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ABSTRACT Article information:
Visual Simultaneous Localization and Mapping (visual SLAM or vSLAM)
enables robots to navigate and perform complex tasks in an unfamiliar
environment. Most visual SLAM techniques can operate e�ectively under
a static environment where objects are stationary. However, in practical
applications, the environment often consists of moving objects and is dy-
namic. Visual SLAM methods designed for the static environment do not
perform well in the dynamic one. In this paper, we propose an additional
process to enhance the performance of visual SLAM for a dynamic envi-
ronment. Our proposed visual SLAM system for dynamic circumstances,
based on ORB-SLAM2, combines the capabilities of dynamic object de-
tection and background inpainting to reduce the e�ect of dynamic objects.
The system can detect moving objects using both semantic segmentation
and LK optical �ow with the epipolar constraint method, and the local-
ization accuracy can be improved in dynamic scenarios. Having a speci�c
scene map allows inpainting the obscured background from such dynamic
objects utilizing static information that occurs at previous views. Even-
tually, a semantic octomap is built, which could be applied for navigation
and high-level tasks. The experiment was carried out on the TUM RGB-D
dataset and real-world environment and implemented on Robot Operating
System (ROS). The experimental results show that the Absolute Trajec-
tory Error (ATE) reduce up to 98.03% compared with standard visual
SLAM baselines. It can fully demonstrate that the proposed object detec-
tion process can detect movable objects and reduce the impact of dynamic
objects in visual SLAM.

Keywords: Visual SLAM,

Dynamic Environment, Seman-

tic Segmentation, Optical Flow,

Octomap

Article history:

Received: March 15, 2023

Revised: May 1, 2023

Accepted: August 3, 2023

Published: September 2, 2023

(Online)

DOI: 10.37936/ecti-cit.2023173.251998

1. INTRODUCTION

Simultaneous Localization and Mapping (SLAM)
is used to localize an autonomous mobile robot in
a GPS-denied environment or unknown scenario.
SLAM constructs a consistent map of the surrounding
environment through collected data from various sen-
sors [1]. The type of information used in the SLAM
computation process can be divided into two tech-
niques. First, Laser SLAM [2], which obtains environ-
ment information from a lidar sensor. Second, visual
SLAM [3] that occupies vision-based sensors, e.g.,
RGB camera. Visual SLAM has been expanded in
the recent development of SLAM technology because
of its cost-e�cient and rich information for complex

navigation tasks. For example, the 3D mapping pro-
cess requires direct depth information, which can sim-
ply be obtained from an RGB-D camera accompanied
by a visual SLAM task [4]. However, the conventional
visual SLAM approaches, such as PTAM [5], ORB-
SLAM [6], and ORB-SLAM2 [7] that have been used
a lot in visual SLAM �eld have achieved promising
performance only in static circumstances which are
rarely found in practical applications. The issue is
still active in research as it is essential for real-world
applications.

Aiming at the issue of the dynamic environment,
deep learning-based approaches are utilized to iden-
tify dynamic objects by several researchers [8-10] to
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Fig.1: The system framework of our proposed algorithm.

mitigate the uncertainty environment information. In
practice, there is still ambiguity in some categories of
objects between dynamic and static objects, which
deteriorates the identification performance. There-
fore, the deep learning-based method should be ex-
panded by merging the geometrical information [11-
13] to understand the surrounding map update within
a dynamic environment.

Thus, in this paper, we propose a developed vi-
sual SLAM framework to cope with the problem
of dynamic environment. The system is based on
the ORB-SLAM2 [7] algorithm and implemented on
Robot Operating System (ROS) [14]. We combine
semantic segmentation with the Lucas-Kanade (LK)
optical flow method [15] and epipolar constraint [16]
to detect dynamic objects and occlude the detected
area from the mapping information. Finally, the sys-
tem generates a semantic octomap to apply for high-
level tasks. The main contributions of our work are
summarized as follows:

• We propose a dynamic visual SLAM based on
an RGB-D sensor that combines an ICNet [17]
network and LK optical flow with epipolar con-
straint to handle dynamic objects on pose esti-
mation, along with a background inpainting ap-
proach and generating an octomap.

