ECT]

=——=Association

Automated Knowledge Integration from Heterogeneous Data Sources Using Text Analytics: A Case Study of COVID-19 533

ECTI Transactions on Computer and Information Technology
Journal homepage: https://ph01.tci-thaijo.org/index.php/ecticit/
Published by the ECTI Association, Thailand, ISSN: 2286-9131

Automated Knowledge Integration from Heterogeneous Data
Sources Using Text Analytics: A Case Study of COVID-19

Patipon Wiangnak! and Areerat Trongratsameethong?

ABSTRACT

Gathering information from multiple data sources takes a long time to col-
lect, analyze, and classify. Furthermore, if the data sources have different
data structures, the merged data structure must support such heterogene-
ity. In addition, semantic of data must also be considered. This paper pro-
poses automated knowledge integration from heterogeneous data sources
using ontology engineering combined with text analytics. Text stemming
is used to preprocess data. Part-of-speech (POS) tagging, Universal De-
pendencies (UD), and text similarity measurement called cosine similarity
are used to analyze and integrate data. Our work focuses on five COVID-
19 knowledge scopes: COVID-19, coronaviruses, diseases, pandemics, and
vaccines. For evaluation, six ontologies were constructed with six different
cosine similarity values ranging from 0.5 to 1.0. Each constructed ontology
has COVID-19 related and non-COVID-19 data in a ratio of 70 to 30. The
six constructed ontologies were evaluated for consistency with the original
data. Using cosine similarity with 0.6, precision, recall, and F1-score are
0.82, 0.71, and 0.76, respectively, and the constructed ontology is optimal,
containing the highest amount of relevant COVID-19 information for this

Article information:

Keywords: Cosine Similarity,
Heterogeneous Data Structures,
Natural Language Processing,
Ontology Engineering, Ontology

Integration

Article history:

Received: August 11, 2023

Revised: September 21, 2023

Accepted: November 9, 2023

Published: December 9, 2023
(Online)

case study.

DOI: 10.37936/ecti-cit.2023174.253785

1. INTRODUCTION

Coronavirus Disease 2019 (COVID-19) is a world-
wide pandemic caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), which is
rapidly spreading worldwide. For the past few years,
a large number of people have been infected and died
from the infection. Hence, the information about
COVID-19 is of interest to many people. There
are many interesting perspectives on COVID-19 in-
formation to be collected and studied, such as vac-
cines, transmission, prevention, etc. This information
is published by many organizations, such as World
Health Organization (WHO) and Health ministries
of various countries. The information is also hosted
on many repositories, such as crowdsourced DBpedia
and Wikipedia, among many others. However, the
provided information is in various file formats such
as CSV, JSON, ontology, and HTML, with different
data structures. Manually collecting and linking data
from heterogeneous data sources is cumbersome. If
there is a system that can support knowledge integra-

tion and store this knowledge automatically, the time
for collecting, analyzing, filtering and storing will be
reduced. Additionally, the structure for integrating
data from various sources must support different data
formats and be scalable.

Ontology is a knowledge base used to store con-
cepts. It can support a variety of relationships
such as superclass/subclass, is-part-of, and associa-
tion. Moreover, ontology data are stored in a seman-
tic graph that can support a variety of data struc-
tures. Automated ontology construction from het-
erogeneous data sources requires text analytic tech-
niques. Natural Language Processing (NLP) is a text
analytical technique providing many functionalities,
such as text preprocessing and text analysis, which
can support data cleansing and domain classification,
respectively.

In this research, data from heterogeneous sources
are automatically merged to construct COVID-19
knowledge by using ontology engineering and text
analytics. Web-based services, such as HyperText

L2 The authors are with Department of Computer Science, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand

50200, E-mail: patipon wi@cmu.ac.th and areerat.t@cmu.ac.th

2 The corresponding author: areerat.t@cmu.ac.th

534 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.17, NO.4 December 2023

Transfer Protocol (HTTP) request and web Appli-
cation Program Interfaces (APIs), are used to col-
lect the structured COVID-19 data. In contrast, web
scraping is used for managing the unstructured data.
Gathering and storing relevant COVID-19 knowledge
will be helpful to people in various fields for future
study and research.

2. RELATED WORK
2.1 Heterogeneous Data Source Integration

The challenge of data integration [1] is how to
deal with the following heterogeneity: data model,
data relationship, and data semantic. It is not easy
to prepare and store the heterogeneous data formats
into one relational data model, because the relational
models typically reside on specific relationships pre-
defined in the relational database schema. On the
other hand, ontology schema is flexible and can sup-
port various data structures.

Dynamic integration [2] is a principle of weakly
structured data integration from web-system. The
weakly structured data are transformed in the in-
tegration process. The transformation may relate
to the presence of following conflicts: heterogeneity,
name, semantic, and structure. Ontologies and meta-
models are used to create a system of dynamic inte-
gration of weakly structured data.

Web scraping [3] is a technique to extract specific
information from an HTML tags. Python Beautiful-
Soup [4] is a library used to inspect the contents of
all HTML tags.

This article focuses on creating an ontology schema
and integrating relevant ontology information from
heterogeneous structured and unstructured data.

2.2 Text Analytics

One of the text analytical techniques is text pre-
processing. This method is used to make the original
text processable and analyzable. Text preprocessing
in [5] is used to prepare text data for sentiment anal-
ysis, an analysis of digital text to determine the emo-
tional tone of the message, which includes the follow-
ing steps: tokenization, text cleansing, part-of-speech
(POS) tagging, and text stemming.

Text analysis relies on linguistic theory to ana-
lyze the syntax of a language. Universal Dependency
(UD) [6] is a framework used to create treebank struc-
tures for more than one hundred languages. It utilizes
grammatical relations between words in sentences to
display morphosyntactic structures with morpholog-
ical features and POS tags to provide word prop-
erties. Morphosyntactic structures are grammatical
categories or linguistic units with morphological and
syntactic properties in a sentence structure. Morpho-
logical features in linguistics are stem or root words,
suffixes, and prefixes.

The cosine similarity [7] is used to match classes
between two transport ontologies. The similarity be-
tween classes from two ontologies are measured. If
the cosine similarity is greater than or equal to 0.5,
the two classes are assumed to be similar. The cosine
similarity is defined in (1).

fatlh (1)

Cosine Similarity = W
vall - ||VB

where, v4-vpg is the dot product between vectors A
and B, while ||v4]| - ||vp|| represents the cross product
between lengths of two vectors.

Text analytic techniques used in this paper are
as follows. POS tagging is used to extract noun
phrases from sentences of data sources. Text stem-
ming is used in text preprocessing to remove affixes
from noun phrases. UD is used to eliminate the noun
phases containing specific irrelevant terms, such as
polio vaccine, influenza disease, etc. Cosine similar-
ity is used to measure the relevance of preprocessed
data acquired from heterogeneous data sources.

