FFF: Fast Firewall Framework to Enhance Rule Verifying over High-speed Networks 35

ECT]

=——=Association

ECTI Transactions on Computer and Information Technology
Journal homepage: https://ph01.tci-thaijo.org/index.php/ecticit/
Published by the ECTI Association, Thailand, ISSN: 2286-9131

FFF': Fast Firewall Framework to Enhance Rule Verifying
over High-speed Networks

Suchart Khummanee! Panida Songram 2 and Potchara Pruksasri®

ABSTRACT
The current traffic trend on computer networks is growing exponentially,
affecting network firewalls because they constantly have to filter out mas-
sive amounts of data. In this paper, we implement a firewall framework
to improve traffic processing speed, named the Fast Firewall Framework
(FFF or F3). FFF can verify rules at Big-O(1) worst-case access time, and
it also consumes a small amount of memory, which is only Big-O(np)-
To evaluate the firewalls’ effectiveness, we benchmark the proposed fire-
wall framework against the two fastest open source firewalls, IPSets and
IPack. The experimental results show that FFF can execute rules faster
than both firewalls and consumes less memory. In addition, the proposed
firewall framework has a simple structure that makes it easier to imple-

Article information:
Keywords: Firewall rule verifi-
cation, High-speed firewall, Fast
packet matching

Article history:

Received: July 18, 2021

Revised: August 14, 2021

Accepted: September 24, 2021

Published: March 5, 2022
(Online)

ment.

DOT: 10.37936/ecti-cit.2022161.246990

1. INTRODUCTION

Nowadays, computer networks must be able to
handle enormous amounts of information being com-
municated. Most of the information being commu-
nicated is urgent, such as online meetings, real-time
streaming, online games, etc. The data must always
be verified and filtered by a firewall to determine it is
safe or not before sending it to users. Data communi-
cation is stable when the firewall can process data at
high speed and continuity. Typically, firewalls are in-
stalled as a front-end barrier to protect users between
private networks and the Internet by ensuring traffic
is strictly following the rules. A rule is made up of
a set, of conditions for commanding the firewall soft-
ware. The rule is basically comprised of two parts: a
conditional and a decision (action) part. There are
generally five parts of the condition: source IP ad-
dress (SIP), destination IP address (DIP), source port
(SP), destination port (DP), and protocol (Pro). If
the data matches all condition fields in a firewall rule,
the firewall must immediately decide between accept
(allow) and deny (reject) in the decision-making sec-
tion of the rule. Conventional firewall rules are exe-
cuted in sequence from the first (r1) to the last rule
(r¢) as shown in Table 1. In example of the r; in
Table 1, the firewall allows (action = accept) data
communication from a group of 256 source devices

(SIP = 192.168.1.0-255) to a group of 256 destination
devices (DIP = 100.50.0.0-255) over a group of desti-
nation ports ranging from 80 - 90 (DP). If the firewall
is unable to match the incoming data to rule r;, then
it is automatically shifted down to the next rule (r3).
In this example, o rejects (deny) all HTTP connec-
tions (DP = 80) from a pool of thirty-one source IP
addresses (192.168.1.20-50) to a hundred of the des-
tination web servers (100.50.0.100-200). When the
incoming data is not matched against any rules, it
is implicitly dropped by the last firewall rule. For
example, the last rule (rg) in Table 1 drops every
communication channel (DP and Pro = all) from any
source IP address (SIP = all) to any destination IP
address (DIP = all).

The time complexity to verify firewall rules, as de-
scribed above, is equal to O(n) (sequential execution),
where n is the number of firewall rules. A firewall
that provides such a method of verification is known
as a traditional firewall. Typical examples include
Windows Defender Firewall [1], IPTables [2], Cisco
Router Firewall [3], etc. As the population of Inter-
net usage grows over time, firewalls inevitably need to
process massive amounts of data. Therefore, firewall
researchers have improved the speed of rule verifica-
tion by revising the rule storage structure in a sequen-
tial manner to a tree structure, called the modern
firewall. As a result, the speed of rule verification has

1,2,3The authors are with Department of Computer Science, Faculty of Informatics, Mahasarakham University, Mahasarakham,
Thailand 44000, E-mail: suchart.k@msu.ac.th, panida.s@msu.ac.th and potchara.p@gmail.com

36 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.16

Table 1: Example list of firewall rules.

