Enhancing Password Storage Through the Integration of Cryptarithmetic Techniques and Hash Functions

ECT]

=——=Association

ECTI Transactions on Computer and Information Technology
Journal homepage: https://ph01.tci-thaijo.org/index.php/ecticit/
Published by the ECTI Association, Thailand, ISSN: 2286-9131

147

Enhancing Password Storage Through the Integration of
Cryptarithmetic Techniques and Hash Functions

Jakkapong Polpong!, Sompond Puengsom?, Noppasak Tantisattayanon®
and Phisit Pornpongtechavanich?

ABSTRACT
The utilization of internet-based applications offers numerous benefits and
significantly enhances the daily lives of individuals. To access these sys-
tems, users must provide unique username and password credentials, verify-
ing their identity as the legitimate owners of the data. However, there are
instances where unauthorized individuals, including hackers, gain access
to these systems by illegitimately exploiting these credentials. This study
aims to enhance the system’s efficiency by introducing a novel algorithm
named Cryptarithmetic _shield. This algorithm combines the Cryptarith-
metic technique with a hash function to create a secure encryption sys-
tem. The research results indicate that password data encrypted using the
Cryptarithmetic_shield algorithm, in conjunction with the hash functions
MD5, SHA1, SHA256, SHA512, CRC32, and RIPEMD160, effectively pre-
vents decoding from Dictionary attack and Rainbow Table Attack methods,

Article information:
Keywords:

word Storage

Article history:

Received: August 19, 2023

Revised: December 7, 2023

Accepted: February 8, 2024

Published: April 6, 2024
(Online)

Cryptarithmetic,
Authentication, Hash Function,
Password Security, Secure Pass-

achieving up to 100% effectiveness.

DOI: 10.37936/ecti-cit.2024182.253861

1. INTRODUCTION

In contemporary times, individuals and organiza-
tions are increasingly aware of the potential risks as-
sociated with utilizing applications or sharing per-
sonal information online [1-3]. To safeguard personal
information, a standard known as Confidentiality, In-
tegrity, and Availability (CIA) has been established
[4-5]. It is crucial that online transaction platforms,
such as e-commerce and e-banking, adhere to CIA
standards for security purposes [6].

Currently, there are several ways to access mobile
applications and websites, including text passwords,
biometrics, and hardware tokens. However, text pass-
word access remains the most commonly used and
the least secure option [7]. In many applications and
websites, a user’s username and password are often
set similarly [8-9]. If a hacker gains access to a user’s
username and password, they can use techniques such
as Brute-force and dictionary attacks to crack the
password [10-11]. Once a password has been decoded,
it is displayed in plaintext and can be used to attempt
unauthorized access to websites and applications [12-
13].

Consequently, various techniques and strategies
have been developed to prevent hacking attacks.
Hashing and encryption are methods utilized to store
passwords that provide optimal security and are chal-
lenging to decode [14-15].

Hash functions are currently the preferred method
for storing keys, with MD5, SHA1, SHA256, AES,
and DES being the most widely utilized [16-18]. If
users employ easily guessable passwords (characters
and numbers) with the aforementioned hashing meth-
ods, the resulting hashed passwords cannot be guar-
anteed to be secure against the decryption techniques
of a Rainbow Table Attack (where attackers compare
the hash values of stolen passwords with entries in a
Rainbow Table; if they match, it enables hackers to
backtrack and find the original password) [19-20].

To combat this, the objective of this research is
to combine “cryptarithmetic” with hash functions,
such as MD5, SHA1, SHA256, SHA512, CRC32, and
RIPEMD160, to improve data security and increase
decoding complexity (protecting against Dictionary
attacks and Rainbow Table attacks).

12,34 The authors are the Department of Information Technology, Faculty of Industry and Technology, Rajamangala Uni-
versity of Technology Rattanakosin, Hua Hin, Thailand, E-mail: Jakkapong.pol@rmutr.ac.th, Sompond.pue@rmutr.ac.th, Nop-

pasak.tan@rmutr.ac.th and Phisit.kha@rmutr.ac.th
4 Corresponding author: Phisit.kha@rmutr.ac.th

148 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.18, NO.2 April 2024

This research article is organized into five sections,
which consist of an introduction, background and lit-
erature review, proposed method, results and discus-
sion, and conclusions and future work.

2. LITERATURE SURVEY

In this section, the methods for enhancing pass-
word security, the concepts of Cryptarithmetic, and
the functioning of hash functions are explained. Ad-
ditionally, pertinent research on these subjects is pro-
vided. Passwords can be improved and made more
secure in various ways. Bhana and Flowerday [21] uti-
lized Shannon’s entropy theory approach to enhance
password security, employing three design philoso-
phies: security, memory, and typing. Kéavrestad et al.
[22] presented a range of password-creation strategies
derived from a sample of the Swedish police through
a series of semi-structured interviews with forensic
experts.

