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ABSTRACT Article information:
In this ever-changing technological landscape, the ability to quickly predict
technological trends becomes crucial for any company or institute engaged
in informed decision-making and strategic planning. Data for predicting
technological trends can come from various sources such as patent data,
which is easily accessible to the public due to the nature of patents. This
research is aimed at patent analysis, focusing on combining the keyword-
based method, social network analysis (SNA) method, and neural network
prediction to propose a feasible keyword trend prediction method based on
patent analysis by targeting upcoming keyword trends. More speci�cally,
we utilize Long Short-TermMemory (LSTM) to predict changes in keyword
frequency using keyword centralities as input. To assess the e�ectiveness of
the proposed method, we constructed the input dataset using the USPTO
patent database in the Information and Communication Technology (ICT)
�eld. We then experimented to compare the proposed method with the
benchmark method. Furthermore, to counteract the unbalanced nature of
patent data, the SMOGN method is introduced. The results demonstrate
its potential for application in broader contexts.
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1. INTRODUCTION

A patent is a type of intellectual property that
grants inventors the rights to their inventions in ex-
change for making publicizing their innovations. This
public availability has led many researchers to explore
their potential uses, resulting in the emergence of the
research �eld known as patent analysis. It involves
the process of extracting insights, trends, and infor-
mation from patents within a speci�c �eld of technol-
ogy or industry.

The initial approach to patent analysis primarily
employed a network-based method [1], often utiliz-
ing citation networks [1-4]. Some researchers have
also employed Social Network Analysis (SNA) tech-
niques to analyzing these networks [4]. However,
the network-based approach had limitations, as ci-
tation networks only captured the relationships be-
tween patents but not the information within them
[1].

To address this limitation, researchers introduced
a text-mining approach known as the keyword-based
method. This method entails representing each

patent using keywords that best describe its con-
tent, employing text-mining techniques [1]. These
extracted keywords can subsequently undergo further
analysis. Many keyword-based research often leads to
predicting technological trends, indicating whether a
particular technology is likely to gain or lose in pop-
ularity [6-8].

However, these predictions typically do not include
the magnitude of growth or decline of the technology
in question [6,7]. To overcome this limitation, one
proposed solution involves using author-de�ned key-
word features as input for Long Short-Term Memory
(LSTM) [9] and regression models to predict future
keyword frequencies [8]. This prediction allows for
a more comprehensive assessment of the growth and
decline of speci�c keywords.

This research aims to enhance keyword trend pre-
diction methodologies by integrating features from
patent keyword network analysis into Long Short-
Term Memory (LSTM). Speci�cally, we aim to vali-
date the superiority of this integrated approach over
the method proposed by Lu et al.'s AKFP [9], which
relies on author-de�ned keyword features. This study
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aims to show that using features from patent net-
work analysis improves keyword trend prediction for
LSTM-based keyword trend prediction.

2. RELATED RESEARCH

2.1 Network-based Method

Based on Madani & Waber’s research [1], patent
analysis methodology has two approaches: network-
based and keyword-based, as mentioned previously.
However, it is essential to note that both approaches
can be combined in the same study, as many keyword-
based research studies also apply network-based anal-
ysis to examine keyword further. One illustrative ex-
ample is the analysis of keyword co-occurrence net-
works.

Sternitzke et al. conducted network-based research
with a primary focus on visualizing various types of
patent networks within the field of Light-Emitting
Diodes (LEDs) and Laser Diodes (LDs) [2]. The pri-
mary objective is identifying critical authors within
cooperation and citation networks. This approach
can be improved using social analysis methods, such
as measuring centralities.

Cho & Shih’s research focused on identifying core
and emerging technologies in Taiwan [3]. The ini-
tial analysis consisted of descriptive statistical anal-
ysis, resulting in the identification of the top patent
classes. Subsequently, the patent citation network
was analyzed, resulting in the ranking of the most
cited patent classes. Following this, a social network
analysis method was employed to detect core tech-
nologies and emerging technologies. They used de-
gree centrality to identify core technologies and exam-
ined structural holes to identify emerging technolo-
gies.

De Paulo & Porto analyzed technological routes
and emerging technologies within patent cooperation
networks [4]. The research used closeness and be-
tweenness centrality to cluster citation networks into
separate groups. Afterward, they analyze clusters
individually to identify technological routes and un-
cover emerging technologies.

