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ABSTRACT Article information:
This article presents block-wise image encryption for the vision transformer
and its applications. Perceptual image encryption for deep learning enables
us not only to protect the visual information of plain images but to also
embed unique features controlled with a key into images and models. How-
ever, when using conventional perceptual encryption methods, the perfor-
mance of models is degraded due to the in�uence of encryption. In this
paper, we focus on block-wise encryption for the vision transformer, and
we introduce three applications: privacy-preserving image classi�cation,
access control, and the combined use of federated learning and encrypted
images. Our scheme can have the same performance as models without
any encryption, and it does not require any network modi�cation. It also
allows us to easily update the secret key. In experiments, the e�ectiveness
of the scheme is demonstrated in terms of performance degradation and
access control on the CIFAR-10 and CIFAR-100 datasets.
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1. INTRODUCTION

Deep neural networks (DNNs) have been deployed
in many applications including security critical ones
such as biometric authentication, automated driv-
ing, and medical image analysis [1, 2]. Training
successful models also requires three ingredients: a
huge amount of data, GPU accelerated computing
resources, and e�cient algorithms, and it is not a
trivial task. In fact, collecting images and labeling
them is also costly and will also consume a massive
amount of resources. Therefore, trained ML models
have great business value. Considering the expenses
necessary for the expertise, money, and time taken to
train a model, a model should be regarded as a kind
of intellectual property (IP). In addition, generally,
data contains sensitive information, and it is di�cult
to train a model while preserving privacy. In particu-
lar, data with sensitive information cannot be trans-
ferred to untrusted third-party cloud environments
(cloud GPUs and TPUs) even though they provide a
powerful computing environment [3-9]. Accordingly,
it has been challenging to train/test a DNN model
with encrypted images as one way for solving these
issues [10]. However, when using conventional percep-
tual encryption methods, the performance of models

is degraded due to the in�uence of encryption.
In this paper, we present a block-wise encryp-

tion method for achieving reliable vision transformer
(ViT) models. In the method, a model trained with
plain images is transformed with a secret key to give
unique features controlled with the key to the model,
and encrypted images are applied to the model. In
addition, three applications: privacy-preserving im-
age classi�cation, access control, and the combined
use of federated learning and encrypted images, are
presented to show the e�ectiveness of our method. In
the method, the vision transformer (ViT) [11], which
is known to have a high performance, is used to re-
duce the in�uence of block-wise encryption thanks
to its architecture. It allows us not only to obtain
the same performance as models trained with plain
images but to also update the secret key easily. In
experiments, our method is evaluated in terms of per-
formance degradation and access control in an image
classi�cation task on the CIFAR-10 and CIFAR-100
datasets.

2. RELATED WORKS

Image encryption methods for deep learning and
ViT are summarized here.
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2.1 Image Encryption for Deep Learning

Various image transformation methods with a se-
cret key, often referred to as perceptual image encryp-
tion or image cryptography, have been studied so far
for many applications. Figure 1 shows typical appli-
cations of image encryption with a key. Image en-
cryption with a key allows us not only to protect the
visual information of plain images but to also embed
unique features controlled with the key into images.
The use of visually protected images has enabled var-
ious kinds of applications. One of the origins of im-
age transformation with a key is in block-wise image
encryption schemes for encryption-then-compression
(EtC) systems [12-21]. Image encryption prior to im-
age compression is required in certain practical sce-
narios such as secure image transmission through an
untrusted channel provider. An EtC system is used
in such scenarios, although the traditional way of se-
curely transmitting images is to use a compression-
then-encryption (CtE) system. Compressible encryp-
tion methods have been applied to privacy-preserving
compression, data hiding, and image retrieval [22-
24] in cloud environments. In addition, visually pro-
tected images have been demonstrated to be effective
in privacy-preserving learning [10, 25-30], adversar-
ial defense [31-33], access control [34-36], and DNN
watermarking [33, 37-44].