Cryptarithmetic is a mathematical game that in-
volves equations between characters and numbers,
where identical characters have the same numerical
value. This topic has been studied in various works
[23-24]. By replacing the characters in the message
with numbers, the objective is to conceal the answers
to the mathematical puzzles used to calculate the
characters included within the numbers [25-26], as
shown in Fig. 1 and Fig. 2.

S E ND
+ M O R E
= M O NE Y

Fig.1: An Exzample of a Cryptarithmetic problem.

Input
natthaya g
5
Natthaya t
5
SHA
Somngam 056
SHA
SonmgamO 056

Fig. 1 shows a classic puzzle by Dudeney [27],
published in the July 1924 issue of Strand Magazine,
as an example [28].

Fig.2: An appropriate solution to the puzzle is
shown in Fig. 1.

Fig. 2 shows the calculation process for a
cryptarithmetic puzzle, with the solution being the
word “MONEY.” In this puzzle, each character is as-
signed a numerical value: O =0, M =1, Y =2 E
=5 N=6,D=7 R =38,and S = 9. The puzzle is
then solved by performing arithmetic operations on
these values to find the correct answer.

The issue was popularized in the May 1931 issue
of Sphinx, a Belgian journal of recreational math-
ematics [29]. “Cryptarithmetic” was published by
Kraitchik [30]. Yang [31] developed a program that
utilizes cryptarithmetic and other techniques to de-
termine the solution to a given problem. Abbasian
and Mazloom [32] employed a genetic algorithm to
solve cryptarithmetic problems in parallel, which is
similar to the research carried out by Minhaz and
Singh [33] on the Classical CryptArithmetic Problem
(CAT + RAN = AWAY). Furthermore, Fontanari [34]
utilized Cryptarithmetic with Social Learning Heuris-
tic to identify the optimal grouping.

A hash function, also referred to as a hash, is a
mathematical function that transforms plaintext or
data, accessible to anyone who can read and under-

Hashed results

ae562f2e3e14138098deb
bf220835771

0fa10743d4686d4ef782e6
828ebf6cS

f35649ee76ee5cc853c4f0
3ad3a27dbd31c9b15744ff
Ob1a3913ac84fead55e2

6a90c96024670976115f9
2afb93e68ee9c0277a64da
b180fa893d1afa40a72ae

Fig.3: Encryption using a hash function algorithm.

Enhancing Password Storage Through the Integration of Cryptarithmetic Techniques and Hash Functions 149

stand it, into a fixed-size output. The purpose of this
transformation is to make it practically impossible for
humans to understand the original plaintext. Hash
operations are one-way operations, meaning that once
a password is entered into the hash algorithm, the
password’s plain text format cannot be recovered, as
shown in Fig. 3 [35-36].

Fig. 3 shows how to use hash functions with MD5
and SHA256 algorithms to transform input plain-text
data into a fixed-length character set. Regardless of
the input size, SHA-256 requires 256 bits, MD5 re-
quires 128 bits, and so on. The hashing operation
produces different results if the message differs by
just one character or if both uppercase and lowercase
characters are used.

The length of the output produced by hash func-
tions varies depending on the type of hash function
used. MD5 generates a 128-bit string, SHA1 gener-
ates a 160-bit string (40 characters), SHA256 gen-
erates a 256-bit string (64 characters), and SHA512
generates a 512-bit string (128 characters). Longer
output lengths require more calculation time and
storage space to store the result value. However,
longer output lengths can also increase the security
of the decryption against Brute-Force and Rainbow
Table attacks [37-39].

Applying hash functions in combination with other
techniques can increase security and make data more
difficult to decrypt. For example, Pal et al. [40] used
four stages of bit interspersing and a 4D-hyperchaotic
system with hashing functions to protect the rights
of images. Almahmoud et al. [41] introduced a new
hash function called HashComb that uses Distance-
Preserving and Multi-Hash techniques for calcula-
tion with basic hash libraries, aiding in analyzing
hierarchical spacing. Polpong and Wuttidittachotti
[42] developed the SXR algorithm, which combines
three equations (ratio, XOR, and Replace) with hash
functions to enhance password security. Upadhyay
et al. [43] studied the effects of 16 hash functions
in applications using the Public Key Cryptography
Standard (PKCS) and Hash-based message authen-
tication code (HMAC). As a result, only 50% of in-
put parameters and hash functions could satisfy the
Strict Avalanche Criterion (SAC) and Bit Indepen-
dence Criteria (BIC).

To generate a new result using the Cryptarithmetic
technique, two parameters are required. Therefore,
the researcher assumed that the username data could
be set as the first parameter and the password as the
second parameter, which would then be calculated
using cryptarithmetic. To increase security, the re-
sulting value would be hashed before storing it in the
database.