• We present the strategies of judgment and
culling for potentially dynamic feature points to
increase accurate dynamic detection.

• We evaluate the performance of our proposed
method on public RGB-D TUM datasets and
real-world scenarios and achieve better localiza-
tion performance in high dynamic environment
compared to ORB-SLAM2.

The remaining parts of the paper are organized as
follows: Section 2 discusses the related works. Then,
Section 3 presents the proposed method’s description.
Section 4 explains the experimental results on public
datasets. Finally, a brief conclusion is summarized in
Section 5.

2. RELATED WORKS

The type of SLAM frameworks can classify accord-
ing to the data acquisition method into two signifi-

cant groups: laser SLAM [2] and visual SLAM [3].
Laser SLAM uses lidar as the sensor to acquire envi-
ronmental information for the algorithm. For exam-
ple, Google’s Cartographer [18] can perform real-time
SLAM with good loop closure results.

Visual SLAM refers to the SLAM technique that
utilizes the camera, either monocular, stereo, or
RGB-D camera, to create a map [19]. In the past,
many visual SLAM algorithms that can achieve well
in static circumstances during the experiment, such
as PTAM [5], ORB-SLAM [6], and LSD-SLAM [20]
were invented. ORB-SLAM2 [7] algorithm, mainly,
has been used commonly in visual SLAM research,
which provides a complete SLAM system with the
ability of map reuse, loop closing, and relocalization
to improve the efficiency of the SLAM process.

On the other hand, the dynamic visual SLAM is
the extension of the SLAM algorithm to cope with
non-stationary properties in an environment in which
dynamic objects are examined and regarded as out-
liers. Then, the identified dynamic features will be
discarded, and only the remaining static feature will
be employed to calculate the camera position and
attitude for map updating and localization process.
Recently, methods of combining deep learning with
visual SLAM for dynamic object detection have been
used for dynamic SLAM. The detection of dynamic
objects in traditional mathematical models through
geometric information is introduced in Section 2.1,
and the dynamic SLAM systems based on deep learn-
ing are demonstrated in Section 2.2.

2.1 Dynamic Visual SLAM Based on Tradi-
tional Models

Several techniques based on geometric methods
have been applied to manipulate dynamic scenes in
visual SLAM [21]. The studies [22], and [23] ap-
plied multibody Structure-from-Motion (SfM) to deal
with dynamic environment. Zou et al. [24] pro-
posed Collaborative Visual SLAM or CoSLAM in dy-
namic environment with multiple cameras. Li et al.
[25] applied the static weighting method that calcu-
lates the likelihood of depth edge points being part of
the static environment, which is integrated into the
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IAICP method. Sun et al. [26] integrated motion re-
moval into the front end of RGB-D SLAM that acts
as a pre-processing stage to filter out the moving or
dynamic objects; however, this method is limited to
scenarios with many moving objects. The LK opti-
cal flow [15] approach, which is the apparent motion
of brightness patterns in the image, is also used to
distinguish and eliminate the dynamic feature point.
For example, Cheng et al. [27] proposed monocular
visual SLAM, which uses the LK optical flow tech-
nique and polar geometric constraints to filter out
feature points of dynamic targets. Wang et al. [28]
combined fundamental matrix constraint and depth
clustering algorithm for RGB-D SLAM to eliminate
the moving feature point.