In this paper, we focus on image encryption for
deep learning, called learnable encryption, under the
use of ViT. In addition, it is demonstrated to be use-
ful to privacy-preserving classification, access control,
and federated learning with encrypted images while
maintaining the high performance that ViT has.

2.2 Vision Transformer

The transformer architecture has been widely used
in natural language processing (NLP) tasks [45]. The
vision transformer (ViT) [11] has also provided excel-
lent results compared with state-of-the-art convolu-
tional networks. Following the success of ViT, several
isotropic networks (with the same depth and resolu-
tion across different layers in the network) have been
proposed such as MLP-Mixer [46], ResMLP [47], Cy-
cleMLP [48], gMLP [49], vision permutator [50], and
ConvMixer [51].

Figure 2 illustrates the architecture of ViT, where
ViT consists of two embedding processes (patch em-
bedding and position embedding) and a transformer
encoder. In ViT, an input image x ∈ Rh×w×c is seg-
mented into N patches with a size of p × p, where
h, w, and c are the height, width, and number of
channels of the image. In addition, an integer N is
given as hw/p2. After that, each patch is flattened
as xi

p = [xi
p(1), xi

p(2), . . . , xi
p(L)], where L = p2c. Fi-

nally, a sequence of embedded patches is given as

z0 = [xclass;x
1
pE;x2

pE; . . . xi
pE; . . . xN

p E] + Epos, (1)

where

Epos = ((e0
pos)

>(e1
pos)

> . . . (ei
pos)

> . . . (eN
pos)

>)>,

xclass ∈ RD, xi
p ∈ RL, eipos ∈ RD,

E ∈ RL×D, Epos ∈ R(N+1)×D.

xclass is the classification token, E is the embedding
(patch embedding) to linearly map each patch to di-
mensions D, Epos is the embedding (position embed-
ding) that gives position information to patches in
the image, e0pos is the information of the classification

token, and eipos, i = 1, . . . , N , is the position infor-
mation of each patch.

In patch embedding, patches are mapped to vec-
tors, and the position information is embedded in po-
sition embedding. In this paper, we encrypt not only
test images but also two embeddings: patch embed-
ding E and position embedding Epos, in a trained
model. The resulting sequence of vectors is fed to a
standard transformer encoder, and the output of the
transformer is provided to a multi-layer perceptron
(MLP) to get an estimation result.

3. IMAGE ENCRYPTION FOR VISION
TRANSFORMER

An encryption method with random numbers is
presented here. The method makes it possible to
avoid the performance degradation of models even
when using encrypted images.

3.1 Overview

Figure 3 shows the scenario of the presented
scheme in a privacy-preserving image classification
task, where it is assumed that the model builder is
trusted, and the service provider is untrusted. The
model builder trains a model by using plain images
and encrypts the trained model with a key K.

The encrypted model is given to the service
provider, and the key is sent to a client. The client
prepares a test image encrypted with the key and
sends it to the service provider. The encrypted test
image is applied to the encrypted model to obtain an
estimation result, and the result is sent back to the
client. Note that the provider has neither a key nor
plain images. The framework presented in this paper
enables us to achieve this scenario without any per-
formance degradation compared with the use of plain
images.

3.2 Model Encryption

As shown in Figure 3, a trained model is encrypted
by using random numbers (key). In the method,
patch embedding E and position embedding Epos in
Eq. (1) are encrypted by using random matrices, re-
spectively.
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Fig.1: Applications of perceptual image encryption.

Fig.2: Architecture of ViT [11].

3.2.1 Patch Embedding Encryption

The following transformation matrix Ea is used to
encrypt patch embedding E.

Ea =


k(1,1) k(1,2) . . . k(1,L)

k(2,1) k(2,2) . . . k(2,L)

...
... k(i,j)

...
k(L,1) k(L,2) . . . k(L,L)

 , (2)

where

Ea ∈ RL×L, det Ea 6= 0,

k(i,j) ∈ R, i, j ∈ {1, . . . , L}.