2.2 Keyword-based Method And Trend Anal-
ysis Using Machine Learning

Lee et al. conducted keyword-based research on
ICT healthcare patents [5]. They used the bag-of-
words model and TF-IDF to extract keywords from
patents. Then, they constructed a network based on
keyword co-appearance. Next, they divided the key-
word network into clusters. These clusters were then
analyzed to identify promising technologies in ICT-
healthcare convergence services.

Kumari et al. focused on analyzing research topics
in the field of humanoid robot technology [6]. The re-
search involved applying both keyword co-occurrence
analysis and social network analysis. Centrality anal-

ysis identified keywords with high centrality. Subse-
quently, they constructed the network at 3-year in-
tervals to investigate the growth and decline of each
research topic within the hype cycle.

Balili et al. aim to track and predict the evolution
of research topics in research publications [7]. They
extracted keywords from patents and constructed a
dynamic keyword co-occurrence network. The first
part of the research involved tracking the evolution
of topics by categorizing communities as ‘survive,’
‘growth,’ ‘shrink,’ ‘split,’ or ‘merge.’ In the second
part, they used structural and temporal features from
the created communities to classify whether the com-
munity would persist or dissolve.

Lu et al. used Author-Defined Keyword Frequency
Prediction (AKFP) to detect trends in research top-
ics [8]. The prediction model employed a Long Short-
Term Memory (LSTM) with temporal features, per-
sistence, community size, and community develop-
ment potential as inputs for the LSTM. The result
is predictions for keyword frequencies in the future,
thereby able to predict the magnitude of keywords’
growth or decline.

2.3 Research Objective

The primary objective of this study is to predict
the patent keyword trends along with their magni-
tude of changes by forecasting patent keyword fre-
quency, which the current method of patent keyword
trend prediction cannot predict well. The second goal
is to explore the potential of utilizing an author-to-
keyword relationship network called the author key-
word co-occurrence network [10] in the patent anal-
ysis field, which will be called the patent author-
keyword co-occurrence network. The last goal is
to combine the concepts of keyword-based predic-
tive trend analysis and keyword-based patent analysis
while incorporating a qualitative method to predict
the keyword trends and their magnitude of changes.
On the prospect of patent analysis in this research,
the keyword-based method is patent keyword extrac-
tion. On the other hand, constructing the patent
author-keyword co-occurrence network from the ex-
tracted patent keyword is the network-based method.

To achieve these goals, we introduce five categories
of metrics for each keyword node extracted from the
patent author-keyword co-occurrence network. These
features include Betweenness Centrality [11], Eigen-
vector Centrality [12], Closeness Centrality [11], Load
Centrality [13], and PageRank [14]. We selected these
features as inputs for LSTM [9] to predict the key-
word trend. The objective is to demonstrate the im-
pact of author keyword co-occurrence data on future
keyword frequency and validate the feasibility of pre-
dicting the keyword trend in patent analysis.
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3. PROPOSED METHODOLOGY

This paper presents the method for predicting
patent keyword frequency using an LSTM [9] com-
bined with SNA centrality [11-14] applied to a patent
author-keyword co-occurrence network. We illus-
trated the steps for the proposed keyword frequency
prediction method in Figure 1.

Fig.1: Overall Method of Proposed Method.

3.1 Data Collection And Extraction

The patent data was downloaded from the USPTO
patent database, bulkdata.uspto.gov, in bulk XML
files, covering the years from 2011 to 2021 [15]. Af-
terward, we extracted bibliography data and abstract
text from each patent. The extracted bibliography
data includes patent codes, corresponding technolog-
ical codes known as Cooperative Patent Classification
codes (CPC), and the author’s name. Patents under
CPC code G03C, on the information and communi-
cation field [16], were selected as the target group
for further analysis. To extract the corresponding
keywords from each patent, we used the text mining
method TF-IDF [17] in the keyword extraction pro-
cess. TF-IDF method is considered one of the popular
data mining methods for patent keyword extraction
[1]. Its performance is shown in [18].

We selected five keywords to be the corresponding
keywords for each patent. The number five comes
from our initial observation of patent keyword ex-
traction using TF-IDF on our data. The most impor-
tant keywords for each patent are commonly within
the first five extracted keywords. Usually, the sixth
and those following are typically common or gibberish
words with no significant meaning.