, NO.1 March 2022

Rule SIP SP DIP DP Pro | Action
r1 192.168.1.0 - 255 all 100.50.0.0 - 255 80 - 90 all accept
ro 192.168.1.20 - 50 all 100.50.0.100 - 200 | 80 all deny
r3 192.168.1.50 - 200 all 100.50.0.100 - 200 | 50 - 80 all accept
T4 192.168.1.20 - 150 all 100.50.0.100 - 255 | 85 - 100 all deny
5 172.16.1.0 - 255 all | all 21 - 22, 80, 443 all accept
r6 all all all all all deny

been increased from O(n) to O(logz(n)) as described
in [4], [5], [6], [7] and [8]. However, nowadays, the vol-
ume of data communication is tremendous, and the
vast majority of these communications are character-
ized by real-time or fast response communications.
Therefore, firewalls need to be improved to speed up
their rule-verifying in order to handle huge and un-
interrupted data with O(1) worst case access time.
Such systems are called advanced firewalls. For ex-
ample, IPSets [9] used hashing techniques, and TPack
[11] applied indexing and a data packing approach to
verify firewall rules. Although these advanced fire-
walls support high-speed rule verification, they still
have several limitations: IPSets supports only small
IP classes, consumes much memory as rules increase,
and does not deal with rule conflicts, etc. IPack
consumes less memory than IPSets, but there are
known drawbacks to building structures for storing
quite complex rules.

This research aims to simplify rule-storing struc-
tures, consume minimal memory, and eliminate rule
conflicts, and with the speed of rule-validation main-
tained at O(1). This paper is organized as follows:
Section 2 explains in-depth how IPSets and IPack
work. Section 3 articulates the contribution and pro-
posed firewall design. Section 4 addresses the fast
firewall framework. The performance evaluation is
shown in Section 5. Lastly, Section 6 concludes this
research.

2. HIGH-SPEED FIREWALL RULE VERI-
FICATION

This section describes the in-depth techniques of
high-speed firewalls for rule verification:

2.1 IPSets
2.1.1 Pros and Cons

IPSets [9] was developed to improve the speed of
firewall rule verification with Big-O(1) access time
based on IPTables [2] and Netfilter [10]. The high-
light of IPSets is the ability to match any rule against
any packet on both the incoming and outgoing inter-
face at a constant speed using hashing techniques.
However, even though IPSets is very efficient in rule
verifying, there are some limitations that mean fire-
wall administrators need to optimize rules before de-
ploying them on the core firewall:

1. Key generation: Since IPSets implements hash-
ing for the rule verification, it is always neces-
sary to choose one of the key generation meth-
ods before using it, such as ‘hash:ip’, ‘hash:net’,
‘hash:ip,port’, ‘hash:ip,port,ip’, ‘hash:net,port’,
etc. ‘hash:net,port’ is used to generate keys
from a data set between ‘net’ and ‘port’, e.g.
‘192.168.1.0/24:80’ has a range of keys (256 keys)
equal to ‘1921681080’, ‘1921681180’, ‘1921681280,
..., 1921681254807, 192168125580°. To make the
key smaller, the dots (.) are removed from the IP
address string, and these keys are always unique.
The limitation with this feature is that firewall
administrators have to choose which key genera-
tion method is appropriate for their organization,
which requires a high level of experience with man-
aging firewall rules.