Note that the element values of Ea are randomly de-
cided, but Ea has to have an inverse matrix.

Then, by multiplying E by Ea, an encrypted patch
embedding Ê is given as

Ê = EaE. (3)

3.2.2 Position Embedding Encryption

Position embedding Epos is encrypted as below.

1). Generate a random integer vector with a length of
N as

lt = [le(1), le(2), . . . , le(i), . . . , le(N)], (4)

where

le(i) ∈ {1, 2, . . . , N},
le(i) 6= le(j) if i 6= j,

i, j ∈ {1, . . . , N}.

2). Calculate m(i,j) as

m(i,j) =

{
0 (j 6= le(i))

1 (j = le(i)).
(5)

3). Define a random matrix as

Eb =


1 0 0 . . . 0
0 m(1,1) m(1,2) . . . m(1,N)

0 m(2,1) m(2,2) . . . m(2,N)

...
...

...
. . .

...
0 m(N,1) m(N,2) . . . m(N,N)

 , (6)

where

Eb ∈ R(N+1)×(N+1).

For instance, if N = 3 and lt = [1, 3, 2], Eb is
given by

Eb =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (7)

4). Transform Epos to Êpos as

Êpos = EbEpos. (8)
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Fig.3: Scenario of proposed scheme.

3.3 Test Image Encryption

A test image x ∈ Rh×w×c is transformed into an
encrypted image x̃ ∈ Rh×w×c as below (see Figure 4).

(a) Divide x into N non-overlapped blocks with a size
of p× p such that B = {B1, . . . , BN}, where p× p
is the same size as the patch size used in a ViT
model.

(b) Generate permutated blocks B̄ by

B̄ = EbB

= {B̄1, . . . , B̄N},
(9)

where B ∈ R1×N .
(c) Flatten each block B̄i ∈ Rp×p×c into a vector x̄i

p ∈
Rp2c as

x̄i
p = [x̄i

p(1), . . . , x̄i
p(L)]. (10)

Note that the following relation is satisfied.

[xclass; x̄
1
p; . . . , x̄i

p; . . . ; x̄N
p ]

=Eb[xclass;x
1
p; . . . , xi

p; . . . ;xN
p ]

(11)

(d) Generate an encrypted vector x̃i
p by multiplying

vector x̄i
p by matrix Ea

−1 ∈ RL×L as

x̃i
p = x̄i

pEa
−1. (12)

(e) Rebuild vector x̃i
p into block B̃i in the reverse or-

der of step (c).
(f) Concatenate B̃ = {B̃1, . . . B̃N} into an encrypted

test image x̃.

Figure 5 shows an example of images encrypted with
this procedure.

When replacing E, Epos, and xi
p with Ê, Êpos, and

x̃i
p, respectively, the sequence in Eq. (1) is reduced

to

z̃0 = [xclass; , x̃
1
pÊ; . . . ; x̃i

pÊ; . . . ; x̃N
p Ê] + Êpos. (13)

Thus, by substituting Eqs. (3),(8), and (11) with Eq.
(13), we obtain:

z̃0 = [xclass; x̄
1
pEa

−1EaE; . . . ; x̄i
pEa

−1EaE; . . . ;

x̄N
p Ea

−1EaE] + EbEpos

= Eb[xclass;x
1
pE; . . . ;xi

pE; . . . ;xN
p E] + EbEpos

= Ebz0 (14)

From the equation, the influence of encryption can
be avoided except for Eb. Accordingly, the encrypted
model allows us to have the same performance as that
of the model trained with plain images, if test im-
ages are encrypted with the same key as that used
for model encryption.

