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ABSTRACT Article information:

One of the essential processes of construction quality control is tile bond-
ing inspection. Hollows beneath tile tessellation can lead to unbounded
or completely broken tiles. An interior inspector typically used a hollow-
sounding technique. However, it relies on skill and judgment that greatly
vary among individuals. Moreover, equipment and interpretation are dif-
ficult to calibrate and standardize. This paper addresses these issues by
employing machine-learning strategies for tile-tapping sound classification.
Provided that a tapping signal was digitally acquired, the proposed method
was fully computerized. Firstly, the signal was analyzed and its wavelets
and MFCC were extracted. The corresponding spectral features were then
classified by SVM, k-NN, Naive Bayes, and Logistic Regression algorithm,
in turn. The results were subsequently compared against those from a pre-
vious works that employed a deep learning strategy. It was revealed that
when the proposed method was properly configured, it required much less
computing resources than the deep learning based one, while being able to
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distinguish dull from hollow sounding tiles with 93.67% accuracy.
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1. INTRODUCTION

The real estate sectors worldwide have overgrown.
As such, construction works and subcontractors of
relevant business tiers have greatly expanded. Floor
and wall tiling is one of the critical elements in a res-
idential building. The quality of such craft is gener-
ally assessed by not only its aesthetic aspect but also
its functional one. Nonetheless, the scarce supply of
skilled craftsmen and experienced inspectors has so
far led to numerous defects being found only after
the completion of the construction, if not much later.
When examining tiling quality, an inspector usually
assesses tiling surface, layout patterns, spacing, level-
ing, and most importantly floor-tile bonding. In fact,
faulty bonding between tiles and the underlying floor
could result in cracked and flaked off tiles, which often
lead to costly reworks.

Generally, to inspect the integrity of floor-tile
bonding, the impact-acoustic method is adopted as a

non-destructive means of evaluation. This approach
involves tapping the tile surface with a small metal
object, e.g., a coin or a steel rod. An inspector then
carefully listens to the tapping sound and identifies a
defect, i.e., whether it is hollow. This type of sound
indicates that there may be some problems under-
neath the tessellation surface. However, acoustic as-
sessment is subjective and depends on the experience,
skill, and judgement of individuals. Their proficiency
varies by typically uncalibrated, non-standardized,
and unreliable equipment, including of course, their
hearing.

In the recent research literature, there are many
studies that focus on non-destructive methods of
debonded tiles inspection. Soeta et al. [1] developed
a tile-debonding diagnostic device to identify artifi-
cially debonded areas of twelve exterior tile speci-
mens. Their device consisted of an impact force sen-
sor and four microphones, each having its output de-
tection parameters. Agarwal [2] exploited millimeter
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waves for non-invasive crack detection of packaged ce-
ramic tiles using a designed V band (60 GHz) imaging
radar system. In addition, Zhao [3] developed a sys-
tem which inspected wall tile debonding, by using a
laser doppler vibrometer and the acoustic waves of
sweeping frequency bands. Their system relied on
the difference between the activated vibration behav-
ior of the tessellation with and without debonding.
Luk [4] proposed another method based on wavelet
packet decomposition. Their method allocated the
power spectrum density (PSD) of the signal to spe-
cific component fields. Their research revealed that
the PSD could characterize bonding quality even in
noisy environments. Thus, an artificial neural net-
work (ANN) was used as a classifier. Subsequently,
they applied a model-based strategy and developed
a robust inspection method that utilized wavelet do-
main features and hidden Markov modeling [5]. An-
other similar study by Tong [6] inspected tile-wall
bonding integrity by analyzing time-domain features
of impact acoustic. Firstly, they extracted the feature
vectors from the initial acceleration peaks of the im-
pact sound. The features were then carefully selected
and automatically classified by a back-propagation
ANN. Nonetheless, the performance of the conven-
tional ANN classification model was undermined by
the similar characteristics between different bound-
ing, due to abnormal impacts [7]. Instead, the least-
squares support vector machine (LS-SVM) was em-
ployed in bonding recognition and found to be more
reliable and incredibly immune to surface roughness.