2.3 Ontology Engineering

Ountology [8] is a formal specification of knowl-
edge concepts consisting of classes, properties, and
instances. It is used to describe knowledge instances
and relationships among them. Six steps of ontology
engineering [9] are used to design ontology.

1) Determine Scope: Scopes or concepts to be cov-
ered by an ontology are determined in this step.

2) Consider Reuse: This step is used to find other
existing ontologies that are suitable for the current
task.

3) Enumerate Terms: Terminologies related to on-
tology concepts are defined in this step.

4) Identify Classes and Properties: This step is
used to identify classes and their properties related to
an ontology. There are two types of properties: data
properties and object properties. Data property is
used to connect an instance to literal value(s). Object
property is used to relate instances of two classes.

5) Define Constraints: This step is used to define
ontology constraints. There are two types of con-
straints: class restriction and property restriction.
Three are three main class restrictions: quantifier
restriction, cardinality restrictions, and hasValue re-
striction. Property restrictions are cardinality restric-
tion, value-type restriction, and domain-range restric-
tion.

6) Create Instances: This step is used to create
instances of ontology classes.

In this research, processes used for constructing
ontology schema and merging ontology data, are
based on ontology engineering.

2.4 Ontology Evaluation

An information retrieval metric [10] is used to eval-
uate an ontology. The evaluation performances are

Automated Knowledge Integration from Heterogeneous Data Sources Using Text Analytics: A Case Study of COVID-19 535

determined by precision, recall, and Fl-score, dis-
played in (2), (3), and (4), respectively. The precision
is the fraction of the documents retrieved relevant to
the information needed. The recall is the fraction of
the documents relevant to document retrieved. The
Fl-score provides a weighted harmonic mean of the
precision and recall.

l tRetrieved
Precision — Relevant Retrieve @)
Relevant
Relevant Retrieved
Recall = 3
cca Retrieved (3)

2 % Precision * Recall
Flgoore = 4
seore Precision + Recall (4)

The constructed ontologies will be evaluated using
precision, recall, and F1-scores.

3. METHODOLOGY

COVID-19 ontology is constructed automatically
based on ontology engineering process and text an-
alytics. Text analytic is applied to integrate data
from heterogeneous data sources. There are five steps
in COVID-19 ontology integration displayed in Fig.
1. Python has various libraries to support Extract
Transform Load (ETL) processes and data analytics.
The Python libraries are therefore used in the auto-
mated ontology construction process.

Step 1: Determine Scope

v

Step 2 Dnta Acqulsltmn

Stru ctured Data l mrrnclured .Dn'.'a

y >
SPARQL lll TP] [N"‘] [Web Scraping }
Response I

v 1 < Dataframe Conversion >

ﬁlmology Tu rtl//
v

Step 3: Enumerate Term

query Request

Dataframes

1) Text Preprocessing
2) Text Similarity Measurement

v

Step 4: Define Class and Taxonomy

v

Step 5: Create Instance and Property

1) Import extracted ontology
2) Construct instances and data properties from dataframes
3) Construct object properties

Fig.1: Automated ontology construction using on-
tology engineering and text analytics.

3.1 Determine Scope

Knowledge constructed in this case study is to raise
COVID-19 awareness. Scopes of the ontology are
focused on COVID-19, Coronavirus, Disease, Pan-
demic, and Vaccine.

3.2 Data Acquisition

COVID-19 information is available from various
sources. The information is provided in many web-
based services, such as HTTP request, web APIs,
and web pages. The information gathered from these
sources is about COVID-19 knowledge and statistics
on infections and deaths, excluding sensitive informa-
tion, such as patient and their medical records. This
information is classified into two groups: structured
data and unstructured data obtained from trusted
sources, as follows:

1) Structured Data: The structured data are typi-
cally cleansed, and have clear structure. The follow-
ing techniques are used for data acquisition:

a. DBpedia: DBpedia [11] is a Web API service
for extracting knowledge data in many domains
from various sources, and making them avail-
able on the web using Semantic Web and Linked
Data technologies. Data provided by the DB-
pedia are in ontology formats, and SPARQL
query tools are allowed for accessing the on-
tology data. Python SPARQLWrapper [12] is
used as an ontology query tool to obtain only
data related to the determined scopes in ontol-
ogy Terse RDF Triple Language (Turtle). The
ontology Turtle represents knowledge in triples
containing subject, predicate, and object. It
is an appropriate format for later steps. An
algorithm for gathering data from DBpedia is
displayed in Fig. 2.

b. HTTP requests to World Health Organization:
WHO provides HT'TP request service to search
and download vaccine-related information. The
determined scopes were used to search for infor-
mation provided by WHO. The results returned
from this source are CSV files. Python pandas
is used to convert the CSV files to dataframes,
which are then analyzed. The names of the CSV
file are set as the name of dataframes.

c. disease.sh: The disease.sh [13] is an open
disease-related statistics web API in JSON for-
mat. It provides summaries of cases and deaths
of COVID-19 patients. Python urllib [14] is
used to establish a connection and read the
data in the JSON format provided by this
API service. The results returned from this
source are in JSON format covering COVID-
19. These JSON files were converted into
dataframes using Python pandas. The root el-
ement in the JSON file is defined as the name
of the dataframe, while the child elements are
defined as the column names.

536 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.17, NO.4 December 2023

Input: determinedScopes (the scopes defined in step 1 of ontology engineering)
Output: ontologyTurtle

Function acquire_ontology data_source(determinedScopes):
ontologyTurtle = EMPTY_LIST
sparqlQueries = SPARQLWrapper(“http://dbpedia.org/sparql”)
For each scope in determinedScopes:
Execute following sparqlQueries statement:
" SELECT DISTINCT ?inst ?prop ?thing WHERE {
?2inst ?prop ?thing ; rdfs:label ?label .
FILTER(regex(?label, scope, “i”) && lang(?label)="“en”) } "
7 Append the triple results to ontology Turtle
8 Return ontologyTurtle in turtle (.tt]) file format

o T

Fig.2: An algorithm for requesting COVID-19 in-
formation from DBpedia using SPARQLWrapper.

