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ABSTRACT Article information:
A well-known privacy preservation model is k-anonymity. It is simple
and widely applied in several real-life systems. To achieve k-anonymity
constraints in datasets, all explicit identi�ers of users are removed. Fur-
thermore, the unique quasi-identi�ers of users are distorted by their less
speci�c values to be at least k indistinguishable tuples. For this reason,
after datasets are satis�ed by k-anonymity constraints, they can guarantee
that all possible query conditions to them always have at least k tuples
that are satis�ed. Aside from achieving privacy preservation constraints,
the data utility and the complexity of data transformation are serious is-
sues that must also be considered when datasets are released. Therefore,
both privacy preservation models are proposed in this work. They are
based on k-anonymity constraints in conjunction with the weighted graph
of correlated distortion tuples and the adjacency matrix of tuple distances.
The proposed models aim to preserve data privacy in datasets. Moreover,
the data utility and data transform complexities are also considered in the
privacy preservation constraint of the proposed models. Furthermore, we
show that the proposed data transformation technique is more e�cient and
e�ective by using extensive experiments.
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1. INTRODUCTION

Privacy violation is a serious issue that the data
holder must consider when datasets are released to
utilize in the outside scope of data-collecting orga-
nizations [1], i.e., the data holder must ensure that
when the datasets are released, they must not have
any concern of privacy violation issues. To achieve
these aims in released datasets, k-anonymity is pro-
posed. An example of privacy preservation is based
on k-anonymity constraints. Let Table 1 be the orig-
inal dataset such that Age and Gender are the quasi-
identi�er attributes. Another attribute, Disease, is
the sensitive attribute. Suppose the value of k is 2.
In this situation, a released data version of Table 1 is
shown in Table 2. Although Table 2 is more secure
in terms of privacy preservation than its original data
version (Table 1), we can see that it loses some data
meaning in terms of data utilization. In addition, k-
anonymity is more complex in terms of data transfor-
mation. To rid these vulnerabilities of k-anonymity,

both privacy preservation models are proposed in this
work. They are based on k-anonymity constraints
in conjunction with the weighted graph of correlated
distortion tuples and the adjacency matrix of tuple
distances.

Table 1: An example of original dataset.
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Table 2: A 2-Anonymity data version of Table 1.
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The organization of this paper is as follows. In
this section, privacy preservation issues and the tra-
ditional k-anonymity are presented. In the next sec-
tion, we illustrate other existing privacy preservation
models, data distortion techniques, and data transfor-
mation algorithms for transforming datasets to sat-
isfy privacy preservation constraints. In Section 3, we
propose the data distortion techniques for the numer-
ical and non-numeric quasi-identifier, the distance of
tuples, and both privacy preservation models that are
based on k-anonymity constraints in conjunction with
the weighted graph of correlated distortion tuples and
the adjacency matrix of tuple distances. Then, the
data utility metrics for evaluating the data utility of
released datasets are presented (Section 4). The ex-
perimental results can indicate the effectiveness and
efficiency of both proposed privacy preservation mod-
els. They are discussed in Section 5. Finally, the
conclusion of this work will be discussed in Section 6.

2. BACKGROUND AND RELATED WORK

Data privacy, data utility, and the complexity of
data transformation are serious issues that the data
holder must consider when datasets are released to
utilize in the outside scope of data-collecting organi-
zations. For these reasons, several privacy preserva-
tion models have been proposed. Aside from privacy
preservation models, we can also see data distortion
techniques and data transformation algorithms are
rapidly presented.

2.1 Privacy Preservation Model

Generally, privacy preservation models are the
data framework such that they are used to address
privacy violation issues when datasets are released to
utilize in the outside scope of data-collecting organi-
zations.

One of the most well-known privacy preservation
models is k-anonymity [2]. It is a simple privacy
preservation model. Moreover, it is widely applied
in several real-life systems. For privacy preservation,
all explicit identifier values of users are removed. Fur-
thermore, the unique quasi-identifier values are dis-
torted by their less specific values to be at least k
indistinguishable tuples. Therefore, after datasets
satisfy k-anonymity constraints, they can guarantee
that all possible query conditions through the quasi-
identifier attributes always have at least k tuples that
are satisfied. However, in [3], the authors demon-
strate that only removing the explicit identifier val-
ues and distorting the unique quasi-identifier values
are not enough to address privacy violation issues
in datasets because the sensitive data of users in
datasets can still be violated by using identity and
attribute linkage attacks.

To rid these vulnerabilities of k-anonymity, an ex-
tended k-anonymity model, l-diversity [3], is pro-

posed. With l-diversity, aside from removing the ex-
plicit identifier values and distorting the unique quasi-
identifier values, the number of distinct sensitive val-
ues is further considered in privacy preservation con-
straints such that every group of indistinguishable
quasi-identifier values must relate to at least l dif-
ferent sensitive values. Therefore, after datasets are
satisfied by l-diversity constraints, they can guarantee
that all possible query conditions through the quasi-
identifier attributes always have at least l distinct sen-
sitive values that are satisfied.