Research exists in other different but relevant
domains, where machine learning (ML) was used
to classify one-dimensional signals. For instance,
in biomedicine, electrocardiographic (ECG) signals
were analyzed to diagnose cardiovascular diseases [8]-
[11]. Toulni [8] processed ECG signals with dis-
crete wavelet transform (DWT). The resultant sig-
nals were then classified by an SVM. Kumar [9] pro-
posed a novel method for automatic classification be-
tween normal and abnormal signals. In their frame-
work, features were extracted by Fourier analysis
and then classified by an SVM. Sun [10] proposed
a novel ensemble multi-label classification model,
which consisted of various elements, e.g., binary rel-
evance, multi-label k-Nearest Neighbors (k-NN), hi-
erarchical adaptive resonance associative map, twin
SVM, sklearn (Scikit-Learn) embedder, and embed-
ding classifier. Similarly, wavelet feature extrac-
tion and SVM classification was applied to electroen-
cephalogram (EEG) for diagnosing purpose [11].

In addition to these studies, one-dimensional (1D)
signal classification with convolutional neural net-
work (CNN) has also been extensively explored. EEG
signals were analyzed for diagnosing brain diseases
[12]-[14]. For example, Khan [12] proposed a deep
learning (DL) method, called D2PAM, for brain sig-
nal classification. The diagnosis of Alzheimer’s dis-

ease using EEG signal with deep pyramid CNN was
proposed in [13]. Moreover, Sandheep [14] applies
CNN to classify EEG signals into those of depressed
patients and healthy control subjects.

In audio applications [15-20], classification based
on ML was also extensively explored. Rong [15] ex-
tracted three audio features, i.e., short time energy,
zero crossing rate, and Mel-frequency cepstral coef-
ficients (MFCC). These features were then classified
by an SVM with Gaussian kernels. Likewise, Lazaro
[16] extracted spectral centroid, flatness, and spread,
from an audio signal. These features were then clas-
sified by SVM to identify the music tempo of the sig-
nal. Other features also attracted great interest. For
example, Toffa [17] presented a scheme for classify-
ing environmental sounds based on a textural feature
encoded by a local binary pattern. Their encoded
features were classified with classical ML algorithms,
i.e., SVM, random forest (RF), and k-NN. Combining
lyrics with audio classification for emotional recogni-
tion was also considered [18], where SVM was used.
Speech versus music classification based on spectro-
gram patterns was proposed by Bhattacharjee [19],
where they took a novel spectral peak tracking ap-
proach.

This study is motivated by a recent investigation
[20], in which tile-tapping sounds were classified by
CNN, based on their DWT and MFCC features. Al-
beit found promising, the CNN classifier took consid-
erable time and computing resources. Besides, with
relatively small training sets, it also exhibited a ten-
dency of overfitting, even with augmentation. How-
ever, the preceding work [20] has laid a foundation
that DWT and MFCC features of tapping sound were
suitable for the task.

Therefore, this paper aims at strengthening the
practical merits of the previous work and to ex-
plore various compact but equally effective ML mod-
els. Meanwhile, emphasis was placed on systemati-
cally configuring and fine-tuning these models to meet
on-site criteria. More specifically, it adopts DWT
and MFCC feature analyses and classifies them by
customized SVM, k-NN, Naive Bayes, and Logistic
Regression algorithms. Their performance metrices
were compared with those previously obtained by
CNN. It will be demonstrated that the properly con-
figured ML models could perform equally well un-
der resource-limited environments and small labelled
samples.

The remainder of this paper is structured as fol-
lows. Section 2 explains the characteristics of sound-
ing tile signal and the details of the proposed features
(i.e., DWT and MFCC) and classifiers (i.e., SVM,
k-NN, Logistic Regression, and Naive Bayes). The
experimental results are presented and discussed in
detail in Section 3. Finally, the concluding remarks
are given in Section 4.
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2. METHODOLOGY hollow sound signals in time and frequency domains

are illustrated in Fig. 3 and 4, respectively.

This paper explored various ML configurations,
and focused on their effectiveness on tile tapping clas-
sification based on MFCC feature extraction [20]. Its
main objective was to differentiate between dull and
hollow-sounding tiles. The tile tapping signals were
acquired at the tiling area at our laboratory. The pro-
posed scheme consisted of three parts, i.e., (1) data
preparation, (2) DWT and MFCCs feature extrac-
tion, and (3) signal classification based on selected
ML models. The scheme is summarized in the fol-
lowing diagram (Fig. 1) and described in detail in
the following subsections.

Tile Tapping Sound

Cepstral
Coefficients
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Feature Vectors
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T
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Fig.1: Qverview of the proposed scheme.
sisted of data preparation, feature extraction, and sig-
nal classification.

h ulJl Extraction

v DULL

It con-

2.1 Data Preparation

The tapping sound signals were acquired and dig-
itized from the tiling area as shown in Fig. 2(a)
[20]. The bonding property of each tile was inten-
tionally formed so that the dull and hollow pieces
corresponded to the mapping as shown in Fig. 2(b).