2.2 Dynamic Visual SLAM Based on Deep
Learning

Recently, with the advent of the deep learning net-
work and the development of semantic segmentation
to identify and classify objects with superior perfor-
mance compared to traditional methods. Therefore,
some visual SLAM systems are integrated with deep
learning networks to improve the efficiency of SLAM
systems. DynaSLAM [11] proposed the visual SLAM
combined with the Mask R-CNN [29] and multiple-
view geometry to filter out dynamic objects. How-
ever, the multiple-view geometry method takes much
time to process. Long et al. [30] used DynaSLAM as
a lightweight pose estimation and proposed PSPNet
[31] network to obtain a pixel-wise semantic segmen-
tation and combined it with the optimal error com-
pensation homologous matrix to improve the system
robustness. Besides, the system applied a reverse
ant colony strategy to decrease the time consump-
tion in the multiple-view geometry process. Yu et
al. [12] present the SLAM named DS-SLAM, which
applied the Segnet [32] network to provide semantic
information and combine it with the epipolar con-
straint algorithm to assume that the point features
are static or dynamic. In addition, the system could
build a dense semantic octo-tree map for high-level
tasks. Ran et al. [13] also used the Segnet network
to accomplish semantic segmentation and integrate
it with a Bayesian update method. Cheng et al. [33]
proposed DM-SLAM, which combines instance seg-
mentation with optical flow information and presents
strategies to detect dynamic feature points for RGB-
D, stereo, and monocular cameras to handle wrong
data associations during the SLAM algorithm.

Currently, the RGB-D camera technology can pro-
vide both depth (D) and color (RGB) data as the
output simultaneously. Therefore, the visual SLAM
can utilize depth information with deep learning to
handle dynamic scenarios. Cui et al. [34] presented
SDF-SLAM or Semantic Depth Filter SLAM, which
utilizes the semantic information with depth filter to
identify whether a 3D map point is dynamic or static.

PLD-SLAM is proposed by Zhang et al. [35], which
combines deep learning with the K-Mean clustering
of depth information in the segmentation area. Fur-
thermore, the system utilizes point and line features
to calculate camera pose in the SLAM process.

We tackle the camera pose localization issue in dy-
namic circumstances. Our proposed method com-
bines semantic segmentation network and epipolar
constraint [16] to address the dynamic environment
problem. Compared with other methods, our pro-
posed method embeds the judgment and culling step
for classifying the feature point as it is a dynamic
point or a static point for the objects that cannot
move by themselves, but there is a potentially mov-
able property. The overall process was expected to
yield improvement in localization accuracy.

3. SYSTEM DESCRIPTION

In this section, the details regarding our proposed
visual SLAM will be described thoroughly. The sec-
tion is divided into five parts. First, the overview
of our system is introduced. Second, the details of
the semantic segmentation algorithm used in the sys-
tem are explained. The third part describes the LK
optical flow [15] and epipolar constraint [16] for the
geometric method that we adopt to distinguish the
motion feature in the image. Next, Dynamic points
will be culled and discarded in the outlier rejection
state. Finally, the background inpainting process and
octomap are presented.

3.1 Overview

ORB-SLAM2 [7], the famous featured-based
SLAM algorithm, has an effective performance con-
strained in assuming static situations from indoor to
outdoor environment. From the promising perfor-
mance of CNN (Convolutional Neural Network), we
have adopted CNN capabilities and the geometrical
method in ORB-SLAM2 for practical applications in
which the surrounding environment consist of mobile
entities and are dynamic.

Fig. 1 shows the overview of our proposed system,
which aims to improve the detection of dynamic ob-
jects and create a semantic octomap based on ORB-
SLAM2 [7]. The system obtains an RGB-D frame
from an RGB-D camera, which provides color image
and depth image as the input. First, The RGB chan-
nels are processed by semantic segmentation through
ICNet [17] for preliminary discrimination of the mov-
ing and static contents. The system applies the ICNet
[17] with real-time processing to reduce the semantic
segmentation delay. Then, we perform the Moving
Consistent Check based on the optical flow [15] and
epipolar constraint [16] method to label new dynamic
objects that were not movable in the semantic seg-
mentation stage. The potentially dynamic and static
features will be further considered and classified with
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judgment strategies in the Remove Outliers step to
conclude whether candidate features were dynamic
removal points. After the detection process, asso-
ciated ORB feature points of moving objects have
been rejected from the map database. These ORB
feature points of stationary content will be applied
in the Tracking and Mapping stage of ORB-SLAM2
[7]. Finally, the obscured background will be applied
over the region of the detected object; then the Back-
ground Inpainting will generate inpainted images for
the Octomap process.