Unfortunately, the datasets satisfy l-diversity con-
straints. They still have concerns about privacy vi-
olation issues from considering the distance of sen-
sitive values. To rid this vulnerability of l-diversity,
t-closeness [4] is proposed. With t-closeness, the pa-
rameter t enables one to trade-off between data util-
ity and data privacy in datasets. We limit the gain
from dis1 to dis2 by the limitations of the distance
between both values as v1 and v2. Intuitively, if
dis1 equals dis2, v1 and v2 are the same. If dis1
and dis2 are close, v1 and v2 are close. Also, when
dis1 and dis2 are more different, it means that v1
and v2 are very different. For privacy preservation,
the unique quasi-identifier values are distorted to be
indistinguishable such that every group of distorted
quasi-identifier values must relate to the set of the
protected sensitive values that have the distance to be
at least t. Therefore, after datasets satisfy t-closeness
constraints, they can guarantee that the distance of
re-identifying the protected sensitive values is at least
t. Although datasets satisfy t-closeness constraints to
be more secure in terms of privacy preservation than
k-anonymity and l-diversity, they have data utility
issues that must be addressed.

To address the data utility issues in high-
dimension datasets, km-anonymity [5] is proposed.
This privacy preservation model assumes that the ad-
versary has the limitation of the background knowl-
edge about the target user, i.e., the adversary has
the background knowledge about the target user to
be at most m values. Thus, only the m-size of unique
quasi-identifier values are distorted to be at least k
indistinguishable tuples. For this reason, after the
datasets are satisfied by km-anonymity constraints,
they can guarantee that every possible query con-
dition through the m-size quasi-identifier attributes
always has at least k tuples that are satisfied.

LKC-privacy [6] is a privacy preservation model.
It is also proposed to address privacy violation issues
in high-dimension datasets. For privacy preservation,
all at most L sizes of the unique quasi-identifier values
are distorted to be at least K indistinguishable tu-
ples. Moreover, every protected sensitive value in ev-
ery group of the distorted quasi-identifier values must
have the confidence of data re-identification to be at
most C.

Aside from the mentioned-above privacy preserva-



36 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.18, NO.1 January 2024

tion models, other well-known models are also pro-
posed to address privacy violation issues in released
datasets such as (k, e)-anonymous [7] and (α, k)-
anonymity [8].

In [7], (k, e)-anonymous is proposed. For privacy
preservation, before datasets are released, the tuples
are firstly re-sorted by the sensitive values ascending.
Then, the tuples are partitioned. That is, every par-
tition must include at least k tuples. Moreover, ev-
ery partition collects the sensitive values that have a
different range between the lower and upper bounds
to be at least e. Finally, the quasi-identifier tuples
or the sensitive values of each partition are shuffled.
For this reason, after datasets are satisfied by (k, e)-
anonymous constraints, they can guarantee that the
sensitive values have the confidence of the data re-
identification to be at most e. Moreover, they can
further guarantee that all possible queried results al-
ways have at least k tuples that are satisfied.

With (α, k)-anonymity [8], it is proposed to ad-
dress privacy violation issues by using probability in-
ference linkage attacks. With this privacy preserva-
tion model, α and k are both privacy preservation
constraints. That is, before datasets are released,
the unique quasi-identifier values are distorted to be
at least k indistinguishable tuples. Moreover, every
sensitive value must have the confidence of data re-
identification from using probability inference linkage
attacks to be at most α. Therefore, after datasets sat-
isfy (α, k)-anonymity constraints, they can guarantee
that the sensitive values cannot have any concern of
privacy violation issues from using probability infer-
ence linkage attacks. Moreover, they can also guar-
antee that all possible queried results always have at
least k tuples that are satisfied.

In brief, the privacy preservation model is the data
model that is used to address privacy violation is-
sues in datasets when they are released to the outside
scope of data-collecting organizations.

2.2 Data Distortion

The data distortion technique is a data structure
for distorting the unique values in released datasets
to satisfy privacy preservation constraints. A few ex-
amples of well-known data distortion techniques are
as follows.

Fig.1: A DGH of the ratting scores as [0, 5].

Fig.2: A NDGH of the ratting scores as [0, 2].

Domain Generalization Hierarchies (DGH) [2] is
a well-known data structure that is proposed to de-
scribe the level of specificity quasi-identifier values
that are available in datasets. They are based on
tree data structures such that the values of the low
level are more specific than the values that are avail-
able at the high level. Three examples are shown in
Figure 3. They are proposed to present the level of
data specifications for ratting scores as [0, 5].

Natural Domain Generalization Hierarchies (NDGH)
[10] is also a well-known data structure that is
proposed to describe the level of specificity quasi-
identifier values that are available in datasets. With
NDGH, it is based on directed graphs such that the
label of each node presents a set of quasi-identifier
values. Moreover, the label values of the low level are
more specific than the label values of the high level.
An example of NDGH is shown in Figure 2. It is pro-
posed to present the level of data specifications for
ratting scores as [0, 2].

Data swapping [7] is a data distortion technique
that is widely acknowledged to apply in privacy
preservation models. With this data distortion, the
unique values in datasets are distorted by swapping
their positions.

The range of data [10] is a data distortion tech-
nique that is often used to distort the unique numeri-
cal in datasets. That is, the uniquely numerical values
do not have any concern of privacy violation issues
when they are distorted by their range between the
lower and upper bounds to be indistinguishable.

Another data distortion technique is often avail-
able in privacy preservation models. It is additive
noises [11]. That is, the unique data is distorted by
using some appropriate noises.

In brief, the data distortion technique is the data
structure that is proposed to describe the level of the
specificity values that are available in datasets.

