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ABSTRACT Article information:
Detecting Violence in video streams is essential for public safety and secu-
rity due to the rising frequency of violent incidents. Despite the extensive
deployment of CCTV for surveillance, the available human monitoring re-
sources still need to catch up with the need for vigilant supervision. This
research presents a new lightweight model to address this gap by accu-
rately identifying and categorizing violent behaviors in various scenarios,
including CCTV footage. The proposed method leverages optical �ow and
RGB data to capture spatiotemporal features in the Violence data. Built
on a Residual DLCNN architecture integrated with the Attention mecha-
nism and GRU components, the model e�ectively handles high-dimensional
video data, enhancing accuracy by prioritizing crucial frames containing
violent and nonviolent instances. The proposed model's performance was
validated on the Hockey Fights (HF), Movie Fights, and SCVD datasets,
achieving impressive accuracies of 98.38%, 99.62%, and 90.57%, respec-
tively. Here, we developed the Extended Automatic Violence Detection
Dataset (EAVDD), featuring 1530 videos of violent scenes in movies, pub-
lic spaces, social media, and sports. Testing the model with top �ght scenes
in rated movies yielded outstanding results. This research supports surveil-
lance systems and advances short video analysis and understanding with
applications in public safety, social media, sports, and law enforcement.
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1. INTRODUCTION

The increasing instances of Violence in diverse set-
tings have prompted an urgent need for advanced
technologies to facilitate timely detection and pre-
vention. Identifying violent behavior within video
content is crucial for public safety and security.
The widespread adoption of closed-circuit television
(CCTV) for surveillance [1] and crime prevention
in today's society has surged to unprecedented lev-
els. Despite this widespread use of CCTV systems,
there has not been a proportional increase in hu-
man resources for vigilant supervision and oversight
to match this growth. Automated Violence detection
systems are crucial for rapidly identifying violent in-
cidents in recorded CCTV footage, enabling timely
alerts to mitigate potential risks and enhance safety

measures. Traditional Violence detection methods,
which involve manual feature extraction from video
footage, face limitations in adapting to dynamic real-
world situations [2] and lack resilience against varying
installation angles, backgrounds, environments, and
video resolutions. Recent advancements in arti�cial
intelligence have led to developing deep learning mod-
els that autonomously identify features and patterns,
addressing these limitations.

Our research aims to develop a lightweight, vision-
based deep learning model for e�cient Violence de-
tection, motivated by the need to address the increas-
ing prevalence of violent incidents in public spaces,
institutions, and other environments. Identifying vi-
olent occurrences in video content relies on assess-
ing the extent of motion, with optical-�ow techniques
measuring motion between consecutive frames and
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RGB frames capturing static images to reveal intri-
cate scene details. Combining optical flow and RGB
data improves accuracy and efficiency by providing a
more comprehensive understanding of the video con-
tent.

This study presents a robust Violence-detection
network designed for diverse environments. The pro-
posed approach isolates and examines moving objects
within videos, enhancing detection capabilities across
benchmark datasets depicting violent situations. We
propose a model that integrates Residual Dilated
Convolutional Neural Networks (DLCNN), Attention
mechanisms, and GRU, referred to as ResDLCNN-
GRU Attention. This model’s proficiency in deci-
phering video data enables comprehensive training
to identify Violence-related patterns, encompassing
dynamic motions and visual surroundings. The pro-
posed method signifies a notable advancement in
developing a precise and reliable Violence-detection
model by harnessing the strengths of optical flow and
RGB data features. The proposed ResDLCNN-GRU
Attention model categorizes videos into two distinct
classes: Violence and NonViolence. Notably, our
lightweight model surpasses various existing method-
ologies by adeptly tackling the complexities of the
diverse configurations found in real-world CCTV se-
tups, resulting in improved robustness and adaptabil-
ity. This study marks a significant step forward in
creating a sophisticated and efficient system for Vio-
lence detection in video streams. Critical applications
of this research include identifying violent actions in
sports such as football and hockey, analyzing violent
content in short movies or fight scenes, recognizing
violent scenes in CCTV footage, and detecting Vio-
lence in public spaces and transport, thereby enhanc-
ing safety and security for the public.

The significant contributions of this research en-
compass:

(a) Development of an Extended Automatic Vi-
olence Detection Dataset (EAVDD) for Violent Ac-
tivity Recognition with data labeling. This dataset
encompasses violent scenes in public spaces, movies,
sports, and other contexts.

(b) Recognition of Violent Scenes using the pro-
posed lightweight ResDLCNN-GRU Attention Net-
work.

(c) Evaluation of Modified Binary Cross-Entropy
(MBCE) and Categorical Crossentropy Loss.

(d) Evaluation of the proposed model on three
standard benchmark Violence video datasets: Hockey
Fights, Movie Fights, and SCVD.

(e) Analyzing results with various standard meth-
ods based on diverse metrics.

(f) Testing the proposed model with top fight
scenes in rated movies, achieving outstanding results.