3. PROPOSED METHOD

The proposed technique involves three steps. Step
1 consists of creating a pattern using unique charac-

ters to define the numerical value of each character
in the username and password, as shown in Fig. 4.
Step 2 optimizes the algorithm’s performance using
the cryptarithmetic technique, as shown in Fig. 5.
Finally, Step 3 applies a hash function to the results
obtained from Step 2, as shown in Fig. 6.

START

Get username and password

Merge username
and password together

Assign a numerical value
to each character

STOP

Fig.4: The process of creating characters.

In the first step (Fig. 4), a username and pass-
word are collected, and a numerical value is assigned
to each character, with duplicate characters being
counted only once, as shown in Fig. 7.

START

Get username and password

Take the username and password to
calculate with a Cryptarithmetic using the
numerical representation found in step 1.

Replace the password with the new one
obtained from the Cryptarithmetic_shield
algorithm.

STOP

Fig.5: The process of the Cryptarithmetic_shield al-
gorithm.

Next, in Step 2 (Fig. 5), the Cryptarithmetic
shield algorithm is applied, using the values obtained
in Step 1 as the algorithm’s input. The resulting out-
put is shown in Fig. 10.

150 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.18, NO.2 April 2024

START

Get the password value obtained from
step 2.

Select the hash function to use.

Encrypt passwords with a hash function.

A new password is created

STOP

Fig.6: The process of hash functions.

Finally, in Step 3 (Fig. 6), the password generated
using the Cryptographic Shield algorithm is combined
with a hash function. The resulting data is stored in
the database, as demonstrated in Fig. 11.

3.1 Algorithm Cryptarithmetic_shield

In Step 1, the username “Natthayal3” and
password “Somngam08” are established. The
combined username and password for Step 2 is
“Natthayal3Somngam08”.

When applying the Cryptarithmetic method, as
shown in Fig. 7, each duplicate character is counted
only once. For example, in the given sample, the
letter “a” appears four times, but only one numeri-
cal value is assigned to it. The duplicate characters
are removed sequentially from left to right, and each
character is given a unique numeric value. The re-
sults are stored in a dictionary-based array named
“cryptarithmetic dic,” which holds this data.

The “cryptarithmetic_dic” array uses a list-based
data storage format where each element has a unique
key and a corresponding value, as explained in Fig. 8.
The key can be a string or a numerical value, and each
member must have a distinct key. The value can be of
any data type, and the value of each member can be
duplicated. The key associated with each character
is used to determine its value.

Fig. 8 shows the characters associated with the
numbers obtained in Fig. 7, which are stored as a dic-
tionary for use in the Cryptarithmetic method. Ad-
ditionally, the numerical values of the letters “S” and
“n” are shown in Fig. 8, along with their correspond-
ing vital values. The character “S” has a numerical
value of 7, and the character “n” has a numerical
value of 10.

In the second step, the Cryptographic_shield al-

Natthayal3SomngamO8

N a t ¢t h a y a

0 1| 2 3 4 5 6

1 3 S om n

1 3 S o m n

g a m O 8

g a m 0 8

7 8 9 10 11 12 13

Fig.7: Identifying and assigning values to each character.

Enhancing Password Storage Through the Integration of Cryptarithmetic Techniques and Hash Functions

Key Value
N 0
a 1
t 2
h 3
y 4
1 5
3 6
S 7
o 8
m 9
n 10
g 11
0 12
8 13

Fig.8: Accessing dictionary members.

gorithm calculates the username (Natthayal3) and
password (SomngamO08). If the character count of
the username (10 characters) and the character count
of the password (9 characters) are different, the first
character of the string should be added after the last
character to make the character count equal. For ex-
ample, if the password “SomngamO08” has nine char-
acters and the username has 10, a new password with
the same number of characters should be built: “Som-

Username--__

151

ngam08S” (shown in Fig. 9).

If the username has 12 characters but the pass-
word only has 9, the algorithm includes the first three
characters of the password (Som). For example, if the
password is Somngam08, the new password generated
would be Somngam08Som.

The Cryptarithmetic_shield algorithm applies to
the referenced numbers from the cryptarithmetic_dic
data generated in step 1, proceeding from left to right.
The first character of the username and password is
“N” and “S,” respectively, and the maximum value of
the Value in the cryptarithmetic_dic variable is mod-
ulated into the outcome (in this case, 13). For exam-
ple, the sum of “h” (3) and “g” (11) is 14 (3 + 11),
and mod 13 equals 1, or “a” (as shown in Fig. 10).

Fig. 10 shows the encryption of the username and
password data using the Cryptarithmetic_shield al-
gorithm, with the new password generated by the
method being “Smg0at8818.”

The final step is to hash the new password gener-
ated using the Cryptarithmetic_shield algorithm (the
user can choose which hashing technique to use). The
resulting value is saved to the database, as shown in
Fig. 11.