2.3 Data Transformation

The data transformation is an algorithm. It is used
for transforming datasets to satisfy privacy preserva-
tion constraints such as brute force [12] and clustering
[13]. With brute force algorithms, they are a simple
and classical idea for transforming datasets to satisfy
privacy preservation constraints. Generally, they can
guarantee that the released data version of datasets
is optimal. However, they are highly complex. Thus,
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they are unsuitable for addressing privacy violation
issues in larger-size or high-dimension datasets. To
rid this vulnerability of brute force algorithms, the
privacy preservation models are based on clustering
algorithms to be proposed. That is, before datasets
are released to utilize in the outside scope of data-
collecting organizations, the similar tuples are firstly
clustered to be the groups. Finally, the unique values
of each group are distorted by their less specific values
to be indistinguishable. The most well-known privacy
preservation model, k-member [13], is based on clus-
tering algorithms in conjunction with k-anonymity
constraints. For privacy preservation, the at least k
size of tuple groups is constructed by considering their
distance scores. Another well-known privacy preser-
vation model is based on clustering algorithms. It is
Mondrian Multidimensional k-anonymity [14]. With
this privacy preservation model, the most similarity of
tuples in each group is constructed by a strict multi-
dimensional partitioning algorithm. However, we can
see that these privacy preservation models still are
complex. To rid this vulnerability, a privacy preserva-
tion technique is based on the weighted graph of cor-
related generalization tuples and the adjacency ma-
trix of tuple distances to be proposed in this work.

In brief, data transformations are algorithms that
can transform datasets to satisfy privacy preservation
constraints. A desired data transformation algorithm
is low complexity and can maintain the data utility
of datasets as much as possible.

3. THE PROPOSED MODEL

In this section, we propose both privacy preser-
vation models. They are based on k-anonymity in
conjunction with a weighted graph of correlated gen-
eralization tuples and an adjacency matrix of tuple
distances. Before the proposed technique will be pre-
sented. We first define the necessary basic definitions
of this work.
Definition 1 (Dataset) Let U = {u1, u2, . . . , un}
be the set of users. Let D = {d1, d2, . . . , dn} be the
original dataset that is constructed from n user tuples
such that every di ∈ D represents the profile tuple of
the user ui ∈ U , where 1 ≤ i ≤ n. Moreover, every di
constructs from m attributes as A = {a1, a2, . . . , am}.
That is, QI = {qi1, qi2, . . . , qim−1} ⊂ A is the set of
quasi-identifier attributes. Another attribute S ∈ A
(i.e., A−QI) is the sensitive attribute. In addition, let
D[qiy] , where 1 ≤ y ≤ |QI|, be the data projection
of qiy of D. Let D[S] be the data projection of S
of D. Let D[QI] be the data projection of all quasi-
identifier tuples that are available in D. Let di[QI]
be the data projection of the quasi-identifier tuple of
di. Moreover, let di[S] be the data projection of the
sensitive value of di.

For example, let Table 1 be the original
dataset D that has seven user profile tuples (i.e.,
d1, d2, d3, d4, d5, d6, and d7) and three attributes, i.e.,

Table 3: The data projection of D[d1] of Table 1.

Age, Gender, and Disease. Let Age and Gender be
the quasi-identifier attributes. The Disease is a sen-
sitive attribute. Therefore, the D[d1] of Table 1 is
shown in Table 3. The D[S] of Table 1 is shown in
Table 4. The D[QI] of Table 1 is shown in Table 5.
The d1[QI] of Table 1 is shown in Table 6. The d1[S]
of Table 1 is shown in Table 7.

Table 4: The data projection of D[S] of Table 1.

Table 5: The data projection of D[QI] of Table 1.

Table 6: The data projection of d1[QI] of Table 1.

Table 7: The data projection of d1[S] of Table 1.

Definition 2 (Privacy Violation Issues) Let D be
the specified dataset. Let k be the minimum number
of tuples that cannot have any concerns about privacy
violation issues. The meaning of privacy violation
issues for a tuple di ∈ D is that di[QI] is duplicated
by other quasi-identifier tuples in D[QI] to be at most
k − 1 tuples.

In addition, the data domain of qiy ∈ QI is gen-
erally numerical and non-numerical. The numerical
data is the data that can be quantifiable, e.g., age
and salary. With the non-numerical data, it is cate-
gorical data such as gender, position, and education.
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For this reason, they can be distorted to satisfy pri-
vacy preservation constraints through a different data
transformation technique.

3.1 Data Distortion Based on Numerical Data

Let qiy ∈ QI be a specified quasi-identifier at-
tribute of D such that the data domain of qiy is
numerical. Given ϑ ⊆ qiyis the set of the par-
ticular quasi-identifier values from qiy. With ϑ, it
can be distorted to be indistinguishable from using
their range between fMIN (ϑ) and fMAX(ϑ) . More
range between fMIN (ϑ) and fMAX(ϑ) is more se-
cure in terms of privacy preservation. Therefore,
the distorted value distance of ϑ can be defined by
fdis(ϑ) : fMAX(ϑ)− fMIN (ϑ).

For example, let the Age attribute of Table 1
be the specified quasi-identifier attribute. Let 45,
46, and 48 be the particular quasi-identifier values.
fMIN ({45, 46, 48}) is 45. fMAX({45, 46, 48}) is 48.
Therefore, the distorted value of them is “45-48”.
The distorted value distance of them is 3, i.e., 48-
45=3.

