⊕(ΠB⊕(r)) = ΠA⊕(r) (2)

Proof: Because A ⊆ B, so A ∩B = A and sides of
(2) are the relations over the same schema. From
Definition 4.6, it is easy to see

∏
A⊕(

∏
B⊕(r)) =∏

A∩B⊕(r) =
∏

A⊕(r) under the probabilistic dis-
junction strategy ⊕. Thus, the equation (2) is proven.
Proposition 4.3 Let R1, R2, and R3 be the IPRDB
schemas such that if they have the same name at-
tributes, then such attributes have the same value do-
main, r1, r2, and r3 be relations over R1, R2, and R3,
respectively, ⊗ be a probabilistic conjunction strat-
egy. Then,

r1 ./⊗ r2 = r2 ./⊗ r1 (3)

(r1 ./⊗ r2) ./⊗ r3 = r1 ./⊗ (r2 ./⊗ r3) (4)

The equations (3) and (4) say that the join of
IPRDB relations is commutative and associative.
Proof: It is easy to see that r1 ./⊗ r2 and r2 ./⊗ r1
are two relations over the same schema. By Definition
2.3, the conjunction of probabilistic values is commu-
tative (due to the commutativity of probabilistic con-
junction strategies). So, by Definition 4.8, it follows
that r1 ./⊗ r2 = r2 ./⊗ r1.

By Definition 4.8, the results of two sides of (4)
are the relations over the same schema. Moreover, by
Definition 2.3, the conjunction of probabilistic values

is associative. By Definition 4.8 and from the asso-
ciativity of the conventional relational natural join,
it follows that the join of IPRDB relations is asso-
ciative. Thus, it results in (r1 ./⊗ r2) ./⊗ r3 =
r1 ./⊗ (r2 ./⊗ r3).

Because the Cartesian product (Definition 4.7) is a
particular case of the join, it yields the straight result
of Proposition 4.3 below.

Corollary 4.1 Let R1, R2, and R3 be IPRDB
schemas such that they do not have the same name
attributes, r1, r2, and r3 be relations over R1, R2,
and R3, respectively. Then,

r1 × r2 = r2 × r1 (5)

(r1 × r2)× r3 = r1 × (r2 × r3) (6)

Proposition 4.4 Let R be an IPRDB schema, r1, r2,
and r3 be relations over R. Let ⊗/⊕be a probabilistic
conjunction/disjunction strategy. Then,

r1 ∩⊗ r2 = r2 ∩⊗ r1 (7)

(r1 ∩⊗ r2) ∩⊗ r3 = r1 ∩⊗ (r2 ∩⊗ r3) (8)

r1 ∪⊕ r2 = r2 ∪⊕ r1 (9)

(r1 ∪⊕ r2) ∪⊕ r3 = r1 ∪⊕ (r2 ∪⊕ r3) (10)

Equations of (7), (8), (9), and (10) say that the in-
tersection and union of relations in IPRDB are com-
mutative and associative.

Proof: From the commutativity and associativity
of the probabilistic conjunction strategies, it follows
that the conjunction of probabilistic values has the
commutativity and associativity (Definition 2.3). So,
the intersection of IPRDB relations r1, r2, and r3 un-
der the probabilistic conjunction strategy ⊗ and ev-
ery chosen key also has commutativity and associativ-
ity. From that, by Definition 4.9, we have Equations
(7) and (8).

From the commutativity and associativity of the
probabilistic disjunction strategies, it follows that the
disjunction of probabilistic values has the commuta-
tivity and associativity (Definition 2.4). So, the union
of IPRDB relations r1, r2, and r3 under the proba-
bilistic disjunction strategy ⊕ and every chosen key
also has commutativity and associativity. From that,
by Definition 4.10, we have Equations (9) and (10).

5. RESULT AND DISCUSSION

We can see that IPRDB is an extension of CRDB
and the second class PRDB models as in [18], [19],
and [20] with probabilistic values (i.e., probabilistic
intervals for values). In addition, IPRDB also has
the capability of manipulating data more effectively
than the second-class PRDB models as in [21], [22],
and [23]. A more detailed discussion of the obtained
results is as below.
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5.1 Extension of IPRDB in representing data

There are two main classes of the PRDB model.
The first class, denoted by C-1PRDB, represents a
probabilistic relation as a set of tuples whose mem-
bership degree is a probability in [0, 1], such as [9]
and [10]. Each attribute of a tuple can take a sin-
gle value with an inferred probability from the mem-
bership degree of that tuple. The C-1PRDB alge-
braic operations are defined by directly extending the
CRDB algebraic operations based on computing and
combining probabilities of tuples in the C-1PRDB re-
lations.