This research article is structured as follows: Sec-
tion 2 provides an in-depth review of related works.
Section 3 outlines our proposed method, covering

data preparation and the network architecture. Sec-
tion 4 showcases experimental findings employing
standard models on our extended violence detection
dataset and other benchmark-related data, evaluat-
ing performance using diverse metrics. The conclud-
ing remarks encapsulate our distinctive contributions,
underscore their significance, and explore future re-
search prospects.

2. RELATED WORKS

Numerous researchers have proposed methodolo-
gies for Violence detection using both classical com-
puter vision and deep learning techniques. This
discussion emphasizes advanced deep learning ap-
proaches, particularly pertinent to the method un-
der consideration. Serrano et al. [3] advocated
encapsulating a video sequence succinctly in a sin-
gle image. The essence of their approach lies in
the feature extraction process, where the objective
is to derive a representative image from every in-
put video footage. Leveraging a 2-dimensional Con-
volutional Neural Network (CNN), they employed a
classification framework on the obtained representa-
tive image to derive the ultimate decision for the
sequence. Remarkably, their methodology demon-
strated exceptional performance, achieving 94.6% ac-
curacy and 99% accuracy on the hockey and movie
fight datasets, respectively. In another study, Ke-
celi et al. [4] utilized 3D CNN combined with trans-
fer learning for violent activity classification. Here,
the deep features are extracted using a pre-trained
AlexNet model, then reshaped and concatenated to
construct 3D feature volumes for classification. This
approach demonstrated 92.90%, 98.7%, and 88% ac-
curacy on the hockey fights, movie, and violent-flow
datasets. Dai et al. [5] employed two-stream CNN
to extract features from the RGB frames and dy-
namic optical flows, aiming to identify instances of
Violence. Long Short-Term Memory (LSTM) was in-
corporated to capture longer-term temporal dynam-
ics, with SVM used in the classification step. Dündar
et al. [6] introduced a shallow 3DCNN-based net-
work for Violence or fight detection in videos. Zhang
et al. [7] proposed a 2DCNN-based approach to de-
tect violent behavior in video. Mahmoodi et al. [8]
have incorporated 2DCNN with an attention module
for video Violence detection. Mohtavipour et al. [9]
have introduced a multistream CNN-based approach
to detect Violence in videos utilizing handcrafted fea-
tures. Huszar et al. [10] have proposed an automated,
fast, and accurate Violence detection methodology in
videos.

Zhenhua et al. [11] have proposed a temporal
cross-fusion network to detect Violence in video se-
quences. Garcia et al. [12] have proposed an efficient
Violence detection method in videos utilizing human
skeletons and change detection. Park et al. [13] have
introduced a Convolution 3D-based Violence detec-
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tion method in videos utilizing Optical flow and RGB
data. Chaturvedi et al. [14] introduced a ConvLSTM
model with channel-wise attention to identify in-
stances of fights within video. Their approach demon-
strated satisfactory results on the datasets of the
RWF-2000, hockey fights, and movie fights. Dey et al.
[15] proposed an Attention-driven DC-GRU Network
to recognize umpire actions in Cricket games. Sud-
hakaran et al. [16] harnessed the power of AlexNet
to extract spatial features. They combined it with
ConvLSTM for temporal features, yielding a remark-
able 97.1% and 100% accuracy on the hockey and
movie fights datasets. Li et al. [17] employed a
keyframe-guided video Swin Transformer to recog-
nize violent activity. Our prior research focused on
identifying human interactions in images [18] utiliz-
ing the AdaptiveDRNet model. Alabid et al. [19]
pioneered an approach based on interpreting spatial
relationships to track objects within video streams ef-
fectively. Mekruksavanich et al. [20] have proposed a
deep residual model based on multi-branch aggrega-
tion for sensor-based fall detection. Rendon et al. [21]
proposed a ViolenceNet model based on Bi-LSTM ar-
chitecture to identify violent situations. Li et al. [22]
utilized 3DCNN to detect violent action in another
study. In recent work, Tang et al. [23] introduced an
enhanced, faster R-CNN model designed to identify
Violence in animation and cartoon videos automat-
ically. Accattoli et al. [24] utilized a 3D CNN and
SVM for Violence detection in video streams. Ullah
et al. [25] used a pre-trained C3D model, attaining
a remarkable accuracy of 96% for the Hockey Fights
data and an impressive 98% accuracy for the Crowd
Violence dataset. Khan et al. [26] introduced an edge
vision-based surveillance system tailored for detecting
violent behavior. Bianculli et al. [27] introduced a
new video dataset for automated Violence detection.
However, it is worth noting that the dataset is rela-
tively limited, consisting of only 230 video clips cate-
gorized into Violence and Non-Violence classes. Kaur
et al. [30] introduced an ensemble transfer learning-
based methodology for detecting Violence in video
content, achieving satisfactory results on the RWF-
2000 dataset.