Fig. 11 provides an example of a new password
being hashed with MD5 and SHA1. The length of
the code string varies depending on the hash function
chosen.

The entire operational process of the algorithm
presented, known as Cryptarithmetic_shield, will be
illustrated in “Figure 12.”

Password -~~~

Fig.9: The placement of strings when the number of characters in the username and the password are different.

Username (Key)

*N a t t h a y a 1 3
+ S o m n g a m 0 8
Password (Key)---"" ‘
Username (Value)
0 2 2 3 1 4 1 5 6
+ 8 9 10 11 1 12 13
Password (Value)
New Password (Value) ——> 7 9 11 12 1 2 13 13 5 13
New Password (Key) =——> S m g 0 a t 8 8 1 8

Fig.10: Cryptarithmetic shield algorithm functions.

152 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.18, NO.2 April 2024

Password
Smgoat8818 Smgoat8818
MD5 SHA1
Hash Hash

Hash Generator

sz, Sysee
581fb50c17ea0e83 66da0f2

Fig.11: FEzecute hash function.

Fig. 12 comprises three components: 1. Input, re-
spomnsible for receiving values such as username, pass-
word, and hash function; 2. Process, tasked with
aiding in the processing and computation of the algo-
rithm’s equations; 3. Output, representing the re-
sults obtained from the operational process of the
Cryptarithmetic_shield algorithm.

4. RESULTS AND DISCUSSION

In this research, 1000 passwords were selected, in-
cluding the most commonly used passwords in 2022,
and created based on “Password Entropy and Pass-
word Quality” [44]. The efficiency, time, and attack
defense efficacy of the Cryptarithmetic_shield algo-
rithm were then tested.

4.1 Dataset

The dataset included the most popular usernames
[45], passwords that were switched out with lines be-
tween popular passwords [46], and the passwords that
the researcher generated (a total of 1,000 passwords),
as shown in Table 1.

Table 1: FEzxzample of data used in performance test-
mng.

ID Username Password
1 YANg password
2 Alex 123456
3 Maria, 89VDsio$
4 Jessica 123456789
5 Alessandro EFIJAPZQ
6 Valentina guest
7 Alexander R38svF”0m
8 Caroline 08,Vqs|2"y
9 Sylvie 5Lt|84-dI4H
10 Oscar 111111

Table 1 shows the sample dataset used for the
test, which includes popular usernames and pass-
words with passwords composed of alphanumeric
characters (0-9), lowercase characters (a-z), up-

percase characters (A-Z), and special characters
Jr

('@t$% & x () + [|:>7).

4.2 Time Efficiency

The time efficiency of the Cryptarithmetic_shield
algorithm was compared to ordinary hash functions
(operating system: Windows 11 64-bit, Intel(R)
Core(TM) i7-4790 CPU @ 3.60GHz, RAM: 16GB,
Python 3.11). Six hashing methods were tested,
namely MD5, SHA1, SHA-256, SHA-512, CRC32,
and RIPEMD160. The outcomes of 100 tests were
averaged, and the research results are shown in Table
2.

According to Table 2, the usernames “ofins” and
“password” were used to compare efficiency. The
Cryptarithmetic_shield algorithm was found to take
slightly longer than the original hash algorithm be-
cause it requires the creation of a new password be-
fore it can hash. The incremental time difference for
MD5 is 0.085 ms, for SHA1 is 0.767 ms, for SHA-256
is 0.807 ms, for SHA-512 is 1.136 ms, for CRC32 is
1.273 ms, and for RIPEMD160 is 1.289 ms. Also,
when deployed, this difference in the time frame is
not noticeable to humans [47].

4.3 Resistance to Attacks

This section discusses the comparison of attack
prevention. The results of the study are shown in
Table 3.

The effectiveness of the Cryptarithmetic_shield al-
gorithm in combination with six hashing techniques
for defense against Dictionary attacks (which can de-
crypt passwords to plaintext) is also shown in Table 3.
It is demonstrated that the algorithm can effectively
thwart attacks. Furthermore, verification against a
rainbow table reveals that none of the hash values
generated by the algorithm correspond to entries in
the rainbow table. This contrasts with the direct
hashing of commonly used passwords, where almost
every hashed password can be traced back to that
same rainbow table. (In the future, researchers plan
to subject this algorithm to various contemporary at-
tack methods for further evaluation).

4.4 Cryptarithmetic_shield Algorithms

This section provides the pseudocode for the
Cryptarithmetic_shield algorithm. The algorithm re-
quires input of the username, password, and hashing
method to operate.

Input: Username = U
Password = P
Select hash function = Sy,
Output: Hashed password using Cryptarith-

metic_shield algorithm.

