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ABSTRACT Article information:
As the automotive industry moves toward autonomous driving and ADAS
(Advanced Driver Assistance Systems), Model-Based Design (MBD) is a
practical design methodology. It can be used to develop rapid prototyping
by using MATLAB and Simulink. The MBD method still has limitations
for handling complex models. This paper uses the Control Data Flow
Graph (CDFG), an intermediate representation for analyzing complex al-
gorithms, so that suitable optimizations for image processing applications
can be implemented on an FPGA. The experimental results show that the
proposed CDFG method improved both the area and speed of the edge
detection case study compared with the MathWorks Vision HDL toolbox.
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1. INTRODUCTION

Autonomous driving and ADAS are vital tech-
nologies for next-generation vehicles. These sig-
ni�cantly requires data from many sensors, such
as radar, LiDAR, and vision sensors. Even high-
performance microcontrollers cannot handle the mas-
sive amounts of data in real-time. For these require-
ments, high-performance parallel processors such as
FPGAs (Field Programmable Gate Arrays) have the
potential to support this automotive trend.

Recently, FPGA applications have become more
complicated due to their higher degree of system inte-
gration. Traditional FPGA development methods by
hardware description language (HDL such as VHDL
or Verilog) take time to develop and validate, and
they also need exceptional skilled FPGA engineers.
Recently, high-level synthesis (HLS) tools o�er more
straightforward and faster development solutions for
the increasing needs of complex systems.

In literature [1], [2], and [3], the authors proposed
alternative approaches by using a Model-Based De-
sign (MBD) that is a practical design methodology
and able to develop rapid prototyping by using MAT-
LAB/Simulink. In literature [4] and [5], the authors
proposed optimization, such as �xed-point optimiza-

tion, to reduce the area consumption for a lower-cost
FPGA board with limited resources. Many applica-
tions employed only a few conditions without nested
loops [1], [2], [3], [4], and [5]. So, this literature can-
not be a good candidate for complex models. On the
other hand, a new approach used a control data �ow
graph (CDFG), which is an intermediate represen-
tation, to analyze complex algorithms and perform
speed optimization at high-level abstractions such as
C programming [6]. Recently, commercial tools are
focusing on algorithm designs at high-level synthesis
methodology for complex FPGA applications. There
are limitations in that the MathWorks HDL coder
cannot stream a loop if there are two or more nested
loops at the same hierarchy level within another loop
[7]. Some automated optimization tools allow de-
signers to add pragmas and optimization directives
to perform pipelining [8]. However, there is room to
make the circuit even faster.

In this paper, we propose an alternative method
to solve this issue. Model-Based Design (MBD) is
one of the alternative methods that have the poten-
tial to solve complex models. We aim to investigate
this method and �nd practical processes to develop
FPGA applications by this method using high-level
synthesis tools, such as the HDL coder provided by
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MathWorks. Due to the excellent characteristics of
MBD, we can simulate and prove our design concept
in advance, so that developers can focus on algorithm
design instead of FPGA implementation. For com-
plex model synthesis, such as image processing, we
need to investigate and apply CDFG to achieve the
optimized goals.

2. MODEL-BASED DESIGN

In the automotive industry, MBD is widely used to
develop embedded software as shown in Figure 1. Af-
ter the algorithm has been designed according to the
specification requirements, the corresponding behav-
ioral model is created and validated in the first stage.
The implementation model can then be created and
validated. Next, the quality code is generated the
actual hardware.

Fig.1: Model-Based Design approach in the V
model.

Finally, a system test or back-to-back test is per-
formed. As the design can be validated earlier, devel-
opment time can be shortened, and there is no need
to wait for hardware development.

2.1 MBD Speed Optimizations

The critical path is the longest delay path that de-
termines the speed of the design. When the target
speed is not satisfied, speed optimizations can im-
prove the timing of the design on the target FPGA
by optimizing the critical path. The critical path esti-
mation is obtained from the static timing analysis us-
ing timing data from target-specific timing databases.
Model-level speed optimizations have two significant
methods: pipelining and loop unrolling.