3.4 Generation of Random Matrices

A random orthogonal matrix can be generated as a
random matrix Ea by using Gram–Schmidt orthonor-
malization [29,52]. The procedure for generating Ea

with a size of L× L is given as follows.
1. Generate a real matrix R with a size of L× L by

using a random number generator with a seed.
2. Calculate det(R), and proceed to step 3 if

det(R) 6= 0. Otherwise, return to step 1.
3. Compute a random orthogonal matrix Ea from R

by using Gram-Schmidt orthogonalization.
In this framework, any regular matrix can be used

as Ea for image encryption. Several conventional
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Fig.4: Procedure of block-wise encryption.

methods for privacy-preserving image classification
use permutation matrices of pixel values [53,54], in
which many elements have zero values in matrices as

Ea =

0 1 0
0 0 1
1 0 0

 . (15)

In contrast, the random orthogonal matrices gener-
ated with Gram-Schmidt orthogonalization include
no zero values as elements in general. The use of
such matrices allows us not only to more strongly
protect the visual information of plain images but to
also enhance robustness against various attacks while
maintaining the same performance as that of mod-
els trained with plain images. In addition, Ea

−1 can
easily be calculated as the transposed matrix of Ea.

3.5 Properties of Proposed Scheme

When the block size for image encryption is the
same as the patch size used in a ViT model. The
proposed method has the following properties.
• The model performs well only if test images are
transformed with the same key as that used for trans-
forming the model from Eq. (14).
• The method does not cause any performance degra-
dation in terms of the accuracy of models as in Eq.
(14).
• Model training and encryption are independent (see
Figure 3). Therefore, it is possible to easily update a
key.

4. APPLICATIONS OF ENCRYPTED VIT

Three applications of encrypted ViT models are
presented to demonstrate the usefulness of the en-
cryption scheme.

4.1 Privacy-preserving Image Classification

One of the applications is to use encrypted ViT
models for privacy-preserving image classification as
shown in Figure 3, in which visually protected test
images are sent to an untrusted provider.

A threat model includes a set of assumptions
such as attacker’s goals, knowledge, and capabili-
ties. Users without secret key K are assumed to

be the adversary. In this application, we consider
the attacker’s goal to be to restore visual informa-
tion from encrypted test images. We assume that
authorized users know key K, and the model owner
securely manages both key K and the trained model
without any encryption. In addition, the encryption
method is also assumed to be disclosed except for key
K. Thus, an adversary may perform ciphertext-only
(COA) attacks via this information to restore the per-
ceptual information from encrypted images.

Accordingly, the encryption method should satisfy
the following requirements.
1. Security: No perceptual information of plain im-

ages should be reconstructed from encrypted im-
ages unless the key is exposed.

2. Model capability: Privacy-preserving methods for
DNNs should maintain an approximate accuracy
as when using plain images.

3. Computational requirement: Privacy-preserving
DNNs should not increase the computational re-
quirement in quantity.

4. Key update: The key should easily be updated
without re-training the model.

In experiments, the effectiveness of our scheme will
be evaluated in terms of the above requirements.

4.2 Access Control with Encypted Model

The second application is to protect a model from
misuse when it has been stolen, referred to as access
control that aims to protect the functionality of DNN
models from unauthorized access. Trained models
have great business value. Considering the expenses
necessary for the expertise, money, and time taken to
train a model, trained models should be regarded as
a kind of intellectual property (IP). Accordingly, en-
crypted models are required not only to provide high
performance to authorized users but also low perfor-
mance to unauthorized users. Our scheme is effec-
tive in access control in addition to privacy-preserving
deep learning as verified in an experiment.

4.3 Federated Learning in Combination with
Encryption

It has been very popular for data owners to train
and test deep neural network (DNN) models in cloud
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Fig.5: Example of encrypted images.

environments. However, data privacy such as per-
sonal medical records may be compromised in cloud
environments, so privacy-preserving methods for deep
learning have become an urgent problem.

One of the solutions is to use federated learning
(FL) [55,56], which was proposed by Google. FL is ca-
pable of significantly preserving clients’ private data
from being exposed to adversaries. However, FL aims
to construct models over multiple participants with-
out directly sharing their raw data, so the privacy of
test (query) images is not considered.

