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ABSTRACT Article information:
Asynchronous Finite Impulse Response Optimizer (AFIRO) is a meta-
heuristic algorithm that has been developed as a population-based solution
with an asynchronous update mechanism. AFIRO is inspired by the Ulti-
mate Unbiased Finite Impulse Response �lter framework. AFIRO works
with a group of agents where each agent performs the iteration update
asynchronously. In the original paper, AFIRO was compared with the Par-
ticle Swarm Optimisation algorithm, Genetic Algorithm, and Grey Wolf
Optimizer. Although AFIRO shows a better performance, the comparison
seems unfair since the iteration strategy of AFIRO is di�erent from those
compared algorithms. Hence, this article further investigates the potential
of AFIRO against three existent metaheuristic algorithms with the same
iteration strategy, namely Asynchronous PSO (A-PSO), Asynchronous
Gravitational Search Algorithm (A-GSA), and Asynchronous Simulated
Kalman Filter (A-SKF). The CEC2014 test suite was applied to evaluate
the performance, where the results revealed that AFIRO leads 18 out of 30
functions. The Holm post hoc showed that AFIRO performs signi�cantly
better than A-SKF and A-GSA while having the same performance as A-
PSO. Moreover, the Friedman test disclosed that AFIRO has the highest
ranking than A-PSO, A-SKF, and A-GSA. Therefore, it can be concluded
that AFIRO performs well in the same iteration strategy category.
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1. INTRODUCTION

The iteration strategy is important for population-
based metaheuristic algorithms. It speci�es the se-
quence of search steps for agents, considering each
other in updating a solution. The iteration strat-
egy can be classi�ed into synchronous and asyn-
chronous updates [1]�[3]. The synchronous update
is commonly implemented in most population-based
algorithms such as the Honey Badger Algorithm [4],
Golden Eagle Optimizer [5], Arithmetic Optimisa-
tion Algorithm [6], Carnivorous Plant Algorithm [7],
and Black Widow Optimisation Algorithm [8]. Pseu-
docode 1 shows a general procedure of population-
based metaheuristic algorithms. To note, the itera-
tion strategy distinguishes steps 2 and 3.

Pseudocode 1
1 : Randomly initialize possible solutions
2 : Evaluate the current solution
3 : Generate the next possible solution
4 : While not stopping conditions do

Repeat steps no.2 and no.3
End the algorithm

5 : Return the best-found solution

In a synchronous update, both steps are executed
as a group (population) where step 2 needs to be com-
pleted by the entire members �rst before step 3 can be
performed. All agents consider the performance of all
members before improving (updating) the solution.
As an advantage, the agents from a synchronous up-
date are good in exploitation [9] in which the agents
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are dragged to the same point of reference. However,
in this condition, the agents are inferior in the explo-
ration.

In contrast, for an asynchronous update, both
steps 2 and 3 are carried out as individual tasks with-
out considering the synchronicity with other agents.
Unlike a synchronous update, the agents in an asyn-
chronous update improve the solution independently.
The agent determines the point of reference immedi-
ately after completing its fitness evaluation. As an
advantage, the agents from an asynchronous update
are good in the exploration.

Asynchronous Particle Swarm Optimisation (A-
PSO) algorithm [10]–[18], Asynchronous Gravita-
tional Search Algorithm (A-GSA) [9], [19], [20], Asyn-
chronous Simulated Kalman Filter (A-SKF) [21], [22],
and asynchronous Genetic Algorithm [23] are among
metaheuristic algorithms that had been successfully
modified from the original iteration strategy (syn-
chronous update) to asynchronous update.

The Particle Swarm Optimisation (PSO) algo-
rithm’s search strategy is inspired by the social be-
haviour perceived in nature, such as a flock of birds
seeking food. A swarm of particles (agents) searches
for the optimal solution by updating its velocity and
position. In PSO, the solution is represented by the
particle’s position. In the original PSO (synchronous
PSO), the best value (gBest) is updated after the fit-
ness of all particles is evaluated. Then, the particles’
velocity and position are updated. Thus, the parti-
cles have complete information on the swarm’s fitness
before updating the gBest. This condition allows for
a better choice of gbest that influences a faster con-
vergence and stronger exploitation for PSO [12], [15].