The second class, denoted by C-2PRDB, repre-
sents a probabilistic relation as a set of tuples whose
membership degree is a probability in {0, 1}, such
as [18] and [19], each relational tuple attribute is as-
sociated with a single probability value as (v, p) to
say that the attribute may take the value v with the
probability p. Some extended models of C-2PRDB
such as [20], denoted by EC-2PRDB, where each re-
lational tuple attribute is associated with a probabil-
ity distribution as {(v1, p1), . . . , (vm, pm)} to say that
the attribute may take one of values vi with the prob-
ability pi. The C-2PRDB and EC-2PRDB algebraic
operations are defined by extending the CRDB alge-
braic operations and employing operators on single
probabilities or probability distributions for comput-
ing and combining probabilities of attribute values in
the C-2PRDB or EC-2PRDB relations.

As introduced in previous sections, our IPRDB
model belongs to C-2PRDB. Each relational tuple
attribute in IPRDB is associated with a probabilistic
value pv = {(v1, [l1, u1]), . . . , (vm, [lm, um])} (as a dis-
tribution of probability intervals on a finite set of val-
ues) to say that the attribute may take one of values
vi with a probability in [li, ui]. The IPRDB algebraic
operations are defined by extending the CRDB al-
gebraic operations using the probabilistic interpreta-
tions of binary relations on sets and the combination
strategies of probabilistic intervals of attribute values
(i.e., probabilistic values) in the C-2PRDB relations.

It is easy to see that a particular probabilistic value
in IPRDB as {(v1, [p1, p1]), . . . , (vm, [pm, pm])} also is
a probability distribution {(v1, p1), . . . , (vm, pm)} in
the model [20]. Thus, the IPRDB model is an exten-
sion of C-2PRDB models, such as [19] and [20], with
probabilistic values (Definition 2.1 and 3.2). More-
over, by associating probabilistic intervals with at-
tribute values (in probabilistic values), IPRDB allows
representing both the uncertainty of attribute values
and the imprecision of the probability for that at-
tribute values. In contrast, the models as [19] and [20]
only allow representing the uncertainty of attribute
values but do not allow expressing the imprecision of
the probability for that attribute values (because in
{(v1, p1), . . . , (vm, pm)}, the probability for the value
vi is a precise number pi). Figure 1 illustrates the
extension of IPRDB in comparison with the CRDB,

C-2PRDB, and EC-2PRDB models.

Fig.1: Extension of IPRDB.

5.2 Efficiency of IPRDB in manipulating data

Because the attribute value of IPRDB relations is
a probabilistic value, the computation and manipula-
tion of the IPRDB data model are more effective than
those of the C-2PRDB data models of [21], [22], and
[23], where the attribute value is the probability dis-
tribution function pairs of a set of values. The com-
puting complexity of IPRDB algebraic operations is
a polynomial under the size of probabilistic relations,
and it is as effective as the computing complexity of
CRDB and EC-2PRDB algebraic operations. Indeed,
regarding the selection operation, since the computa-
tion time that a tuple holds or does not hold a se-
lection condition is bounded above by some constant
(Definition 4.3 and 4.4), then the cost for the selec-
tion of each tuple in an IPRDB relation (Definition
4.5) also is some constant or O(1). Thus, the com-
puting time complexity of the selection operation on
an IPRDB relation with n tuples is O(n). With the
projection, from Definition 4.6, it is easy to see that
the time for the probabilistic combination of the du-
plicate value tuples under a probabilistic disjunction
strategy is a constant. Hence, the computing com-
plexity of the projection on an IPRDB relation hav-
ing n tuples is O(n). Similarly, the computing time
complexity of Cartesian product, join, intersection,
union, and difference operations on two IPRDB re-
lations having n and m tuples is O(nm). Thus, the
performance of the IPRDB model in computing and
manipulating uncertain and imprecise information is
good and can be applied in practice.
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6. CONCLUSION

In this paper, we have proposed a new probabilis-
tic relational database model, named IPRDB, that
extends the CRDB model with interval probability
valued attributes for uncertain and imprecise infor-
mation. In IPRDB, each relation is defined as a set
of tuples whose attributes are associated with interval
probability values to represent uncertainty and im-
precision of the value that these attributes may take.
The fundamental concepts of the relational schema,
probabilistic functional dependency, key as well as
the set of basic probabilistic relational algebraic op-
erations in IPRDB have been extended consistently
with those in CRDB using the probabilistic interpre-
tation of binary relations on sets, probabilistic com-
bination strategies, and conjunction, disjunction, dif-
ference operations of probabilistic values. Basic prop-
erties of the probabilistic relational algebraic opera-
tions are proposed and proven ultimately to say that
IPRDB is a sound and coherent model. The built
IPRDB model can manipulate and deal with effec-
tively uncertain and imprecise data.

For a complete database system of IPRDB, we are
investigating the development of an IPRDB manage-
ment system and its query language to apply the
IPRDB model in practice.
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