2. Memory consumption: As explained above, key

generation is an important step in the IPSets hash-
ing technique, where keys are formed by cartesian
product (x) of different groups of data, such as
hash:net,port’, which are concatenated between
IP addresses within the subnet (net) and destina-
tion ports (port). For example, cartesian prod-
uct outputs of the subnet number 192.168.1.0/24
(Class C = 256 IPs) and the destination port
ranging from 80 - 89 (10 ports): ‘1921681080’,
‘19216811807, 1921681280°, ‘..., ‘192168125589’
(256 TPs x 10 ports=2,560 keys). It is clear that
an extensive range of data, when combined into
keys, increases the number of keys as well. An-
other example is the number of IP addresses within
Class B; for example, 172.16.1.0/16 is 65,536 IP
addresses. When they are concatenated to the
destination port in the range 80 - 84 (5 ports),
they become keys: ‘1721681080°, ‘1721681180,
‘17216812807, ‘.. .7, ‘17216825525584’ (65,536 X 5
= 327,680 keys). Usually, each key is stored in
unique memory, so if each hashed key uses 128 bits
of memory, then the amount of memory used to
store the keys in this example is equal to (327,680
x 16 bytes)/1,000 = 5,242.88 KB ~ 5.2 MB (High
memory consumption). For the last example, class
A, the number of IP addresses of this class is 22%.
Therefore, when using IPSets is not recommended
to use larger classes such as Class B or A (Class
C is recommended) to create firewall rules because
it requires a lot of memory to store the keys. The
memory allocation of the IPSets is defined as 2™.

FFF: Fast Firewall Framework to Enhance Rule Verifying over High-speed Networks 37

Initially it reserved 2 MB of memory, but later the
reserved memory was insufficient for usability, so
the IPSets had to reserve the memory 4, 8, 16, .. .,
2™ MB, respectively.

3. Rule anomaly verification: IPSets only focuses on
high-speed rule matching but does not address the
detection of anomalous firewall rules, which are di-
vided into six categories: shadowing, correlation,
generalization, redundancy, irrelevancy anomaly
[12], and semantics loss [13]. IPSets does not con-
sider the overlap and conflict of the generated rules
because they do not effect the speed of rule match-
ing. However, it can cause wasteful memory usage,
and some rules that are hashed and stored in mem-
ory may not be processed.

2.1.2 IPSets Module

IPSets is a complementary module for IPTables
[2] and Netfilter [10] to speed up rule matching from
O(n) to O(1), shown in Figure 1. Assuming that a
packet flows through the incoming interface of the
firewall (NICy), Netfilter receives the packet and for-
wards it to IPTables to be matched with the spec-
ified firewall rules. However, IPTables’ rule match-
ing speed is only O(n); thus, IPTables forwards the
packets to be processed against IPSets instead, where
it can speed up to O(1). The result returned from
IPSets processing can only be accept or deny. The re-
sult received is forwarded to IPTables and Netfilters
for further processing. For example, if the result is
an accept, this packet is forwarded to the destination
network over the outgoing interface (NICz). Other-
wise, this packet is immediately discarded (dropped).

IPSets-config | User Space
Packet$ flow P
__IPSets Core______
~ X
\
J IPTables-config H
!
E IPTables H
i Netfilter Kernel Modules (NKM) :
1 T
! Linux Kernel Space :
T T
] Computer Hardware v
NIG, NIC,
Incoming packets Outgoing packets

Fig.1: [PSets module over IPTables and Netfilter
framework.

2.1.3 IPSets Workflow

To understanding IPsets, this section provides an
overview of its design and operating principles. As
previously introduced, the perfect hashing technique
is applied to the IPSets. Thus, in the first step of
the IPSets process, the appropriate key generation
scheme must be selected for their network. For this
example, we chose to use the ’hash:net,port,net’ for-
mat in conjunction with the rules in Table 1. IPSets
can only use the required data fields to assemble keys,

and the generated keys must also be able to match
rules. Therefore, in this example, the IPSets uses the
source IP (SIP), destination IP (DIP), and destina-
tion port fields to concatenate as the keys. The num-
ber of keys from Table 1 is 4,296,491,080 keys, except
for the last rule because the number of keys exceeds
the available memory. In the example of r; from Ta-
ble 1, the number of SIP is 256 values (192.168.1.0-
255), DP is 11 (80-90), and DIP is 256 (100.50.0.0-
255). Therefore, the number of keys resulting from
the Cartesian product between SIP, DP, and DIP of
ry is 720,896, shown in Table 2.