However, a faster convergence contributes to pre-
mature convergence, which is to be avoided in a meta-
heuristic algorithm. Therefore, the A-PSO algorithm
was proposed in [16] as another option for the orig-
inal PSO. In A-PSO, a particle updates its gBest
right after the fitness evaluation step and immedi-
ately updates its velocity and position, one after an-
other. Thus, gbest is updated with incomplete infor-
mation about the swarm’s fitness. In one iteration,
gbest is allowed to be updated more than once, thus
encouraging the exploration of particles. As studied
by Ab. Aziz and Ibrahim in [10], an asynchronous
update of PSO is a more practical strategy for swarm
robotics search problems that allow robots to move
continuously with information available at that mo-
ment. The asynchronous update is also ideal for a
parallel implementation of PSO which improves the
robot processing capabilities [10], [24].

On a different note, the search for an optimal so-
lution in Gravitational Search Algorithm (GSA) is
based on the law of gravity and the interaction of
mass in the universe. The particles (agents) are rep-
resented as objects and the performance of these ob-
jects is assessed through their masses. The heaviest

mass in the search space is presumed as an optimal
solution [25]. In a metaheuristic algorithm, the search
space refers to the area of searching near-optimal so-
lutions that represent the range of possible solutions.
Similar to PSO, GSA was originally developed as
a synchronous algorithm. In synchronous GSA (S-
GSA), the velocity and position of the entire popula-
tion are only updated after the performance of every
agent is assessed [19].

In 2013, Ab. Aziz et al. [20] introduced an asyn-
chronous iteration strategy for GSA as a mechanism
to avoid premature convergence. In A-GSA, the ve-
locity and position of the agent are updated immedi-
ately after the assessment of its performance with-
out waiting for all agents to be assessed. Hence,
the search depends on the information on the best
and worst agents in the current and previous itera-
tion. The information of the previous iteration is ob-
tained from the agents that have yet to be updated.
The lack of synchronous information on the best and
worst agents in searching encourages exploration abil-
ity [19].

The Simulated Kalman filter (SKF) was originally
developed as a synchronous update, as both PSO
and GSA. SKF starts with a random initialization
of agents to generate an initial solution within the
search space. The fitness of each agent is then eval-
uated synchronously. Next, the best agent for the
group is determined and assigned as Xbest(t). The
best solution found so far (Xtrue) is updated if a
better solution is found. Next, all agents execute the
Kalman filter procedure: predict, measure, and es-
timate, together. The steps are repeated until the
maximum number of iterations is reached.

Subsequently, A-SKF [21] was introduced as an-
other variant of SKF. In A-SKF, the fitness of an
agent is compared to Xtrue immediately after the
fitness evaluation. Xtrue is updated if a better so-
lution is found. Shortly after, an agent performs the
Kalman filter procedure. Unlike the original SKF,
Xbest(t) is not involved in A-SKF. The same steps
are repeated for all agents, one after another.

The selection of an iteration strategy for a
population-based metaheuristic algorithm influences
the overall efficiency of the algorithm. The asyn-
chronous update iteration strategy has shown good
performance in the Genetic Algorithm (GA) [23],
PSO algorithm [16], and SKF algorithm [21]. The
success of the asynchronous update has motivated the
development of another metaheuristic optimisation
algorithm with asynchronous updates iteration strat-
egy, named Asynchronous Finite Impulse Response
Optimizer (AFIRO) [26].

AFIRO is inspired by the estimation procedure in
the Ultimate Iterative Unbiased Finite Impulse Re-
sponse (UFIR) filter. The search strategy inspired by
the UFIR filter concept has been investigated earlier
as a single solution-based metaheuristic algorithm.
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Fig.1: A Diagram of AFIRO.

The algorithm, recognized as Single-agent Finite Im-
pulse Response Optimizer (SAFIRO), is as detailed
in [27]–[30]. Unlike SAFIRO, AFIRO works with a
group of agents to find an optimal or near-optimal
solution in solving numerical single-objective optimi-
sation problems. The transformation process from an
estimator to an optimiser can be further read in [27].

A good outcome of AFIRO in [26] provides a strong
motivation to conduct this study to compare its per-
formance with three metaheuristic algorithms with
the same iteration strategy: A-PSO, A-GSA, and A-
SKF. In the original paper, AFIRO was compared
to PSO, GA, and Grey Wolf Optimizer (GWO). All
of the compared algorithms have a synchronous it-
eration strategy. The comparison seems unfair as
AFIRO has a different iteration strategy.