Prominent video datasets like ViF [28], Hockey
Fights [29], Movie Fights [29], and SCVD [31] have
played a crucial role in advancing Violence behavior
recognition. Nevertheless, these publicly accessible
datasets contain limited video samples of both the
Violence and NonViolence categories and lack diver-
sity in Violence scenarios. To enrich the available
resources for researchers and practitioners, we have
introduced the EAVDD data, which comprises 1530
video clips collecting samples from various movies and
TV episodes, including some samples of the Hockey
Fights [29] and SCVD [31] datasets. This dataset
aims to enhance violence recognition models’ gener-
alization potential and practical utility.

3. PROPOSED METHOD

The method began by collecting EAVDD videos
in various scenarios. We applied data augmentation
methods to enrich the training data. Next, we ex-
tracted frames from the videos, resized them to fixed
dimensions, and normalized their pixel values to [0,
1] to optimize them for subsequent model training.
Then, we divided the curated dataset into training
and validation sets. Fig. 1 illustrates a visual repre-
sentation of the proposed methodology.

Fig.1: Representation of the Proposed Methodology.

Considering the demand for methods capable
of operating efficiently within constrained compu-
tational resources, this research puts forward the
lightweight Residual DLCNN-GRU Attention net-
work to recognize Violence and NonViolence in video
streams. The following sections offer comprehensive
insights into the subsequent aspects: a) Preparation
of the training dataset, b) ResDLCNN-GRU Atten-
tion: Architecture, and c) Discussion of the utilized
loss function.

3.1 Dataset Preparation

The meticulously curated EAVDD dataset com-
prises top fight scenes from movies, sports events,
and real-life videos portraying both violent and non-
violent scenarios, providing a comprehensive resource
for training and evaluating violence detection mod-
els. The collected videos are in RGB. The dataset
has two categories. Understanding the critical sig-
nificance of abundant training data in deep neural
networks, we have incorporated the data augmenta-
tion technique to increase the overall efficacy of the
Residual DLCNN-GRU Attention net. Furthermore,
we systematically split the dataset into two subsets,
designating 83% of the data for training and 17% for
validation. Fig. 2 depicts samples of the collected
sports violence data in our EAVDD dataset.

3.2 ResDLCNN-GRU Attention: Architec-
ture

The proposed model architecture integrates a
Residual Dilated convolutional neural network (Res-
DLCNN), Attention mechanism, and Gated Recur-
rent Units (GRU) for effective feature extraction and
temporal sequence modeling. The input data con-
sists of sequences of images with dimensions (SE-
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Fig.2: Sports Violence sample.

QLENGTH, FRAME HEIGHT, FRAME WIDTH,
3) which is 16×64×64×3. The layers of the proposed
model are as follows:

Dilated Convolution Layers: The dilated convo-
lutional layers aim to capture spatial features across
the image sequences. In DLCNN, Eqn. 1 mathemat-
ically expresses the dilated convolution operation.

yi,j,cout
=

K∑
k=1

K∑
l=1

cin∑
cin=1

x(i+r.(k−1)),(j+r.(l−1)),cin .
wk,l,cin,cout

(1)
Let us denote the input signal as x with spatial

dimensions Hin × Win and Cin channels. Here, w
denotes the filter (or kernel) with dimensions K × K
and cin channels, r is the dilation rate, and y repre-
sents the output of the dilated convolution with di-
mensions Hout ×Wout and cout channels. The indices
i and j iterate over the spatial dimensions of the out-
put, cin iterates over input channels, and cout iterates
over output channels. Fig. 3 depicts the architecture
of the proposed ResDLCNN-GRU Attention model.

Initial DLCNN Layers: The model initiates with
two Time Distributed (T.D) Dilated CNN (DLCNN)
layers with 32 and 64 filters, each using a 3×3 kernel,
accompanied by T.D Max Pooling with a (2, 2) pool
size. Then, a T.D Dropout layer with a 0.13 dropout
rate is incorporated. DLCNN employs a dilation rate;
the dilation introduces gaps between the values sam-
pled by the filter, effectively increasing the receptive
field without escalating the parameter count. DL-
CNN helps capture more prominent context informa-
tion in the input signal. Here, the DLCNN layers
utilize dilation rate 1, extracting hierarchical features
from the input frames.

The Rectified Linear Unit (ReLU) activation,
f(i) = max(0, i), is applied after each T.D Dilated
convolutional operation, introducing non-linearity to
the model. ReLU activation promotes the model’s
ability to learn complex representations. Max pool-
ing, expressed as y[m,n] = max(i,j) x[m·s+i, n·s+j],
follows each convolutional layer, downsampling the
spatial dimensions of the feature maps. Here, y[m,n]
represents the output of the max pooling operation

at spatial location (m,n), s is the size of the pooling
window, and max(i,j) denotes taking the maximum
value over a s× s region, typically called the pooling
window or kernel. The model utilizes max pooling
with (2, 2) pool size, aiding in retaining essential in-
formation while reducing computational complexity.

Residual Block: The residual block comprises two
consecutive T.D Dilated 2D convolutional layers hav-
ing 64 filters and a 3 × 3 kernel, each with rectified
linear unit (ReLU) activation and a specified dila-
tion rate of 1 and 2, respectively. The dilation rate
controls the spacing between the kernel elements and
helps capture spatial dependencies at different scales.
Following each convolutional layer, a dropout layer
is applied with a rate of 0.13, introducing a form of
regularization to prevent overfitting during training.