3.2 Patent author-keyword co-occurrence net-
work Construction

The relationship between authors and keywords is
the basis of the patent author-keyword co-occurrence
network. This relationship was established from the
previously extracted patent data, linking the authors
of the patents to the corresponding keywords of the

patents. The result is in a list of pairs of author
keywords for each year. Table 1 shows an example
list from the year 2011.

Table 1: Example of author-keyword pairs list for
the year 2011.

Author Keyword
Miyoshi Kenichi value
Miyoshi Kenichi cir
Miyoshi Kenichi rate
Miyoshi Kenichi request
Miyoshi Kenichi section

· · · · · ·
Zimmerman Jeffrey A. ac
Zimmerman Jeffrey A. powered
Zimmerman Jeffrey A. element
Zimmerman Jeffrey A. device
Zimmerman Jeffrey A. data

We created networks using patent data from each
year between 2011 and 2019, using them as input for
the keyword trend prediction process. Figure 2 dis-
plays a sample network, illustrating the interconnec-
tions between each patent and keyword. The network
represents Patent A as an author and its five corre-
sponding keywords. Then, another patent is further
added, with some may contain some of the exact cor-
responding keywords as patent A. These same key-
words will then connect patents into a patent author-
keyword co-occurrence network.

Fig.2: Sample patent author-keyword co-occurrence
network.

3.3 Network Analysis

After constructing the network, we performed net-
work analysis to gather information for further use
as input data in the keyword frequency prediction
process. We then used the Social Network Analy-
sis (SNA) method to obtain metrics for the keyword
nodes in the network we created. The obtained met-
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rics included Eigenvector centrality, Closeness cen-
trality, Betweenness centrality, Load centrality, and
PageRank [11-14]. We selected Betweenness central-
ity, Eigenvector centrality, and Closeness centrality
because they are frequently analyzed centrality in the
SNA field [19]. We chose Load centrality as it is con-
sidered an improved version of Betweenness central-
ity [13]. We opted for PageRank because it effectively
represents the importance of the keyword node [20].

3.3.1 Eigenvector Centrality

Eigenvector centrality is a metric used in social
network analysis to quantify the importance and in-
fluence of network nodes. Eigenvector centrality is
determined not only by their direct connections but
also by the quality of their connections. Essentially,
Eigenvector centrality evaluates how well a node con-
nects to other well-connected nodes [12]. Assuming a
network represented by an adjacency matrix A, eigen-
vector centrality is calculated by Equation 1.

Ax = λx (1)

Where A is the adjacency matrix of the network. x is
the eigenvector centrality vector representing the cen-
trality scores for all nodes in the network. λ(lambda)
is the eigenvalue associated with this eigenvector.

3.3.2 Closeness Centrality

Closeness centrality is a network centrality mea-
sure that quantifies how quickly a node can reach all
other nodes in a network. The core concept is that
the shorter the average distance to other nodes, the
more central it is in the network. A node with a high
closeness centrality is considered central in the net-
work [11]. Closeness centrality can be calculated by
Equation 2.

Ci =
(N − 1)∑

j dji
(2)

Where Ci is the closeness centrality of node i. N
is the total number of nodes in the network. dji is
the shortest distance from node j to node i in the
network.

3.3.3 Betweenness Centrality

Betweenness centrality is a network centrality mea-
sure that quantifies how well a node serves as a bridge
within the network. A node with high betweenness
centrality is critical to the network as it provides effi-
cient pathways connecting different parts. Removing
such nodes would result in longer paths or even dis-
connections between various network segments [11].
Betweenness centrality can be calculated by Equation
3.

gi =
∑

s6=i6=t

σst(i)

σst
(3)

Where gi is the betweenness centrality of node i. σst
represents the total number of shortest paths from
node s to node t in the network. σst(i) represents
the number of those shortest paths that pass through
node i.

3.3.4 Load Centrality

Load centrality, or ‘Newman’s Betweenness cen-
trality,’ is a variant of betweenness centrality pro-
posed by Newman [13]. The critical difference be-
tween Betweenness centrality and Load centrality is
the inclusion of all paths using a random walk method
rather than using only the shortest path when calcu-
lating Betweenness centrality. Allowing Load central-
ity to identify nodes with high centrality that do not
lie on the shortest path, which would be undetectable
with Betweenness centrality [13].

