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ABSTRACT Article information:
The noise sensitivity of the optical �ow is a limitation for determining
the motion �ow. When there is noise, the optical �ow cannot identify
the outcome of the motion �ow. The robustness strategy using the �ne-
tuned Lorentzian function is provided here to strengthen the resilience of
the optical �ow's e�ect. In dense processing, when non-Gaussian distur-
bances are present in opposition to each frame of the input video sequence,
we concentrate on the realization of the Horn and Schunck optical �ow
technique. The error in the motion �ow is evaluated by calculating the
Error Vector Magnitude (EVM) value. The EVM considers the motion
�ow's faultlessness in both range and direction. We simulated several non-
Gaussian noises over a range of input video sequences for the evaluation.
By employing the �ne-tuning Lorentzian norm in�uence function on the
Horn and Schunk optical �ow, we could determine how the robustness of
the motion �ow had improved.
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1. INTRODUCTION

The method for detecting motion in video se-
quences is called optical �ow [1, 2]. In the past three
decades, many approaches have been presented for
�guring motion vectors, including the Block-based
technique [3], the Lucas and Kanade technique [4],
and the Phased-correlation technique [5]. However,
the Horn and Schunck technique (H-S) [6] is one of
the optical �ow techniques for �guring out the mo-
tion vector of every pixel in a sequence of images.
While many techniques have been proposed to solve
this problem, H-S stands out as one of the most e�-
cient ones for real-time processing, and it was used by
many areas of research and applications such as Real-
Time E�cient FPGA for 4K Video Stream [7] and
Motion Estimating Optical Flow for Action Recogni-
tion [8]. In the H-S technique, the global idea, where
the missing motion detail in inner sections from the
motion frames of the solid objects is �lled in, yields
a high density of motion �ow. However, the biggest
�aw is an increased high noise sensitivity.

The output of the motion �ow from optical �ow
was employed as an input in many �elds of advanced

study and application, including picture compression
[9, 10], motion tracking [11], object detection [12],
video encoding [13, 14], consistent estimation in real
environment [15], and image super-resolution [16].
Then, quality in the accuracy of the optical �ow di-
rectly a�ects the performance of these applications in
consequence.

In most areas of image and video processing, noise
was the problem. When noise is present over picture
and video sources, the overall performance is a�ected
depending on numerous variables, including the type
and quantity of noise. When noise interferes with
video sequences in optical �ow, the range and direc-
tion of the motion �ow are faulty. As said, the optical
�ow's primary �aw is its sensitivity to noise. There
are two basic options to lessen these issues. The �rst
is the pre-processing technique. It involves using a
typical image noise reduction model to reduce noise
from the input video sequence [17�19] before submit-
ting it for processing in an optical �ow. However,
this approach takes longer to complete because noise
removal processing and noise type/level detection are
required. Additionally, the noise removal technique
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can occasionally lose the image’s primary content.
The second is a post-processing technique by the re-
liable method that processes bilateral function and
median function in addition to optical flow in com-
puting [20]. However, they still showed a significant
lack of consistency when determining motion flow.

This work concentrates on the H-S technique in
dense processes to address the robust post-processing
technique. We modify the Lorentzian norm function
[21] into a fine-tuned Lorentzian norm influence func-
tion in conjunction with the H-S to improve the op-
tical flow’s robustness in determining the range and
direction of the motion flow over a variety of non-
Gaussian noise types, including Poisson, Salt-Pepper,
and Speckle. We also analyze how each robust tech-
nique is affected by the differentiating features of the
video sequence. In our experiment, we compared the
level of robustness with other post-processing robust-
ness methods while opposing the non-Gaussian noise
over various characteristic standard video sequences.
We also studied the robustness level from multiple
characteristics of video sequences on each type of non-
Gaussian noise by determining the fault in the range
and direction of the motion flow through the EVM.

The order of the paper is as follows. The litera-
ture overview for optical flow techniques and post-
processing robustness techniques is presented in Part
2. The robustness level experiment result from the
Error Vector Magnitude EVM is shown in Part 3.
The conclusion is presented in Part 4.

2. TECHNIQUES FOR OPTICAL FLOW
AND POST-PROCESSING ROBUSTNESS

This section describes the resilience methods in op-
tical flow and the Horn and Schunck optical flow tech-
nique.