The core concept of a residual block lies in incorpo-
rating a residual connection. The variable ‘res’ stores
the original input before the convolutional operations.
After the convolutional layers and dropout, the out-
put is combined with the original input using the
Add() layer. This residual connection facilitates the
flow of information directly from the input to the out-
put, mitigating the vanishing gradient issue and en-
abling the model to learn more efficiently, especially
in deep networks. The model can thus focus on learn-
ing residual information—what needs to be added or
adjusted—rather than relearning the entire represen-
tation from scratch. Finally, a T.D 2D max-pooling
layer with a (2, 2) pool size is applied to reduce spatial
dimensions, contributing to the hierarchical feature
extraction process. With its convolutional operations
and skip connections, the residual block significantly
improves the training dynamics and performance of
deep neural networks on complex tasks, particularly
when handling sequential or spatiotemporal data.

Next, we incorporate another T.D Dilated convo-
lution layer with 128 filters and a 3 × 3 kernel, fol-
lowed by ReLU activation after the Residual block.
T.D Max Pooling follows this with a pool size of (2,
2) and T.D Dropout. We then process the output
of this layer through a T.D Flatten layer before inte-
grating the Attention mechanism.

Attention Mechanism: The Attention mechanism
is integrated into the proposed model using the flat-
tened output, allowing the model to focus on specific
segments of the input sequence during prediction. In
this context, the input to the Attention mechanism
results from the flattened operation on the Resid-
ual DLCNN features. Sequence-to-sequence models
mainly utilize the dot-product attention mechanism.
It operates on three primary inputs: a query ten-
sor, a value tensor, and, optionally, a critical tensor.
If the critical tensor is absent, the value tensor acts
as the critical tensor. The process starts by calcu-
lating attention scores (scores) derived from the dot
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Fig.3: Proposed ResDLCNN-GRU Attention Network Architecture.

product of the query and critical tensors, normalized
with softmax to obtain attention weights (α). These
weights compute the final attention output (FAO)
by weighting the value vectors (value). The Atten-
tion mechanism includes additional features such as
scaling the attention scores, applying dropout to the
scores, and using masks to control which elements are
considered in the attention computation. The atten-
tion mechanism is mathematically defined as follows:

1. Calculate Attention Scores:

scoresij =
queryi · criticalTj√

d
(2)

Here, d is the dimension of the critical vectors.
2. Apply Softmax to Obtain Attention Weights:

αij =
exp(scoresij)∑Tv

k=1 exp(scoresik)
(3)

3. Compute the Attention Output:

FAOi =

Tv∑
j=1

αi,j · valuej (4)

In Eqns. 2, 3, and 4, queryi represents the ith query
vector, criticalj represents the jth critical vector, and
valuej represents the jth value vector. We use the

scaling factor (
√
d) to mitigate the effect of large dot

products. The attention output is then passed to sub-
sequent GRU units to process temporal dependencies
within the sequence.

GRU Block: We employ Gated Recurrent Units
(GRUs) for sequence modeling. Following the atten-
tion mechanism, GRUs model the temporal depen-
dencies within the sequences. Weighting the input se-
quence based on attention scores allows GRUs to pri-

oritize important information, improving their ability
to capture and model temporal dependencies effec-
tively. The first GRU layer, with 64 units, returns se-
quences, capturing temporal dependencies, while the
second GRU layer, with 64 units, returns only the fi-
nal output. We apply recurrent dropout (RD) with
a rate of 0.15 for regularization. The GRU equations
are defined as illustrated in Eqn. 5, 6, 7, and 8.

upt = σ(Wupxt + Uuphst−1 + bup) (5)

rst = σ(Wrsxt + Urshst−1 + brs) (6)

h̃st = tan(Whsxt + Uh(rst � hst−1) + bh) (7)

hst = (1− upt)� hst−1 + upt � h̃st (8)

Here, xt represents the input at a time (t), upt and
rst are update and reset gates, hst denotes the hid-
den state at time t, � symbolizes element-wise mul-
tiplication, and σ represents the sigmoid activation
function. The GRU layers capture sequential pat-
terns within the flattened feature maps, facilitating
the learning of temporal dependencies in the input
data.

Fully Connected and Classification Layer: The
model concludes with two fully connected dense layers
with 256 and 128 units, followed by a dropout layer
(0.15 rate). The final output layer employs a softmax
activation function, rendering it suitable for a classi-
fication task with two output classes: Violence and
NonViolence. The combination of dilated convolu-
tion, attention mechanism, and GRU layers provides
a comprehensive approach for spatiotemporal feature
learning in sequential data.
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3.3 Loss Function Details

The Binary Cross-Entropy (BCE) loss function,
also called logistic loss, is generally utilized in binary
classification problems. It measures the difference be-
tween two probability distributions, typically the an-
ticipated probabilities and the actual labels. Eqn. 9
depicts the mathematical expression of the BCE loss.
Here, N represents sample count, ykt depicts the ac-
tual label for the kth sample, and ykp symbolizes the

anticipated probability that the kth sample belongs
to class 1. This loss function aims to prompt the
projected probabilities to be close to 1 for positive
instances and 0 for negative cases.