2) Unstructured Data: The following techniques
are used for data acquisition: Wikipedia is a publicly
available online encyclopedia and contains a signifi-
cant amount of information presented on web pages
in HTML format. The data, which are articles, are
unstructured text. Web scraping technique is used
for extracting information residing in HTML articles.
Important information is often summarized in tables
or graphs. Therefore, the information within HTML
table tags is extracted. In our work, Python Beau-
tifulSoup is applied for scraping web. The returned
data must be cleansed, and their data structures must
be created. There are three subprocesses to acquire
COVID-19 information from Wikipedia: web crawl-
ing, web scraping, and HTML table-to-dataframe
conversion. The algorithm of these subprocesses is
displayed in Fig. 3.

a. Web Crawling: This process is to browse web
pages to collect URLs matching the determined
scopes. The first set of URLs is obtained from
keyword searching on Wikipedia. Subsequently,
if the web pages of the matched URLs contain
<a> tags or links connected to other web pages,
all URLs specified after href attributes of <a>
tags are also collected.

b. Web Scraping: The web scraping techniques are
applied to extract HTML tags for each URL ob-
tained in the previous step. The HTML tables
and text in the following tags in the web pages
are extracted. The document title, <title>, de-
scribes what the document is about. HTML
heading, <hl> to <h6>, explains what the
information under the heading is about. The
<h1> defines the most general title and <h6>
defines the most specific title. The table cap-
tion, <caption> describes what the information
contained in the table is about. Therefore, the
table caption, heading, and title tags are also
extracted in this step. For the tables, the <th>
tag defines a header column in an HTML table.
The <td> tag defines the data within the col-
umn of each row.

c. HTML to dataframe conversion: The data in
HTML tables from the previous step are con-
verted to dataframes. If HTML table contains

caption, the table caption is set as dataframe
name. If table caption is not presented, the
data of the nearest heading tag is designated
as a dataframe name. The nearest heading tag
reflects the topic name more closely than head-
ing tags farther away. If both the table caption
and heading tags are missing, the HTML title
tag will be designated as the dataframe name.
Fig. 4 shows example results of unstructured
data acquisition.

Input: determinedScopes
Output: dataframes, dataframeNames

1 Function acquire_web_pages_data_source(determinedScopes)
2 dataframes = EMPTY _LIST
3 dataframeNames = EMPTY_LIST
4 crawledUrls = web_crawling(determineScopes)
5 cleansedHtml = web_crawling(crawledUrls)
6 For each tableName. cleansedTable in cleansedHtml
74 df = pandas.read_html(cleansedTable)
8 Append df to dataframes
9 Append tableName to dataframeNames
10 Retum dataframes, dataframeNames
11 | Function web_crawling(determineScopes):
12 crawledUrls = EMPTY_LIST
13 For each scope in determineScopes:
14 url = “http://fen.wikipedia.org/wiki/” + scope
15 response = requests.get(url)
16 If response 1s not NULL:
17 Append url to crawledUrls
18 soup = BeautifulSoup(response. “html parser”)
19 For each articleTag in soup find_all(“a"):
20 If articleTag get(“href”) is not NULL:
21 linkedUrl = articleTag.get("href”)
22 If requests.get(linkedUrl) is not NULL:
23 Append linkedUrl
24 Retum crawledUrls

25 | Function web_scraping(crawledUrls):
26 htmiTables = EMPTY_LIST

27 For each url in deduplicated crawledUrls:

28 soup = BeautifulSoup(requests.get(ur/l). “html. parser™)

20 For each headingTag in soup.find_all(re.compile("*h[1-6]S")):

30 For each tableTags in headingTag find_next_siblings("“table™)

31 tableName = headingTag text

32 For each tableTag in tableTags:

33 If tableTag find("“caption”) is not NULL:

34 tableName = tableTag find(“caption”).text

35 cleansedTable = soup select(“trfrowspan], th[colspan]”).
parent.decompose()

36 Append tableName and cleansedTable to cleansedHtml

37 Retumn cleansedHtml

Fig.3: Web scraping algorithm for collecting HTML
data from Wikipedia using BeautifulSoup.

Table Caption:

IFR estimate per age group
to December 2020)/***

0.004%
3544 0.068% 4554 023%
45-54 0.23% 5 0.75%
55-64 0.75%
P - 65-74 25%
75-84 85% 75-84 85%
85+ 28.3% 85+ 28.3%

(a) Table in a Web Page

(b) Table in HTML Tags

(c) Table in Dataframe

Fig.4: FEzxzample results of web scraping algorithm.

3.3 Enumerated Term

In this step, classes in the extracted Turtle ontol-
ogy and dataframes from the previous step are an-
alyzed to enumerate terms for ontology using text
analytics. If the extracted ontology and dataframes

Automated Knowledge Integration from Heterogeneous Data Sources Using Text Analytics: A Case Study of COVID-19 537

are relevant to COVID-19, such class names and
dataframe names are defined as terms in this work’s
COVID-19 ontology. There are two subprocesses in
this step: text preprocessing and text similarity mea-
surement.

1) Text Preprocessing: The extracted ontology
class names follow the proper naming convention.
Therefore, text preprocessing for ontology class
names is not required. Only the dataframe names
are performed text preprocessing as follows:

a. Noun Phrase Extraction: The dataframe names
obtained in the previous step may be compound
nouns or sentences. If the dataframe is a sen-
tence, only its compound nouns are analyzed.
spaCy [15] is a library for natural language pro-
cessing in Python trained from large text cor-
pus. It is designed for text analytics using Con-
volutional Neural Network (CNN). The feature
provided by the spaCy are tokenization, Parts
of Speech (POS) tagging, and text classifica-
tion. The spaCy is used in this step to extract
the noun(s) from each dataframe name. There
are three subprocesses in this step: POS tag-
ging, noun chunking, and dependency parsing.
The POS tagging is used to identify subject-
verb-object of the dataframe names. Later,
compound nouns are extracted from the POS
tagging. Finally, the UD is applied to remove
preposition, verb, and adjective from the com-
pound nouns. An algorithm for noun phrase
extraction is displayed in Fig. 5.

b. Text Stemming: This step is used to extract the
base form of the nouns in the previous step by
removing their affixes. For example, the stem of
the words vaccines and vaccinated is a vaccine.

Input: dataframeNames
Output: nouns (nouns of dataframes)

Function noun_phrase_extraction(dataframeNames):
nouns =EMPTY_LIST
nlp = spacy.load('en_core_web_lg")
For each dataframeName in dataframeNames:
doc = nlp(dataframeName)
For nounPhrase in doc.noun_chunks:
If any nounPhrase.dep_is in the order of prioritizing the SUBJ or OBJ:
Append text_stemming(nounPlrase.root.rext) to nouns
Retumn nouns

O WO W Wt

Fig.5:
spaCly.