3.2 Semantic Segmentation Network

In order to detect moving objects in dynamic con-
ditions, we adopt a pixel-level semantic segmentation
of the images. This system utilizes ICNet [17] to ob-
tain semantic segmentation labels. The ICNet was
trained on the PASCAL VOC dataset [36]. We de-
termine the potentially dynamic types of objects into
three categories. The first is an active dynamic ob-
ject, which can move intrinsically. In addition to or-
ganisms such as humans and animals, the movable
vehicle is also defined as an active dynamic object
type. Then, objects that have a chance to move but
cannot move by themselves will be considered as pas-
sive dynamic object. Finally, static objects or back-
grounds will not be identified by the segmentation
and are defined as static object. Fig. 2 shows the
semantic segmentation results that correctly identify
the person and chair as a movable object.

Fig.2: Visualizing semantic segmentation result.

Some deep learning-based algorithms are used in
several visual SLAM systems. Each model is used
to implement for the segmentation of dynamic con-
tent. For example, DS-SLAM [12] adopts the Seg-
net [32] network, and PSPNet-SLAM [30] applies the
PSPNet [31] network. One of the challenges of visual
SLAM is real-time processing; a promising architec-
ture for fast semantic segmentation is Image Cascade
Network or ICNet [17], which is proposed by Zhao et
al. This model is a CNN-based semantic segmenta-
tion that can provide results at a low computational
cost or achieve real-time semantic segmentation. IC-
Net takes cascade image inputs (i.e., low-, medium-
and high-resolution images), adopts a cascade feature
fusion unit, and is trained with cascade label guid-
ance. The ICNet network architecture is shown in
Fig. 3.

Zhao et al. [17] experimented with mIoU perfor-

Fig.3: ICNet network architecture.

mance and inference time on the test set of Cityscapes
between ICNet and other methods, which can be pre-
sented in Table 1. ICNet method yields mIoU 69.5%
less than mIoU 81.2% of PSPNet method and more
than mIoU 51.0% of Segnet. Although the mIoU per-
formance of the ICNet is worse than PSPNet method,
it can provide real-time processing with the fastest
frame rate at 30.3 fps.

Table 1: mIoU and inference time comparison be-
tween ICNet and other methods.

Method mIoU (%) Time (ms) Frame (fps)
Segnet 51.0 60 167

PSPNet 81.2 1288 0.78
ICNet 69.5 33 30.3

3.3 Moving Consistency Check

Active dynamic object obtained from Section 3.2
will be defined as moving objects and discarded in
Section 3.4. However, the passive dynamic object is
generally immovable unless it is moved by external
influence. In the first step, the feature points of a
passive dynamic object from the semantic segmenta-
tion stage will be considered with the pyramid LK
optical flow [15] method to interpret the mobility.
First, we calculate the optical flow pyramid to ob-
tain the matched feature points from a previous frame
to the current one. The matched feature points are
investigated to determine whether the matched pair
is too close to the border of the figure or the pixel
difference of the 3×3 image block at the center of
the matched pair is too large; the matched feature
points will be rejected. Then, the epipolar constraint
[16] will be proposed. The fundamental matrix [37]
is found using RANSAC [38]. The next step is to
compute the epipolar line in the present frame utiliz-
ing the fundamental matrix. Eventually, The system
estimates whether the displacement from a matched
feature points to its consistent epipolar line is below
the threshold. The matched point that the distance
is more than the threshold will be discarded.

The epipolar constraint is used to classify the po-
tentially dynamic feature points. The matrix F ,
known as the fundamental matrix (3 × 3 matrix),
which was computed from the TUM dataset, is help-
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ful in computing the epipolar lines associated with the
feature points in the last frame and the correspond-
ing points in the current frame, which can create a
compact mathematical model expressed as follows:

qTi l = qTi F pi = 0 (1)

where pi and qi represent the matched feature points
in the previous frame and the current frame, respec-
tively. l is the epipolar line.