Assuming a network represented by a diagonal ma-
trix of vertex degrees (D) and an adjacency matrix
(A), Load centrality can be calculated by the follow-
ing process. First, construct the matrix (D-A) and
remove a single row and its corresponding column.
Then, invert the resulting matrix and add back the
previously removed row and column, along with a
new row and column consisting of all zeros. The re-
sulting matrix called matrix T , with elements (Tij).
Load centrality can then be calculated by the follow-
ing Equation 4-7.

bi =

∑
s<t I

(st)
i

1
2n(n− 1)

(4)

I
(st)
i =

1

2

∑
j
Aij |Tis−Tit−Tjs+Tjt|, for i 6= s,t. (5)

I(st)s = 1 (6)

I
(st)
t = 1 (7)

Where bi is the load centrality of node I and n is the
total number of nodes in a network.

3.3.5 PageRank

PageRank is an algorithm employed by search en-
gines, such as Google, to rank web pages in search re-
sults. PageRank analyzes the link structure within a
network and gauges the importance of each web page.
Its core principle is to assess both the quantity and
quality of the links leading to the current webpage,
determining how significant the current webpage is
[20]. In this sense, PageRank bears similarities to
eigenvector centrality [14]. PageRank is computed
by an iterative algorithm as Equation 8.

PR(A) =
1− d
N

+ d
∑

B∈M(A)

PR(B)

L(B)
(8)
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Where PR(A) is the PageRank score of page A. d
is a damping factor, typically set to around 0.85. It
represents the probability that a user will continue
randomly surfing rather than following links. N is
the total number of pages in the network. M(A) de-
notes all pages B that link to page A. PR(B) is the
PageRank score of page B, and L(B) is the num-
ber of outbound links on page B. The formula will
iteratively calculate the PageRank of all nodes in a
network until they converge to a stable result.

3.4 Keyword Trend Prediction

The primary process for predicting keyword trends
involves utilizing Long-Short Term Memory (LSTM)
[9] to forecast the magnitude of change in keyword
frequency and predict upcoming keywords using key-
word centrality. Moreover, to address the unbalanced
nature of the dataset, the SMOGN method [21] was
employed to enhance the model’s accuracy further.

3.4.1 Long Short-Term Memory (LSTM)

LSTM is a type of recurrent neural network (RNN)
well-suited for handling time series data, such as
patent data, in this research. An improvement of
LSTM over standard RNN is its ability to mitigate
the vanishing gradient problem, which arises when
training networks over long periods. An LSTM net-
work has three gates, a memory cell (Ct), and a hid-
den state (ht). These three gates include an input
gate (it), a forget gate (ft), and an output gate (ot)
[9]. Each component is explained in the mathemati-
cal Equations 9-13.

it = σ(wi[ht−1, xt] + bi) (9)

ft = σ(wf [ht−1, xt] + bf ) (10)

ot = σ(wo[ht−1, xt] + bo) (11)

Ct = ftCt−1 + it tanh(wc[ht−1, xt] + bc) (12)

ht = ot tanhCt (13)

Where σ is the sigmoid activation function. w rep-
resents the weight matrix for each component. ht−1
is the previous cell state, and xt is the current input.
For the loss functions used in this research, we ap-
plied Mean Squared Error (MSE) [22] in regression
model and employed Binary Cross-entropy (BC) [23]
in binary classification model. Both loss functions
can be calculated by Equations 14 and 15.

MSE =
1

n

∑n

i=1
(yi − ŷi)2 (14)

BC = − 1

n

∑n

i=1
yi log ŷi + (1− yi) log(1− ŷi) (15)

Where n is the number of data points, ŷi represents
the predicted value and yi represents the actual target
value.

3.4.2 Synthetic Minority Over-Sampling Technique 
for Regression with Gaussian Noise (SMOGN)

The SMOGN method is a data preprocessing tech-
nique used to address the issue of imbalanced datasets
in regression problems. SMOGN combines random
undersampling with two oversampling methods: the
Synthetic Minority Over-Sampling Technique for Re-
gression (SMOTER) and Gaussian Noise. SMOTER
is adapted from the SMOTE method to address re-
gression problems [24] specifically.