Table 2: The number of keys for each firewall rule.
Number of keys generated by concatenating between
SIP, DP and DIP (Chash:net,port,net’)

T 256 SIP * 11 DP * 256 DID = 720,896

31 SIP * 1 DD * 101 DIP — 3,131

151 SIP * 31 DP * 101 DIP = 472,781

131 SIP * 16 DDs * 156 DIPs — 326,976

256 SIP * 4 DP * 4,294,067,206 DIP

4,294,067,296 SIP * 65,536 DP * 4,204,067,206 DIP =
1,208,925,819,614,629,174,706,176

Rule

o |of k| wlv

If one key requires 128 bits of memory space,
the total amount of memory required is 68.47 GB
(4,296,491,080 * 128). Firewalls currently in use do
not have enough memory to support that. To ad-
dress the problem of excessive memory usage, [IPSets
makes the data range of each field smaller. This is
done by doing things such as setting the source IP
ranges to class C and deactivating ‘all’ in the rules.
Another technique is to reduce the data fields that are
concatenated into keys, such as IP (‘hash:ip’) or Sub-
net field only (‘hash:net’), or IP-port concatenation
(‘hash:ip,port’), etc. Next, the keys obtained from
the first step are hashed and stored in baskets in or-
der to group the duplicate keys, as shown in Figure
2.

D
H(0,k1)=2
H(0, k2)=0
Keys H(0,k3)=1
¢19216810100500080° = k1 H(0,k4)=n
*19216810100500081° = k2 Km
¢19216812550025590° = k3
419216812050010080° = k4 m FRCT
*19216810050010180° = k5 0 ,,,,,
Te? Baskety Basket Baske\ Baskct

¢19216810050020080° = k,

Fig.2: Hashing the keys to the basket.

The FNV [14] algorithm is used for hashing keys,
as it is fast and has low key collision rates. Let d; be
a member of the function family (D), and k; be any
key that will be hashed by i € 0,1,...,n. After that,
IPSets rehashes the redundant keys for the basket;
again by changing the function family from 0 to 1, 2,

., n until no more collisions occur, and then storing
them in Table G and Table V [11], as shown in Figure
3.

38 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.16, NO.1 March 2022

I

I

: 0 0 =» 0 Il accept |K,

l 1 0 | demy |Ks
Hd=3.K)=0, |1 2)| 3 {21 aceept |Ks
H(d;=3.Ks) =1 3 3
H(d;=3,K)=2

4 it deny | Ko

Intermediate Table (G)

Value Table (V)

Fig.3: Rehash technique in case of keys collision.

In baskets of Figure 3, there are four duplicate
keys (K 6,7,9); the keys must be re-hashed by chang-
ing the d; value until no further key collision occurs
in the basket. For example, given d; is equal to 3
and this d; does not cause the keys to be a colli-
sion, the G table stores 3 into the second memory
address (Baskety), and the V table holds the actual
data hashed by 3 from the G table into memory with a
unique address. In summary, the hashed or ready-to-
use rules are stored in two tables: the G-table holds
any hash-based function, and the V-table stores each
rule’s action.

2.2 TPack
2.2.1 Pros and Cons

IPack [11] is designed to solve the problems of
IPSets mentioned above. First, [Pack solves the
memory consumption problem of IPSets by map-
ping rules into a 3D array memory structure. Subse-
quently, it reduces idle or redundant data from the 3D
array structure into a one-dimension array by using a
packing technique. As a result, the amount of mem-
ory consumed is reduced from O(2") to O(n). IPack
can support all kinds of rules, whether large or com-
plex, such as rules built on a variety of conditions, or
rules created from Class A or B, etc. IPSets requires
high administrative skills to design rules appropriate
for each network before deploying them, but IPack
only requires the basic skills of a typical administra-
tor. IPack rule-verifying speed is the same as IPSets,
that is O(1). IPSets cannot detect anomalies and rule
conflicts, but these features are included in IPack.

IPack is not perfect. The disadvantages of [Pack
are:

1. Verification of rule anomalies: Since IPack has
to eliminate the anomalous rules before mapping
them into a 3D array structure, the build time is
slightly greater than IPSets.