Therefore, this article further compares AFIRO
with metaheuristic algorithms that have the same it-
eration strategy: A-PSO, A-GSA, and A-SKF. The
performance was tested by using the IEEE Congress
on Evolutionary Computation (CEC) 2014 test suite
[31]. The experimental results revealed that the pro-
posed AFIRO can significantly outperform A-GSA
and A-SKF while having an equivalent performance
with A-PSO. The Friedman test showed that AFIRO
is at the highest rank, followed by A-PSO, A-SKF,
and A-GSA.

The remainder of this paper is divided as follows:
section 2 explains the details of AFIRO, followed by
the experimental setup in section 3. Then, section 4
presents the results and discussion, followed by the
conclusion in section 5.

2. MATERIALS AND METHODS

2.1 Asynchronous Finite Impulse Response
Optimizer (AFIRO)

UFIR filter is one of the popular estimators that is
frequently used in estimation problems due to its sim-
ple form of mathematical modelling and strong struc-
ture, in which it is more robust and stable compared
to other estimators [32]–[36]. As aforementioned, the
UFIR filter framework is used as the inspirational
source of the search strategy in AFIRO. AFIRO is
developed as a population-based metaheuristic al-
gorithm that has an asynchronous update iteration
strategy.

A set of agents iteratively find a solution asyn-
chronously by using a standard UFIR filter proce-
dure: measurement and estimation. The initializa-
tion, measurement and estimation of the solution, fit-
ness evaluation, and update X best so far are four
phases in AFIRO. Fig.1 illustrates how the UFIR
filter procedures are adopted in AFIRO.

Every agent in AFIRO serves as an individual
UFIR filter that needs an N number of measure-
ments, to perform the estimation in each iteration, t.
The search for a solution is performed by P agents.
For each sequence, in each iteration, a new measure-
ment, Yi(t), is simulated by the agent.

The measurement is improved during the estima-
tion of the solution, Xi(t). Each agent performs
the initial estimation and iterative estimation dur-
ing the estimation phase. The estimation of solu-
tion for ith agent, Xi(t), at iteration t is defined as
Xi(t) = {x1i (t), x2i (t), . . . , xdi (t), . . . , xDi (t)}, where xdi
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indicates the estimated solution of the ith agent in
the dth dimension, and D represents the maximum
number of dimension.

2.2 Procedure of AFIRO

Pseudocode 2 describes the procedures of AFIRO.
Line 01 is the initialization phase; lines 04 to 15
are for the measurement and estimation; line 16
is a fitness evaluation; meanwhile, line 17 updates
X best so far.

AFIRO commences the optimisation process at
line 1, where all agents synchronously perform the
initialization phase. The iteration strategy of AFIRO
begins at line 03 which is conducted according to the
asynchronous update mechanism. Here, the asyn-
chronous update mechanism is related to the sequence
of execution by agents for the measurement, Yi(t),
and estimation phase, Xi(t), fitness evaluation phase,
and X best so far update.

In each iteration, the agent executes the mea-
surement and estimation, fitness evaluation, and
X best so far update one after another, individu-
ally. This asynchronous sequence of agents is re-
peated until all agents complete the procedures.

As shown in Pseudocode 2, initially, the first agent
executes the measurement and estimation (lines 04
- 15). Then, the agent immediately assesses its
fitness (line 16). Subsequently, the agent updates
X best so far (line 17) if the fitness of the estimated
solution, Xi(t) itself is better than the fitness of the
current X best so far.

Next, the second agent executes the same proce-
dures as the first agent. The procedure from lines 04
- 17 is repeated until all agents complete the task.
In each sequence, the agent updates X best so far
if a better solution is found. Since AFIRO applied
an asynchronous update mechanism, X best so far
is probably updated more than once in one iteration.
Lines 03 to 20 of the procedures are repeated until
the halting condition, which is the maximum func-
tion evaluation, maxFES is met.

Finally,X best so far is assigned as the optimal
solution to the specified optimisation problem. De-
tails of each phase of AFIRO are elaborated in the
next sub-sections.