L(y, ŷ) = − 1

N

N∑
k=1

[ykt . log(ykp) + (1− ykt ). log(1− ykp)]

(9)

Eqn. 12 represents the modified binary cross-
entropy loss function with label smoothing. Eqns. 10
and 11 derive the T and U values, respectively. Here,
N represents no. of samples in the batch, C signifies
the no. of categories (for binary, C = 2), ykt repre-
sents the kth sample’s actual label, and ykp denotes

the predicted probability for the kth sample. This
formulation incorporates the label smoothing factor
(Lbs), adjusting the actual labels yt towards a uni-
form distribution across classes, helping to improve
model generalization and robustness.

T = (1− Lbs).y(k)
t . log

(
y(k)
p

)
(10)

U =
Lbs
C
. log

(
1

C

)
(11)

L(yt, yp) = − 1

N

N∑
k=1

[T + U ] (12)

This modified loss function enhances the stan-
dard binary cross-entropy loss by incorporating label
smoothing to improve generalization and robustness.
The proposed ResDLCNN-GRU Attention model em-
ploys the Adam optimizer, leveraging an initial learn-
ing rate established at 0.001 for proficiently minimiz-
ing the model’s associated error function.

4. EXPERIMENTAL RESULTS

The research presented here is conducted on
Google Colab, employing the Python programming
language focusing on resource efficiency. This section
encompasses a detailed overview of our carefully cu-
rated EAVDD dataset, encompassing information on
the datasets, a meticulous performance evaluation,
and an in-depth analysis of the obtained results.

1EAVDD:kaggle.com/datasets/arnab91/eavdd-Violence/

4.1 Dataset Details

Numerous openly available datasets on Violence
recognition encompass Hockey Fights (HF) [29],
Movie Fights [29], Violent-flows (ViF) dataset [28],
VDD [27], and the Smart-City CCTV Violence De-
tection dataset (SCVD) [31]. The Hockey Fights
and Movie Fights dataset contains data on fights in
hockey games and movies. Additionally, we extracted
some videos from the Hockey Fights and SCVD
datasets. In this study, we present the Extended
Automatic Violence Dataset (EAVDD)1, an ex-
pansive collection of videos sourced from diverse plat-
forms, including movies, TV episodes, and various
social media platforms such as YouTube. EAVDD
is distinguished for its comprehensive and unbiased
representation of violent activities, spanning various
individuals and scenarios, with a commitment to uni-
versality that avoids demographic or regional biases.
The EAVDD dataset has two categories: ‘Violence’
and ‘NonViolence’ comprising 1530 videos, ensuring
a broad spectrum of content for robust violence de-
tection research. Fig. 4 depicts some video frames
from the EAVDD.

Fig.4: EAVDD sample data.

The EAVDD dataset covers scenes such as public
Violence, bus Violence, campus Violence, and sports
Violence (mainly hockey and football). Some video
frames of the Hockey Fights (HF) dataset and SCVD
dataset are depicted in Fig. 5 and Fig. 6, respectively.

Fig.5: Hockey Fights sample data.
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Fig.6: SCVD sample data.

4.2 Evaluation Metrics

Assessing the efficacy of a model encompasses a
diverse array of metrics. Below are the formulas for
the evaluation metrics utilized in this study:

1. Accuracy: It furnishes a comprehensive eval-
uation of the model’s efficacy in accurately catego-
rizing both instances of Violence and NonViolence.
In Violence detection, true positives (TP) denote in-
stances of Violence correctly identified, true negatives
(TN) denote NonViolence instances correctly identi-
fied, false positives (FP) represent NonViolence in-
stances incorrectly categorized as Violence, and false
negatives (FN) represent violent instances incorrectly
categorized as nonviolent. Eqn. 13 expresses the for-
mula for accuracy concerning True Positives (TP),
False Positives (FP), and all instances.

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

2. F1 Score(F1s): It represents the harmonic
mean of the precision and recall, wherein precision
gauges the ratio of true positives within all positive
predictions, and recall examines the ratio of true pos-
itives among all actual positives, specifically in the
context of Violence detection. Eqn. 14 depicts the
expression of the F1 Score.

F1s = 2× Precision×Recall
Precision+Recall

(14)

3. Sensitivity (True Positive Rate): We re-
fer to this metric as the true positive rate (TPR). It
quantifies the proportion of genuine positive instances
accurately identified by the proposed model. In Vi-
olence detection, sensitivity indicates how well the
model captures instances of Violence without miss-
ing many (false negatives). Eqn. 15 mathematically
expresses sensitivity.