In essence, SMOGN works by undersampling the
majority data and oversampling the minority data
through augmented data. To generate augmented
data, each minority data point is selected along
with its k neighbors. The neighbors are interpo-
lated within a defined safe range using the SMOTER
method. For neighbors located outside this safe
range, the SMOTER method is deemed unsuitable.
Instead, new examples are generated by applying
Gaussian Noise to the selected data. The safe range
is defined as half the median distance between the
data point and its k neighbors [21]. In this study, we
utilized the Python library ‘smogn’ [27].

4. EXPERIMENTAL SETUP

4.1 Data

We collected patent grant bibliographies and ab-
stract data in XML format from 2011 to 2021 through
bulk downloads from bulkdata.uspto.gov [15]. Specif-
ically, we selected patents related to information and
communication technology using CPC code G03C
[16], resulting 8,140 patents. Next, we extracted au-
thor information and abstracts for each patent, to-
taling 14,621 authors. Additionally, we assigned five
keywords to each patent using the TF-IDF method
[17] applied to their abstracts using the Scikit-learn
library [25], resulting 7,298 keywords.

4.2 Patent author-keyword co-occurrence net-
work

We used the Python library NetworkX [26] to gen-
erate the patent author-keyword co-occurrence net-
work. This library took the relationship tables as
input to create the network for each year. Subse-
quently, the keyword centrality data for each year
was calculated by applying social network analysis
methods across the years with the NetworkX library
[26]. The calculated keyword centrality data includes
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the following metrics: Eigenvector centrality, Close-
ness centrality, Betweenness centrality, Load central-
ity, and PageRank [11-14].

4.3 Setup Training Set

The most effective model for predicting keyword
frequency involves short-term predictions, which fore-
cast keyword frequency for two years in the future
based on input data [8]. This model is combined with
a moving window method with a three-year length
to create the training set for the LSTM [9]. How-
ever, the target keyword frequency was imbalanced,
with most results having keyword frequencies close
to zero. In total, there are 1,466 keyword rows in the
positive group, 2,281 keyword rows in the negative
group, and 21,330 keywords in the unchanged group.
The SMOGN method [21] was applied to the positive
and negative groups to address this imbalance.

Finally, the data in each group was divided into
training sets, verification sets, and test sets in an 8:1:1
ratio, respectively. The input dataset for the binary
classification model was then created by classifying
the keyword slope into the TRUE (with a slope >1,
signifying them as upcoming keywords) and FALSE
(with a slope <=1, signifying them as unchanged-to-
decline keywords). Figure 3 shows the overview of
the training set.

Fig.3: Overview of training set setup.

We will provide further explanations of these steps
below.

4.3.1 Moving Window

To optimize time series data, particularly patent
keyword data, we employed the moving window
method with a fixed step [8], selecting a window size
of three steps. The input dataset consists of the pro-
posed centrality values for three consecutive years
and the corresponding keyword slope. For example,
starting with the first row for keyword A, the first 15
columns are filled with five centralities for years 1, 2,
and 3 consecutively. We filled the last column with
the target slope, which we calculated by subtracting
the frequency of keyword A in year three from its fre-
quency in year five. We then repeated this process
for every keyword.

After that, the starting year is moved up by 1. To
fill the first 15 columns of the next row, we used five
centralities for years 2, 3, and 4 of the keyword A. We
then calculate the target slope by determining the dif-
ference in frequency of keyword A between years four
and six. The process continued until no more data
was available to construct the dataset for the follow-
ing year. In our case, the input dataset starts from
the year 2011 and goes up to 2017, as the available
data only spans from 2011 to 2021.

Figure 4 shows an overview of the moving window
operation. The centrality table results from central-
ities extracted from the patent author-keyword co-
occurrence network. It contains five centralities of
every keyword each year. For example, A2011 con-
tains five centralities of keyword A in 2011. Input for
LSTM is then created by layering C1, C2, and C3 on
input table shown in Figure 5.

Fig.4: Overview of how the moving window oper-
ates.

Fig.5: LSTM input data.