3.2 Data Distortion Based on Non-Numerical
Data

This section is proposed to explain the technique
that can be used for distorting non-numerical quasi-
identifier values to be indistinguishable. Let qiy ∈
QI be a quasi-identifier attribute. Let DOqiy =

{doqiy1 , do
qiy
2 , . . . , do

qiy
z } be the data domain of qiy.

Let fDGH(DO
qiy
L : DO

qiy
L → DO

qiy
L+1 be the dis-

tortion function of DOqiy from the level L to the
level L + 1 such that all values of the level L are
more specific than all values that are available in
the level L + 1. From the function, the domain
distortion hierarchy of qiy, DGHqiy , can be defined

from a distortion sequence as DO
qiy
0

fDGH(DO
qiy
0 )

−−−−−−−−−→

DO
qiy
1

fDGH(DO
qiy
1 )

−−−−−−−−−→ DO
qiy
2 . . .DO

qiy
L−2

fDGH(DO
qiy
L−2)−−−−−−−−−−→

DO
qiy
L−1

fDGH(DO
qiy
L−1)−−−−−−−−−−→ DO

qiy
L , where DO

qiy
0 =

DOqiy . That is, the most specific values are avail-
able in the level 0 and the lowest specific values are
available in the level L. Let ϑ ⊆ qiy be the set of
the particular quasi-identifier values in qiy. Let ω
be the distorted value of ϑ such that ω is available
in the level Φ of DGHqiy . Thus, the distorted value
distance of ϑ is Φ, i.e., fdis(ϑ) : Φ.

Fig.3: DGHGender.

For example, let the Gender attribute of Table 1
be the specified quasi-identifier attribute. Let Figure

3 be DGHGender. Moreover, suppose that the gender
value is available in d1 and d2 to be the particular
quasi-identifier values. Thus, the appropriately dis-
torted value of the particular quasi-identifier values
is *. The distorted value distance of the particular
quasi-identifier values is 1 because * is available in
the level 1 of DGHGender.

3.3 The Distance of Tuples

Let DSEL ⊆ D be the set of the specified tuples.
Let fdis(DSEL[qi1]), fdis(DSEL[qi2]), . . . , fdis(DSEL

[qim−1]) be the functions that represent the distorted
value distance of DSEL[qi1], DSEL[qi2], . . . , DSEL

[qim−1], respectively. Therefore, the distorted
value distance of DSEL can be defined by
fDIS(DSEL) : fdis(DSEL[qi1]) + fdis(DSEL[qi2]) +
. . .+ fdis(DSEL[qim−1]). More value of fDIS(DSEL)
is more secure in terms of privacy preservation.

For example, let Table 1 be the original dataset D.
Let d1 and d2 be both of the particular tuples in Table
1, i.e., DSEL = {d1, d2}. Let Figure 3 beDGHGender.
In this situation, a distorted data version of Table
1 is shown in Table 8. That is, the Age attribute,
DSEL[Age], is distorted by the range of users’ ages
that are available in the Age attribute of d1 and d2,
i.e., 45 - 46. Moreover, the unique gender values in the
Gender attribute, DSEL[Gender], are distorted by an
appropriate value, *, that is available in DGHGender.
Therefore, Table 8 has the distorted value distance to
be 2, i.e., 1 + 1 = 2.

Table 8: A distorted data version of d1 and d2 of
Table.

3.4 Privacy preservation is Based on k-
anonymity in conjunction with Weighted
Graphs and Adjacency Matrix

This section is devoted to presenting both privacy
preservation models. They are based on the weighted
graph of correlated distortion tuples and the adja-
cency matrix of tuple distances to be proposed. The
proposed technique aims to transform datasets to sat-
isfy k-anonymity constraints.

Definition 3 (The Weighted Graph of Corre-
lated Distortion Tuples) Let G = (V,E) be a
weighted graph that proposes to present the corre-
lated distortion tuples of D. That is, V is the set of
vertices such that every vi ∈ V represents the tuple di
of D, while E = {{vα, vβ}|vα, vβ ∈ V and vα 6= vβ}
is the set of edges that represent the relationship be-
tween the vertices vα and vβ . Moreover, each edge
of vα and vβ has an associated numerical value (a
weight) that represents fdis(vα, vβ).
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Definition 4 (The Adjacency Matrix of Dis-
torted Tuple Distances) Let G = (V,E) be
a weighted graph of correlated distortion tuples.
An adjacency matrix of G = (V,E) is GM =
[gmα, gmβ ]n∗n, where 0 ≤ α ≤ n and 0 ≤ β ≤ n,
such that GM = [gmα, gmβ ]n∗n is in the form of[

0 ∆GMT

∆GM 0

]
, i.e., the (gmα, gmβ)-position of

GM collects fdis(gmα, gmβ), otherwise, it collects 0.
Therefore,

GM [gmα, gmβ =


gm0, gmβ

gm1, gmβ

...
gmn, gmβ


Is equal to

GM[gmβ , gmα]T = [gmβ , gm0 gmβ , gm1 · · · gmβ , gmn].