Pseudocode 2 Procedures of AFIRO
Algorithm: AFIRO for a minimization problem.
Requirement: horizon length, N and coefficient value, β.
01: Initialization phase
02: While not maximum iteration do
03: for agent=1: P
04: generate a random value for each

dimension of a new measurement
05: if the dimension has a random value ≤ 0.5
06: assign a new measurement as

Equation 2
07: else
08: a new measurement using Equation

3
09: end

10: at sub-iteration, k = 1 and k = 2
11: generate a random initial estimation
12: for k = 3 : N
13: an iterative estimation using Equation 4
14: end
15: Xi(t) = X̄i(k)
16: Evaluate the fitness of agents
17: Update X best so far
18: agent+1
19: end agent
20: t←− t+ 1
21: end while
22: Return X best so far

2.2.1 Initialization Phase

Similar to the UFIR filter, AFIRO requires N re-
cent measurements to start the optimisation process.
All AFIRO’s agents conduct the initialization syn-
chronously during this phase. Therefore, N initial
measurements, Yi(t − 3), Yi(t − 2), Yi(t − 1), and
Yi(t) are randomly produced by each AFIRO’s agent
using Equation (1).

Yi(t) = (U [Xmin, Xmax])

for t = 0, . . . , N − 1
(1)

The subscript, (i), refers to the agent’s number.
The Xmin and Xmax indicate the lower limit and up-
per limit of the search space, respectively, which de-
pend on the given optimisation problem. Random
values are used to explore the search space intensively
to find a solution.

The best fitness value is determined by comparing
the fitness of initial measurements for all ith agents.
For the minimization problem, the initial measure-
ment that has the lowest fitness value is selected as
the initial X best so far. In contrast, for a maxi-
mization problem, the initial measurement that has
the highest fitness value is selected as the initial
X best so far. Besides the initial X best so far,
maxFES is also defined during the initialization
phase.

2.2.2 Measurement and Estimation Phase

After the initial X best so far is obtained from
the initialization phase, the agent of AFIRO executes
the measurement and estimation of the solution. Dis-
similar to the UFIR filter that uses a sensor to get
the measurement value, AFIRO produces the mea-
surement using a random mutation of X best so far
with a local neighbourhood method.

The agent of AFIRO consists of several dimen-
sions. A uniformly distributed random number be-
tween [0,1] is assigned to each dimension. The dimen-
sion signifies the difficulty of the problem. The larger
the dimension value, the more difficult the problem
to be solved.

A random mutation of X best so far is applied in
AFIRO to promote the exploration activity. Mean-
while, a shrinking local neighbourhood method is ap-
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plied to promote exploitation activity. To note, the
mutation process is not applied to all dimensions of
measurement value in AFIRO.

Dimensions with random values less than 0.5 are
not selected for the mutation process. Thus, the mea-
surement value for these dimensions holds the value
of X best so far, as shown in Equation (2). Sub-
script, (i), represents the agent whereas d indicates
the number of dimensions.

Y di (t) = X best so fard (2)

On the other hand, dimensions with random val-
ues greater than 0.5 undergo the mutation process.
The value of 0.5 is selected to give an equal chance
for a dimension to mutate. The mutation process in
AFIRO is handled within the shrinking local neigh-
bourhood around X best so far. Hence, the mea-
surement value for dimensions that performed the
mutation is added with the X best so far value, as
shown in Equation (3).

Y di (t) = X best so fard + rand(U [−δ, δ]) (3)

The equation to compute the radius of the local
neighbourhood, δ, is shown in Equation (4). A coef-
ficient value, β is used to control the reduction speed
of the neighbourhood’s size. AFIRO uses β = 10
for a moderate transition from the exploration to the
exploitation phase, as shown in Figure 6 of [27].

δ = e−β×
t
T × Xmax −Xmin

2
(4)

After a new measurement, Yi(t), is obtained,
AFIRO’s agent calculates an estimation of a solution,
Xi(t). AFIRO’s agent requires N recent measure-
ments to estimate the solution. The agent estimates
the solution in a finite length according to the value
of N . Each iteration, t in AFIRO consists of sub-
iteration, k, as illustrated in Figure 2.

The number of k must be equal to the value of
N . The estimation stage divides into two parts: the
initial estimation and the iterative estimation. The
former is used to randomly generate the initial esti-
mation of the solution, X̄i(k = 2), whereas the latter
is to improve the estimated solution iteratively, start-
ing from k = 3 to k = N .

Fig.2: A graphical representation of the estimation
operation in AFIRO.