Noun phrase extraction algorithm using

2) Text Similarity Measurement: In this step, the
cosine similarity is used to measure the two similari-
ties: (1) similarities of ontology class names and de-
termined scopes, and (2) similarities of nouns and
determined scopes. An algorithm of text similarity
measurement is displayed in Fig. 6 and described as
follows:

a. Similarity Measurement of Class Names: Each
ontology Turtle class name is measured cosine
similarity to the five scopes defined in the step
1. If the classes contain is-a relationships, only

the superclasses are measured because their
subclasses are determined as terms according
to inheritance property. If either of the similar-
ity values is greater than the threshold value,
such a class name is determined as a term in
the COVID-19 ontology. The minimum thresh-
old is set to 0.5. The closer the class is related
to the scope, the higher similarity value to the
scope the class has.

b. Similarity Measurement of nouns: Each noun
is measured cosine similarity to the five scopes.
If either of the similarity values is greater than
the threshold value, such a noun is determined
a term in the COVID-19 ontology. Otherwise,
the column names are measured instead and the
column with the highest similarity value is de-
termined as term, and the value in each row
of such a column is an instance name. The
columns used to perform similarity measure-
ment must contain texts and must not empty
in any rows because instance name must convey
its meaning. For compound nouns containing
specific words, such as polio vaccine and mon-
keypox, the specific words are compared with
synonyms of the five scopes. The specific words
that do not match any of the five scopes are
eliminated.

Input: threshold, determinedScopes, nouns (nouns are from class names,
dataframe name, and column names)

Output: termLists

1 Function cosine_similarity(threshold, determinedScopes, nouns)
2 termLists = EMPTY_LIST

3 cosSims = EMPTY_LIST

4 matchScopes = EMPTY _LIST

5 For each noun in nouns:

6 For each scope in determinedScopes:

7 vectorl = word2vec(scope)

8 vector2 = word2vec(noun)

9 cosSim = dot(vectorl, vector2) / (norm(vectorl) * norm(vector2))
10 If cosSim >= threshold:

11 Append cosSim to cosSims

12 Append scope of cosSim to matchScopes

13 If cosSims is not EMPTY:

14 maxCosine = max(cosSims)

15 maxMatchScope = max(matchScopes)

16 Append maxMatchScope, maxCosine, noun to termLists
17 Return termLists

Fig.6: Text similarity algorithm using spaCly.

3.4 Define Class and Taxonomy

This step involves defining class and taxonomy.
Class taxonomy can be derived from the is-a rela-
tionship specified in the extracted ontology. There
are two subprocesses in this step:

1)Define Class: Terms obtained from the previous
step are defined as classes. The class names obtained
from the previous step, hereafter, called dataframe
class names. Instances of the defined classes are di-
vided into two formats:

a. The instances of classes in the extracted on-

tology, hereafter, called extracted ontology in-
stances.

538 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.17, NO.4 December 2023

b. The instances of classes obtained from the
previous step, hereafter, called dataframe in-
stances. Each dataframe is defined as a class.
Each row in the dataframe is defined as an in-
stance. Columns of the dataframe are defined
as data properties.

2) Define Tazonomy: Class taxonomy is derived

from class hierarchies of the extracted ontology.

3.5 Define Instance and Property

First, the COVID-19 ontology is constructed by
importing ontology schema and ontology data from
the extracted ontology. Then, instances and data
properties from dataframes are merged to COVID-
19 ontology. Finally, the object properties are con-
structed on the COVID-19 ontology. There are three
subprocesses described as follows:

1) Import extracted ontology: SPARQLWrapper is
used to import schema, along with instances and their
properties from extracted ontology, into COVID-19
ontology. The SPARQL queries are generated to
query the extracted ontology and insert the query
results into the COVID-19 ontology. An algorithm
for importing extracted ontology is displayed in Fig.
7.

2) Construct instances and data properties from
dataframes: The dataframe class names are checked
for redundancy with the classes in the same scope
on the COVID-19 ontology. If the class names are
duplicated, instances of such duplicated classes are
merged. Otherwise, instances and data properties
from dataframes are inserted. If the duplicate classes
have the same data property name, the data values
of the identical data property are also merged.

3) Construct object properties: The data prop-
erty names of each class from dataframes are checked
for redundancy with the data property names of
the other classes. If property names are redun-
dant, the new object property will be constructed
as the object property link. The new prop-
erty is named by concatenating “has_related_by_”
and the redundant property name. For exam-
ple, “has_related_by_symptom”. The data property
names of each class from dataframes are later checked
for redundancy with data property names of the ex-
tracted ontology classes, using the same criterion.

Input: extractedOntology, dataframes
Output: COVID-19_Ontology
1 Function import_extracted_ontology(extractedOntology):
2 COVID-19_Ontology = EMPTY
3 sparqlQueries = SPARQLWrapper(extractedOntology)
4 For each class in extractedOntology:
S Execute following sparqlQueries statement:
" SELECT ?inst ?prop ?thing WHERE {
?Zinst rdf:type class ; ?prop ?thing .
FILTER(isLiteral(?thing) || (isLiteral(?thing)
&& lang(?thing)="en™)) }"
6 Append the queried results to COVID-19_Ontology
7 Return COVID-19_Ontology

Fig.7: An algorithm for importing extracted ontol-
ogy using SPARQLWrapper.

4. EXPERIMENTAL RESULTS AND EVAL-
UATION

4.1 Experimental Results

Python with SPARQLWrapper, BeautifulSoup,
and spaCy library were used to develop the exper-
iment, relying on ontology engineering processes and
text analytics. The experimental results are as fol-
lows:

1) Determine Scope: COVID-19, Coronavirus,
Disease, Pandemic, and Vaccine are defined as scopes
of COVID-19 ontology.

2) Data Acquisition: The structured and unstruc-
tured data collected from four heterogeneous data
sources are transformed into two main formats: on-
tology Turtle and dataframe. The examples of these
formats are displayed in Fig. 8 and 9.

@prefix rdf:
@prefix dbr:
@prefix owl:
dbr:COVID-19
@prefix dbo:
dbr:COVID-19

<http://vevi.vi3.0rg/1999/02/22-rdf-syntax-ns#> .
<http://dbpedia.org/resource/> .
<http://wwvi.vi3.0rg/2002/07/0wlit> .
rdf:type owl:Thing .
<http://dbpedia.org/ontology/> .
rdf:type dbo:Disease .
@eprefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
dbr:COVID-19 rdfs:label "COVID-19"@en ;
rdfs:comment "Coronavirus disease 2019 (COVID-19) is a contagious disease caused bj
coronavirus 2 (SARS-CoV-2). The first known case was identified in Wuhan, China, in D
spread worldwide, leading to an ongoing pandemic."@en .
@prefix dbp: <http://dbpedia.org/property/> .
dbr:COVID-19 dbp:name "Coronavirus disease 2019"@en ,
""gen ;
dbp:frequency “confirmed cases"@en ;
dbp: synonyms "COVID, coronavirus"@en ;
dbp:prevention "Face coverings, quarantine, physical/social distancing, ventilation,
dbo:deathCause dbr:Giovanni_Battista_Rabino ,
dbr:Anatolii_Mokrousov ,
dbr:Abdul_Ghafar_Atan ,
dbr:Steven_Dick ,
dbr:Suresh_Angadi ,

Fig.8: FExample results of data acquisition in the
ontology Turtle format.