Definition 5 (Equivalence Class) Let a positive
integer k, where k ∈ I+ and k ≥ 2, be the privacy
preservation constraint. Let DSEL ⊆ D be the set of
the specified tuples such that the size of DSEL is at
least k, i.e., |DSEL| ≥ k. Let ec be an equivalence
class that can be constructed from DSEL by using
fA(DSEL) : DSEL → D′SEL, i.e., ec = D′SEL. That
is, the unique quasi-identifier values of D′SEL are dis-
torted by their less specific values that are presented
in the form of the DGH or the value range of them.

Definition 6 (The Error of Equivalence
Classes) Let ec be an equivalence class that is con-
structed from DSEL ⊆ D. Thus, the error of ec can
be defined by ferr(ec) : fDIS(DSEL) ∗ |DSEL|.

3.4.1  Privacy Preservation Based on The Adjacency
Matrix of Distorted Tuple Distances

Let D = {d1, d2, . . . , dn} be the original dataset.
Let G = (V,E) be a weighted graph of correlated
distortion tuples of D. Let GM be an adjacency
matrix of G = (V,E). With GM , we know that
it is a symmetric matrix, i.e., GM [gmα, gmβ] =
GM [gmβ, gmα]T . Thus, only the lower or upper
triangular matrix of the adjacency matrix of GM
is considered for constructing the desired released
dataset D′ of D, i.e., ∆GM . Let fA(D,∆GM,k)
: D →∆GM,k D′ be the function for transform-
ing D to become D′. That is, the users’ unique
quasi-identifier values in D′ are distorted to be at
least k indistinguishable quasi-identifier tuples by us-
ing their ranges between the lower and upper bounds
or the less specific values that are available in the
DGH of them. Moreover, the summation of every
group of indistinguishable quasi-identifier tuples in
∆GM must be minimized. In addition, aside from
the list of tuples, D′ further has another view that is

in the form of the set of its equivalence classes, i.e.,
EC = {ec1, ec2, . . . , ece}. Without loss of gener-
ality, every equivalence class ecp, where 1 ≤ p ≤ e,
of D′ must satisfy the data limitations that are⋃⋃⋃e
p=1 ecp = D and

⋂⋂⋂e
p=1 ecp = Ø.

Fig.4: A weighted graph of the correlated distortion
tuples.

For example, let Table 1 be the original dataset D.
Moreover, the DGH of the Gender attribute is shown
in Figure 3. A correlated distortion tuple graph of
Table 1 is shown in Figure 4. Thus, the adjacency
matrix of Table 1 is shown in Figure 5. While the
lower triangular matrix of the adjacency matrix is
shown in Figure 6 and the upper triangular matrix
of the adjacency matrix is shown in Figure 7. In
addition, in this example, only the lower triangular
matrix of the adjacency matrix is used to consider
constructing the appropriate released data version of
Table 1. Suppose the value of k is 2. A released
data version of Table 1 is shown in Table 9. Table
9 has three equivalence classes. The first equivalence
class constructs from d6 and d7. The cause of d6
and d7 is available in the first equivalence class, it is
that the distance between d6 and d7 is closer than
other tuples, i.e., the distance between d6 and d7 is
0 (zero). In addition, after the first equivalence class
is constructed successfully, d6 and d7 will not be con-
sidered. Currently, Table 1 only remains five tuples,
i.e., d1, d2, d3, d4, and d5. With the remaining tuples,
we can see that (d3, d4)-position and (d3, d5)-position
collect the same tuple distance and they are closest
than other remaining tuples, i.e., they have the tu-
ple distance to be 1. Moreover, (d3, d4)-position and
(d4, d5)-position are associated through d4, so, d3, d4,
and d5 are constructed to be the second equivalence
class of the released dataset. In this situation, only
d1 and d2 are not investigated. Moreover, they are
fit for only constructing an equivalence class. Thus,
the third equivalence class is constructed from two re-
maining tuples as d1 and d2. For this reason, the error
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of Table 9 is 10, i.e., ((1+1)*2)+((1+1)*3)=4+6=10.

Fig.5: An adjacency matrix of Table1.

Fig.6: A lower triangular matrix of the adjacency
matrix of Table 1.

Fig.7: A upper triangular matrix of the adjacency
matrix of Table 1.

Table 9: A distorted data version of Table 1 satis-
fies k = 2 by using the proposed data transformation
technique.

Another example of privacy preservation is based
on k-anonymity constraints in conjunction with the
adjacency matrix of distorted tuple distances. Also,
let Table 1 be the original dataset D and let Figure
3 be DGHGender. Let the value of k be 3. In this
situation, the first equivalence class of the released
dataset of Table 1 is constructed from the tuples d3,
d4, and d5 because the tuple distance of them is only
3, i.e., 2 + 1 = 3. Another equivalence class of the
dataset is constructed from the tuples d1, d2, d6, and

d7. Therefore, Table 10 is a released data version of
Table 1 such that it satisfies 3-anonymity constraints.
With this released data version of Table 1, it has the
error to be 26, i.e., ((1+1)*3)+((4+1)*4)=6+20=26.

Table 10: A distorted data version of Table 1 satis-
fies k = 2 by using the proposed data transformation
technique.

Aside from the adjacency matrix of distorted tuple
distances, the distorted data versions of D can also
be constructed from the weighted graph of correlated
distortion tuples of D directly.

Fig.8: A graphic info for demonstrating the rela-
tionship of the similar tuples for constructing the suit-
able equivalence classes of Table 1, where k = 2.