.
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Fig.2: Tiling area in a laboratory (a) and its bonding
map, showing dull and hollow points (i.e., 46 and 33
points, respectively) of each tile.

Additionally, the tile-tapping device was controlled
by an electric motor. The device tapped at nine spec-
ified points for each tile at a speed of 20 taps per
minute. The resultant 79 audio signals were hence
acquired and stored in .wav format. They were di-
vided into two classes, namely (a) dull and (b) hol-
low sounding. These classes consisted of 46 and 33
signals, respectively [20]. Some examples of dull and
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Fig.3: Selected examples of (a) dull and (b) hollow
sounding tiles signals in the time domain.
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Fig.4: Selected examples of (a) dull and (b) hollow

sounding tiles signals in the frequency domain.
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2.2 Feature Extraction

This study was an extension from a previous work
[20]. Therein, it was shown that the 1-level DWT of a
tile-tapping acoustic signal combined with its MFCC
gave the best classification results. As depicted in
Fig. 5, The 1-level DWT decomposition separates
an input sound signal into different frequency com-
ponents.

Y

m Q Approximation

Fig.5: A 1-level DWT decomposing an input signal
via HPF and LPF filters and subsampling the results
by a factor of two, giving the detail and approximation
parts of the original signal.

HPF Detail

Input signal —

One-level DWT could be computed from an in-
put signal (x) by cascading filters. Specifically, this
signal was first sampled and decomposed through a
low-pass filter (LPF) with an impulse response (g)
and a high-pass filter (HPF) with an impulse response
(h). Hence, the filtered signal contained both approx-
imated and detailed coefficients, given, respectively,
by low- and high-pass filters. Subsequently, the out-
put signals were obtained by subsampling both fil-
tered signals with a factor of two, as expressed in Eq.
(1) and (2), respectively.

oo

Yow(m) =) _ak)-g@n—k) (1)

o0

Ynigh(n) = Zk:_oo z(k) - h(2n — k) (2)

In addition to DWT, another feature considered
in this study was MFCC. The MFCC extraction
consisted of four steps, i.e., (1) Fast Fourier Trans-
form (FFT), (2) Mel-scale filtering, (3) logarithmic
scale, and (4) Discrete Cosine Transform (DCT). The
detailed analyses and treatments of MFCC are de-
scribed in [20]. As a result, the filtered spectra were
non-linearly mapped on a logarithmic scale. Fig. 6
shows the examples of dull and hollow signal map-
ping. The amplitudes of the resultant spectra, also
called cepstral coefficients, were concatenated to cre-
ate a feature vector for classification. In the following
experiments, higher but less significant orders MFCC
coeflicients were discarded, leaving only the first thir-
teen ones, as shown in Fig. 7.

Moreover, to eliminate variations in each MFCC
coefficient, the mean and the standard deviation (SD)
of cepstral coefficients were calculated for each sam-
ple and used as their representatives. In this work,
we focused on the two features, i.e., mean value (u),
defined by Eq. (3), and the standard deviation (o),
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Fig.6:  Log filter bank energy (top) and mel-
frequency cepstrum (bottom) of dull (a) and hollow
(b) signals.
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Fig.7: The first thirteen MFCC coefficients of (a)
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defined by Eq. (4).

1 N
M= N Zi:l xZ; (3)

s>l

where N is the length of a discrete signal x.

2.3 Classification Algorithms

Once extracted from the involved tapping signals,
DWT and MFCC were classified by SVM, Logistic
Regression, k-NN, and Naive Bayes, in turn. The
detailed description of each technique is given in the
following subsections.

2.3.1 Support Vector Machine (SVM)

SVM is an ML algorithm typically used in classifi-
cation, regression, and detection tasks. In this study,
it was used to separate features, extracted from audio
signals, into different categories. Its main advantages
are as follows:

o FEffectiveness: It can classify data embedded in

a multi-dimensional space whose dimensions are
more significant than the number of training
samples.

o Usability: Tts decision relies on only a subset of
data points called support vectors.

e Multipurpose: An assortment of kernel func-
tions may be specified in the decision function
to better suit the problem at hand.

The objective of the SVM is to find a hyperplane
in an N-dimensional space (where N is the number of
features) that distinctively classifies the data points.
In this paper, these SVM terminologies are defined as
follows.

a) Hyperplane: It is the decision boundary that
separates data points, associated with different
classes, in an N-D feature space. A linear clas-
sifier is defined by a linear equation, i.e.,

wix+b=0 (5)

where w is a normal vector on the hyperplane.
b is a bias.

b) Support Vectors (SV): They are the closest
data points to the hyperplane. These vectors
play a vital role in deciding the hyperplane and
margin.