2.1 The H-S Technique

A traditional optical flow method that is used to
compute motion between two frames is the H-S [8].
H-S calculates the smoothness flow across the entire
image. It reduces flow distortions. For sequences of
two-dimensional image files, this function is defined.
For each pixel in the image, the linear motion flow (u
and v) is calculated using:

uk+1 = ūk − Ix[Ixū
k + Iyv̄

k + It]

α2 + I2
x + I2

y

(1.1)

uv+1 = v̄k − Iy[Ixū
k + Iyv̄

k + It]

α2 + I2
x + I2

y

(1.2)

Where the corresponding values, initially set to
0, must be repeated k times to reduce the total of
mistakes, an iterative calculation is required to opti-
mize the process with the suitable smoothness weight
(α).ūk and v̄k are the average vector at time k. In

Fig. 1, image sequence number t is represented by
the gradient intensity (brightness) I(x, y, t).

Fig.1: The calculation of brightness constancy.

The spatiotemporal image gradient is used to re-
solve the brightness constancy (Ix, Iy, It) using:

Ix =1/4{I(x, y + 1, t)− I(x, y, t) + I(x+ 1, y + 1, t)− I(x+ 1, y, t)

+ I(x, y + 1, t+ 1)− I(x, y, t+ 1) + I(x+ 1, y + 1, t+ 1)

− I(x+ 1, y, t+ 1)}
(2.1)

Iy =1/4{I(x+ 1, y, t)− I(x, y, t) + I(x+ 1, y + 1, t)− I(x, y + 1, t)

+ I(x+ 1, y, t+ 1)− I(x, y, t+ 1) + I(x+ 1, y + 1, t+ 1)

− I(x, y + 1, t+ 1)}
(2.2)

It =1/4{I(x, y, t+ 1)− I(x, y, t) + I(x+ 1, y, t+ 1)− I(x+ 1, y, t)

+ I(x, y + 1, t+ 1)− I(x, y + 1, t) + I(x+ 1, y + 1, t+ 1)

− I(x+ 1, y + 1, t)}
(2.3)

Where x and y are the coordinate positions of the
focus pixel and t is the no. of the image sequence.

The H-S provides quick and reliable results in the
estimated MV due to the performance inspection [21].
However, it is pretty noise-sensitive. When noises
are present in the input video sequence, the H-S al-
gorithm produces a fairly flat result, and each video
sequence characteristic should be considered when us-
ing the smoothness weight (α).

2.2 Gradient orientation of L1 median on H-S
(M-HS)

This post-processing method makes the optical
flow more resilient by adding the L1 median filter
to the input image sequence, which protects it from
noise. In general, the L1 median function is used in
parts of standard image processing to deal with gen-
eral noise. To increase the robustness of optical flow,
this normalization form has used post-processing with
the results of the H-S’s motion flow [20].

(uL1, (v)L1) =

(
u

|u|
,
v

|v|

)
(3)
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When two scalar limits between -1 and 1 are placed
on the motion flow uL1 and vL1, motion flow is con-
strained. In the application field where we anticipate
the direction but not the range, it is appropriate to
use the result of M-HS with constrained scalar. Ad-
ditionally, it functions effectively on the input video
sequence with moderate movement.

2.3 Bilateral Filter on H-S (B-HS)

This filter performed post-processing to the H-S
motion flow result [26] to increase optical flow re-
silience. In this method, a bilateral filter [22] is a
smoothing filter used in several fields of image pro-
cessing, including noise reduction [23–25]. The defi-
nition of the bilateral filter on H-S is:

vb =
1

k

∑
|m|<M

v∅(x+m) (4)

K =
∑

|m|<M
∅(x+m) (5)

∅(x+ n) = exp

(
|n|2

2δ2
a

+
|I(x+ n)− I(x)2|

2δ2
b

)
(6)

Where vb is the motion vector of B-HS. M is the
neighbour flow interval (in our experiment, we fixed
M to be 7). The motion flow of H-S is v. The bilateral
filter normalized kernel is K. The Gaussian kernel is
∅. And δb is the brightness standard deviation of
I(x) (in our experiment, we set the deviation in δa as
v × 7) with the iterative bilateral filter’s smoothness
weight characteristic. When we used the H-S, it kept
the robustness as well.