Enhancing Password Storage Through the Integration of Cryptarithmetic Techniques and Hash Functions

Input

Username

Process

Username
N +

153

Output

Dictionary

and
password

Hash
function

Cryptarithmatic
Username and
password By

Dictionary

The

{ Key:Value }

Save the
password to

(MD5,SHA1,SHA-256,
SHA-512, CRC32, and
RIPEMD160)

>/ Cryptarithmetic
hash result

Fig.12: Algorithm Cryptarithmetic_shield.

Table 2: Performance Comparison (average time).

Database.

Algorithms Hash Original Cryptarithmetic_shield Hash Cryptarithm The
Original etic_shield difference
(ms) (ms) (ms)
MD5 5f4dcc3b5aa765d61d832 d0375ec9d74d835¢f3525 31.247 31.332 0.085
7deb882¢199 b50197db916
SHA1 S5baa61e4c9b93f3f06822 941faddd996643780883¢ 33.249 34.016 0.767
50b6¢f8331b7ee681d8 fdea9ee8d55d16e250f

SHA256 5e884898da28047151d0 76128e92e9013662c¢7151 39.906 40.713 0.807
€5618dc6292773603d0d6 38ba03a7db69e635ee660
aabbdd62allef721d1542 513d63eel7b1e95d4b50

d8 50

SHAS12 b109f3bbbc244eb824419 21¢d912ec69{f1878basd 46.874 48.011 1.136
17ed06d618b9008dd09b de7d3bd9b799a5554f649
3befd1b5e07394c706a8b acc9884c73alccff5Seabla
b980b1d7785e5976ec04 9572f420430dd21ed813e
9b46df5f1326af5a2ea6d 934abf65ae7c48cc6b196
103fd07¢95385ffab0cacb 16e0f02f3655a599¢a678

c86 c
CRC32 901924565 2365005922 15.620 16.893 1.273
RIPEMD160 108f07b8382412612c04 acac5a72c¢c3519969a993 15.624 16.914 1.289

8d07d13f814118445acd

f106d808deaec5ddbe2

154

ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.18, NO.2 April 2024

Cryptarithmetic_shield Algorithms

Start
1. D < {.} ###Dictionary variable
2: N, <« 0 ###Numerical value
30 < 1
4: M < U+pP ###Merge U and P together
5: for All M do
6: if M,&D then ###Verify that letters are not unique in D
7: D[M;] = N,; ###Add M; to key and add to N, value
8: N, €N, +1;
9: else
10: Next;
11: end
12: end for
13: if U(length) < P(length) then
14: Tmp_number € P(length) - U(length)
15: U € U+ U[0:Tmp_number]
16: end
17: if P(length) < U(length) then
18: Tmp_number € U(length) - P(length)
19: P € P + P[0:Tmp_number]
20: end
21: while U(length) >= i do ###Check if the last letter of U or P
22: R & D[U]+D[P] ###Add the value of U and P obtained from D
23: A, <& D.get(R) ###Find the key that matches the R value and store it in A,
24: C; & Cgtd #i##Take the result of A and place it after Cg,
25: i & i+l
26: end while
27: h < Su(Car) ###Hash C,,
Stop
Notation
D Dictionary variable
Nb = Numerical value
Ai = Result Value of the character D[R]
R = Result from the calculation
Csh = Result value from the algorithm

Enhancing Password Storage Through the Integration of Cryptarithmetic Techniques and Hash Functions 155

Table 3: Dictionary Attack and Rainbow Table At-
tack.

Algorithms with defense against

defense against

hash function Dictionary Rainbow table
attack (%) attack (%)

MD5 100% 100%
SHA1 100% 100%
SHA-256 100% 100%
SHA-512 100% 100%
CRC32 100% 100%
RIPEMD160 100% 100%

5. CONCLUSIONS AND FUTURE WORK

In this research, the combination of cryptarith-
metic methods and hashing techniques has been pro-
posed to enhance the security of applications and
websites.

The results demonstrate that applying hash func-
tions and Cryptarithmetic can potentially enhance
the security of passwords and other private data
against hackers. Even if a dictionary attack or brute
force is used, the passwords will be encrypted and
cannot be transformed into plaintext. Hence, similar
attacks can be prevented with data encrypted via this
algorithm.

Subsequent research endeavors could concentrate
on evaluating the algorithm using a more extensive
dataset and exploring various attack methodologies.
Additionally, it would be beneficial to apply the al-
gorithm in contexts such as financial transactions or
identity verification procedures as experimental sub-
jects.

FUNDING

This work is funded by Rajamangala Univer-
sity of Technology Rattanakosin revenue budget for
the fiscal year 2023 with research contract number
(C39/2566.

ACKNOWLEDGEMENT

Thanks to Rajamangala University of Technology
Rattanakosin for supporting this study.