The epipolar constraint model is shown in Fig.
4, op − xpypzp and oq − xqyqzq indicate the coordi-
nate system in the previous frame and the current
frame, respectively. The epipolar line l in the current
frame corresponds to feature points pi in the refer-
ence frame. In the present image I2, the projection
of p has to be placed on the epipolar line l, which is
described in Eq. 1. Normally, if the point is static,
the displacement between qi and epipolar line l will
be close to 0.

Fig.4: Epipolar constraint diagram (qi is the desired
point that corresponds to pi in the previous frame, and
qi is the actual measured point. So, D is the distance
between the actual point and the epipolar line).

Let the homogeneous feature point be P =
[xi, yi, 1]T , the projected feature points into the pre-
vious image pi = [xp

i , y
p
i ]T , and its corresponding fea-

ture point qi = [xq
i , y

q
i ]T , where x, y are the coordi-

nate value in the image frame. Each feature point lies
on the epipolar line l, which is denoted as [A,B,C]T ,
and can assume the line equation of the epipolar line
is Ax + By + C = 0. Therefore, the distance be-
tween the epipolar line and its matching point from
an image is calculated as:

D =
|Axq

i + Byqi + C|√
A2 + B2

=
|qTi Fpi|√
A2 + B2

(2)

where D represents the distance and | · | is the vector
norm. Usually, supposing the homogeneous feature
point is static. In that case, the projected feature
point into the current frame will lie on the epipolar
line (l) according to the epipolar geometry model [16].
The distance is calculated from the feature point to
the epipolar line to determine whether the distance is
greater than the preset threshold value. The thresh-
old value is 1.0, according to Zhang et al. [35]. If

Fig.5: The flowchart of judgment and culling for
potentially dynamic feature points.

this value is adjusted to a higher value, the slight
to moderate movement of the object will not be de-
tected. Thus, SLAM efficiency may decrease in low
dynamic environment. Conversely, a lower threshold
value will cause a lot of slight motion detections in the
SLAM process. Feature point was eliminated exces-
sively making positioning inaccurate. If the distance
surpasses the preset distance value, the potentially
dynamic feature point will be considered a dynamic
feature point and eliminated from the whole point
before accessing the tracking process.

3.4 Remove Outliers

After separating the three categories from Section
3.2 semantic segmentation: active dynamic object,
passive dynamic object, and static object, all of the
feature points in the image will be judged by com-
bining these semantic categories with the geometric
method from Section 3.3. This step is to classify the
feature point, whether it is the dynamic point, which
has been removed, or a static point to be used in
the SLAM process. Fig. 5 shows the flowchart of
judgment and culling for potentially dynamic feature
points. The RGB image is processed in the semantic
segmentation step to classify categories from prede-
fined classes. There are two main categories of object
contour area: Static object and Dynamic object. The
feature points that fall in a static object contour area
will be arranged in static points. The dynamic ob-
ject type can be divided into an active dynamic ob-
ject and a passive dynamic object. If a feature point
belongs to an active dynamic object, it is considered
an actual dynamic feature point. In another way, if
the object is identified as a passive dynamic object,
all feature points falling in this contour area will be
geometrically examined by the Moving Consistency
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Table 2: Result of metrics Absolute Trajectory Error (ATE) [m] in meters.

Sequences
ORB-SLAM2 Proposed Method Improvement (%)

RMSE Mean Median SD RMSE Mean Median SD RMSE Mean Median SD
fr3 s static 0.0093 0.0083 0.0075 0.0042 0.0071 0.0062 0.0034 0.0034 23.66 25.30 26.67 19.05
fr3 s xyz 0.0173 0.0152 0.0136 0.0082 0.0101 0.0087 0.0078 0.0049 41.62 42.76 42.65 40.24
fr3 s half 0.0525 0.0484 0.0163 0.0204 0.0168 0.0141 0.0117 0.0112 68.00 70.87 74.43 45.10

fr3 w static 0.1598 0.1347 0.1177 0.0860 0.0098 0.0074 0.0060 0.0064 93.87 94.51 94.90 92.56
fr3 w xyz 0.7247 0.5954 0.5181 0.4131 0.0143 0.0125 0.0115 0.0069 98.03 97.90 97.78 98.33
fr3 w half 0.4120 0.3640 0.3326 0.1930 0.0272 0.0264 0.0228 0.0155 93.40 92.75 93.14 91.97
fr3 w rpy 0.8005 0.7021 0.6385 0.3845 0.1469 0.1270 0.1025 0.0738 81.65 81.91 83.95 80.81

Table 3: Result of metrics Translational Drift (RPE) [m/s] in meters/second.