1S03 VACCINE_NAME PRODUCT_NAME COMPANY_NAME AUTHORIZATION_DATE

0 SHN AstraZeneca - AZD1222 AZD1222 AstraZeneca NaN

1 GRL Moderna - mRNA-1273 mRNA-1273 Moderna NaN

2 FRO Moderna - mRNA-1273 mRNA-1273 Moderna NaN

3 FRO Pfizer BioNTech - Comirmaty Comirnaty Pfizer BioNTech NaN

4 BH AstraZeneca - AZD1222 AZD1222 AstraZeneca NaN

1050 TKM Unknown Vaccine Unknown Vaccine NaN NaN

1051 UZB Unknown Vaccine Unknown Vaccine NaN NaN

1052 MCO Novavax - Covavax Covavax NaN NaN
Fig.9: Ezxample result of data acquisition in the

dataframe format.

3) Enumerate Terms: The Turtle ontology and
dataframes from a previous step are enumerated us-
ing text preprocessing and cosine similarity measure-
ment. The results are displayed in Table 1, which
shows the number of enumerated terms using text an-
alytics in many cosine similarity values. The higher
the cosine similarity value, the lower the amount of
the enumerated terms.

4) Define Class and Tazxonomy: The terms from
the previous step are defined as classes. The class tax-
onomies are derived from the extracted ontology Tur-
tle. Classes and taxonomies defined in this step are
displayed in Fig. 10 using protégé [16]. Protégé is a
knowledge management tool, whose ontology schemas
and instances can be visualized as ontology graphs.

Automated Knowledge Integration from Heterogeneous Data Sources Using Text Analytics: A Case Study of COVID-19 539

Table 1: Number of Enumerated Terms of COVID-
19 Concepts Acquired from Heterogeneous Data
Sources.

Number of Enumerated Terms

Original Dat:
Dot R Cosine Similarity Value
Format
Relevant Irrelevant 0.5 06 | 07 | 0.8 | 09 | 1.0
Ontology 122 36 e | so | 2 | 2| 2| 2
Turtle
Dataframe 24 7 24 24 21 13 2 0
Total of
distinct 141 43 135 | 70 21 13 3 2
terms

‘Pandemic . owl:Thing
Period" > ~
== .
Prevention' g |

‘chemical
substance'

Development' [m Nomendlaturetra...
‘Subunit
[T R)

(o rondwasting] (@oseme] | O

Respiratory Syn...

‘Coronavirus
Spike Protein’

Fig.10: Ezample classes and taronomies of
COVID-19 ontology.

5) Define Instance and Property: Instances from
the extracted ontology Turtle and dataframes are
merged, as displayed in Fig. 11.

+ .
2@ owl:Thing Q?Iphacoronav:ru ‘

J l* # Betacoronavirus

|

* @ disease | 4 Coronavirus

* & Deltacoronaviru
s

= -
Gammacoronaviru
s

Fig.11: FEzxzamples of instances and properties of
COVID-19 ontology.

4.2 Evaluation

The work’s COVID-19 ontologies were constructed
using text analytics with cosine similarity varying
from 0.5 to 1.0. The data used in the ontology
construction contain data related and unrelated to
COVID-19 in a ratio of 70 to 30. The six constructed
ontologies were evaluated for data consistency with
the original data, and the following scores were mea-
sured: precision, recall, and Fl-score. The precision

refers to the fraction of the constructed instances rele-
vant to COVID-19 and constructed instances. The re-
call refers to the fraction of the constructed instances
relevant to COVID-19 and constructed instances plus
constructed instances that are irrelevant to COVID-
19. The work’s ontology with 0.6 cosine similarity
has better performance than the others as shown in
Fig. 12. The elements of the COVID-19 ontologies
were counted and displayed in Table 2.

For the ontology of COVID-19 that was generated
with a cosine similarity of 0.5, it still contained in-
formation not related to COVID-19. However, the
constructed COVID-19 ontology with cosine similar-
ity ranging from 0.7 to 1.0; some relevant COVID-19
information is eliminated. The higher the cosine sim-
ilarity value, the more relevant classes are eliminated.

The high cosine similarity leads to the loss of rel-
evant information. On the other hand, if the cosine
similarity is set too low, the irrelevant information
will be included. Thus, the cosine similarity thresh-
old must be set appropriately. The ontology with
0.6 cosine similarity is the best value for integrating
COVID-19 ontology in this case study.

In conclusion, integrating knowledge does not need
the highest cosine similarity value, because not only
the exactly matched information but also relevant in-
formation is to be merged.

1.00

0.90

0.80

0.70

0.60

Information Retrieval Evaluation
(Precision, Recall, and F1-score)

0.50

0.40
t=0.5

t=0.6
Average Precision 0.82 0.82 0.79 0.74 0.72 0.65
Average Recall 0.70 0.71 0.66 0.60 0.58 0.49
Average Fl-score 0.75 0.76 0.72 0.66 0.64 0.56

t=0.7 t=0.8

Cosine Similarity Value (t)

-s—Average Precision -»-~Average Recall -=~Average Fl-score

Fig.12: FEwvaluation of the work’s COVID-19 ontolo-
gies.

Example classes that are eliminated from the con-
structed COVID-19 ontologies with text analytics are
displayed in Fig. 13. Example classes irrelevant to
determined scopes of the constructed COVID-19 on-
tology with 0.5 cosine similarity are displayed in Fig.
14.

4.3 Implementation Guideline

Web application for semantic search was devel-
oped. The work’s COVID-19 ontology with 0.6 cosine