AUTHOR CONTRIBUTIONS

Jakkapong Polpong studied relevant research doc-
uments, planning work, research design, conduct
research, Algorithm development, analyze the re-
sults, criticize the result and co-write article. Phisit
Pornpongtechavanich studied relevant research doc-
uments, planning work, research design, conduct re-
search, gather information, analyze the results, crit-
icize the result, conclusion and write main article.
Sompond Puengsom studied relevant research docu-
ments, planning work, research design, criticize the
result and conclusion. Noppasak Tantisattayanon
studied relevant research documents, planning work,

research design, criticize the result and conclusion.
All authors had approved the final version.

References

[1] P. S. Rani and S. B. Priya, “Security-Aware
and Privacy-Preserving Blockchain Chameleon
Hash Functions for Education System,” ECTI-
CIT Transactions, vol. 17, no. 2, pp. 225-234,
Jun. 2023.

[2] M. N. Hoque, P. Chakraborty and M. H. Sed-
diqui, “The Challenges and Approaches dur-
ing the Detection of Cyberbullying Text for
Low-resource Language: A Literature Review,”
ECTI-CIT Transactions, vol. 17, no. 2, pp.
192-214, Apr. 2023.

[3] C. Mike, “Today’s Information Security Man-
ager,” in CISM Certified Information Security
Manager Study Guide, Wiley, pp.1-30, 2022.

[4] S. Barakovic and J. B. Husic, “Cyber hygiene
knowledge, awareness, and behavioral practices
of university students,” Information Security
Journal: A Global Perspective, Taylor & Fran-
cis, pp-1-24, 2022.

[5] V. S. Basie and v. S. Rossouw, “Cybersecurity
and information security — what goes where?,”
Information and Computer Security, vol. 26 No.
1, pp. 2-9, 2018.

[6] A. O. Aljahdalic, S. Banafee and T. Aljohani,
“URL filtering using machine learning algo-
rithms,” Information Security Journal: A Global
Perspective, Taylor & Francis, 2023.

[7] T. P. Fowdur and S. Hosenally, “A real-time
machine learning application for browser exten-
sion security monitoring,” Information Security
Journal: A Global Perspective, Taylor & Francis,
2022.

[8] H. -M. Ying and N. Kunihiro, “Decryption of
Frequent Password Hashes in Rainbow Tables,”
2016 Fourth International Symposium on Com-
puting and Networking (CANDAR), pp. 655-661,
2016.

[9] D. P. Joseph and P. Viswanathan, “SDOT: Se-
cure Hash, Semantic Keyword Extraction, and
Dynamic Operator Pattern-Based Three-Tier
Forensic Classification Framework,” in IEEE Ac-
cess, vol. 11, pp. 3291-3306, 2023.

[10] Laatansa, R. Saputra and B. Noranita, “Anal-
ysis of GPGPU-Based Brute-Force and Dictio-
nary Attack on SHA-1 Password Hash,” 2019
8rd International Conference on Informatics and
Computational Sciences (ICICoS), pp. 1-4, 2019.

[11] L. Bosnjak, J. Sres and B. Brumen, “Brute-
force and dictionary attack on hashed real-world
passwords,” 2018 41st International Convention
on Information and Communication Technology,
FElectronics and Microelectronics (MIPRO), pp.
1161-1166, 2018.

[12] RG. Rittenhouse and JA. Chaudhry, “A Sur-

156

[13]

[14]

[15]

[18]

[23]

[24]

[25]

ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.18, NO.2 April 2024

vey of Alternative Authentication Methods,” In-
ternational Conference on Recent Advances in
Computer Systems (RACS 2015), pp. 179-182,
2015.

I. Neforawati and D. Arnaldy, “Message Di-
gest 5 (MD-5) Decryption Application using
Python-Based Dictionary Attack Technique,”
2021 4th International Conference of Computer
and Informatics Engineering (IC2IE), pp. 424-
428, 2021.

B. Savege, “A Guide to Hash Algorithms,”
GIAC Practical Repository, SANS Institute,
available at: https://www.giac.org/paper/
gsec/2853/guide-hash-algorithms/104822
(accessed 10 September 2022).

B. A. Forouzan, “Cryptography and Net-
work Security,” McGraw-Hill, Inc., pp. 1-480.
Available at: http://almuhammadi. com/
sultan/books_2020/Forouzan.pdf (accessed
10 September 2022).

R. Rivest, “RFC1321: The MD5 Message-Digest
Algorithm,” RFC Editor., available at: https:
//dl.acm.org/doi/book/10.17487/RFC1321
(accessed 10 September 2022).

A. A. A B, A. Gupta and S. Ganapathy, “A
New Security Mechanism for Secured Communi-
cations Using Steganography and CBA,” ECTI-
CIT Transactions, vol. 16, no. 4, pp. 460-468,
Oct. 2022.

E. M. Michail, G. Athanasiou, F. Theodoridis,
A. Gregoriades and E. C. Goutis, “Designand
Implementation of Totally-Self Checking SHA-
1 and SHA-256 Hash Functions Architectures,”
Microprocessors and Microsystems, vol. 45, pp.
227-240, 2016.