Loop unrolling parallels multiple instances of the
loop body to accelerate the loop operations. A loop
in function foo top of Figure 2(a) uses one adder and
one register, shown in Figure 2(b), taking four cy-
cles. When the loop unrolling used four adders and
one register, shown in Figure 2(c), the latency became
one cycle. The faster design needs more parallel re-
sources. Therefore, the trade-off between speed and
area must be done according to the options illustrated
in Figure 2(d). There are three options: option 1 uses
one adder takes four cycles; option 2 uses two adders

takes two cycles; and option 3 uses four adders takes
one cycle.

(a)

(b)

(c)

(d)

Fig.2: Loop unrolling [9].

(a)

(b)

(c)

Fig.3: Function pipelining [9].
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Fig.4: Feedback algorithm limits pipelining [9].

Registers are inserted at the input, output, or
ports of certain function blocks to perform pipelin-
ing. The critical path is then determined by the most
prolonged delay among two registers, resulting in a
higher throughput for the design. Figure 3 (a) shows
the foo top function, which contains four functions se-
quentially operated, resulting in a latency of 10 cycles
and a throughput of 10 cycles, as shown in Figure 3
(b). After pipelining, the throughput was optimized
to four cycles, as shown in Figure 3 (c).

2.2 Problem Statements

Although pipelining and loop unrolling can effec-
tively optimize the design, they remain obstacles to
the actual design. Algorithms with nested loops or
nested if-else conditions are prone to complicate crit-
ical path estimation. Algorithms with feedback out-
puts to inputs may limit full pipelining and loop un-
rolling. As shown in Figure 4, the comparison oper-
ation (a != b) must wait the subtraction (b −= a)
of the previous iteration. Therefore, such problems
state that a more straightforward analysis method is
needed to determine data dependence and suggest the
optimal solution.

3. OPTIMIZATION PROCEDURE

Improving system performance by using the MBD
approach can be done by improving algorithms, re-
ducing some operations, parallelizing, unrolling loops,
and pipelining. In this paper, we propose using
CDFG as a medium to analyze the system to help
select the proper optimization method for each sub-
system.

3.1 CDFG Analysis Procedure

CDFGs are intermediate representations that com-
bine control flows and data flow graphs (DFGs) in the
same graph. A CDFG and a DFG are explicitly de-
fined in [10, 11] as definitions 1 and 2. A CDFG con-
tains one DFG or more and a control flow. A CDFG
may contain one DFG or groups of DFGs without
control flow.

Definition 1: A DFG-unit is a triple Ω = (V, E,
O), where V is a set of operation nodes, E is a set
of edges between operation nodes, and O is a set of
operations defined for each node. The edge set E cor-
responds with the transfer of data from one operation
to another.
Definition 2: A CDFG-unit is a 4-tuple Γ = (X, Y,
Z, E), where X is a control node, Y is a conditional
node, Z is the set of nodes in Γ except for X and Y,
where Z is said a child block of the Γ’s control node.
E is a set of edges between nodes.

Figure 5 shows the CDFGs of the loop (repeated
from C=0 to C<Max) and the if-else conditions. A
CDFG has at least one DFG, which is the data flow
via additions, multipliers, bit-wise operations, or any
arithmetic and logic operations. The DFG contains
no conditions such as loops or if-else statements. A
CDFG containing inner CDFGs and DFGs is called
a hierarchical CDFG.

The hierarchical CDFG raises the observability of
data dependence among DFGs within the CDFG or
among CDFGs, so that scheduling and pipelining op-
timizations can be done. Therefore, this paper pro-
posed a procedure to analyze a CDFG, which is shown
in Figure 6. The data dependence among the CD-
FGs at the same hierarchy level suggests performing
either pipelining or parallel processing. Similarly, the
data dependence among the operations in the same
DFG suggests performing either pipelining or loop
unrolling that allows parallelism. Among DFGs in
an if-else CDFG, if there is a DFG in another branch
containing the same operation, resource sharing can
be performed to minimize the area. For example,
DFG1 and DFG2 of the if-else CDFG in Figure 5 can
share resources because they never occur simultane-
ously. For each DFG, algorithm optimizations and
partial optimizations can be further considered.

Fig.5: CDFGs of the loop and the if-else statement.