2. Establishment of the rules: The establishment of
IPack rules is highly complex and has several steps.
Rules are challenging to develop, such as elim-
inating anomalies, mapping rules into a three-
dimensional array, reducing the idle memory, and
compressing data in a three-dimensional array to
a one-dimensional array.

3. Rule revisions: As the rules change, IPack always
needs to restart the process by eliminating the
anomaly rules and then doing compression of the
rules, which increases the overall rule processing
time.

2.2.2 TPack Framework

IPack was completely redeveloped to fix the disad-
vantages of IPSets based on Netfilter Kernel Modules
(NKM) over Linux Kernel version 2.6. The matching
process between packets and rules is similar to IPSets.
However, IPack has slightly fewer steps than IPsets,
resulting in the rule execution speed being slightly
higher than IPSets, as shown in Figure 4.

‘ Parse command-line (IPack.0) |

TPack User Space

\
‘ IPack Kernel Space \
1
Netfilter Kernel Modules (NKM) |
r
1
|

1

i

! s

' Linux Kernel
]

I

/

Computer Hardware v

NIC:
Outgoing packets

NIC,

Incoming packets

Fig.4: IPack over NKM and Linux Kernel.

As shown in Figure 4, when packets have flowed
from the Linux Kernel to NKM acting like a computer
device driver, IPack executes them at the kernel level
without forwarding packets to user space like IPSets.
This reduces processing time.

2.2.3 IPack Workflow

There are three steps of IPack’s workflow: First,
IPack converts the rules into a tree structure called
PSD [11] to eliminate rule conflicts. The rules appear-
ing in the tree structure are guaranteed to having no
rule conflicts. Second, IPack maps all the rules in
the tree structure into three-dimensional arrays that
store the data as a sparse matrix [15]. Finally, IPack
performs compression of the unused rules in the three-
dimensional arrays to generate one-dimensional ar-
rays using the IP packing technique. As a result, the
data in the one-dimensional arrays contains the rules
without any conflicts, and the memory consumption
is optimal, as shown in Figure 5. In conclusion,
TPack improves several IPSets limitations. Namely,
the memory consumption is decreased from O(2") to
O(n), it has support for all types of rules, and ad-
mins can configure rules immediately and eliminate
rule conflicts.

3. RESEARCH CONTRIBUTION AND FIRE-

WALL DESIGN

Although IPack can improve upon most of the
IPSets flaws, it still has two weaknesses: 1) it con-
sumes too much time in the rule conflict elimina-
tion process, and 2) it consumes too much time to

FFF: Fast Firewall Framework to Enhance Rule Verifying over High-speed Networks 39

@ Converting rules to the tree

[0-255

Rule SIP DIP DP ACT
1

100.50.0.0-255 80-90
100.50.0.100-200 80 deny
100.50.0.100-200 50-80 accept
100.50.0.100-255 -100 deny
0.0.0.0-255.255.255, -22, 80,443 accept
35 5535 deny

accept

Ealal ok

Mapping the tree to 3D matrices Packing 3D to 1D arrays
RLT

"‘r]rrn'r' - —\m
-H ” wes 1] [es]

ONOLY | E-» s

€
{

3o [15]

:E; s[5

2 04l mlald]]

Fig.5: IPack’s workflow.

compress the data from three-dimensional to one-
dimensional arrays. Therefore, this research has de-
signed a novel firewall framework to reduce the time
required, which increases the overall speed of rule
matching.