G. Brose, “Rainbow Tables,” FEncyclopedia of
Cryptography and Security, Springer, pp. 1021-
1022, 2011.

L. Zhang, C. Tan and F. Yu, “An Improved
Rainbow Table Attack for Long Passwords,”
Procedia Computer Science, vol. 107, pp 47-52,
2017.

B. Bhana and S. V. Flowerday, “Usability of the
login authentication process: passphrases and
passwords,” Information and computer security,
vol. 30 no. 2, pp 280-305, 2022.

J. Kavrestad, F. Eriksson and M. Nohlberg,
“Understanding passwords a taxonomy of pass-
word creation strategies,” Information and com-
puter security, vol. 27, no. 3, pp. 453-467, 2019.
S. Widodo, U. Najati and P. Rahayu, “A Study
of Cryptarithmetic problem-solving in elemen-
tary school,” Journal of Physics: Conference Se-
ries, vol. 1318, pp. 1-8, 2019.

V. Goel, “A comparison of design and nondesign
problem spaces,” Artificial Intelligence in Engi-
neering, vol.9, no.1, pp. 53-72, 1994.

B. Averbach and O. Chein, “Problem Solv-

[29]

32]

[33]

[34]

[38]

ing Through Recreational Mathematics,”
Part of: Dover Books on Mathematics, avail-
able at: https://archive.org/details/
Problem.Solving.Through.Recreational.
Mathematics/mode/2up (accessed 10 September
2022).

D. St. P. Barnard, “Adventures in Mathemat-
ics,” Pelham Books, London, 2003.

H. E. Dudeney, “The Strand Magazine,” in
Strand Magazine, vol.68, pp. 97 and 214, 1924.
S. K. Namdeo, G. S. Kumar and P. Kuyate,
“Crypto-Arithmetic Problem using Parallel Ge-
netic Algorithm (PGA),” International Jour-
nal of Modern Engineering Research (IJMER),
vol.2, no.5, pp. 3275-3280, 2012.

B. Averbach, O. Chein and H. C. Wolfe, “Math-
ematics: Problem Solving Through Recreational
Mathematics,” Physics Today-PHYS TO-
DAY, vol. 34, available at: https://www.
researchgate.net/publication/243387866_
Mathematics_Problem_SolvingThrough_
Recreational_Mathematics (accessed
September 2022).

M. Kraitchik, “Mathematical Recreations,”
Dover Publications, Inc. NEW YORK, 2019.

F. Yang, “Solving Cryptarithmetic Puzzles by
Logic Programming,” 2020 International Con-
ference on Computational Science and Computa-
tional Intelligence (CSCI), IEEE, pp. 1389-1394,
2020.

R. Abbasian and M. Mazloom, “Solving
Cryptarithmetic Problems Using Parallel Ge-
netic Algorithm,” 2009 Second International
Conference on Computer and FElectrical Engi-
neering, IEEE, pp. 308-312, 2009.

A. Minhaz and A. V. Singh, “Solution of a Clas-
sical Cryptarithmetic Problem by using parallel
genetic algorithm,” Proceedings of 3rd Interna-
tional Conference on Reliability, Infocom Tech-
nologies and Optimization, pp. 1-5, 2014.

J. F. Fontanari, “Solving a cryptarithmetic prob-
lem using a social learning heuristic,” 2014 IEEE
Symposium on Computational Intelligence, Cog-
nitive Algorithms, Mind, and Brain (CCMB),
pp. 65-70, 2014.

M. I. Mihailescu and S. L. Nita, “Cryptography
and Cryptanalysis in MATLAB,” Creating and
Programming Advanced Algorithms, pp. 83—102,
2021.

L. Huang, Q. Yang and W. Zheng, “Online
Hashing,” IEEE TRANSACTIONS ON NEU-
RAL NETWORKS AND LEARNING SYS-
TEMS, vol. 29, no. 6, pp. 2309-2322, 2017.

V. Thing and H. Ying, “Enhanced Dictionary
Based Rainbow Table,” Information Security
and Privacy Research, Springer, pp.513-524,
2012.

E. I. Tatli, “Cracking More Password Hashes

10

Enhancing Password Storage Through the Integration of Cryptarithmetic Techniques and Hash Functions

[40]

[46]

[47]

with Patterns,” in IEEE Transactions on Infor-
mation Forensics and Security, vol. 10, no. 8, pp.
1656-1665, 2015.

H. Kumar, S. Kumar, R. Joseph, D. Kumar, S.
K. S. Singh, A. Kumar and P. Kumar, “Rainbow
table to crack password using MDb5 hashing al-
gorithm,” IEEE Conference on Information and
Communication Technologies, pp. 433-439, 2013.