¢) Margin: It is the distance between an SV and
the hyperplane. Since the main objective of an
SVM is to maximize the margins of all SVs,
the more expansive the margins, the better its
classification performance.

d) Kernel: It is the mathematical function, used
to map the original input data points onto a
high-dimensional feature space. As a result, the
hyperplane can be easily established, even if the

data points are not separable in their original
space. The standard kernel functions are:

Linear: K(z;,xj) =z, x;
Polynomial: K(zi,xj) = (z;Tz; +1)4
Gaussian or radial basis function (RBF):
K(;, ;) = exp(—|lz; — z;]?)

Sigmoid: K(z;,x;) = tanh(ax;Tz; +b)
x; and x; are p-dimensional vectors representing ob-
servations ¢ and j, and q is polynomial order.

A binary classification is a subset of SVM models.
It labels the two classes with 4+1 and -1, respectively.
Accordingly, we defined a training dataset consisting
of input feature vectors X and their corresponding
class labels Y. The distance between any data point
x and the decision boundary can be calculated by:

di = (W'x +b)/|[w]| (6)

where ||w|| is the Euclidean norm of the weight vector
(w) and b is a constant vector. Finally, the SVM
classifier is given by:

41
Y¥=1 41

2.3.2 Logistic Regression

wIx+b>0
,wWIx+b<0

(7)

Logistic regression is a type of statistical model,
also named logit model. Generally, it is used for
prediction and classification. Logistic regression es-
timates the probability of an occurring event based
on a training dataset of independent variables. The
probabilities of these variables are between 0 and 1.
A logistic function is represented by a linear regres-
sion in Eq. (8) followed by logistic modeling in Eq.
(9), i.e.,

y=by+bTx (8)

f=1/1+e") 9)

where b is the coefficient vector.

2.3.3  k-Nearest Neighbors (k-NN)

The k-NN is a supervised learning classifier that
uses proximity to classify (or predict) the group of
an individual data point. While the k-NN can solve
regression and classification problems, it is typically
used for the latter. Its solution is based on the as-
sumption that similar data points are located near
one another. Therefore, the goal of k-NN is to iden-
tify the nearest neighbors of a queried point. Hence,
a lass label is assigned to similar points, belonging to
the same group. There are several distance metrics
used to measure point proximity. The most typical
metrices are as follows.

Euclidean distance is the most frequently used mea-
sure, but is normally limited to real-valued vectors.
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N

d(z,y) = Zi:l(xi —ui)?

Manhattan distance is another popular distance met-
ric measuring the absolute value between two points.

(10)

da,y) =" |ri—ui (1)

Minkowski distance is expressed as a generalized form
of Euclidean and Manhattan distance metrics.

i) = () boi - yz-|);

where p allows for generalization to other distance
metrics. Euclidean distance is represented by this
formula when p = 2, while Manhattan distance holds
when p = 1.

(12)

2.3.4 Naive Bayes

Naive Bayes is supervised ML. It adopts Bayes’
theorem with a naive assumption on independence
condition between every pair of features, given the
values of the class variables. Used for classification,
but unlike discriminative classifiers (e.g., logistic re-
gression), it does not learn which features are the
most important to differentiate between classes. In-
stead, Bayes’ theorem states the following relation-
ship, given the class variable y and dependent feature
vectors X, i.e., X; through x,, i.e.,

P(y)P(xq,..
P(xl, ..

5 Tnly)
. 7xn)

Pylz1,...,zn) = (13)

Next, with the naive conditional independence as-
sumption being imposed, the expression becomes:

Py TTL, Plily)

P(ylzy,. .. P(x1P(x2) ... P(xy,)

, Ty) = (14)

P(x1),..., P(n) are constants given the input. There-
fore, the following classification rules may be as-
sumed.

Plylar.....x) x P[] Plaeidy)  (15)
y = argmax ,(P(y) [ Plaily))

This study used the Maximum A Posteriori (MAP)
strategy to estimate P(y) and P(x; || v).

(16)

3. RESULTS AND DISCUSSION

This section describes the experimental settings
and the performance evaluation of the proposed clas-
sification. In particular, the classification results ob-

tained by the involved ML algorithms were compared
with those from the previous study [20]. Finally, the
last subsection provides the relevant discussions on
the comparisons.