Sensitivity =
TP

TP + FN
(15)

4. Area Under Curve (AUC): AUC is a per-
formance metric for assessing classification models.
It represents the integral of the Receiver Operat-
ing Characteristic (ROC) curve, encapsulating the
model’s capacity to discriminate between positive and
negative categories across various thresholds. AUC
ranges from 0 to 1, with higher values indicating
better performance. It provides a concise summary
of classifier performance, independent of threshold
choice. Here, TPR denotes the sensitivity, and the
false positive rate (FPR) is represented by (1 - speci-
ficity) at various thresholds. The integral calculates
the area under the ROC curve that encapsulates the
model’s capacity to discriminate between positive and
negative categories across various threshold settings.
Eqn. 16 mathematically represents the AUC-ROC
score.

AUC - ROC =

∫ 1

0

TPR(fpr) d(fpr) (16)

These metrics comprehensively evaluate a violence
detection model’s performance in correctly classifying
violent and nonviolent instances.

4.3 Performance Evaluation

The efficacy of the proposed work is compre-
hensively evaluated across multiple metrics, encom-
passing validation accuracy score, F1 Score, AUC
score, classification performance, and meticulous ex-
amination of the confusion matrix. Fig. 7 show-
cases the ROC curve generated utilizing the proposed
ResDLCNN-GRU Attention model. It reveals that
the proposed model achieves an AUC score of 0.97
for both the Violence and NonViolence categories in
the EAVDD dataset.

Fig.7: ROC curve generated on EAVDD dataset.

Fig. 8 comprehensively evaluates various deep
learning models’ performance trained from scratch
on the EAVDD dataset, focusing on three key met-
rics: the validation accuracy score, F1 score, and
AUC score. These metrics are crucial indicators of
a model’s efficacy in classification tasks. The models
considered for evaluation are ResNet3D+A [13], Two
Stream CNN [32], Xp+BiLSTM+A [34], ConvLSTM
[37], ResDC-GRU+A [38], and the proposed model
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on the EAVDD dataset. The proposed ResDLCNN-
GRU Attention model excels significantly, achieving
an excellent 0.92 validation score, surpassing Xcep-
tion+BiLSTM+A [34], ConvLSTM [37], ResDC-
GRU+A [38], and all other models. The proposed
model achieves the highest validation accuracy, indi-
cating its superior capability in generalizing to un-
seen data compared to other models evaluated. The
Xception+BiLSTM+A [34] and ResDC-GRU+A [38]
models also demonstrate competitive validation accu-
racies, showcasing their effectiveness in Violence clas-
sification. ResNet3D+A [13], Two Stream CNN [32],
ConvLSTM [37], and also demonstrated satisfactory
performance, achieving validation accuracy scores of
0.905, 0.863, and 0.897, respectively.

Fig.8: Assessment of models on the EAVDD
dataset.

Moving on to the F1 Score, a measure that bal-
ances precision and recall, the values vary between
0.87 and 0.92. Once again, the proposed model
asserts its dominance by achieving a superior F1
Score of 0.92, underscoring its robustness in clas-
sifying instances correctly across different classes.
The Xp+BiLSTM+A [34] model also exhibits a com-
mendable F1 Score of 0.91, indicating its strong per-
formance. Finally, the AUC score, indicative of the
model’s capability to discriminate between positive
and negative instances within the EAVDD dataset,
spans from 0.93 to 0.97. The proposed model achieves
the highest AUC score of 0.97, reaffirming its effi-
cacy in distinguishing between classes. Notably, the
ResNet3D+A [13] and Xp+BiLSTM+A [34] models
also demonstrate the second-highest AUC score of
0.96, suggesting their competence in making accu-
rate predictions across the dataset. Thus, the pro-
posed model outperforms alternative standard deep
learning architectures concerning validation accuracy,
AUC score, and F1 Score, underscoring its effective-
ness in handling Violence classification within the
EAVDD dataset.

Confusion Matrix (CM): It is a compact and in-
sightful visual representation summarizing a model’s
predictions against actual ground truth values. This
matrix offers a quick snapshot of a model’s perfor-
mance, enabling a nuanced assessment of its accu-

racy and effectiveness across different classes. Fig. 9
displays the confusion matrix for the EAVDD data
generated using the proposed ResDLCNN-GRU At-
tention model.

Fig.9: CM of EAVDD dataset using the proposed
model.

The suggested model showcases exceptional clas-
sification accuracy on the Violence dataset. Eval-
uation outcomes of the suggested model on unseen
(not trained) video samples taken from various movie
scenes, as illustrated in Fig. 10 and Fig. 11. It took
only about 1.02 minutes to identify and analyze the
video frame by frame.

Fig.10: Test Result of Violence video.

Fig.11: Test Result of NonViolence video.
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Effect of Loss Function:
Table 1 presents the evaluation results of a pro-

posed model using different loss functions trained
over a standard number of epochs with the Adam
optimizer. We kept the initial learning rate constant
at 0.001 and maintained a batch size of five through-
out the loss function analysis. Mean Squared Error
yielded a validation accuracy of 89.65% and a 0.88
true positive rate (TPR). Conversely, Binary Cross-
Entropy (BCE) achieved slightly higher performance,
with a validation accuracy of 91.60% and a TPR of
0.90.