Table 11: A partitioned data version of Table 1.
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3.4.2 Privacy Preservation Based on The Weighted 
Graph of Correlated Distortion Tuples

Let G = (V,E) be a weighted graph of correlated
distortion tuples of D. Let GSUB = {G1, G2, . . . , Gq}
be the set of disjoint sub-graphs of G. Let Er =
{{vα, vβ}|vα, vβ ∈ Gr and vα 6= vβ} be the set of
edges in Gr, where 1 ≤ r ≤ q. For privacy preserva-
tion, GSUB is first satisfied the limitations as follows,

� G1 ∪G2 ∪ . . . ∪Gq = V
� G1 ∩G2 ∩ . . . ∩Gq = Ø
� |Gr| ≥ k, where 1 ≤ r ≤ q, and
� the summation of the weighted edges of

G1, G2, . . . , Gq is minimized.
Then, the tuples of D are partitioned to cor-

respond GSUB . Finally, all users’ unique quasi-
identifier values in each partition are distorted by us-
ing their ranges between the lower and upper bounds
or a less specific value that is available in the DGH
of them.

Table 12: The data version of Table 1 is after in-
serted d8 .

Fig.9: The weighted graph of correlated generaliza-
tion tuples after inserts d8.

For example, let Table 1 be the original dataset
D. Let the value of k be 2. Let Figure 4 be the

weighted graph of correlated distortion tuples of Ta-
ble 1. Therefore, an appropriate GSUB version of Fig-
ure 4 such that it is satisfied by k = 2 to be shown
in Figure 8. That is, the weighted graph of corre-
lated distortion tuples of Table 1 can be separated
to be three appropriate sub-graph versions. The first
sub-graph version includes both vertices as d6 and
d7 (the red vertices). While three vertices construct
the second sub-graph version as d3, d4, and d5 (the
green vertices). Another appropriate sub-graph ver-
sion consists of d1 and d2 (the purple vertices). Thus,
the partitioned data version of Table 1 is accorded to
the sub-graph of its weighted graph to be shown in
Table 11. After that, the unique values are available
in each quasi-identifier of every partition to be dis-
torted by their less specific values, i.e., the unique
users’ ages of each partition are distorted by their
range, and the unique users’ genders are distorted
by an appropriately less specific value of them such
that it is available in its DGH as shown in Figure 3.
Therefore, a released data version of Table 1 is Table
9.

Fig.10: The adjacency matrix of Table 12 is after
d8 to be inserted.

In addition, the examples are discussed in Sections
3. 4.1 and 3.4.2. We can see that the weighted graph
of correlated distortion tuples and the adjacency ma-
trix of Table 1 do not have any data changes. For this
reason, we can conclude that if the data of D is not
changed, only the first time has the cost for building
the weighted graph of correlated distortion tuples and
the adjacency matrix of D. Although the data of D
is changed, the cost of building the weighted graph
of correlated distortion tuples and the adjacency ma-
trix of D only has the effect of the number of tuple
changes.

For example, suppose that the new tuple d8 is in-
serted into Table 1 such that it is shown in Table
12. Thus, the weighted graph of correlated distor-
tion tuples and the adjacency matrix are shown in
Figures 9 and 10, respectively. In this example, it
is clear that when the data of D is changed when
the new data becomes available, only the related new
data are changed in the weighted graph of correlated
distortion tuples and the adjacency matrix of D.
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4. DATA UTILITY METRIC

Although D′ is generally higher security in terms
of privacy preservation than its original D. We can
see that D′ loses some data utility. For this reason,
only D′ is highly data utilities to be desired. Thus,
the data utility metric is a necessity. Since privacy
preservation based on k-anonymity constraints has
been presented, several data utility metrics are pro-
posed, e.g., Precision metric (PREC) [2], Discernibil-
ity metric (DM) [15], and Relative error [7].

4.1 Precision Metric (PREC) [2]

With the proposed models, D′ is based on data
distortions. For this reason, the penalty cost of D′

depends on the distance and the number of distorted
values. For the non-numerical quasi-identifier values,
the penalty cost of data distortion for D′ can be de-
fined by Equation 1.

fD1(di, QI,DGHqiy ) =
∑|QI|

y=1

fdis(di[qiy])

|DGHqiy |

fGEN1(D′, DGHqiy ) =

∑|D′|
i=1 fD1(di, QI,DGHqiy )

|D′| ∗ |QI|
(1)

Where,
� |QI| is the number of quasi-identifier attributes

that are available in D.
� fdis(di[qiy]) is the distance of the distorted value

that is available in qiy of di.
� |DGHqiy | is the height of the DGH for DOqiy

� |D′| is the number of tuples that are available
in D.

For the numerical quasi-identifier values, the
penalty cost of data distortion for D′ can be defined
by Equation 2.

fD2(di, QI,DGHqiy ) =
∑|QI|
y=1

fdis(di[qiy ])
fMAX(qiy)−fMIN (qiy)

fGEN2(D′, DGHqiy ) =

∑|D′|
i=1 fD2

(di, QI,DGHqiy )

|D′| ∗ |QI|
(2)

Where,
� fMAX(qiy) is the maximum value that is avail-

able in qiy of D.
� fMIN (qiy) is the minimum value that is avail-

able in qiy of D.