Another approach is to encrypt a trained model,
and then encrypted test (query) images are applied
to the encrypted model shown in Figure 3. However,
this approach does not consider constructing mod-
els over multiple participants without directly shar-
ing their raw data, although the visual information
of test images can be protected.

For these reasons, the combined use of FL and en-
crypted test images is effective in privacy-preserving
image classification tasks with ViT [10] (see Figure
6). The method allows us not only to train mod-
els over multiple participants without directly shar-
ing their raw data but to also protect the privacy
of test (query) images. In addition, it can maintain
the same accuracy as that of models normally trained
with plain images.

5. EXPERIMENT AND DISCUSSION

In experiments, the effectiveness of encrypted ViT
models is verified in an image classification task.

5.1 Privacy Preservation

As the first application of encrypted ViT mod-
els, a privacy-preserving image classification task was
carried out in accordance with the framework in 4.1
where visual information on test images is protected
[53].

5.1.1 Experiment Setup

To confirm the effectiveness of the presented
scheme, experiments were carried on the CIFAR-10
dataset (with 10 classes). The dataset consists of
60,000 color images (dimension of 3×32×32), where

Fig.6: Combined use of FL and encrypted test im-
ages.

50, 000 images are for training, 10, 000 for testing,
and each class contains 6, 000 images. Images in the
dataset were resized to 3 × 224 × 224 to input them
to ViT, before applying the proposed encryption algo-
rithm, where the block size was 16× 16. We used the
PyTorch [57] implementation of ViT and fine-tuned
a ViT model with a patch size P = 16, which was
pre-trained on ImageNet-21k. The ViT model was
fine-tuned for 5000 epochs. The parameters of the
stochastic gradient descent (SGD) optimizer were a
momentum of 0.9 and a learning rate value of 0.03.

In addition, we used three conventional visual
information protection methods (Tanaka’s method
[58], the pixel-based encryption method [59], and the
GAN-based transformation method [60]) to compare
them with our method. ResNet-20 was used to val-
idate the effectiveness of the conventional method
with reference to [61]. CIFAR-10 was also used for
training networks, and the networks were trained for
200 epochs by using SGD with a weight decay of
0.0005 and a momentum of 0.9. The learning rate
was initially set to 0.1, and it was multiplied by 0.2
at 60, 120, and 160 epochs. The batch size was 128.

5.1.2 Performance of Encrypted ViT

First, we compared the proposed method with con-
ventional ones in terms of the accuracy of image clas-
sification under the use of ViT and ResNet-20. As
shown in Table 1, the performance of all conventional
methods was degraded compared with the baselines,
which were results calculated with plain images. In
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Table 1: Comparison with conventional methods in
terms of classification accuracy

Model Method Accuracy

ViT Baseline 99.03
Ours 99.03

ResNet-20 [61] Baseline 91.55
Tanaka [58] 87.02

Pixel-based [59] 86.66
GAN-based [60] 82.55

contrast, the proposed method did not degrade the
performance at all. Accordingly, our method was ver-
ified to be able to maintain the same accuracy as that
of the baselines as shown in Eq. (14).

5.1.3 Visual Protection

Figure 5 shows an example of images encrypted
with the method in 3.3, where random matrices Ea

were generated by using Gram-Schmidt orthonormal-
ization. The images had H ×W ×C = 512× 512× 3
as an image size, and the block sizes used for encryp-
tion were p = 8 and p = 16. From the figures, the
encrypted images have almost none of the visual in-
formation of the plain images.

In addition to visual protection, encrypted im-
ages have to be robust enough against various at-
tacks, which aim to restore visual information from
encrypted images. ViT has two embeddings: position
embedding and patch embedding, so not only pixel
values in every block but also the position of blocks
can be changed randomly. We already confirmed
that the encryption including block permutation is
robust against cipher-text-only attacks (COAs) in-
cluding jigsaw puzzle solver attacks [62]. In particu-
lar, the use of random matrices generated with Gram-
Schmidt orthonormalization is more robust than that
of simple permutation matrixes.