3.1 Objective Evaluation

In this subsection, the following metrices were eval-
uated for each ML.
Accuracy (Acc.) of a classification was expressed by
the ratio between the number of correctly classified
signals and that of all signals. It was given by Eq.
(17).
n
Ace. = N (17)
where n is the number of correctly classified signal
samples, and NV is the total ones.
Specificity, also known as true negative rate, measures
the proportion of actual negatives. In this study, it
was defined as the percentage of hollow-sounding tiles

that were correctly identified. It was given in Eq.
(18).

TN
TN+ FP

where TN is true negative, and FP is false positive.
Sensitivity, also known as true positive rate, measures
the proportion of actual positives. Likewise, it was
defined as the percentage of correctly identified dull-
sounding tiles. Its expression is given in Eq. (19).

Spec. = (18)

(19)

where TP is true positive, and FN is false negative.
Receiver Operating Characteristic (ROC) curve is a
graph showing the performance of a classification
model. The curve plots between true positive rate
(TPR) and false positive rate (FPR). While the for-
mer is defined the same as the sensitivity in Eq. (19),
the latter is given in Eq. (20).

FP
FP+TN
AUC, also known as area under the ROC curve, mea-

sures the entire two-dimensional area under the ROC
curve from (0, 0) to (1, 1).

FPR = (20)

3.2 Experimental Results

The tapping signals were recorded at the tiling
area, as shown in Fig. 2(a). Since only limited sam-
ples were tested, the Leave-one-out cross-validation
was performed to refute model overfitting. The per-
formance of different classifiers (i.e., k-NN, SVM, Lo-
gistic Regression, and Naive Bayes), was evaluated,
based on the standard metrices (i.e., accuracy, sensi-
tivity and specificity).

Firstly, the k-NN classifier was evaluated by ad-
justing the number of nearest neighbors (#NN) from



20 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.18, NO.1 January 2024

2 to 8. The results are reported in Table 1 and Fig. 8
and 9. It is evident that with #NN = 4 and #NN =
8, the accuracy was the highest at 88.6076 %. Like-
wise, the specificity was the highest when #NN = &,
while the sensitivity was the highest when #NN = 4.

Table 1: FEwvaluation metrics obtained by the k-NN.

Gaussian, and polynomial kernels in turns. The re-
sults reported in Table 2 and Fig. 10 indicate that
linear SVM performed best in all metrics for our 2-
class problem.

Table 2: FEwvaluation metrics obtained by SVM clas-
sifier with different kernels.

#NN | Acc (%) | Spec. Sen. AUC Kernel Acc. (%) | Spec. Sen. AUC
2 84.8101 | 0.8387 | 0.8542 0.9941 Linear 84.8101 | 0.8387 | 0.8542 | 0.9743
3 84.8101 | 0.9200 | 0.8148 0.9842 Gaussian 58.2278 - 0.5823 1
4 88.6076 | 0.9000 | 0.8776 0.9743 Polynomial | 34.1772 | 0.3699 0 0.9565
5 86.0759 | 0.9583 | 0.8182 0.9634
6 87.3418 | 0.9259 | 0.8462 0.9664
7 84.8101 | 0.9565 | 0.8036 0.9694 . ROC Curves for SVM
8 88.6076 | 0.9615 | 0.8491 0.9638 - —— linear
Note #NN is the number of nearest neighbors. 09 fa“ss“"‘.
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o
1.00 M accuracy [Ospecificity @ sensitivity E 06~
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Fig.8: Comparison of accuracy, specificity, and sen-
sitivity using k-NN.

Since the scores were tied, the one that required
the least number of nearest neighbors (i.e., faster to
compute) was considered optimal. In addition, it is
worth remarking that increasing this number did not
significantly affect the overall performance of the sys-
tem.

ROC Curves for k-NN

True positive rate
o
o

False positive rate
Fig.10: ROC Curve for SVM classifier.

Another tunable element in a given SVM is the
solver optimization routine. In the next experiment,
linear SVM was specified. In each round, either se-
quential minimal optimization (SMO), iterative sin-
gle data (ISDA), or L1 soft-margin minimization
by quadratic programming (L1QP) routine was em-
ployed, in turn. It was thus revealed in Table 3 that
all classifications gave the same outcomes, regardless
of the optimizing routines.

The suggests that extracted features and the clas-
sifier were invariant against internal implementation
and thus suitable for the task. It is worth pointing
out that, on the contrary, selecting different loss func-
tions and optimizers in a CNN-based DL could vastly
affect its performance [21-22].