In AFIRO, the first two points in sub-iteration, k,
are used to generate the initial estimation, X̄i(k = 2)
randomly within the [lower limit, upper limit] of the
search space, as shown in Pseudocode 3. The random
element which is uniformly distributed within (0,1) is
applied for the stochastic aspect of AFIRO.

Pseudocode 3 Procedures of initial estimation,
X̄i(k = 2), in AFIRO
01: if Yi(t–N + 1) < Yi(t–N + 2)
02: i(k = 2) = rand(U [Yi(t–N + 1),Yi(t–N + 2)])
03: else
04: i(k = 2) = rand(U [Yi(t–N + 2),Yi(t–N + 1)])
05: end

Then, the initial estimation is improved iteratively
by Equation (5), starting from k = 3 to k = N.X̄i(k)
is the estimated value for the present point, whereas
X̄i(k − 1) is the estimated value for the most recent
sub-iteration point.

X̄i(k) = X̄(k−1) +K(k)(Y (t−N + k)− X̄(k−1))

for k = 3, . . . , k = N

(5)

Similar to SAFIRO, the improvement in AFIRO is
assisted by the measurement value, Y (t–N + k), and
the Kalman-like gain, K(k). The Kalman-like gain,
K, can be calculated as in Equation (6). The value
in K(k) decreases as sub-iteration, k increases. The
operation of sub-iteration stops when k = N .

K(k) =
1

k
(6)

The final value of X̄i(k) is then assigned to Xi(t).
The estimated solution,Xi(t) represents the candi-
date solution for that corresponding iteration. The
candidate solutions are then evaluated during the fit-
ness evaluation phase.

2.2.3 Fitness evaluation and X best so far update

In AFIRO, the estimation phase is conducted im-
mediately after the agent performed the measurement
phase. Then, X best so far is updated as soon as
the agent evaluates its fitness. During the fitness
evaluation phase, the fitness level of the estimated
solution, Xi(t) for ith agent is evaluated according to
an objective function (fitness function).

An objective function is a function of a given op-
timisation problem, either minimized or maximized.
In a minimization problem, X best so far is updated
when the fitness of the current agent is smaller than
the fitness of X best so far. In contrast, in a max-
imization problem, X best so far is updated when
the fitness of the current agent is larger than the fit-
ness of X best so far.

Therefore, X best so far is determined depend-
ing on the estimated value of the current agent.
If the agent has found a better solution, then
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X best so far is updated according to the estimated
value of the agent.

The sequence of AFIRO continues for the next
agent until all agents finished performing their tasks,
consecutively. The procedures of AFIRO are then
repeated for the next iteration until maxFES is
reached. Once maxFES is reached, X best so far
is returned as the optimal solution for the given op-
timisation problem.

3. EXPERIMENTAL SETUP

As aforementioned, three existent metaheuris-
tic algorithms with asynchronous update iteration
strategies were used to benchmark the results of
AFIRO: A-PSO, A-GSA, and A-SKF. The experi-
mental settings, parameter settings, as well as data
of mean fitness value for A-PSO, A-GSA, and A-SKF
were referred from [37]. Table 1 shows the parameter
settings for those algorithms. All of the algorithms
were implemented using MATLAB.

Table 1: The Parameter Settings for A-PSO, A-
GSA, A-SKF, and AFIRO.

Algorithm Parameter Value
A-PSO Initial inertia weight, W1 0.9

Final inertia weight, W2 0.4
Cognitive acceleration factor, C1 2

Social acceleration factor, C2 2
A-GSA Initial gravitational constant, G0 100

Coefficient, β 20
A-SKF Process noise, Q 0.5

Measurement noise, R 0.5
Initial error covariant, Pi(0) 1000

AFIRO Horizon length, N 4
Coefficient, β 10

The ability of those algorithms in solving the opti-
misation problems is evaluated by using the CEC2014
test suite for a single-objective real-parameter nu-
merical optimisation. The solution is represented in
the fitness form where each function has its ideal fit-
ness value that represents the optimal solution. The
MATLAB codes for CEC2014’s functions can be ob-
tained from https://github.com/P-N-Suganthan?

tab=repositories.
In terms of complexity criterion, the performance

of metaheuristic algorithms can be fairly compared by
using the same function evaluation [38]. Like many
others, the complexity of AFIRO is mainly influenced
by the complexity of the fitness function rather than
the algorithm, as the algorithm only involves basic
mathematical operations.