4.3.2 Keyword Category

First, input rows with no centrality data, meaning
that the specific keyword does not appear even once
within a moving window of 3 years, were removed
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from the input dataset. To tackle the imbalance is-
sue mentioned earlier, we categorized each keyword
for every year into one of three groups: positive, neg-
ative, or unchanged. We determined the grouping by
comparing each keyword’s frequency in the current
year to its frequency from two years prior. We clas-
sify keywords with an increase in frequency of more
than one as positive, keywords with a decrease in fre-
quency of more than one as negative, and keywords
with a change of less than one as unchanged.

Subsequently, the target for LSTM prediction
shifted from keyword frequency to the change in key-
word frequency, referred to as the ‘keyword slope’
from now on. The LSTM prediction model was then
applied to the entire dataset and separately, with fo-
cusing on the results for the positive group. This
is because keywords with an increased frequency are
more likely to represent upcoming trends, especially
those with higher slopes.

4.3.3 Keyword Balancing

Due to the nature of the patent data, the key-
word slope skewed toward zero. Even after split-
ting the keyword categories, the keyword slope re-
mains skewed toward 2 for the positive group and
toward -2 for the negative. We then applied the
SMOGN method [22] to both groups to further bal-
ance the dataset. After applying SMOGN, there were
5,717 keyword rows in the positive group, 3,647 key-
word rows in the negative group, and 5,464 keywords
in the unchanged group. This resulted in a more
balanced dataset for both groups. Figures 6-8 dis-
play histograms of each dataset type before apply-
ing SMOGN, while Figures 9-11 show them after ap-
plying SMOGN. By comparing the histograms before
and after applying SMOGN, it was evident that the
large number of values near zero decreased while val-
ues farther from zero increased, thereby further bal-
ancing the dataset.

Fig.6: Histogram of Full Dataset Before Applying
SMOGN.

5. EVALUATION

For the regression model, the four most popular
criteria to evaluate the regression prediction model
are as follows: Mean Squared Error (MSE) [22], Root
Mean Squared Error (RMSE) [28], mean absolute er-
ror (MAE) [28], and coefficient of determination (R2)

Fig.7: Histogram of Negative Dataset Before Apply-
ing SMOGN.

Fig.8: Histogram of Positive Dataset Before Apply-
ing SMOGN.

Fig.9: Histogram of Full Dataset After Applying
SMOGN.

Fig.10: Histogram of Negative Dataset After Apply-
ing SMOGN.

Fig.11: Histogram of Positive Dataset After Apply-
ing SMOGN.
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[29]. MAE represents the average absolute error be-
tween the actual and predicted values. MSE is similar
to MAE but is more sensitive to the variance between
the actual and predicted values. RMSE is the square
root of MSE. In an ideal case, RMSE should be equal
to MAE. However, RMSE inherits the sensitivity to
larger errors from MSE. Therefore, the more signif-
icant the gap between MAE and RMSE, the larger
the prediction error [28]. R2 represents the correla-
tion between the actual and predicted values, ranging
from 0 to 1 [29]. The ideal outcomes include low MAE
and MSE values with high R2. MAE, RMSE, and R2

are defined by following equation 16-18.

MAE =
1

n

∑n

i=1
|yi − ŷi| (16)

RMSE =

√
1

n

∑n

i=1
(yi − ŷi)2 (17)

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(18)

Where n is the number of data points. ŷi represents
the predicted value. yi represents the actual target
value. ȳ represents the average target value.

For the binary model, the criteria for model eval-
uation are the combination of accuracy [30], recall,
and F1 score [31]. To assess the performance of the
proposed method, we will compare it with the AKFP
5 model [8] based on the criteria we mentioned ear-
lier. The reasons for selecting the AKFP 5 model
are as follows: First, the AKFP 5 model is a pre-
diction model that can be replicated by the patent
data used in the proposed model, making it possible
to compare the performance of both models using the
criteria mentioned above. Second, the performance of
the AKFP 5 model surpasses that of regular machine
learning approaches, such as LR, KNN, XGBoost,
and RF. Third, AKFP 5 performed best among the
three proposed methods by Lu et al. [8].