To illustrate the data dependence of the CDFG
analysis procedure in Figure 6, a part of an algo-
rithm can be decomposed into the data dependence
of CDFGs shown in Figure 7. Given algorithms de-
scribed in C/C++ are decomposed into CDFGs. The
arrows denote the data flow from one CDFG to an-
other. If two CDFGs have no dependence data, no
arrow is drawn. CDFG L0 1 and CDFG L0 2 are the
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Fig.6: CDFG analysis procedure.

Fig.7: Data dependence of CDFGs.

outermost CDFGs, namely parent CDFGs. CDFG
L0 1 has data dependence with CDFG L0 2 because
the results of CDFG L0 1 are used in CDFG L1 1,
which is an inner CDFG of CDFG L0 2, namely a
child CDFG. In this case, pipelining may be applied
to increase speed. CDFG L1 1 and CDFG L1 2 are
independent, so that both CDFGs can parallel. The
pipelining may be applied between CDFG L1 1 to
CDFG L1 3, CDFG L1 1 to CDFG L1 3, and CDFG
L1 3 to CDFG L1 4 because of data dependence on
each other.

CDFGs can easily highlight nested loops, nested
if-else, and feedback loops inhibiting optimizations.
Paths containing feedback loops are unbreakable
paths. When there is feedback data from the outputs
to any operations, pipelining cannot be performed.
The algorithm should be re-designed to avoid such
feedback loops. In the nested loop case, we suggest
adjusting the algorithm to flatten the loop. In the
nested if-else case, we suggest using the switch-case
statement instead.

3.2 Algorithm Optimization

Some algorithms in DFGs may be too complicated
to implement in a low-budget hardware platform. For
example, Gradient and Threshold in (1) combine the
differences between the horizontal (Gx) and vertical
(Gy) axis differences to have a single gradient mag-
nitude (G). The square root function is not suitable

for FPGA. Therefore, G is approximated by using the
absolute function for the FPGA implementation, as
shown in (2).

|G| =
√
Gx2 + Gy2 (1)

|G| = |Gx|+ |Gy| (2)

3.3 Partial Optimization

Some operations in DFGs may be reduced if they
are multiplied by zero. For example, a Sobel filter
uses two 3x3 kernels: the first kernel is used to deter-
mine the horizontal difference (Gx), and the second
is used to determine the vertical difference (Gy), as
shown in Figure 8. The multiplications can be re-
duced from 18 to 12 because six operations multiplied
by zero. In addition, some multiplications that mul-
tiply the same coefficient can share a multiplier. For
example, -1×P11 + -2×P12+ -1×P13 gives the same
result as -1×(P11+P13) + -2×P12 with reduced mul-
tipliers.

Fig.8: Sobel filter using two 3×3 kernels (Gx/Gy).

3.4 Pipeline balancing

Pipelining is a standard method to accelerate data-
dependence operations inside a CDFG or among CD-
FGs. Pipelining is performed by adding registers
between CDFGs. CDFGs containing nested if-else,
nested loop, or feedback prevent pipeline. As an ex-
ample, Figure 9 shows three data-dependence CDFGs
with the total processing time of 10.214 ns (3.703
ns+1.048 ns+5.463 ns), obtaining a throughput of
1/10.214 or 97.9 mega-pixels per second (MPPS).
Adding registers between CDFGs to perform pipelin-
ing can increase throughput to 1/5.463 or 183.05
MMPS. The throughput should align with the worst-
case stage delay, i.e., the maximum delay, for the cor-
rect answer.

On the other hand, if we decompose the CDFGs
into DFGs, we see data-dependence DFGs. Only the
last part is two DFGs under a sub-CDFG with an
if-else condition, as shown in Figure 10. We balance
the pipeline by adding registers between DFGs that
give almost the same delay at each stage, as shown
in Figure 10. Finally, we obtain the throughput of
1/3.500 or 285.71 MPPS.
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Fig.9: Pipelining.

Fig.10: Pipeline balancing.

Note that since image processing applications are
structurally diverse in their algorithms, some struc-
tures, such as nested if-else, nested loop, or feedback,
cannot be pipelined. CDFG analysis should be done
to visualize this structure prior to pipelining.