The experimental settings for AFIRO were set the
same as all of the referred algorithms. The stopping
condition was set to the maximum number of function
evaluations (maxFES), where maxFES = 10,000 it-
erations × dimensions, D[31]. The complexity of the
problem was set as 30 dimensions. All experiments
were run 30 times with 100 agents on each test func-

tion. Thus, the amounts of computation per iteration
were significantly the same for all algorithms, where
the evaluations were based on the mean fitness value
of over 30 runs time with 300,000 maxFES. The
search space within [-100,100] was used for all dimen-
sions in all functions.

A nonparametric statistical analysis was carried
out due to its suitability for multi-problem analysis,
where more than one problem (functions) is consid-
ered in comparing the performances of algorithms.
All algorithms were compared with each other. Thus,
the Friedman statistical test for multiple algorithms
comparison (with a significant level, α=0.05) was ap-
plied as a statistical analysis tool, to rank the perfor-
mances over a set of results. The null hypothesis of
the Friedman test defines that all performances of the
tested algorithms are equivalent to each other [39].

The post hoc analysis using Holm’s method (with
a tolerance level α=0.05) was also applied in this ex-
periment since the Friedman statistic value shows a
significant difference exists between the algorithms.
Holm’s method can detect the differences, where the
null hypothesis is rejected if the statistical value is
smaller than the p-value [39]. Both Friedman and
Holm’s post hoc tests were handled using the KEEL
Suite 3.0 software (http://www.keel.es).

4. RESULTS AND DISCUSSION

This section discusses the performances of A-PSO,
A-SKF, A-GSA, and AFIRO in solving 30 benchmark
functions in the CEC2014 test suite. The test suite
contains three rotated unimodal functions, thirteen
simple multimodal problems, six hybrid functions,
and eight composition functions. Each of the func-
tions has different properties that can test the algo-
rithm to solve various cases of problems. The prop-
erties for all functions are available in [31].

The values of mean fitness and mean error for all
algorithms are recorded in Table 2. The functions in
the CEC2014 test suite are for minimization optimi-
sation problems. Thus, the smaller value of mean fit-
ness represents a better result. The smallest reading
of the mean fitness value for each function is marked
in bold, which represents the best performance of
each function (Fn).

The ability of AFIRO to solve unimodal optimisa-
tion problems is tested by solving Function 1 (Fn1) -
Function 3 (Fn3). Table 2 clearly shows that all algo-
rithms are unable to obtain the optimal solution for
Fn1 and Fn2. However, AFIRO’s performance is far
better than the other algorithms for Fn1. The opti-
mal solution for Fn1 is 100. As for Fn2, AFIRO man-
aged to obtain the second-best performance behind
A-PSO with a mean fitness error of 1.19E+04. The
optimal solution for Fn2 is 200. Noticeably, AFIRO
is the only algorithm that can reach the optimal solu-
tion (300) for Fn3. The ability to exploit the search
space can be benchmarked through unimodal func-
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tions [40]. Thus, these results indicate that AFIRO
performs well in exploiting the search space which
leads to the success of solving unimodal functions.

The simple multimodal functions contain thirteen
optimisation problems, where the functions are re-
lated to either shifting or, shifting and rotation prob-
lems. The capability of AFIRO to handle simple
multimodal optimisation problems was evaluated by
solving Fn4 - Fn16. Table 2 depicts that, AFIRO
shows superior performance by leading in seven of
thirteen functions, with a very small fitness error for
each function. The functions are Fn4, Fn5, Fn6,
Fn11, Fn12, Fn13, and Fn15. In Fn7, Fn14, and
Fn16, AFIRO acquired second-best results behind A-
PSO. However, the solutions are very close to A-PSO.
Those solutions are very near to the optimal. Apart
from that, AFIRO obtained the third-best results for
Fn8, Fn9, and Fn10 behind A-SKF and A-PSO. No-
tably, larger mean fitness error values were recorded
for all algorithms for Fn10 and Fn11. Both functions
contain a huge number of local optima, and their sec-
ond better local optimum is far from the global op-
timum. Thus, they are difficult to solve. The ability
to explore the search space can be measured through
simple multi-modal functions [40]. Hence, the results
indicate that other than exploitations, AFIRO per-
forms well in the exploration which contributes to
the effectiveness of handling multimodal functions.