Sequences
ORB-SLAM2 Proposed Method Improvement (%)

RMSE Mean Median SD RMSE Mean Median SD RMSE Mean Median SD
fr3 s static 0.0103 0.0092 0.0084 0.0046 0.0081 0.0071 0.0065 0.0037 21.36 22.83 22.62 19.57
fr3 s xyz 0.0146 0.0126 0.0113 0.0073 0.0128 0.0111 0.0098 0.0063 12.33 11.90 13.27 13.70
fr3 s half 0.0379 0.0277 0.0199 0.0258 0.0231 0.0173 0.0136 0.0154 39.05 37.55 31.66 40.31

fr3 w static 0.1024 0.0464 0.0167 0.0913 0.0135 0.0105 0.0087 0.0085 86.82 77.37 47.90 90.69
fr3 w xyz 0.3945 0.2929 0.2141 0.2644 0.0196 0.0169 0.0149 0.0099 95.03 94.23 93.04 96.26
fr3 w half 0.3556 0.1970 0.0503 0.2960 0.0299 0.0254 0.0228 0.0157 91.59 87.11 54.67 94.70
fr3 w rpy 0.3916 0.2732 0.1353 0.2806 0.0721 0.0502 0.0340 0.0518 81.59 81.63 74.87 81.54

Table 4: Result of metrics Rotational Drift (RPE) [deg/s] in degree/second.

Sequences
ORB-SLAM2 Proposed Method Improvement (%)

RMSE Mean Median SD RMSE Mean Median SD RMSE Mean Median SD
fr3 s static 0.2974 0.2705 0.0045 0.1236 0.2749 0.2463 0.0040 0.1222 7.57 8.95 11.11 1.13
fr3 s xyz 0.4746 0.4101 0.0064 0.2388 0.4961 0.4169 0.0061 0.2687 -4.53 -1.66 4.69 -12.52
fr3 s half 0.9164 0.7679 0.0112 0.5000 0.6651 0.5632 0.0085 0.3537 27.42 26.66 24.11 29.26

fr3 w static 1.7723 0.8584 0.0063 1.5505 0.3149 0.2656 0.0040 0.1692 82.23 69.06 36.51 89.09
fr3 w xyz 7.5135 5.6312 0.0694 4.9741 0.5869 0.4624 0.0067 0.3614 92.19 91.79 90.35 92.73
fr3 w half 7.4235 4.1707 0.0213 6.1412 0.8207 0.7088 0.0108 0.4138 88.94 83.01 49.30 93.26
fr3 w rpy 7.6974 5.4260 0.0450 5.4593 1.4539 1.0284 0.0129 1.0276 81.11 81.05 71.33 81.18

Table 5: Comparison results of Absolute Trajectory Error (ATE) [m] for our system against other algorithms.
Sequences DS-SLAM Dyna-SLAM DM-SLAM Proposed Method
fr3 s static 0.0065 0.0064 0.0063 0.0071
fr3 s xyz - 0.0130 - 0.0101
fr3 s half 0.0148 0.0191 0.0178 0.0168
fr3 w static 0.0081 0.0080 0.0079 0.0098
fr3 w xyz 0.0247 0.0158 0.0148 0.0143
fr3 w half 0.0303 0.0274 0.0274 0.0272
fr3 w rpy 0.4442 0.0402 0.0328 0.1469

Check step. The feature points that are located in
the segmented object determined to be a moving ob-
ject, will be discarded. Otherwise, the object and its
feature points are considered to be static.