Table 3: FEwvaluation metrics obtained by Linear
SVM classifier with different solvers.

Solver | Acc (%) | Spec Sen

SMO 84.8101 | 0.8387 | 0.8542

ISDA | 84.8101 | 0.8387 | 0.8542

L1QP | 84.8101 | 0.8387 | 0.8542

0.2

04

0.6

Finally, automated kernel scaling was

activated

False positive rate

Fig.9: ROC Curve for k-NN classifier.

Then, the SVM was evaluated by taking linear,

for all kernels. The results remained consistent with
those reported in Table 4 and Fig. 11. However, its
accuracy was raised to 93.6709 % for the linear ker-
nel. This result suggests that auto kernel scaling is
preferred in the current settings.
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Table 4: FEvaluation results obtained by linear SVM
classifier with auto kernel scaling enabled.

Kernel Acc. (%) | Spec. Sen. AUC
Linear 93.6709 | 0.9375 | 0.9362 | 0.9480
Gaussian 89.8734 0.8788 | 0.9130 | 0.9974
Polynomial | 89.8734 0.8788 | 0.9130 1
1 BOC Curvesv for SVM Wiﬂll auto kerne!
oo .
polynomial |

0.8

o
3

Likewise, the next classifier to be evaluated was the
Naive Bayes model. In the experiment, data distribu-
tion was varied among Gaussian (i.e., normal), kernel
smoothing density estimate (i.e., kernel), and multi-
variate multi-nominal (i.e., mvmn) distributions. The
results reported in Table 5 and Fig. 13 suggest the
first distribution gave the most accurate classification
at 91.1392 %.

Table 5: FEvaluation results obtained by Naive Bayes
classifier with varied distribution types, i.e., normal,
kernel, and mvmn.

o
o
T

True positive rate
o
o

04 -
0.3
02¢f
01
G ‘ ‘ | |
0 0.2 04 0.6 0.8 1
False positive rate
Fig.11: ROC Curve for SVM classifier with auto

kernel scaling enabled.

Accordingly, the resultant confusion metric of the
most accurate classification is illustrated in Fig. 12(a)
with the corresponding tile mapping in Fig. 12(b).
In Fig. 12(b), red and grey points indicate incorrect
detections (i.e., false positives and false negatives, re-
spectively). Black and white points indicate correct
detections (i.e., true positives and true negatives, re-
spectively).

Actual class

Dull | Hollow

Predicted Dull 44 2
class Hollow 3 30

(a)

I LT 1 0 [ ™
I I R [ R |
1 [ 1w [ [
1 3

Y

| B

4 5
EE:E
-VAX

7 g

Symbols:

Bl o
|Z] Not Test
l:| Hollow

N
|

E:E:? J

- Hollow — Dull

Dull - Hollow

(b)

Fig.12: Confusion matriz of the optimal SVM clas-
sifier (a) and the corresponding tile prediction map

(b).

Distribution | Acc (%) Spec Sen AUC
normal 91.1392 | 0.8824 | 0.9333 | 0.9598
kernel 88.6076 | 0.8333 | 0.9302 | 0.9895
mvmn 58.2278 0.5823 1
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Fig.13: ROC curve for Naive Bayes classifier.

When comparing the basic linear SVM with logis-
tic regression, it is evident in Fig. 14 that the lat-
ter performed marginally better in evaluation met-
rics. Then, the optimized Naive Bayes was exam-
ined. The optimization took a longer time to con-
verge. However, it reached the same level of accuracy
as the optimized (kernel) linear SVM, as reported in
Table 4. Since the evaluation metrices were exactly
the same, they are not repeated here. It is, however,
safe to conclude that both classifiers yielded the best
classification results.
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Fig.14: Comparison of results obtained by basic lin-
ear SVM and Logistic Regression.
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They were as accurate as when using more ad-
vanced classifiers, like CNN [20], but incurred much
fewer computing resources and processing time. In
addition, Table 6 and Fig. 15 compare the accuracy
(Acc.) in %, specificity (Spec.) and sensitivity (Sen.)
between the employed ML and the CNN classifica-
tions.

Table 6: Comparison of Machine Learning and
Deep Learning.
Methods Acc. (%) | Spec. Sen.
k-NN with 8 NN 88.6076 0.9615 0.8491
SVM
. 84.8101 0.8387 0.8542
linear kernel
SVM with auto linear | g4 6709 | 0 9375 | 0.9362
kernel scaling
Naive Bayes with 91.1392 | 0.8824 | 0.9333
normal distribution
CNN [20] 93.6709 | 0.9375 | 0.9362

Waccuracy O specificity Dsensitivity

o
©
S

Evaluation Metrices
o
o
&
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®
8

SVM with auto kerne! Naive Bayes CNN [20]
Classifier

Fig.15: Comparison of the proposed method and ref

[20].