3.1 Improving the Speed of Eliminating Rule
Conflicts

As previously mentioned, IPack uses a tree struc-
ture to eliminate rule conflicts, and it takes O(n?) to
establish the tree structures. This research designs
a novel conflict resolution method, namely FIRST
MATCH - FIRST EXECUTE (FMFE), which con-
sumes much less time for eliminating rule conflicts.
The principle of this method is that any packets can
be matched (MATCH) against one of the rules ar-
ranged in order from top (r1) to bottom (r,), indi-
cating that the rule is selected and executed (EXE-
CUTE). For example, from Figure 6 converted from
the rules in Table 1, it can be seen that r; completely
obscures 79, and 71 still partially obscures r3,r4, and
r¢. In fact, ro is never executed because no pack-
ets can match it (r; completely shadows r3), which
means 71 is FMFE. Following the example, r4 is par-
tially obscured from ry. Thus, r4 can verify the pack-
ets that are not shadowed only, that is r; is partially
FMFE of ry. In the last rule (rg) in Figure 6, its
boundary is greater than any other rules. However,
it is rarely matched against any packets because it
is blocked by most of the other rules above (r1,...,75
are partially FMFE of rg). Besides, conflicts in the
original rules in Figure 6 remain. For example, rq
correlates with r4, but they have different decisions
(Correlation anomaly [16]). In conclusion, the rules
created later may be obscured by the rules created
earlier.

Packets flow

accept 7/

Fig.6: Controversial original rules.

As mentioned earlier, with the concept of FMFE,
rules obscured from previous rules (A rule on the top)
are never executed. Therefore, they can be eliminated
using the FMFE concept as shown in Figure 7. For
example, ro is entirely obscured by r;. Thus, r5 can
be eliminated from rules. In addition, 74 is partially
obscured by 71, so the shadowed part of r4 can be
eliminated as well. Once all the rules have been pro-
cessed following the FMFE technique, they do not
have any conflicts, as shown in Figure 7. The FMFE
algorithm is explained next.

Packets flow

I {

{

accept

Fig.7: Conflict-free rules optimized by FMFE.

1. Preparing rules: The first step is to prepare the
rules before processing them with the SET op-
eration by concatenating the key fields in the
rules into strings, then converting them to in-
teger numbers, and finally storing them in set
variables. For example, for r; in Table 1,
this algorithm selects the fields SIP=192.168.1.0-
255, DP=80-90 and DIP=100.50.0.0-255 which
are used to generate the keys in IPSets.
Then it concatenates the selected fields to
create strings such as ‘19216810801005000,
19216810801005001’, ‘19216810801005002°, ‘...,
192168125590100500254", ‘192168125590100500255°.
The number of strings is equal to 720,896 (SIP
= 256 * DP = 11 * DIP = 256). After that,
it converts the strings into a set of integers:
r1 = [19216810801005000, 19216810801005001,
19216810801005002, ..., 192168125590100500254,
192168125590100500255]. This process continues
until all rules have been converted. In practice,
only two rules should be executed at a time to
save processing memory.

40 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.16, NO.1 March 2022

2. Removing the obscured part: At this stage, the al-
gorithm removes the obscured portion of the rules
using the DIFFERENCE operator (DIFF). For
example, ro differs r{ is equal to the empty set
(@) because 7o is a subset of r1 (ro C 71) as
shown in Figure 8. In another example, r3 and
r4 are partially obscured by 71, so r3 DIFF ry:
[19216815050100500100, 19216815050100500101,
..., 192168120079100800200]) DIFF [19216810801
005000, 19216810801005001, ..., 192168125590100
500255] = [19216815050100500100, 1921681505010
0500101, ..., 192168120079100500200]. T4
DIFF r; is equal to [19216812085100500100,
19216812085100500101, . . ., 1921681150100100500
255] DIFF [19216810801005000, 192168108010050
01, ..., 192168125590100500255] = 1921681209110
0500100, 19216812091100500101, .. ., 192.16811501
00100500255. The above algorithm continues un-
til all obscured rules have been removed, as shown
in Figure 7. This step is considered completed.
Rules which have passed this stage are deemed to
be free from conflicts.

3. Reconfigure rules: Once all the obscured parts of
the rules have been removed, the next step is to re-
configure the rules based on Figure 7, as shown in
Table 3. In Table 3, 3 from Table 1 is deleted (dis-
appearing in Table 3) because it is inactive (never
matched). Moreover, 7o (move up from r3 in Table
1 to o in Table 3), and r3 (move up from r4) is
smaller since it is partially cut off by r;. The ry
does not change because it is not a subset of any
previous rules (r4 ¢ r1,79 and r3 or r1Ury, 79 and
r3). The last rule (r4) from Table 1 is removed
because it drops all packets by default and con-
sumes a lot of memory. Note: If the last rule is
created as keys, the IPSets cannot execute it due
to insufficient memory. Thus, in order to compare
its performance with other firewalls, it is necessary
to delete rg from the rules as shown in Table 3.