3.5 Background Inpainting and Octomap

For every disposed dynamic feature point, we per-
form inpainting the occluded background with the es-
timated static content. Since we know the position of
the previous and current frame, we project and syn-
thesize a set of previous keyframes into the removed
dynamic content of the current frame. Then, the local
point cloud will be kept and transformed from these
inpainted frames to the real-world coordinate, creat-
ing a global Octomap [39]. Octomap implements a
3D occupancy grid mapping approach, allowing data
structures and mapping algorithms. The approach is

based on the structure of the octree [39]. Octomap is
flexible, concise, updatable, and employed easily for
navigation.

4. EXPERIMENT AND RESULT

In this section, the proposed visual SLAM system
has been evaluated using the TUM RGB-D dataset
[40] to investigate its performance. The experiment
are performed on a PC with IntelCorei7-8665U CPU,
Mesa intel(r) UHD Graphics 620 (WHL GT2), and
RAM 8 GB. The system environment was the Ubuntu
20.04 operating system, and the experiment was the
ROS implementation.
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Fig.6: Plot of ATE[m] (trajectory) for high dynamic environment: fr3 w static, fr3 w xyz, fr3 w half. (a-c)
the experiments executed with ORB-SLAM2; (d-f) the experiments executed with our proposed method.

Fig.7: Plot of ATE[m] (trajectory) for high dynamic environment: fr3 s static, fr3 s xyz, fr3 s half. (a-c)
the experiments executed with ORB-SLAM2; (d-f) the experiments executed with our proposed method.
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4.1 TUM RGB-D Dataset

The TUM RGB-D dataset [40] contains numer-
ous dynamic scene sequences recorded by Microsoft
Kinect sensors at 30 fps with 640 × 480 resolution.
The dataset consists of two scenarios aiming to char-
acterize the dynamic situation. The first scenario
captures an event of two people sitting along with
talking and making a gesture named “s” for sitting.
So, we define this sequence as low dynamic environ-
ment. The second scenario is determined as high dy-
namic environment, where two people walk around
and sit down at the desk in walking sequence. This
scenario is denoted as the letter “w”. For both types
of sequences, sitting and walking, there are four cam-
era motion types: static, the camera is kept static
manually; xyz, camera movement along the xyz axis;
half sphere (half), the camera moves according to
the path of a 1-meter diameter half sphere; and rpy,
the camera rotates over rpy axis (roll, pitch and yaw
axes).

4.2 Evaluation of TUM RGB-D Dataset

We utilize the metric of Absolute Trajectory Er-
ror (ATE) [40] for quantitative measuring the perfor-
mance of visual SLAM systems. Relative Pose Error
(RPE) [40] is well-suited for measuring the drift of a
visual odometry system, which measures in the trans-
lational and rotational drift terms. We experimented
by comparing our proposed method with RGB-D
ORB-SLAM2. In Table 2- 4, the first column is the
name of the sequence name, and the initials fr3 w half
represent the freiburg3 walking half sphere sequence.
For statistical value comparison, we present the value
of Root Mean Squared Error (RMSE), Mean Error,
Median Error, and Standard Deviation error (SD).
Root Mean Squared Error (RMSE) describes the dif-
ference between the actual value and the estimated
value; Mean Error and Median Error show the av-
erage and medium levels of estimated error, respec-
tively; Standard Deviation error (SD) represents a
measure of how dispersed the estimated error is con-
cerning the mean error. From the mentioned mea-
sured values, the robustness and stability of the visual
SLAM system can be referenced from RMSE and SD
values. The performance improvement of statistical
values has been computed in comparison to ORB-
SLAM2 given in the last column. The improvement
formula is computed by:

I =

(
1− P

T

)
× 100 (3)

where P represents the value of our proposed method,
T denotes the value of the original ORB-SLAM2, and
I represents the improvement percentage.