4. EXPERIMENTAL RESULTS

To demonstrate the usefulness of the proposed
CDFG analysis, an edge detection was selected as
a case study. CDFGs can express the data depen-
dence among RGB, Sobel, and Gradient and Thresh-
old approximation process blocks. The CDFG analy-
sis method can suggest a more suitable optimization
method. Here, the experimental results are presented
in two studies. The first study is a case study of
edge detection that illustrates how to apply partial
optimizations and a CDFG-based analysis to min-
imize processing time and resources. The second
study compared an edge-detection model using the
proposed method and the Vision HDL toolbox, which
is a toolbox designed for image processing using an
architecture optimized for HDL provided by MAT-
LAB/Simulink.

4.1 Case Study: Edge Detection

After CDFG analysis, the CDFG of the functions
is decomposed into DFGs and sub-CDFGs so that
we can consider the suitable optimization for each
DFG. Figure 11 shows the edge detection algorithm
in Simulink model. Figure 11 (a) is a grayscale sub-
system model using an unsigned integer. Figure 11(b)
is a Sobel filter sub-system with the partial optimiza-
tion described Section 3.3. Figure 11 (c) is Gradient

and Threshold approximation with the algorithm op-
timization described Section 3.2. Figure 11(d) shows
images from the original input image, grayscale, gra-
dient after Sobel filter, and edge detection. If there
is data dependence among DFGs, pipeline balancing
will be applied.

Table 1: Synthesized Results of Sobel filter.
Results Original model Optimized model

Multipliers 18 0
Adders/Subtractors 16 10
Propagation delay (ns) 3.796 1.092

Table 2: Synthesized Results of Pipelining.

Once the HDL codes of the models in Figure 11
were generated by the HDL coder, the Vivado was
used to synthesize the circuit for the target device
(AMD’s xa7z010clg225-1). Table 1 shows the syn-
thesized results of the Sobel filter. The partial opti-
mization explained in Section 3.3 can minimize the
resources to a zero multiplier and fewer adders. In
addition, operations multiplied by -2, 2, 1, and -1 are
further reduced. The shift-right operation is used in-
stead of a multiplied-by-2 operation. The multiplied-
by-1 operation uses an adder. Consequently, the cir-
cuit also improved speed from 3.796 ns to 1.092 ns.

Table 2 shows the processing time improvement of
the pipeline balancing of Figure 10 compared to the
pipelining of Figure 9. The results of the three pro-
cessing DFGs have the output image of each DFG,
as illustrated in Figure 11. The processing time of
three DFGs are as follows: 1) Converting a color im-
age to a grayscale image or a grayscale image (RGB
to Grayscale) 3.703 ns, 2) Sobel filter 1.048 ns and 3)
Gradient & Threshold 5.463 ns. These delays formed
the critical path of 10.214 ns, as shown in Figure 9.

Pipeline optimization reduced overall critical path
execution time from 10.214 ns to 5.761 ns, which is
5.463 ns of processing time from the third DFG (Gra-
dient & Threshold) plus the 0.2980 ns delay of added
registers for pipelining. The improvement in process-
ing time achieved by using pipeline optimization. The
insertion of pipeline-stage registers between DFGs re-
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(a) Grayscale sub-system in Simulink model.

(b) Sobel filter sub-system in Simulink model (x-axis and y-axis). (c) Gradient and Threshold approximation in Simulink model.

(d) Images of Original, Grayscale, Gradient after Sobel filter and Edge detection.

Fig.11: Pipeline balancing.

(a) Vision HDL Library model.

(b) Implementation I.

(c) Input Imagge. (d) Output Image: Vision HDL. (e) Output Image: Implementation I.

Fig.12: Edge Detection applications.
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(a) Implementation I with register buffering.

(b) Implementation II with RAM buffering.

Fig.13: Edge Detection applications using register buffering and RAM buffering.

sults in a reduction in the critical path processing
time. Note that the static timing analysis tool men-
tioned in Section 2 determines the critical path from
the maximum delay of the data transfer between any
two registers, i.e., the data transfer at the register
transfer level (RTL).

4.2 Comparison with the Vision HDL Toolbox

This section reports the comparative results of
edge detection implementations between the pro-
posed optimization method and the Vision HDL tool-
box. In the Vision HDL toolbox, each multiplier has
two pipeline stages on each input and two on each
output. The adder is a pipelined tree structure. HDL
code generation uses symmetric, unity, or zero-value
coefficients to reduce the number of multipliers [12].
However, pipeline balancing is not considered.