540

ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.17, NO.4 December 2023

t=10
t=09
t=08
t=0.7
t=06
t=05
'1918_INFLUENZA_PANDEMIC, 'ACADEMICIOURNAL',
'ADMINISTRATIVEREGION', 'AGENT', 'ALBUM', 'ACADEMIC', 'AIRCRAFT', 'ALLERGY",
'AMUSEMENTPARKATTRACTION', 'ANATOMICALSTRUCTURE', 'ANIMAL', 'ARACHNID', 'ARTERY",
'ARCHITECTURALSTRUCTURE!, 'ARTIFICIALSATELLITE', 'ATHLETE', 'BACTERIA', 'BIOMOLECULE', 'BIRD', 'BRAIN',
'ARTWORK', 'BAND', 'BEVERAGE', 'BIOLOGICALDATABASE', 'CHEMICALCOMPOUND', 'CHEMICALSUBSTANCE',
'BODYOFWATER', 'BOOK', 'BUILDING', 'CITY', 'COMPANY', 'COMBINATIONDRUG', '"CORONAVIRUS_SPIKE PROTEIN', ‘COUNTRY", 'CERTIFYING
'AMERICAN 'CONTINENT', 'DATABASE', 'EDUCATIONALINSTITUTION', 'CRICKETER', 'CYTOKINE_RELEASE_SYNDROME!, 'DEVICE', 'FINDING' i _BOARD,
FOOTBALL 'ELECTION', 'ETHNICGROUP', 'EVENT', 'FOOD', 'DRUG, 'EMBRYOLOGY', 'ENZYME', 'EUKARYOTE', 'FUNGUS', 'GLYCAN‘V 'DETAIL',
PLAYER', 'GOVERNMENTAGENCY', 'HISTORICPLACE', '"HOSPITAL', 'GENE', 'HUMANGENE', 'HYPERSENSITIVITY", ‘GRADE' > 'DISADVANTAGE!,
'HOLIDAY", 'ISLAND', 'LAKE', 'LANGUAGE, 'LIBRARY', 'MAGAZINE', 'IMMUNE_SYSTEM', 'INFECTIOUS_DISEASE', 'INSECT', 'LYMPH', 'PROPAGATIbN' 'EXAMPLE', VACCINATION'
[MUSICALARTIST', | ' MILITARYCONFLICT', 'MILITARYSTRUCTURE', 'MILITARYUNIT', 'MAMMAL', 'MEANOFTRANSPORTATION', '"MEDICALSPECIALTY, ‘SARS-COV-2. 't 'FEATURE', =
'MUSICGENRE', 'MUSICALWORK', 'NATURALPLACE', 'ORGANISATION', 'MEDICIAN', 'MILITARYPERSON', '"MMR_VACCINE', 'MOLLUSCA', 'SFEC]ALTY" 'PARAMETER',
'RADIOSTATION', | 'OUTBREAK', 'PERIODICALLITERATURE', 'PERSONFUNCTION', 'MONOCLONALANTIBODY', 'MOTORCYCLE', '"MUSCLE', ‘SUBTYPE' 2 'R0, 'SHAPE',
'STADIUM' 'PLACE', 'POPULATEDPLACE!, 'PRISON', 'MYCOBACTERIUM_TUBERCULOSIS', 'OFFICEHOLDER', 'SYMPTOA;' 'SPECIE',
"PROGRAMMINGLANGUAGE', 'PUBLISHER', 'RECORDLABEL', 'PATHOGENIC_BACTERIA', 'PERSON’, 'PLANT', 'PNEUMONIA', 'CATEGORY"
'REGION, 'RIVER', 'ROAD", 'SCHOOL', 'SETTLEMENT, 'POLIO_VACCINE', 'POLITICIAN', 'PROTEIN', ROYALTY",
'SOCIETALEVENT', 'SOFTWARE', 'SPORT', 'SPORTSEVENT", 'RUGBYPLAYER', 'SCIENTIST', 'SEPSIS', 'SHIP', 'SOCCERPLAYER',
'STREAM', 'TELEVISIONSHOW', 'TELEVISIONSTATION', TOWN', 'SPECIES', 'TOPICALCONCEPT', 'VIRUS',
'UNIVERSITY', 'VIDEOGAME!, 'VILLAGE', 'WEBSITE', 'WORK’", 'VIRUS_CLASSIFICATION', "WRITER'
"WRITTENWORK"
Note: t = cosine similarity value (1)

Fig.13: FExample classes that are eliminated from the constructed COVID-19 ontologies with text analytics.

Table 2: Number of Ontology Schema and Ontology
Data of Constructed COVID-19 Ontologies.

original data sources

‘with text analytics
using t=0.5

"ARCHIVE','ARTICLE',"ATTACK', 'BACKSCENE',
"BLOODVESSEL', 'BROADCASTNETWORK', BROWSER',

'CASE', 'CAT', 'CHEMICALELEMENT', 'CINEMA', 'CIPHER', 'CLUBMOSS', 'COLOUR’,
'CONSTELLATION','CONTROLLEDDESIGNATIONOFORIGINWINE',
'CRATER', "CRIMINAL', "CROSSCOUNTRYSKIER', 'CYCAD', 'DEITY", DEPARTMENT,|
'DIGITALCAMERA', 'DIKE', 'DIPLOMA’, 'DISTRICT', 'DRAMA', 'EARTHQUAKE',

'1918_INFLUENZA_PANDEMIC',

'AGENT,

& Number of relevant instances of constructed ontology

b Number of irrelevant instances of constructed ontology

COVID- . Ontology Schema and Ontology Data 'AMERICANFOOTBALLPLAYER', | '\GINE, 'FICTIONALCHARACTER', FILM, FLAG, FORMULAONERACING',
Determined - ARCHITECTURALSTRUCTURE', | 'FORMULAONETEAM!, 'FORT,,'GATEDCOMMUNITY', ‘GENELOCATION', 'GENRE',
! Seopes | felass (LS| fdata] Fobloe P I e
. 3 ', "ETHNICG! A 'GROSS S N S NG, ' AN ELOCATION',
on“.logies r 'rb pmperty pl'ﬂ]lEl'ty "EVENT, 'FOOD', 'HOLIDAY", 'INFRASTRUCTURE', INFRASTUCTURE', 'LAW", LETTER', LIGAMENT',
"LANGU. 1 > LINEOFFASHION', 'LOCK', 'MARTIALARTIST', ' MEDICINE', 'MEMORIAL', MINE',
COVID-19 20 248 74 488 18 L""“’;fﬁgl'c"é’,f;‘k}f""“s"' 'MOVIEGENRE, MURDERER' ‘NARUTOCHARACTER' NATIONALANTHEN:
o Coronavirus 5 169 50 384 7 ‘PERSONFUNCTION', 'PLACE, I‘,\'HBUK..A l"',R.Vl",'.'UPliNS\\'ARM‘.'PEN:U.TYSH()(H:()'LT.'P()I:M'.‘
Original Discase ol | 300 | o P 16 'RADIOSTATION, ROAD', | 1 SERVICE: REBELLION: REFEREE: REIGN’ RESEARCHPROJECT,
Data 'SPORT', 'STADIUM', "ROADTUNNEL', ROMANEMPEROR', ROUTEOFTRANSPORTATION',
Pandemic 4 133 39 257 12 ‘TELEVISIONSTATION', "'WORK' 'SERIALKILLER', 'SINGLELIST', 'STARCLUSTER', 'STATE',
N 'STATEDRESOLUTION', 'STORMSURGE', 'SUBMUNICIPALITY", 'SWARM',
Vaceine S B L 471 19 WATERRIDE. WATERWAYTUNNEL’ "WORKSEQUENCE, "WRESTLINGEVENT:
Using text COVID-19 7 204 29 253 1 /ATERRIDE', "WA] /A) NNEL', 'WORKSEQUENCE', S Gl)
ﬂ“al};gcs Coronavirus 2 99 6 114 1 Note: t = cosine similarity value (1)
W N
cosine PDJ;ease.: 18 141 50 283 13
similarity - ZICETNC 2 68 L W 102 G Fig.14: FEzample classes that are irrelevant to deter-
=0.5 Vaccine 40 230 100 370 1 A -
Using text_|_ COVID-19 4 s | 2 p | mined scopes of the constructed COVID-19 ontologies
anal};thtcs Coronavirus 1 94 10 14 1 with 0.5 cosine similarity.
Wi Disease 18 131 53 174 13
cosine -
similarity Pandemic 8 63 14 52 7
=06 Vaccine 18 | 182 | 46 151 1
Using text COVID-19 0 0 0 0 0
analytics | Coronavirus | 0 0 0 0 0 similarity is used as a knowledge base for the semantic
. Disease 1 131 28 152 11 . .
cosine oi— " ” 5 o . search. Tools used for web application development
simularity . .
=07 Vaccine T T D) 30 1 are Apache Jena Fuseki [17] and Python Django [18].
Usingtext | COVID-19 | 0 0 0 0 0 Apache Jena Fuseki is a SPARQL server package for
analytics Coronavirus 0 0 0 0 0 : : : :
with Dicones | - = = m a web application. Django is used to develop User
S;ﬂ"ﬁ;fw Pandemic 3 21 1 54 1 Interface (UI) for submitting keyword search. They
=08 Vaccine 1 102 | 29 30 1 work together as follows. First, the keyword sub-
Using text COVID-19 0 0 0 0 0 : s s
analytics [Copormvirs |0 . o . mitted from .UI is transformed into SPARQL query
c‘:sli‘ge Disease) p 7 % 1 statement using SPARQLWrapper to query COVID-
similarity | _Pandemic 1 1 9 44 0 19 knowledge stored in the SPARQL server. Then,
=09 Vacci
_ e L 2 1 2 50 L the query results are returned to the UI. The system
Using text COVID-19 0 0 0 0 0 N
anal_y‘;ics Coronavirs |0 0 0 0 0 architecture of the semantic search is displayed in Fig.
Wit . . .
e Disease 1 44 17 24 1 15. An example of semantic search using “COVID-
similarity | Pandemic { 1| 10 | 7 13 0 19” keyword is displayed in Fig. 16 and the search
=1.0 Vaccine 0 0 0 0 0