Table 1: Loss Function Analysis on the EAVDD.

Loss Optimizer Val. Acc TPR
Function (%)
Mean Square Adam 89.65 0.88
Error
BCE Adam 91.60 0.90
CCE Adam 92.20 0.91
MBCE Adam 92.16 0.91

Modified Binary Cross-Entropy (MBCE) emerged
as a powerful loss function, boasting a validation ac-
curacy of 92.16% and a TPR of 0.91, showcasing supe-
rior performance compared to the other loss functions
analyzed. Also, Categorical Cross entropy (CCE) loss
achieves 92.20% validation accuracy with 0.91 TPR.
These findings underscore the importance of selecting
an appropriate loss function, with MBCE and CCE
demonstrating significant efficacy in enhancing model
performance.

4.4 Result Analysis

Table 2 presents a comprehensive comparative
evaluation of various deep learning models utilized
for Violence detection across different benchmark
datasets, namely Hockey Fights (HF) [29], Movie
Fights [29], and SCVD [31]. Each model’s perfor-
mance is measured in terms of classification accuracy,
providing valuable insights into their effectiveness
in detecting violent content within videos. Among
the models evaluated, several notable observations
emerge. The ViolenceNet [21] approach achieves
impressive results across both HF [29] and Movie
Fights [29] datasets, surpassing the majority of other
methods with accuracy scores of 99.20% and 100%,
respectively. On the Hockey Fights dataset, Ef-
ficient 3DCNN [22], Xception+BiLSTM+Attention
[34], and ResDC-GRU+Attention [38] attain 98.36%,
97.50%, and 97.72% accuracy, respectively. The
AlexNet+LSTM [16], Two Stream CNN [32], and
T-MobileNet [35] models attain 97.10%, 92.17%,
and 87.0% accuracy, respectively, on the Hockey
Fights dataset. Meanwhile, C3D+SVM [24] and
ResNet50+POT [33] attained 98.50% and 95% accu-
racy. On the Movie Fights dataset, AlexNet+LSTM
[16], Efficient 3DCNN [22], Xception+BiLSTM+A

[34] and ResDC-GRU+A [38] attain 100%, 99.17%,
100%, and 98.65% accuracy respectively. The
ResNet3D+Attention [13] model also demonstrates
good performance, particularly excelling in the
Hockey Fights and Movie Fight datasets with 98.10%
and 100% accuracy, respectively. It underscores the
significance of incorporating attention mechanisms
within convolutional neural networks (CNNs) to ef-
fectively capture spatial-temporal features crucial for
violence detection.

Table 2: Comparative Evaluation of Various Meth-
ods in Violence Detection.

Method (s) HF Movie SCVD
Fights

TL-3DCNN [4] 92.90 98.70 −−
ResNet3D+A [13] 98.10 100 89.26
AlexNet+LSTM [16] 97.10 100 87.42
ViolenceNet [21] 99.20 100 89.70
Efficient 3DCNN [22] 98.36 99.17 86.40
C3D+SVM [24] 98.50 96.80 85.37
C3D+FC [25] 96.0 97.24 85.82
Two Stream CNN [32] 92.17 94.36 74.38
R+ResNet50+POT [33] 95.0 97.50 −−
Xception+BiLSTM+A 97.50 100 90.14
[34]
T-MobileNet [35] 87.0 99.50 −−
ResDC-GRU + A [38] 97.72 98.65 89.76
Proposed Model 98.38 99.62 90.57

On the SCVD dataset, ViolenceNet [21], Xcep-
tion+BiLSTM+A [34], and ResDC-GRU+A [38] at-
tain 89.70%, 90.14%, and 89.76% accuracy, respec-
tively. Furthermore, the Proposed Model stands
out prominently across all datasets, attaining out-
standing accuracy scores among evaluated methods-
98.38%, 99.62%, and 90.57% on HF [29], Movie Fights
[29], and SCVD [31] datasets, respectively. These
results underscore its robustness and generalizabil-
ity in detecting violent content across diverse video
sources. The proposed model comprises only 0.65
million (M) trainable parameters. Additionally, mod-
els such as ResNet3D+A [13], C3D+FC [25], and
R+ResNet50+POT [33] also deliver commendable
performance, consistently achieving high accuracy
scores across multiple datasets. Thus, the compar-
ative evaluation underscores the effectiveness of vari-
ous deep learning-based models in Violence detection
tasks, with the Proposed Model demonstrating no-
table performance across all benchmark datasets.

The F1 Score (F1s) obtained on both the HF
dataset [29] and SCVD [31] dataset highlights the ro-
bust classification capabilities exhibited by a range of
standard models, as illustrated in Fig. 12. The SCVD
dataset stands as a standard benchmark dataset, en-
compassing a diverse array of CCTV footage videos.
The proposed ResDLCNN-GRU Attention model
performs well in identifying violent actions, showcas-
ing remarkable classification performance with 0.91
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Fig.12: Performance Analysis on HF and SCVD
data.

F1s on the SCVD dataset [31] and an impressive 0.98
F1s on the Hockey Fights dataset.