6. PARAMETERS

In this research, we aim to keep the LSTM param-
eters as identical to the AKFP 5 method [8] as possi-
ble, with the primary objective of comparing the per-
formance of our proposed method against the AKFP
5 method. From now on, we will refer to the AKFP 5
method as the benchmark method. By retaining sim-
ilar LSTM parameters, we can assess the effectiveness
of the proposed method compared to the benchmark
method in an equitable manner. This way, we can at-
tribute any observable differences in performance to
the different input data rather than the model con-
figuration. On the other hand, learning rates, batch
size, and epochs still need to be tuned to maintain
optimal performance on the benchmark method. We
selected the Adadelta optimization algorithm [32] for
the optimizer. Not only is the Adadelta method supe-

rior to the traditional gradient descent method, which
has a problem with falling into local optima, but it
also has an automatic learning rate adjustment al-
gorithm that allows different parameters to have dif-
ferent learning rates. Table 2 provides a detailed de-
scription of the LSTM parameters used in the models
for this research. For the framework used, we used
the TensorFlow framework through the Keras library
[33].

Table 2: Parameter of LSTM Model.

Parameter Benchmark Proposed Proposed
model model model

(regression) (binary)
Number of 256,512 256,512 256,512
units on (LSTM), (LSTM), (LSTM),
each layer and 1 and 1 and 1
Activation ReLU ReLU ReLU
Function
Learning 0.1 0.1 0.1
Rates
Optimizer Adadelta Adadelta Adadelta
Batch size 32 32 32
Epochs 200 200 200
Activation - - Sigmoid
Function

7. RESULTS AND COMPARISION

We divided the input dataset into three groups for
the sake of comparison. These three groups are as fol-
lows: benchmark, unbalanced, and balanced. Figures
12 and 13 illustrate the differences in input datasets
between the groups. In both the unbalanced and
balanced models, we applied the proposed method.
However, we used the SMOGN method only for the
balanced model, not the unbalanced one. First, we
compared the results of all three full models—the
benchmark full model, the unbalanced full model, and
the balanced full model. Table 3 presents the re-
sults, and Figure 12 shows a scatterplot. Next, we
then compared the results of both the three posi-
tive and negative models. These included the pos-
itive/negative benchmark models, positive/negative
unbalanced models, and positive/negative balanced
models. Table 3 presents the results, and Figure 13
shows a scatterplot. Finally, we compared the results
of three binary models: the binary benchmark, bal-
anced, and unbalanced model. The results are pre-
sented in Table 10 with their respective confusion ma-
trices, while the normalized confusion matrices are
shown in Tables 4-9.

8. DISCUSSION

Based on the results, the balanced model achieved
the lowest MSE and MAE in the positive group, mak-
ing it the most effective method for the primary fo-
cus of this research. Moreover, the results of the
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Fig.12: Scatter Plot of Each Full Model.

Fig.13: Scatter Plot of Each Positive/Negative
Model.

Table 3: Performance of each Regression Model.

Result Bench Unbalanced Balanced
mark

Full MSE 3.516 2.776 15.128
RMSE 1.876 1.667 3.889
MAE 1.134 0.792 2.607
R2 0.188 0.19 0.257

Positive MSE 17.584 11.232 10.362
RMSE 4.193 3.351 3.219
MAE 2.167 1.479 2.538
R2 0.291 0.335 0.364

Negative MSE 2.427 4.383 9.283
RMSE 1.558 2.094 3.047
MAE 0.997 1.006 2.155
R2 0.709 0.515 0.542

Table 4: Confusion Matrix on Benchmark Binary
Model.

Predict label
FALSE TRUE

Actual label FALSE 1444 0
TRUE 122 0

Table 5: Normalized Confusion Matrix on Bench-
mark Binary Model.

Predict label
FALSE TRUE

Actual label FALSE 0.922 0
TRUE 0.078 0

Table 6: Confusion Matrix on Unbalanced Binary
Model.

Predict label
FALSE TRUE

Actual label FALSE 2351 0
TRUE 157 0

Table 7: Normalized Confusion Matrix on Unbal-
anced Binary Model.

Predict label
FALSE TRUE

Actual label FALSE 0.937 0
TRUE 0.063 0

Table 8: Confusion Matrix on Balanced Binary
Model.

Predict label
FALSE TRUE

Actual label FALSE 802 100
TRUE 331 250
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Table 9: Normalized Confusion Matrix on Balanced
Binary Model.

Predict label
FALSE TRUE

Actual label FALSE 0.541 0.067
TRUE 0.223 0.167

Table 10: Performance of each Binary Model.