4.2 Discernibility Metric (DM) [15]

The DM metric is a data utility metric that can
also be used to define the penalty cost or the data
utility of D′. With the DM metric, the penalty cost
of D′ depends on the size of equivalence classes. The

larger size of equivalence classes leads to more penalty
cost DM. Therefore, the DM penalty cost of D′ can
be defined by Equation 3.

fDM (D′) =
∑|EC|

p=1
|ecp|2 (3)

Where,
� |EC| is the number of equivalence classes that

are available in D′.

4.3 Relative Error [7]

The relative error is a metric that can also define
the penalty cost of D′. With this metric, the data
utility of D′ depends on the difference in the query
results between D′ and D. The more relative error
means that D′ has less data utility. For query results
that are numerical data, their relative errors can be
defined by Equation 4.

fRE1(v, v0) =
|v − v0|

v
(4)

Where,
� v is the result that is queried from D.
� v0 is the relative result of v such that it is queried

from D′.
With query results that are not numerical data,

their relative errors can be defined by Equation 5.

fRE1(n(v), n(v0)) =
|n(v)− n(v0)|

n(v)
(5)

Where,
� n(v) is the number of values that are queried

from D.
� n(v0) is the number of the relative values of n(v)

such that they are queried from D′.

5. EXPERIMENT

In this section, the effectiveness and efficiency of
the proposed privacy preservation models are dis-
cussed by comparison with k-member [13] and Mon-
drian Multidimensional k-anonymity [14].

5.1 Experimental Setup

All experiments are proposed to evaluate the ef-
fectiveness and efficiency of the proposed privacy
preservation model, they are conducted on both In-
tel(R) Xeon(R) Gold 5218 @2.30 GHz CPUs with
64 GB memory and six 900 GB HDDs with RAID-
5. Furthermore, all implementations are built and
executed on Microsoft Windows Server 2019 in con-
junction with Microsoft Visual Studio 2019 Commu-
nity Edition and Microsoft SQL Server 2019. More-
over, they are discussed and conducted on the Adult
dataset which is available at the UCI Machine Learn-
ing Repository [16]. This dataset is constructed from
32561 user profile tuples. Each user profile tuple con-
sists of 14 attributes, i.e., Age, Workclass, Fnlwgt,



Achieving Privacy Preservation Constraints based on K-Anonymity in conjunction with Adjacency Matrix and Weighted Graphs 43

Education, Education-num, Marital-status, Occupa-
tion, Relationship, Race, Sex, Capital-gain, Capital-
loss, Hours-per-week, and Native-country. To con-
duct effective experiments, only the attributes Age,
Education, Marital-status, Occupation, Sex, Capital-
loss, and Native-country are available in the exper-
imental dataset. The attributes Age, Education,
Marital-status, Occupation, Sex, and Native-country
are set to be the quasi-identifier attributes, and an-
other attribute, Capital-loss, is set to be the sensitive
attribute. Moreover, all user profile tuples include the
values “?” and “0”, they are removed. Therefore, the
experimental dataset only includes 1428 user profile
tuples.

5.2 Experimental Results and Discussion

5.2.1      Effectiveness

In this section, the effectiveness of the proposed
privacy preservation models is evaluated by the
PREC, DM, and relative error metrics.

In the first experiment, we propose to evaluate the
effect of the given value of k that influences the data
utility of datasets. All experimental results are dis-
cussed. They are based on the PREC penalty cost.
Moreover, all tuples and all attributes are available
in the experiments, and the value of k is varied from
2 to 20.

From the experimental results shown in Figure 11,
we can see that the value of k influences the data
utility of datasets (i.e., the number and the level of
distorted values in the datasets). That is, the value
of k is when increased. The number and the level
of distorted values in the datasets also increase. Be-
cause the value of k directly influences the size of
equivalence classes and the level of distorting quasi-
identifier values. Moreover, we can see that both of
the proposed privacy preservation models are more
effective than both of the compared privacy preserva-
tion models, and we can further see that k-member
is more effective than Mondrian Multidimensional k-
anonymity. That is because the equivalence classes
of both proposed privacy preservations are built from
more similarity tuples than the equivalence classes
that are constructed by both of the compared privacy
preservation models.

In the second experiment, we propose to evaluate
the effect of the number of quasi-identifier attributes
that influence the data utility of datasets. All exper-
imental results are based on the PREC penalty cost.
Moreover, all tuples are available in the experiments.
The value of k is fixed to be 10. The number of quasi-
identifier attributes is varied from 1 to 6.

From the experimental results shown in Figure 12,
we can see that the number of quasi-identifier at-
tributes also influences the number and the level of
distorted values in the datasets. It is when the num-
ber of quasi-identifier attributes that are increased.
The number and the level of distorted values in the

datasets also increase. However, the number of quasi-
identifier attributes influences the level of distorted
values in the equivalence classes to be less than the
value of k. Also, both proposed privacy preservation
models are more effective than the compared privacy
preservation models in all experiments.

In the fourth experiment, we propose to evaluate
the effect of the value of k that influences the size
of equivalence classes in datasets. All experimental
results are based on the DM penalty cost. Moreover,
all tuples and all attributes are available in the ex-
periments. The value of k is varied from 2 to 20.

From the experimental results shown in Figure 14,
we can see that the value of k directly influences the
DM penalty cost of datasets or the size of equiva-
lence classes of datasets. The large size of equivalence
classes leads to more DM penalty cost of datasets.
Also, both proposed privacy preservation models are
more effective than the compared privacy preserva-
tion models in all experimental results.