Some of the top fight scenes in movies are analyzed
using the proposed model and presented in Table 3.
The Fight Ratio serves as a metric representing the
ratio of violent action time to the total duration of the
scene. A higher Fight Ratio suggests more intense or
sustained action relative to the scene’s length. Based
on these metrics, IP Man vs. Mike Tyson (IPMAN3)
and Bus Fight Scene 1 (Nobody) have the highest
Fight Ratio values at 0.73 and 0.72, respectively, in-
dicating a significant portion of the scene is filled with
violent action relative to its duration.

Table 3: Movie Fight Scene Analysis in Violence
Detection.

Scene Name, Total Violence Fight
Movie, and Year duration Time Ratio

(min.) (min.)
IP Man vs. Mike 3.42 2.50 0.73
Tyson, IPMAN3,
and 2015
Chung Tin-chi vs. 2.25 1.57 0.70
Tony Jaa, Master
Z: IP Man Legacy,
and 2018
Cliffside 2.25 1.32 0.59
Shutdown Scene 10,
Mission: Impossible
-Fallout, and 2018
[39]
Bus Fight Scene 1, 4.31 3.11 0.72
Nobody, and 2021
[39]

Similarly, the Chung Tin-chi vs. Tony Jaa scene
(Master Z: IP Man Legacy) and Cliffside Shutdown
Scene (Mission: Impossible-Fallout) also have a stan-
dard Fight Ratio of 0.70 and 0.59, respectively. These
scenes are among the most intense or action-packed
based on this analysis.

4.5 Complexity Analysis

The analysis of various models based on the num-
ber of trainable parameters (Params) in Fig. 13 pro-

vides valuable insights into their complexity and com-
putational requirements. Among the models consid-
ered, AlexNet+LSTM [16] and Xception+BiLSTM
Attention [34] exhibit the highest complexity with
9.6 million (M) and 9 million trainable parameters,
respectively, suggesting a significant demand for com-
putational resources. The Efficient 3DCNN [22]
model has 7.4 million trainable parameters. Vio-
lenceNet [21] follows with 4.5 million trainable pa-
rameters, indicating a moderate level of complexity.

Fig.13: Model Analysis based on Trainable Params.

The proposed model has only 0.65 million (M)
trainable parameters, significantly reducing the com-
putational burden. This minimal parameter count
highlights its suitability for deployment on low-
computation machines [36], such as general-purpose
computers. Despite its low complexity, the proposed
model demonstrates comparable performance across
various metrics and proves effective in real-world ap-
plications. Fig. 14 depicts some test results generated
from the proposed model, correctly identifying fight
scene videos as violent.

Fig.14: Test on some Fight Scene video.

5. APPLICATIONS

The proposed work on violence detection has broad
applications, especially in addressing the growing
concerns surrounding the spread of violent content
online. Primarily, they aid in content moderation on
social media platforms by identifying and removing
violent material, enhancing user safety. Law enforce-
ment agencies also benefit from these tools, utilizing
them to monitor social media for potential threats or
acts of Violence and intervening early. These tools
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ensure compliance with content regulations and pro-
vide immediate support to those exposed to Violence,
linking them to counseling resources. Beyond social
media, violence detection systems are valuable in ed-
ucational settings, monitoring for bullying, campus
Violence, and harassment, allowing timely interven-
tions. In crowd behavior recognition [40], such as
concerts and protests, these systems help security
personnel de-escalate potentially violent situations,
detect weapon-related Violence [41] [45], and ensure
public safety. These systems enhance surveillance by
swiftly identifying and mitigating violent incidents in
public places such as railways [42], airports, schools
[43], shopping malls, buses, elevators [44], and streets.
These applications demonstrate the potential of vio-
lence detection systems to create safer, more secure,
and healthier environments worldwide, not only on
social media but also in educational institutions, pub-
lic spaces, and large gatherings.

6. CONCLUSION

This research introduces a novel methodology
for efficiently detecting violent activities in video
streams. The suggested model leverages a Resid-
ual DLCNN to extract spatial features, integrates
an attention mechanism to prioritize crucial frames,
and employs GRU for temporal features and a
dense layer with Softmax for classification, maintain-
ing resource efficiency with just 0.65 million train-
able parameters. Training and validation across
three datasets—Hockey Fights, Movie Fights, and
SCVD—demonstrate the model’s strong recognition
performance. Moreover, the proposed model can
detect Violence in fight scenes, sports, and CCTV
footage. Despite its computational efficiency, the
model is highly effective, making it particularly ben-
eficial for time-sensitive applications. These advance-
ments would contribute to the ongoing evolution and
refinement of Violence detection systems, fostering
safer environments in various domains where early
detection is paramount. The broad applications of
Violence detection, from content moderation in so-
cial media to crisis response, underscore the signif-
icance of continued research in this field. Future
work should focus on expanding the collected EAVDD
dataset, incorporating more categories of violent ac-
tions, and implementing lightweight transformers to
enhance robustness and accuracy, ensuring the con-
tinued progress of Violence detection systems.
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