4. CONCLUSION

This paper proposes a novel cost-effective comput-
erized tapping sound classification for tile inspection.
The method was inspired by the recent success of a
similar classification, based on DWT and MFCC fea-
tures [20]. In addition, various prominent ML models,
i.e., kNN, SVM, Naive Bayes, and Logistic Regres-
sion were examined as the classifiers. The experi-
mental results indicated that the developed and fine-
tuned system was able to distinguish dull from hollow
sounding tiles at 93.67 % accuracy. The specificity
and sensitivity were 93.75 % and 93.62 %, respec-
tively. Among the involved models, the optimized
SVM and Naive Bayes ones performed best for the
task.

Herein, it is demonstrated that model performance
was invariant of trivial configurations other than ker-
nel type. Therefore, it is reasonable to anticipate
that the proposed classification system can serve as
a guideline for standardizing the automated tiling in-
spection in practice as off-the-shelf software.

Future research directions worth considering in-
clude investigating model variations given different
tile dimensions, shapes, thicknesses, and materials.
Moreover, experiments comparing various combina-
tions of features and ML models against the DWT
and MFCC would fill the research gaps present in
this study.

ACKNOWLEDGEMENT

The authors are thankful to Dr. Petcharat Lim-
supreeyarat for the tile-tapping sound and the anony-
mous reviewers whose constructive critiques helped
improve the quality of this paper.

References

[1] T. Soeta, S. Ito, T. Fujinuma and T. Mikami,
“Trial Inspection of Exterior-tile Wall Specimens
with a Prototyped Tile-debonding Diagnostic
Device,” Japan Architectural Review, vol. 4, no.
1, pp. 28-40, 2021.

[2] S. Agarwal and D. Singh, “An Adaptive Sta-
tistical Approach for Non-Destructive Underline
Crack Detection of Ceramic Tiles Using Millime-
ter Wave Imaging Radar for Industrial Applica-
tion,” IEEFE Sensors Journal, vol. 15, no. 12, pp.
7036-7044, 2015.

[3] Y. Zhao, Y. Chen and L. Ye, “A Non-contact In-
spection Method of Tile Debonding using Tuned
Acoustic Wave and Laser Doppler Vibrometer,”
Journal of Sound and Vibration, vol. 117875, pp.
1-15, 2023.

[4] B.L. Luk a, K.P. Liu, Z.D. Jiang, and F. Tong,
“Robotic Impact-acoustics System for Tile-wall
Bonding Integrity Inspection,” Mechatronics,
vol. 19, no. 8, pp. 1251-1260, 2009.

[5]) B.L. Luk, K.P. Liu, F. Tong, and K.F. Man,
“Impact-Acoustics Inspection of Tile-wall Bond-
ing Integrity via Wavelet Transform and Hidden
Markov Models,” Journal of Sound and Vibra-
tion, vol. 329, no. 10, pp. 1954-1967, 2010.

[6] F. Tong, S.K. Tso and X.M. Xu, “Tile-wall
Bonding Integrity Inspection based on Time-
domain Features of Impact Acoustics,” Sensors
and Actuators A: Physical, vol. 132, no. 2, pp.
557-566, 2006.

[7] F. Tong, X.M. XU, B.L. Luk and K.P. Liu,
“Evaluation of Tile-wall Bonding Integrity
based on Impact Acoustics and Support Vector
Machine,” Sensors and Actuators A: Physical,
vol. 144, no. 1, pp. 97-104, 2008.

[8] Y. Toulni, N. Benayad and B. D. Taoufiq, “Elec-
trocardiogram Signals Classification using Dis-
crete Wavelet Transform and Support Vector
Machine Classifier,” TAES International Journal
of Artificial Intelligence, vol. 10, no. 2, pp. 960-
970, 2021.

9] A. Kumar, V. K. Mehla, H. Tomar, M. Ku-
mar and R. Komaragiri, “Classification of Nor-



Non-Destructive Inspection of Tile Debonding by DWT and MFCC of Tile-Tapping Sound with Machine versus Deep Learning Models23

[10]

[11]

[17]

mal and Abnormal ECG Signals using Sup-
port Vector Machine and Fourier Decomposi-
tion Method,” Proceeding of International Sym-
posium on Smart Electronic System, pp. 161-166,
2020.