Result Benchmark Unbalanced Balanced
Accuracy 0.922 0.937 0.709
Recall 0 0 0.537
F1 Score 0 0 0.43

balanced dataset in both the full and negative cat-
egories were worse than those of the benchmark and
unbalanced datasets. On the other hand, the un-
balanced model had the lowest MSE and MAE in
the full group. However, the difference is very lit-
tle when compared to the benchmark model, as the
difference in both MSE and MAE was lower than
1. Upon comparing the scatterplots of these results,
we hypothesize that this may be due to the effect of
the imbalanced dataset, which causes data points to
cluster around a natural slope of zero. This char-
acteristic becomes evident when we consider the re-
sults of the binary model. The F1 scores for both
the benchmark and unbalanced datasets were at 0,
while the balanced dataset demonstrates a notable
improvement with an F1 score of approximately 0.5.
When we consulted the F1 score and recall in con-
junction with the confusion matrix, it was safe to
assume that the leading cause of the low F1 score in
the benchmark and unbalanced datasets stems from
the skewness of both datasets toward the unchanged-
to-decline keyword. This skewness in both the bench-
mark and unbalanced datasets was pivotal in achiev-
ing lower MSE and MAE than the balanced dataset
in the full group. Furthermore, comparing the recall
between the benchmark and balanced method shows
two things. First, the balanced method performs bet-
ter at predicting positive instances than the bench-
mark method. Second, the benchmark method fails
to predict any positive instances at all. The bench-
mark method’s lack of prediction ability may stem
from the previously mentioned skewness. To miti-
gate the influence of data clustering in the positive
and negative groups, we employed categorizing the
dataset into three distinct keyword categories. By
applying the LSTM model separately to the positive
and negative categories, we aim to reduce the impact
of data clustering, particularly from the unchanged
group, on the predictive performance of both the pos-
itive and negative groups. This resulted in lower MSE
and MAE in the positive category but higher MSE
and MAE in the negative category when comparing
the balanced dataset to the benchmark and unbal-

anced dataset.

9. CONCLUSIONS

In this study, we proposed a novel approach to
predict the patent keyword trends along with the
magnitude of changes. We proposed a method that
combines a patent author-keyword co-occurrence net-
work with a Long Short-Term Memory (LSTM). The
LSTM used input features extracted from the net-
work’s keyword-related metrics and predicted the
keyword slopes, which indicate future trends. Our
finding is as follows: we can successfully predict the
upcoming keywords with acceptable accuracy using
the proposed method. While the performance of the
proposed method did not significantly surpass exist-
ing benchmarks, it demonstrates competitive poten-
tial. Future research can further optimize and refine
this potential. Moreover, we believe this study could
shed light on the potential of applying co-occurrence
networks and social network analysis (SNA) to pre-
dict keyword trends.

10. LIMITATION AND FUTURE STUDY

While this research proposes a new approach to
patent keyword trend prediction, it is important to
acknowledge several limitations and possibilities for
improvement in future studies. First, our dataset is
limited to the abstracts of patents categorized by the
G03C CPC patent code. Future research could ex-
pand the scope using a larger dataset, including the
full patent text rather than just abstracts or grouping
patents based on research keywords instead of their
assigned codes.

Text mining techniques can be improved by explor-
ing alternative methodologies, implementing more ro-
bust data cleaning, and adopting effective keyword
grouping strategies, following established guidelines
[34]. Additionally, the constraint of using five key-
words to represent each patent may not be optimal;
varying the number of keywords for different patents
could lead to more precise representations of each
patent.

A notable limitation of our study is the lack
of comparison between traditional keyword co-
occurrence networks [6-7] and the author-keyword co-
occurrence network proposed in this study. Such a
comparison could shed light on which method is a
more effective for patent analysis. Moreover, there
are alternative time-series and classification models
that could be used for evaluation, beyond the LSTM
model employed in this study.

Furthermore, the input dataset can be expanded
by including more centrality data or network metrics
to improve the analysis. Additionally, future studies
can delve into feature analysis to determine the sig-
nificance of each centrality measure by employing fea-
ture analysis techniques such as leave-one-out model-
ing [8].
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These limitations and future research directions
provide opportunities to enhance the depth and
breadth of patent analysis research, further contribut-
ing to the importance of the patent analysis field in
the current data-driven business and society.
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