In the third experiment, we propose to evaluate the
effect of the size of datasets that influences the data
utility of datasets. All experimental results are also
based on the PREC penalty cost. Moreover, all quasi-
identifier attributes are available in the experiments.
The value of k is fixed to be 10. The size of datasets
is varied from 200 to 1400.

From the experimental results that are shown in
Figure 13, we can see that when the size of datasets
is increased, the number and the level of distorted val-
ues in the datasets is decreased, or we can say that
when the size of datasets is increased, the data utility
of datasets is also increased. That is because when
the size of datasets is increased, the variety of values
in the datasets is also increased. Also, both proposed
privacy preservation models are more effective than
the compared privacy preservation models in all ex-
perimental results of the third experiment.

In the fifth experiment, we propose to evaluate the
effect of the number of quasi-identifier attributes that
influence the size of equivalence classes in datasets.
All experimental results are based on the DM penalty
cost. Moreover, all tuples are available in the experi-
ments. The value of k is fixed to be 10. The number
of quasi-identifier attributes is varied from 1 to 6.

From the experimental results shown in Figures
14 and 15, the number of quasi-identifier attributes
also influences the size of equivalence classes. How-
ever, they are less effective than the value of k. Also,
both proposed privacy preservation models are more
effective than the compared privacy preservation in
all experimental results.

In the sixth experiment, we propose to evaluate
the effect of the number of quasi-identifier attributes
that influence the query results that are queried by
the AND and OR query operations and the range of
query conditions. All experimental results are based
on relative errors. Moreover, the number of quasi-
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Fig.11: The effectiveness based on the parameter k in conjunction with PREC.

Fig.12: The effectiveness based on the number of quasi-identifier sttributes in conjunction with PREC.
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Fig.13: The effectiveness based on the size of datasets in conjunction with PREC.

Fig.14: The effectiveness based on the parameter k in conjunction with DM.
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Fig.15: The effectiveness based on the number of quasi-identifier attributes in conjunction with DM.

Fig.16: The effectiveness based on the AND query operation in conjunction with relative errors.
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Fig.17: The effectiveness based on the OR query in conjunction with relative errors.

Fig.18: The effectiveness based on the range of queries in conjunction with relative errors.
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Fig.19: Execution time.

identifier attributes in queried conditions is varied
from 1 to 6.

From the experimental results shown in Figures 16,
17, and 18, the number of quasi-identifier attributes is
more influential to the query results. With the AND
operation, Figure 16, we can see that the number of
condition attributes has more effect on the penalty
of query results, i.e., when the number of condition
attributes is increased, the quality of query results is
decreased. This effect of query results is the limita-
tion of the distortion options that all experimental
privacy preservation models have. When the number
of condition attributes increases, the satisfied values
for constructing the query results are more different
from the original. Contrastively, when the number
of condition attributes increases, the quality of query
results of the OR query operations and the range of
query conditions are increased (they are shown in Fig-
ures 17 and 18). This is because when the number of
condition attributes is increased, the satisfied values
of the query results from the distorted datasets and
their original lead are more similar.

5.2.2     Efficiency

In this section, the efficiency of the proposed pri-
vacy preservation models is evaluated. Moreover, all
tuples and all attributes are available in the experi-
ments. The value of k is varied from 2 to 20. From the
experimental results shown in Figure 19, we can see
that when the value of k is increased, the execution
time for choosing the suitable tuples to construct the

equivalence classes of the proposed technique and k-
member is also increased. That is because the higher
value of k leads to the larger size of the equivalence
classes in datasets. Thus, the number of iterations
for constructing the equivalence classes of datasets is
increased. However, both proposed privacy preser-
vation models are more efficient than k-member. In
addition, the value of k is 10. We can see that k-
member uses the execution time for constructing its
released datasets to be more than when k is set to
be 11 because k-member has both sub-algorithms for
considering the suitable tuples to equivalence classes,
i.e., the best tuple selection algorithm and the best
equivalence class selection algorithm. The best tu-
ple selection algorithm is the main algorithm of k-
member, while the best equivalence class selection al-
gorithm is the optional algorithm of k-member. Thus,
when the best equivalence class selection algorithm is
enabled, the execution time of the k-member is in-
creased. Contrastively, the trend of Mondrian Mul-
tidimensional k-anonymity uses the execution time
to be different from the proposed privacy preserva-
tion models and k-member, i.e., when the number
of k is increased, the execution time for constructing
the released datasets of Mondrian Multidimensional
k-anonymity is decreased. The cause of decreasing
the execution time of Mondrian Multidimensional k-
anonymity is that the search space for considering
the suitable tuples for constructing the equivalence
classes of datasets is reduced by half of the previous
process.
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6. CONCLUSION

In this work, both privacy preservation models can
transform datasets for satisfying k-anonymity con-
straints to be proposed. They are based on the
weighted graph of correlated distortion tuples and the
adjacency matrix of tuple distances. That is, every
equivalence class of datasets is constructed from the
group of the more similar tuples, i.e., the group of
tuples has the summation of distance tuples to be
minimum. Moreover, all experimental results indi-
cate that both proposed privacy preservation models
are more effective and efficient than the compared pri-
vacy preservation models. In addition, the proposed
privacy preservation models can be further applied
in l-diversity, (k, e)-anonymous, (α, k)-anonymity, t-
closeness, km-anonymity, and LKC-privacy.
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