The competency of AFIRO to conduct hybrid op-
timisation problems was assessed by tackling Fn17
- Fn22. The readings in Table 2 show AFIRO per-
forms well in solving hybrid functions. AFIRO ac-
quired better performance than others in four of six
functions, namely Fn17, Fn18, Fn20, and Fn21. A-
PSO obtained a better result than AFIRO in Fn19.
Nevertheless, both results are very near to the op-
timal solution with the mean fitness error values of
7.42 and 9.25, respectively. The optimal solution for
Fn19 is 1900. With the same trend, although A-
PSO achieved a better result for Fn22, the solution
of AFIRO is not too far from A-PSO. Therefore, the
competency of AFIRO in completing hybrid functions
has proven good through these findings.

The composition of a function is the most chal-
lenging to solve as it contains a combination of uni-
modal, multimodal, and hybrid functions with local
optima trap at the origin. The algorithm’s ability
in exploring and exploiting can be evaluated simul-
taneously through composite functions. It is due to
the property of many local optima in the functions
[40]. The proficiency of AFIRO to solve composi-
tion optimisation problems was tested by completing
Fn23 - Fn30. The readings in Table 2 show that
AFIRO is competent enough to balance between the
exploration and exploitation phases by yielding bet-
ter performance than other algorithms in five of eight
functions, with acceptable mean fitness error values.
The functions are Fn23, Fn24, Fn25, Fn27, and Fn28.

Besides, AFIRO also delivered a competitive solution
by achieving the second smallest reading of mean fit-
ness value for Fn26. Although A-GSA obtained a
better solution in Fn26, the result is quite close to
AFIRO. The same pattern goes for Fn29. Meanwhile,
for Fn30, AFIRO records the third-best result behind
A-PSO and A-SKF.

Overall, AFIRO shows convincing results by out-
performing eighteen of thirty functions in solving the
CEC2014 test suite. Another twelve results are con-
tributed by A-SKF (six best performances), A-PSO
(five best performances), and A-GSA (one best per-
formance).

4.1 Statistical Analysis

The performance of AFIRO against A-PSO, A-
GSA, and A-SKF is measured using a Friedman test.
A multiple (N × N) Friedman test was conducted
by considering the reduction performance distributed
according to a chi-square value of 53.56, with 3 de-
grees of freedom (DOF). In this statistical analysis,
the performance was ranked based on the mean fit-
ness values obtained by the algorithms over the total
number of 30 runs, for all 30 functions.

The mean rank is calculated for each algorithm
where the smaller value of rank indicates better algo-
rithm performance. As shown in Table 3, statistically,
AFIRO has the highest rank, followed by A-PSO, A-
SKF, and lastly A-GSA.

Significant differences between the algorithms have
been detected by the Friedman test in this experi-
ment. It means the null hypothesis is rejected. Thus,
an additional analysis by the Holm post hoc test [39]
was performed to find better-performing algorithms.
Table 4 tabulates the results of the Holm post hoc
test. In this condition, Holm’s procedure rejects those
hypotheses that have a p-value smaller than 0.025
(denoted in bold form). Based on Table 3 and Table
4, the rejection of hypotheses indicates AFIRO has
significantly better performance than A-SKF and A-
GSA. Meanwhile, AFIRO performs on par with A-
PSO, as the p-value for the algorithms is larger than
0.025.

5. CONCLUSIONS

In the original paper, AFIRO was compared to the
PSO, GA, and GWO. The comparison seems unfair
as AFIRO has a different iteration strategy from the
compared algorithms. Thus, this paper further inves-
tigates the performance of AFIRO among three ex-
isting metaheuristic algorithms with the same asyn-
chronous iteration strategy, namely A-PSO, A-GSA,
and A-SKF. The CEC2014 test suite had been ap-
plied as a benchmark function to evaluate the per-
formance of the algorithms. Overall, AFIRO shows a
convincing performance by leading eighteen of thirty
functions. Besides, the Friedman rank shows AFIRO
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Table 2: Results of A-PSO, A-GSA, A-SKF, and AFIRO for 30 Functions.
Fn Ideal A-PSO A-GSA A-SKF AFIRO

fitness
Mean Mean Mean Mean Mean Mean Mean Mean
fitness fitness fitness fitness fitness fitness fitness fitness
error error error error