5.2 Application to Access Control

Next, we validated whether our method could pro-
tect models where the experimental conditions were
the same as those in 5.1.1 [53]. Table 2 shows the ac-
curacy of image classification when encrypted or plain
images were input to the encrypted model. The en-
crypted model performed well for test images with the
correct key, but its accuracy was not high when using
plain test images. The CIFAR-10 dataset consists of
ten classes, so 9.06 is almost the same accuracy as
that when test images are randomly classified.

Next, we confirmed the performance of images en-
crypted with a different key from that used in the
model encryption. We prepared 100 random keys,
and test images encrypted with the keys were input
to the encrypted model. From the box plot in Figure
7, the accuracy of the models was not high under the
use of the wrong keys. Accordingly, the encrypted

Table 2: Robustness against use of plain images
Test Image

Model Plain Ours
Baseline 99.03 -

Ours 9.06 99.03

Fig.7: Evaluating robustness against random key at-
tack. Boxes span from first to third quartile, referred
to as Q1 and Q3, and whiskers show maximum and
minimum values in range of [Q1−1.5(Q3−Q1), Q3+
1.5(Q3 − Q1)]. Band inside box indicates median.
Outliers are indicated as dots.

model was confirmed to be robust against a random
key attack.

5.3 Combined Use of Federated Learning and
Image Encryption

The effectiveness of encrypted ViT models was fi-
nally evaluated under the combined use of federated
learning (FL) and image encryption as shown Figure
5 [63].

5.3.1 Setup

Experiments were conducted on the CIFAR-10 and
CIFAR-100 datasets, where images were resized from
3 × 32 × 32 to 3 × 224 × 224 because we used ViT
pre-trained with ImageNet-1K as a model. For train-
ing models with FL, 10 clients were assumed, where
each client had 5, 000 training images and 1, 000
test images. Also, we used FedAVG [56] as the
method of model integration. Models were trained
using stochastic gradient descent (SGD) with an ini-
tial learning rate of 10−3, a momentum of 0.9, and a
batch size of 8. We also used the cross-entropy loss
function. In addition, models were integrated every
epoch, and the total number of epochs was set to 10.
After the tenth integration, the integrated model was
encrypted with secret keys, and every client used the
secret keys to encrypt their test images.

5.3.2    Classification Performance

We evaluated the performance of the models in
terms of classification accuracy. Table 3 shows the
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Table 3: Classification accuracy of proposed method
Integrated Model Baseline

CIFAR-10 97.7 97.8
CIFAR-100 85.1 85.1

experimental results for the CIFAR-10 and CIFAR-
100 datasets, which have 10 and 100 classes, respec-
tively. “Integrated Model” indicates the results when
the encrypted test images were applied to encrypted
integrated models, and “Baseline” represents the re-
sults when plain test images were applied to the plain
models normally trained with plain images.

From the results, the combined use of FL and en-
crypted images was verified to have the same accu-
racy as that of models normally trained with plain
images. Accordingly, the method in Figure 6 allows
us not only to train models over multiple participants
without directly sharing raw data but to also protect
the visual information of test images. In addition, our
method enables us to easily update the key without
re-training models, so each user can use an indepen-
dent key to protect test images and their model.

6. CONCLUSIONS

In this paper, we presented a block-wise encryption
method for ViT and its applications. The presented
framework presented with the encryption method was
verified to provide the same performance as that with-
out any encryption since the embedding structure of
ViT has a high similarity to block-wise encryption. In
addition, three applications of the method: privacy-
preserving image classification, access control, and
the combined use of federated learning and the en-
cryption were conducted to show the effectiveness
of the method for reliable DNNs. In experiments,
the method was demonstrated to outperform state-of-
the-art methods with conventional methods for image
encryption in terms of classification accuracy, and it
was also verified to be effective in terms of the relia-
bility of DNN models.
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