As the experimental results of seven test sequences
shown in Table 2-4, our proposed method can signifi-
cantly decrease the Absolute Trajectory Error (ATE)

and Relative Pose Error (RPE) of both translational
and rotational errors in image sequences, exception-
ally high dynamic environment. The improvement is
enhanced in the high dynamic environment, the im-
proved ATE value of RMSE and SD were 98.03% and
98.33%, respectively. Likewise, the Relative Pose Er-
ror (RPE) is reduced regarding the ATE enhance-
ment. The results show that our proposed method
has the capability of performance enhancement com-
pared with ORB-SLAM2 in high dynamic scenarios.
However, for the low dynamic environment, the re-
sults of three sequences were slightly improved from
the results obtained by ORB-SLAM2 and became
worse in fr3 s xyz or freiburg3 sitting xyz sequence
for Rotational Drift (RPE). The primary reason may
be the effect of the low dynamic movements typically
occurring intermittently in the sequences. Also, mov-
ing objects that always appear motionless in some
frames have high performance degradation impact. In
addition, the tracked feature points locate at a greater
distance than those associated with dynamic objects.
Therefore, the original ORB-SLAM2 can manipulate
well and achieve better accuracy. According to the
results, the proposed system’s performance deterio-
ration may occur in stationary and low dynamic en-
vironment.

As shown in Table 5, The comparison re-
sults of Absolute Trajectory Error (ATE) indi-
cate that our approach surpassed other methods
in freiburg3 sitting xyz, freiburg3 walking xyz, and
freiburg3 walking half sphere sequence. The results
indicate that our proposed approach can enhance
the robustness and consistency of the SLAM process
in high dynamic environment. Regarding other se-
quences, our method’s performance is almost close to
the method list in every sequences. However, the er-
ror of the freiburg3 walking rpy is that much worse
than Dyna-SLAM and DM-SLAM because the angu-
lar velocity of camera movement in this sequence is
relatively fast. So, the tracking process has disap-
peared, and the estimated localization has a signifi-
cant error with the ground truth for a while. In ad-
dition, the processing performance of a desktop com-
puter is also necessary. Processing in the semantic
segmentation step takes a lot of time consumption
and processing resources. As a result, the tracking
process lost at certain intervals. If the experiment
was carried out on a higher-performance PC, the ca-
pability of calculating and processing would be im-
proved. The experimental results are explicitly en-
hanced in the freiburg3 walking rpy sequence.

Fig. 6 and 7 display the motion trajectory or ATE
graph of ORB-SLAM2 and our proposed method
compared to the ground truth trajectory, along with
showing the difference with the estimated trajectory.
Fig. 6 shows the ATE curve graph for high dynamic
environment. The generated trajectory is similar to
the ground truth path, that is, the accuracy enhance-
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ment in the proposed method because of disposing of
the influence in dynamic scenes. Fig. 7 shows the
ATE curve graph for low dynamic environment. It
can be seen that the original ORB-SLAM2 perform
well in these cases. The error is not reduced compared
to the high dynamic environment.

5. CONCLUSIONS

In this paper, a proposed visual SLAM perfor-
mance enhancement technique for the dynamic en-
vironment is developed. This system is based on
ORB-SLAM2 combined with the capabilities of dy-
namic object detection, which is an additional front-
end stage to ORB-SLAM2 using semantic segmenta-
tion, optical flow method, and epipolar constraint for
filtering out and reducing the effect of dynamic ob-
jects. In addition, we apply the judgment and culling
for potentially dynamic feature points to increase the
precision of dynamic object detection. Then, a static
map allows inpainting the removed dynamic back-
ground. Finally, the synthetic frames from the in-
painting stage will be generated to a semantic oc-
tomap. The experiments were carried out on the
TUM RGB-D dataset and a real-world environment
based on Robot Operating System (ROS). The re-
sult shows that the proposed object detection process
can accurately detect movable objects and remove
the feature point from the map database. The ex-
perimental results show that the Absolute Trajectory
Error (ATE) is reduced up to 98.03% compared with
ORB-SLAM2. It can be concluded entirely that the
proposed object detection process can detect movable
objects and improve visual SLAM performance in a
dynamic environment.
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