1 100 5.20E+06 5.20E+06 7.11E+08 7.11E+08 1.10E+07 1.10E+07 3.60E+05 3.60E+05
2 200 138.90 338.90 5.94E+10 5.94E+10 1.29E+06 1.29E+06 1.19E+04 1.21E+04
3 300 294.50 594.50 9.77E+04 9.80E+04 9901.00 1.02E+04 0.00 300.00
4 400 160.80 560.80 1.01E+04 1.05E+04 117.70 517.70 41.04 441.04
5 500 20.86 520.86 20.95 520.95 20.01 520.01 20.00 520.00
6 600 10.71 610.71 38.95 638.95 18.17 618.17 5.87 605.87
7 700 0.01 700.01 543.90 1243.90 0.08 700.08 0.03 700.03
8 800 18.57 818.57 328.50 1128.50 5.47 805.47 91.73 891.73
9 900 68.79 968.79 378.10 1278.10 75.26 975.26 89.65 989.65
10 1000 609.00 1609.00 7018.00 8018.00 162.00 1162.00 2535.79 3535.79
11 1100 2839.00 3939.00 7155.00 8255.00 2585.00 3685.00 2548.17 3648.17
12 1200 1.66 1201.66 2.45 1202.45 0.21 1200.21 0.06 1200.06
13 1300 0.44 1300.44 6.15 1306.15 0.36 1300.36 0.35 1300.35
14 1400 0.35 1400.35 175.10 1575.10 0.23 1400.23 0.29 1400.29
15 1500 7.25 1507.25 3.47E+05 3.49E+05 16.40 1516.40 4.70 1504.70
16 1600 11.22 1611.22 13.09 1613.09 10.67 1610.67 11.03 1611.03
17 1700 6.34E+05 6.36E+05 1.84E+07 1.84E+07 1.17E+06 1.17E+06 1.66E+04 1.83E+04
18 1800 4828.00 6628.00 9.81E+08 9.81E+08 8.56E+06 8.56E+06 3635.74 5435.74
19 1900 7.42 1907.42 292.40 2192.40 19.85 1919.85 9.25 1909.25
20 2000 520.90 2520.90 7.10E+04 7.30E+04 2.42E+04 2.62E+04 238.75 2238.75
21 2100 1.66E+05 1.68E+05 4.76E+06 4.76E+06 5.55E+05 5.57E+05 1.62E+04 1.83E+04
22 2200 229.40 2429.40 1300.00 3500.00 497.30 2697.30 304.69 2504.69
23 2300 315.90 2615.90 669.70 2969.70 316.10 2616.10 315.25 2615.25
24 2400 229.30 2629.30 272.60 2672.60 229.20 2629.20 221.31 2621.31
25 2500 209.10 2709.10 224.90 2724.90 214.30 2714.30 204.90 2704.90
26 2600 107.10 2707.10 106.40 2706.40 120.40 2720.40 109.90 2709.90
27 2700 555.60 3255.60 829.30 3529.30 547.60 3247.60 416.95 3116.95
28 2800 1142.00 3942.00 4703.00 7503.00 1610.00 4410.00 1073.11 3873.11
29 2900 1.60E+06 1.60E+06 1.17E+08 1.17E+08 1189.00 4089.00 9210.72 1.21E+04
30 3000 3391.00 6391.00 7.47E+05 7.50E+05 3848.00 6848.00 5934.07 8934.07

Table 3: The Average Ranking of the Algorithms.
Algorithm Ranking

AFIRO 1.58
A-PSO 2.13
A-SKF 2.40
A-GSA 3.90

Table 4: Holm Post Hoc Results.
Algorithms p Holm

A-GSA vs AFIRO 0.000000 0.008333
A-PSO vs A-GSA 0.000000 0.010000
A-GSA vs A-SKF 0.000007 0.012500
A-SKF vs AFIRO 0.012419 0.016667
A-PSO vs AFIRO 0.089131 0.025000
A-PSO vs A-SKF 0.423711 0.050000

has better performance than others by achieving the
first ranking, followed by A-PSO, A-SKF, and A-
GSA. A Holm post hoc reveals that AFIRO has the
same performance as A-PSO and is significantly bet-
ter than A-SKF and A-GSA. In light of this evidence,
it is crystal clear that the AFIRO can perform well
in the same iteration strategy category.
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