2.4 Fine-Tune Lorentzian Norm Influence
Function on H-S (L-HS)

One of the reliable error functions [27, 28] to re-
ject and stop the outliers created by system distur-
bances is the Lorentzian. By decreasing the error in
super image reconstruction, the Lorentzian function
was employed in the past to enhance estimation [29].
This function applied post-processing optical flow [21]
to increase optical flow resilience in L-HS. Regarding
the value of parameter T , most of the clear and inter-
fered sequences in our experiment show the best av-
erage in performance where T is equal to 1.25. When
we use the Fine-Tune Lorentzian Norm Influence with
the H-S (we set T as 1.25 in our experiment), it ex-
hibits greater resilience, as seen in Fig. 2.

Fig.2: The fine-tune influence function of The
Lorentzian norm (T=1.25).

Fig.3: Combined image with non-Gaussian noises (a) non-noise, (b) Poisson, (c) Salt-Pepper (density
0.005), (d) Salt-Pepper (density 0.005), (e) Speckle (variance 0.01), and (f) Speckle (variance 0.05).
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Equation (7) defines the Lorentzian norm. Then,
for increased robustness, the Lorentzian norm was
transformed into the Lorentzian norm influence func-

tion and processed alongside the optical flow. Equa-
tion (8) defines the Lorentzian norm effect function.

PLor = log

[
1 +

1

2

( u

T

)2
]

(7)

Fig.4: Each COASTGUARD image frame’s EVM results for (a) Poisson, (b) Salt-Pepper (density 0.005),
(c) Salt-Pepper (density 0.025), (d) Speckle (variance 0.01), and (e) Speckle (variance 0.05) are shown.
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uLor =

(
2× u

(2× T 2) + u2

)
(8)

Where T is the scale factor that we run this pa-

rameter using several values in our experiment.

Fig.5: Each FOREMAN image frame’s EVM results for (a) Poisson, (b) Salt-Pepper (density 0.005), (c)
Salt-Pepper (density 0.025), (d) Speckle (variance 0.01), and (e) Speckle (variance 0.05) are shown.
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3. RESULTS OF THE EXPERIMENT

For our investigation, we generated four standard
sets of input video sequences (each video can con-
tain up to 100 image frames). Two video clips with

rapid movement, like COASTGUARD and FORE-
MAN. And two video clips with slow motion, such
as AKIYO and CONTAINER. Poisson, Salt-Pepper
(density 0.005), Salt-Pepper (density 0.025), Speckle

Fig.6: Each AKIYO image frame’s EVM results for (a) Poisson, (b) Salt-Pepper (density 0.005), (c) Salt-
Pepper (density 0.025), (d) Speckle (variance 0.01), and (e) Speckle (variance 0.05) are shown.
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noise (variance 0.01), and Speckle noise (variance
0.05) are the five non-Gaussian noise types that were
combined into the video sequences. Fig.3(a) illus-
trates the non-noise. Fig.3(b) illustrates the Poisson
noise. Fig.3(c) shows the Salt-Pepper noise at den-

sity 0.005. Fig.3(d) shows the Salt-Pepper noise at
density 0.025. Fig.3(e) shows the Speckle noise at
variance 0.01. And Fig.3(f) shows the Speckle noise
at variance 0.05.

To estimate brightness for H-S, we fixed the

Fig.7: Each CONTAINER image frame’s EVM results for (a) Poisson, (b) Salt-Pepper (density 0.005), (c)
Salt-Pepper (density 0.025), (d) Speckle (variance 0.01), and (e) Speckle (variance 0.05) are shown.
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smoothness weight at 0.5 and used the BFB mask
coefficient [30] at 100 iterations, which is identical to
the specification in the function of BFB. As a result of
our experiment, we calculated the Error Vector Mag-
nitude (EVM) value by considering only the active
movement vector from the ground truth vector in the
evaluation. We adopted the EVM because its ability
to reflect meaning in the range and direction of mo-
tion flow-where a lower rate EVM indicates stronger
robustness-led to its employment. In our experiment,

we compare the result MV with the origin MV and
use root-mean-square to calculate the average inac-
curacy from the movement vector.