S. Pal, A. Mahanty, A. Pathak, J. Karmakar,
H. Mondal and M. Mandal, “A Novel Im-
age Encryption Technique with Four Stage Bit-
Interspersing and A 4D-Hyperchaotic System,”
ECTI-CIT Transactions, vol. 17, no. 1, pp.
105-116, Mar. 2023.

A. Almahmoud, E. Damiani and H. Otrok,
“Hash-Comb: A Hierarchical Distance-
Preserving Multi-Hash Data Representation for
Collaborative Analytics,” in IEEE Access, vol.
10, pp. 34393-34403, 2022.

J. Polpong and P. Wuttidittachotti, “Authenti-
cation and password storing improvement using
SXR algorithm with a hash function,” Interna-
tional Journal of Electrical and Computer Engi-
neering (IJECE), vol. 10, no. 6, pp. 6582-6591,
2020.

D. Upadhyay, Gaikwad, M. Zaman and S. Sam-
palli, “Investigating the Avalanche Effect of Var-
ious Cryptographically Secure Hash Functions
and Hash-Based Applications,” in IEEE Access,
vol. 10, pp. 112472-112486, 2022.

W. Ma, J. Campbell, D. Tran and D. Kleeman,
“Password Entropy and Password Quality,” 2010
Fourth International Conference on Network and
System Security, pp. 583-587, 2010.

NordPass, “The 200 Most Popu-
lar ~ Usernames of All Time,” avail-
able at: https://nordpass.com/blog/
all-time-most-popular-usernames/ (ac-
cessed 10 January 2023).

NordPass, “Top 200 most common pass-
words,” available at: https://nordpass.com/
most-common-passwords-list/ (accessed 10
January 2023).

R. B. Miller, “Response time in man-computer
conversational transactions,” The roceedings of
the fall joint computer conference, part I, pp.
267-277, 1968.

157

Jakkapong Polpong is a Dr. in the
Department of Information Technology
at the Faculty of Industry and Technol-
ogy, Rajamangala University of Tech-
nology Rattanakosin Wang Klai Kang-
won Campus, Thailand. In 2010, he
graduated with a bachelor’s degree ma-
joring in Computer Science. Later, in
2014, he earned a Master’s degree in In-
formation Technology from the Faculty
of Information Technology. Finally, in
2020, he completed his Ph.D. in Information Technology from
the Faculty of Information Technology at King Mongkut’s Uni-
versity of Technology North Bangkok. His research interests in-
clude Web Applications, VoIP Quality Estimation, Computer
Programming/Coding, Security, and Authentication. (e-mail:
jakkapong.pol@rmutr.ac.th).

Sompond Puengsom is currently a
lecturer in the Department of Informa-
tion Technology at the Faculty of In-
dustry and Technology, Rajamangala
University of Technology Rattanakosin
Wang Klai Kangwon Campus, Thai-
land. In 2005, he graduated with a
bachelor’s degree majoring in Informa-
tion Systems from Rajamangala Univer-
sity of Technology Rattanakosin. Later,
in 2013, he earned a Master’s degree in
Computer and Information Science from Silpakorn University.
His research interests include Web Applications, VoIP Qual-
ity Estimation, Computer Programming, and Coding. (e-mail:
sompond.pue@rmutr.ac.th).

Noppasak Tantisattayanon is an As-
sistant Professor and Dr. in the De-
partment of Information Technology at
the Faculty of Industry and Technol-
ogy, Rajamangala University of Tech-
nology Rattanakosin Wang Klai Kang-
won Campus, Thailand. He gradu-
ated with a Bachelor’s degree in Busi-
ness Administration (Marketing) from
Srinakharinwirot University, a Master’s
Degree in Computer Technology from
King Mongkut’s University of Technology North Bangkok, and
a Ph.D. in Computer Education from King Mongkut’s Univer-
sity of Technology North Bangkok. His research interests in-
clude programming, e-commerce, system analysis, and design.
(e-mail: noppasak.tan@rmutr.ac.th).

Phisit Pornpongtechavanich is an
Assistant Professor and Dr. in the De-
partment of Information Technology at
the Faculty of Industry and Technol-
ogy, Rajamangala University of Tech-
nology Rattanakosin Wang Klai Kang-
won Campus, Thailand. In 2012,
he received his Bachelor of Technol-
ogy in Information Technology from
RMUTR_-KKW. He obtained a schol-
arship to study in Thailand and then
earned a Master of Science in Information Technology from
King Mongkut’s University of Technology North Bangkok
(KMUTNB) in 2014. Finally, in 2020, he completed his
Ph.D. in the Division of Information and Communication
Technology for Education from King Mongkut’s University of
Technology North Bangkok (KMUTNB). His research inter-
ests include Security, Deep Learning, Artificial Neural Net-
works, Deep Neural Networks, VoIP quality measurement,
QoE/QoS, 3G/4G/5G/6G, mobile networks, multimedia com-
munication, Computer Programming, and Coding (e-mail:
phisit.kha@rmutr.ac.th).