results relevant to the COVID-19 scopes are displayed
in Figs. 17 and 18. The example of searching vaccine
data is displayed in Fig. 19.

Automated Knowledge Integration from Heterogeneous Data Sources Using Text Analytics: A Case Study of COVID-19 541

User Query

I

3

i

2 Q

ki M

[Search
k. 4
< Request
and Return >
y \
' Web Application Prototype:
- Using Django

[Graphical User Interface]
[SPARQLWrapper (Parser) |

System Architecture

t < SPARQL Query >

Local Server:
- Apache Jena Fuseki

Web Application Architecture

Ontology
Repository

(Constructed COVID-19 Ontology)

Fig.15: System architecture for semantic search.

COVID-19 Ontology

Ontology Construction from Heterogeneous Data Source Integration Using Text Analytics

covip-19 Search

Reated to 100 resut() of “COVID-19°

covip-19

Coronavirus disease 2019 (COVID-19) is a contagious disease caused by 3
virus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
The first known case was identified in Wuhan, China, in December 2019,
The disease quickly spread workdwi,

Coronaviruses are a group of related RNA viruses that cause diseases in
mammals. and birds. In humans and birds, they cause respiratory tract
infections that can range from mild to lethal. Mild ilinesses in humans.
include some cases of the common coid.

read more read more

Fig.16: A example of semantic search with the
COVID-19 keyword.

About: Covid-19
An information o type owkNamedinstance

Covid-19

Aninstance of type DISEASE

Coronavirus disease 2019 (COVID-19) is a contagious disease caused by a virus, the severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2). The first known case was identified in Wuhan, China, in

December 2019. The disease quickly spread worldwide, resulting in the COVID-19 pandemic. COVID-19

testing methods 1o detect the virus's nucleic acid include real-time reverse transcription polymerase chain

reaction (rRT-PCR), transcription-mediated ampification, and reverse transcription loop-mediated
f (RT-LAMP) swab,

What about this?

Oata roperty Uteral

— inthe singuarform, perh incidont, orinstances was intended
provantion Vaccinaton, faco covrings, ausrantine, physicafsocal distancing, ventiation, hand washing

aias COVID, (th) coronavirs

name Coronavirus disesso 2019

synonyms CoviD, coronsvius

trequency contirmed cases

ame September 2022

portal covio-1

Fig.17: FExample results of COVID-19 scope.

This content is very similar to

Object Property Instance Type
has_related_by_alias_of Multisystem Inflammatory Syndrome I Children DISEASE
Transmission Of Covid-19 DISEASE
has_related_by_complications_of ~ Acute Respiratory Distress Syndrome DISEASE
has_related_by._portal_of Covid-19 Pandemic DISEASE
Sars-Cov-2 DISEASE
has_related_by_reason_of Pulmonary Fibrosis DISEASE
has_related_by_synonyms_of Moderna Covid-19 Vaccine DISEASE
Mltisystem Inflammatory Syndrome In Children DISEASE
Transmission Of Covid-19 DISEASE

See Also

o
Coronavirus Disease

Coronaviruses are a group of related RNA viruses that cause Disease from
diseases in mammals and birds. In humans and birds, they cause Kipeds

respiratory tract infections that can range from mild to lethal. Mild s

illnesses in humans include some cases of the common cold...

read more read more
i s — —

[> = B

it oyl = —] =

BN |

Pandemic

r—r—1

Transmission of COVID-19

Fig.18:
scope.

Example results relevant to COVID-19

About: Vaccine

Fig.19: Ezxample results relevant to vaccine scope.

5. CONCLUSIONS

The COVID-19 ontology was constructed auto-
matically from heterogeneous data sources with dif-
ferent data structures using ontology engineering and
text analytics. COVID-19 information to be created
as instances in the COVID-19 were collected from
DBpedia, WHO web API, disease.sh web API, and
Wikipedia, each with a different structure and for-
mat. The information gathered from these sources is
divided into two types: structured and unstructured
data. Web scraping was used to collect unstructured
COVID-19 data from Wikipedia web pages. Web-
based services were used to collect the COVID-19 in-
formation in structured formats: CSV files, JSON
files, and an ontology Turtle file. POS tagging, UD
and text stemming in natural language processing,
and text similarity measurement were used to inte-
grate the COVID-19 information from heterogeneous
data sources. The work’s COVID-19 ontology with
0.6 cosine similarity is the optimal value, obtains high
precision and recall, and the constructed ontology has

542

the highest amount of relevant COVID-19 informa-
tion.

This research may be used to perform automated
knowledge integration for other domains. The steps
given in the methodology section can be used; only
scopes in the first step must be redefined. In addition
to knowledge integration, this research’s methodology
can also be applied to migrate data from heteroge-
neous data sources.