Z. Sun, C. Wang, Y. Zhao and C. Yan, “Multi-
label ECG Signal Classification based on Ensem-
ble Classifier,” IEEE Access, vol. 8, pp. 117986-
117996, 2020.

N. T. Br. Pasaribu, T. Halim, Ratnadewi and A.
Prijono, “EEG Signal Classification for Drowsi-
ness Detection using Wavelet Transform and
Support Vector Machine,” TAES International
Journal of Artificial Intelligence, vol. 10, no. 2,
pp- 501-509, 2021.

A. A, Khan, R.K. Madendran, U.
Thirunavukkaras and M. Faheem, “D2PAM:
Epileptic Seizures Prediction using Adversarial
Deep Dual Patch Attention Mechanism,” CAAT
Transactions on Intelligence Technology, vol. 8,
no. 3, pp. 755-769, 2023.

W. Xia, R. Zhang, X. Zhang and M. Usman, “A
Novel Method for Diagnosing Alzheimer’s Dis-
ease using Deep Pyramid CNN based on EEG
Signals,” Heliyon, vol. 9, No. 4, 2023.

P. Sandheep, S. Vineeth, M. Poulose and D. P.
Subha, “Performance Analysis of Deep Learning
CNN in Classification of Depression EEG Sig-
nals,” Proceeding of IEEE Region 10 Conference
(TENCON), pp. 1339-1344, 2019.

F. Rong, “Audio Classification Method based
on Machine Learning,” Proceeding of Interna-
tional Conference on Intelligent Transportation,
Big Data & Smart City, pp. 81-84, 2016.

A. Lazaro, R. Sarno, R. J. Andre, and M.
N. Mahardika, “Music Tempo Classification us-
ing Audio Spectrum Centroid, Audio Spectrum
Flatness, and Audio Spectrum Spread based on
MPEG-7 Audio Features,” Proceeding of 3rd In-
ternational Conference on Science in Informa-
tion Technology, pp. 41-46, 2017.

0. K. Toffa and M. Mignotte, “Environmen-
tal Sound Classification using Local Binary
Pattern and Audio Features Collaboration,”
IEEE Transactions on Multimedia, vol. 23, pp.
3978-3985, 2020.

[18]

[19]

[21]

[22]

W. Shi and S. Feng, “Research on Music Emo-
tion Classification Based on Lyrics and Audio,”
Proceeding of Advanced Information Technology,
Electronic and Automation Control Conference,
pp- 1154-1159, 2018.

M. Bhattacharjee, S. R. M. Prasanna and P.
Guha, “Speech/Music Classification using Fea-
tures from Spectral Peaks,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Process-
ing, vol. 28, pp. 1549-1559, 2020.

J. Panyavaraporn, P. Limsupreeyarat and P.
Horkaew, “DWT/MFCC Feature Extraction for
Tile Tapping Sound Classification,” Interna-
tional Journal of Integrated Engineering, vol. 12,
no. 3, pp- 122-130, 2020.

E. M. Dogo, O. J. Afolabi and B. Twala, “On the
Relative Impact of Optimizers on Convolutional
Neural Networks with Varying Depth and Width
for Image Classification,” Applied Sciences, vol.
12, no. 23: 11976, 2022.

Vidushi, M. Agarwal, A. Rajak and A.K. Shri-
vastava, “Assessment of Optimizers impact on
Image Recognition with Convolutional Neural
Network to Adversarial Datasets,” Journal of
Physics:  Conference Series, vol. 1998, no. 1:
012008, 2021.

Jantana Panyavaraporn received the
B.Eng. in Electrical Engineering from
Burapha University (2002), M.Eng. in
Telecommunication Engineering from
King Mongkut’s Institute of Technology
Ladkrabang (2005) and Ph.D. in Elec-
trical Engineering from Chulalongkorn
University (2010). She is an Associate
Professor at Electrical Engineering, Bu-
rapha University, Thailand. Her re-
search interests include image process-

P

ing, video processing, video coding and computer vision.

main research interests include remote sensing, medical imag-

Paramate Horkaew received the
B.Eng. (Hons.) degree in telecom-
munication engineering (1st) from the
King Mongkut’s Institute of Technology
Ladkrabang, Ladkrabang, Thailand, in
1999, and the Ph.D. degree in computer
science from the Imperial College Lon-
don, U.K., in 2004. He is currently
an Associate Professor at the School of
Computer Engineering, Suranaree Uni-
versity of Technology, Thailand. His

ing, digital geometry processing, pattern recognition, computer
vision and graphics.