We declared the EVM results for each image frame
from the input video sequence in Figs. 4 through 7 to
specifically highlight the robustness level. We experi-
mented with the COASTGUARD sequence in Fig. 4.
Fig.4(a) illustrates the Poisson finding. In Fig.4(b)
and Fig.4(c), the outcome for Salt-Pepper (density
0.005 and 0.025) is shown. In Fig.4(d) and Fig.4(e),

Table 1: The EVM’s mean and standard deviation.

Fig.8: The analyzed graph represented the level of average EVM from each technique against each type of
non-Gaussian noise for each video sequence.
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Fig.9: The optical flow vectors of the AKIYO image frame no. 50 which it is interfered by Speckle noise
(variance 0.05) processed by (a) H-S, (b) M-HS, (c) B-HS, and (d) L-HS.

Fig.10: The zoomed-in dense optical flow vectors of the AKIYO image frame no. 50 which it is interfered
by Speckle noise (variance 0.05) processed by (a) H-S, (b) M-HS, (c) B-HS, and (d) L-HS.

the outcome for Speckle (variance 0.01 and 0.05) is
shown. This sequence presents rapid movement and
changing of the camera angle during the frame no. 67
to 88 that caused the high errors.

We experimented with the FOREMAN sequence
in Fig. 5. Fig.5(a) illustrates the Poisson finding. In
Fig.5(b) and Fig.5(c), the outcome for Salt-Pepper
(density 0.005 and 0.025) is shown. In Fig.5(d) and
Fig.5(e), the outcome for Speckle (variance 0.01 and
0.05) is shown.

We experimented with the AKIYO sequence in
Fig.6. Fig.6(a) illustrates the Poisson finding. In
Fig.6(b) and Fig.6(c), the outcome for Salt-Pepper
(density 0.005 and 0.025) is shown. In Fig.6(d) and
Fig.6(e), the outcome for Speckle (variance 0.01 and
0.05) is shown.

We experimented with the CONTAINER sequence
in Fig.7. Fig.7(a) illustrates the Poisson finding. In
Fig.7(b) and Fig.7(c), the outcome for Salt-Pepper
(density 0.005 and 0.025) is shown. In Fig.7(d) and
Fig.7(e), the outcome for Speckle (variance 0.01 and
0.05) is shown.

We segmented the measurement result into cate-
gories based on the different types of noise present
in each set of the input video sequence. Addition-
ally, we looked at and contrasted the EVM values for
each robust approach, including H-S, M-HS, B-HS,
and L-HS. Table 1 summarizes the outcome using the
EVM’s average and standard deviation. In Fig. 8, the
average EVM data is represented the ploted graph for
comparison.

Fig. 9 illustrates the optical flow vectors from each

method (H-S, M-HS, B-HS, and L-HS) of AKIYO im-
age frame no. 50 that was interfered by Spackle Noise
(variance 0.05). And the zoomed-in dense optical flow
is presents in Fig. 10.

4. CONCLUSION

H-S’s motion flow is significantly impacted by non-
Gaussian noises. The Salt-Pepper has the greatest
influence on determining the motion flow using H-S.
At the higher density of Salt-Pepper noise, the re-
sult of EVM keeps increasing. In comparison, the
Poisson and the Speckle have a smaller impact. The
robustness approaches offer extremely high benefits
for finding the motion flow by H-S over non-Gaussian
noises. Both the M-HS and the L-HS perform well in
terms of robustness, and their robustness levels are
comparable. The robustness levels of the M-HS and
the L-HS appear to be equal when we consider cer-
tain noise types like Poisson. The M-HS appears to
be more efficient for Salt-Pepper. However, when we
examine the SD, the L-HS appears to have a more
consistent result. By the way, with a steadier SD,
the L-HS achieves the best resilience against Speckle
noise.

We find that the characteristic of the video se-
quence also affected differently by different type of
the non-Gaussian noise. In the slow movement se-
quences such as AKIYO and CONTAINER, they re-
ceive higher impact than the fast movement sequences
such as COASTGUARD and FOREMAN.

When we consider the dense optical flow vectors,
the robustness approaches present the removal of the
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error vector cause by noise. With B-HS, it maintains
the found vectors from H-S while M-HS and L-HS
strengthen the vector. But the L-HS present better
result for removing the vector error in the background
image that was interfered by non-Gaussian noise.

We conclude that the L-HS is acknowledged as a
different, reliable method for determining motion flow
in non-Gaussian noises.
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