Figure 12 shows the implementations of edge de-
tection algorithms. Figure 12(a) is the implementa-
tion model using the Vision HDL library, and Figure
12(b) is the proposed implementation model. From
the input image of Figure 12(c), the output images of
both implementations are almost the same, as shown
in Figures 12(d) and (e).

Table 3: Resource usage results.
Resources Vision Imp. I Imp. II

HDL (Register) (RAM)
Toolbox

Multipliers 2 0 0
Adders/Subtractors 39 13 29
Registers 413 1615 44
Total 1-Bit Registers 1792 12920 316
RAMs 4 0 4
Multiplexers 126 13 53
I/O Bits 23 30 30

Table 4: Resource utilization on Zynq Z-7010
FPGA.

Vision
Imp. I

Imp.
Resources Available HDL II

Toolbox
(Register)

(RAM)
Slice LUTs 17600 715 417 426
LUT as Logic 17600 695 183 426
LUT as

6000 20 234 0
Memory
Slice Registers 35200 1480 489 238
Register as Flip

35200 1480 489 238
Flop
Block RAM

120 4 0 4
(RAMB18)
DSPs 80 2 0 0
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Table 5: Critical Path Estimation.

The resource usage results are shown in Table 3.
The first column shows the resources in the number
of multipliers, adders/subtractors, registers, total 1-
bit registers, RAMs, multiplexers, and I/O bits. The
second column shows the results of the Vision HDL
library model. The third column shows the results of
the proposed implementation using registers, namely
Implementation I. The last column shows the results
of the proposed implementation using RAMs, namely
Implementation II.

Similarly, Table 4 shows the resource utiliza-
tion on an AMD Xilinx Zynq Z-7010 FPGA.
Adders/Subtractors and multiplexers were imple-
mented by LUTs. Registers were implemented by
flip-flops. RAMs were implemented by block RAMs.
Multipliers and consecutive adders were implemented
by DSP blocks, also known as Multiply And Accumu-
late (MAC) blocks.

We can see that the proposed Implementation I
and Implementation II used no multiplier, whereas
the Vision HDL library implementation used two
multipliers. Adders/subtractors are three times re-
duced in the proposed Implementation I, and ten
adders/subtractors decreased in the proposed Imple-
mentation II. Multiplexers drastically decreased in
both proposed implementations compared to the Vi-
sion HDL library implementation.

The proposed Implementation I, shown in Figure
13 (a), uses many registers to store data instead of
RAMs. Alternatively, we can choose RAMs as in
the proposed Implementation II, as shown in Figure
13(b). RAMs affect a lower speed, whereas registers
affect a larger area.

Table 5 shows the critical path estimation results.
The first column shows the number of components in
the critical path. The second column shows the path

propagation delays, and the third shows the delay of
each component in the critical path. The last col-
umn is the component name, i.e., block path. The
critical path estimation of the Vision HDL library
implementation is the top path of Table 5. The edge
detector block consumed 0.2980 ns, plus the dilation
block consumed 10.8050 ns, for 11.1030 ns. The pro-
posed Implementation I consumed 6.883 ns, and the
proposed Implementation II consumed 10.475 ns.

Obviously, the proposed implementation I achieved
the fastest circuit. Since FPGAs have a limited num-
ber of registers, a trade-off between speed and area
should be considered.

5. CONCLUSIONS

In this paper, a method for MBD optimization us-
ing CDFG for image processing has been presented.
The CDFG analysis procedure raised the observabil-
ity of data dependencies among DFGs within the
CDFG so that suitable optimizations could be ob-
tained. For each DFG, partial optimization tech-
niques such as algorithm optimization and operation
reduction can minimize resource usage and increase
speed. CDFG was also used to analyze the process-
ing time of each process to segment each process into
small DFGs to average the processing time of each
DFG group equally (balancing process time) to im-
prove the critical path when inserting a register be-
tween each group of DFGs. The pipeline balancing
resulted in better throughput than pipeline optimiza-
tion among the process blocks.

In this paper, the examples are not diverse enough
to find ways to improve the efficiency of digital sys-
tems. The example is also not complex enough. In
future work, more samples and more complex systems
will be investigated.
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