The challenges of this research are (1) Multiple
sentences included in the same paragraph and (2)
many emerging terminologies. It is difficult to find
the relationship between sentences in the paragraph.
Automatic ontology construction is required to tackle
new terminologies. Several data analytic techniques
must be used to define classes, taxonomies, instances
and properties.

The COVID-19 information from CSV files, JSON
files, and web pages have not been assigned the class
taxonomy. Text classification in NLP could be ap-
plied for the task.

The COVID-19 information from web pages does
not include contents in paragraph tags (<p>). These
contents could be included in the COVID-19 ontology
schema and instances using Named Entity Recogni-
tion (NER) [19] and Hearst Patterns [20]. NER and
Hearst Patterns are combined to define taxonomy or
superclass/subclass relationship residing in the con-
tents of paragraph tags. The NER is used to identify
what class the instances belong to and Hearst Pat-
terns is later used to identify taxonomy.

ACKNOWLEDGEMENT

The researchers are grateful to Assistant Professor
Dr. Prakarn Unachak for his suggestions and com-
ments.

References

[1] N. K. Soe, T. T. Yee and E. C. Htoon, “Se-
mantic Layer Construction for Big Data Inte-
gration,” 2020 International Conference on Ad-
vanced Information Technologies (ICAIT), Yan-
gon, Myanmar, pp. 24-29, 2020.

[2] A. Berko et al., “Application of Ontologies And
Meta-Models for Dynamic Integration of Weakly
Structured Data,” 2020 IEEE Third Interna-
tional Conference on Data Stream Mining €
Processing (DSMP), Lviv, Ukraine, pp. 432-437,
2020.

[3] A. V. Saurkar, K. G. Pathare and S. A. Gode,
“An Overview on Web Scraping Techniques and
Tools,” 2018 International Journal on Future
Revolution in Computer Science & Communica-
tion Engineering (ijfrcsce), vol. 4, pp. 363-367,
Apr. 2018.

[4] D. M. Thomas and S. Mathur, “Data Analysis
by Web Scraping using Python,” 2019 3rd Inter-

[11]

ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.17, NO.4 December 2023

national conference on Electronics, Communica-
tion and Aerospace Technology (ICECA), Coim-
batore, India, pp. 450-454, 2019.

M. M. Fouad, T. F. Gharib and A. S. Mashat,
“Efficient Twitter Sentiment Analysis System
with FeatureSelection and Classifier Ensemble,”
2018 The International Conference on Advanced
Machine Learning Technologies and Applications
(AMLTA), Cairo, Egypt, Jan. 2018.

M.-C. de Marneffe, C. D. Manning, J. Nivre, and
D. Zeman, “Universal Dependencies,” in Com-
putational Linguistics, Cambridge, MA: MIT
Press, pp. 255-308, Jun. 2021.

X. Xue, H. Wang, J. Zhang and Y. Huang,
“Matching Transportation Ontologies with
Word2Vec and Alignment Extraction Algo-
rithm,” in 2021 Journal of Advanced Trans-
portation, Hindawi, May 2021.

G. Antoniou, P. Groth, F. van Harmelen and R.
Hoekstra, A Semantic Web Primer, Third Edi-
tion. London, England: The MIT Press, 2012.
C. M. Keet, An Introduction to Ontology Engi-
neering, College Publications, 2018.

N. Rastogi, P. Verma and P. Kumar, “Evalua-
tion of Information Retrieval Performance Met-
rics using Real Estate Ontology,” 2020 Third In-
ternational Conference on Smart Systems and
Inventive Technology (ICSSIT), Tirunelveli, In-
dia, pp. 102-106, 2020.

E. R. Swedia, A. B. Mutiara, M. Subali, and Er-
nastuti, “Deep Learning Long-Short Term Mem-
ory (LSTM) for Indonesian Speech Digit Recog-
nition using LPC and MFCC Feature,” in 2018
Third International Conference on Informatics
and Computing (ICIC), pp. 1-5, Oct. 2018.
The SPARQLWrapper Development Team,
SPARQLWrapper Documentation, 2022. [On-
line]. Available: https://sparqlwrapper.
readthedocs.io/en/latest/

E. Winters et al., disease.sh - An open API for
disease-related statistics, 2022. [Online]. Avail-
able: https://disease.sh/docs/

The urllib3 Development Team, urllib3 Docu-
mentation, 2023. [Online]. Available: https:
//urllib3.readthedocs.io/en/stable/

H. Matthew and I. Montani, spaCy: Industrial-
strength Natural Language Processing in Python,
2022. [Online]. Available: https://spacy.io/
usage

M. Horridge, “A Practical Guide To Building
OWL Ontologies Using Protégé 4 and CO-ODE
Tools Edition 1.3, The University of Manch-
ester, Mar. 2011.

The Apache Jena Project Team, Apache Jena
Fuseki, The Apache Software Foundation, 2022.
[Online]. Available: https://jena.apache.
org/documentation/fuseki2/

Automated Knowledge Integration from Heterogeneous Data Sources Using Text Analytics: A Case Study of COVID-19 543

[18] The Django Software Foundation, Django, The
Django Software Foundation, 2022. [Online].
Available: https://www.djangoproject.com/
foundation/

[19] N. Kanya and T. Ravi, “Modelings and tech-
niques in Named Entity Recognition-an Informa-
tion Extraction task,” IET Chennai 3rd Inter-
national on Sustainable Energy and Intelligent
Systems (SEISCON 2012), Tiruchengode, pp. 1-
5, 2012.

[20] A. 1. A. Aldine, M. Harzallah, B. Giuseppe,
N. Béchet and A. Faour, “Redefining Hearst
Patterns by using Dependency Relations,” in
Proceedings of the 10th International Joint
Conference on Knowledge Discovery, Knowl-
edge Engineering and Knowledge Manage-
ment(IC3K2018), vol.2, pp. 148-155, Jan. 2018.

Patipon Wiangnak received his Mas-

ter of Science and Bachelor of Science

degrees in Computer Science from the

Department of Computer Science, Fac-

él { ulty of Science, Chiang Mai Univer-

sity, Thailand, in 2023 and 2019, re-

spectively. He worked for a health-

care organization for almost three years,

gaining experience in database manage-

\ ment, data analysis, and software devel-

opment. His research interests include

knowledge engineering, natural language processing, ontology,
and the semantic web.

Areerat Trongratsameethong is a
lecturer of the Computer Science De-
partment, Faculty of Science, Chiang
Mai University. She has her Ph.D. in
computer science from Mahidol Univer-
sity, Bangkok, Thailand. She worked for
business companies and software houses
for many years while gaining experience

¢ 7 in software development, system anal-
I i /4 ysis and design, and software require-
I ment analysis. Her current expertise
and teaching focus on fundamentals of programming, funda-
mentals of database system, object-oriented design, organiza-
tion of programming language, and ontology design and devel-
opment.