()

Fig.8: ro,r3 and rqy DIFF rq.

3.2 Direct Memory Mapping

Conflict-eliminated rules are mapped directly
into memory without converting to 3D and one-
dimensional arrays like TPack, and without hashing

the rule’s keys to memory as IPSets. This new tech-
nique reduces both the time and complexity of setting
rules, making its cost less than both existing tech-
niques (IPSets & IPack). This is achieved with the
following steps. The first step is to divide the mem-
ory into 256 fixed-size (blocks), each equal to n-bit
size, where n is the number of rules, as shown in Fig-
ure 9. For example, if the number of rules is four
(in Table 3), the data stored in the memory of each
position has four bits (0000). Each block of mem-
ory stores the sub-fields of each rule. For example,
the SIP; block stores the first octet of SIP, and the
SIP5 block collects the second octet of SIP, respec-
tively. According to r; in Table 3, SIP is 192.168.1.0-
255. Therefore, the memory of SIP; block in posi-
tion 192 is equal to 0001 (each bit represents a rule
number). The 168" position memory holds the SIP;
block and contains 0001. The 1%¢ address memory of
SIP3 is 0001, and the memory addresses at 0-255 of
the SIP, block are 0001. The DIP of r; (100.50.0.0-
255) is mapped into memory in the same manner as
SIP. The number of ports is 16 bits, divided into two
equal blocks (DP; and DP3), each equal to 8 bits
(28 = 256 addresses). If the destination port num-
ber is 1234 (00000100 110100102), the position of
DP; is 4 (000001002), and the position of DP5 is 210
(110100102). In the case of r1 in Table 3, the destina-
tion port numbers are 80-90; thus, they are mapped
into the memory address 0 of DP; block and address
position 80 to 90 of DP5. The data 0001 is recorded in
these addresses. The last two blocks are used to store
rule actions, divided into two n-bit blocks. In the rq
in Figure 9, the action is to accept, so the data 0001
is stored in the accept block (ACCEPT), and 0000
is recorded to the denied block (DENY). For other
rules, we complete the same steps, all of which are
entirely stored in direct memory, as shown in Figure
10.

3.3 Improving the Speed of Matching Rules

Let p; be any packet that flows into the firewall,
where it can be matched against any rule, resulting
in choosing an action of accepting or denying, called
a successful matching. If such p; cannot be matched
with any rule, it must always be dropped (called im-
plicit denial). Assume p; has a source IP address
(SIP) of 192.168.1.20, and it needs to access the des-
tination website (DP=HTTP=80) with an IP number
(DIP) of 100.50.0.100. The p; can be matched with a
rule that has been mapped to the direct memory with
the following steps: Given the variables X and Y to
store values for calculations, initializing X = 1..1,, and
Y = 0..0,,, where n is the position of the data bits,
and the number of bits is equal to the number of rules
(In this example, X=1111 and Y=0000). First, the
firewall takes the first octet (192) of the source IP
packet, pointing to the address of the SIP; block in
memory, as shown in Figure 10. The result is equal to

FFF: Fast Firewall Framework to Enhance Rule Verifying over High-speed Networks

41

Table 3: Example of reconfigured rules.
Rule SIP DIP DP Action
1 192.168.1.0-255 100.50.0.0-255 80-90 accept
2 192.168.1.50-200 | 100.50.0.100-200 | 50-79 accept
3 192.168.1.20-150 | 100.50.0.100-255 | 91-100 deny
4 172.16.1.0-255 all 21-22,80,443 | accept
SIP; SIP; SIP; STP, DIP, DIP; DIP; DIP, DP; DP; ACCEPT DENY
0| 0000 0000 0000 ol ooo1 0000 0000 o| 0001 0 0001 0| 0001 0000 0| 0001 0000
1| 0000 0000 1| ooo1 0001 0000 0000 0000 0001 0000 0000
2| 0000 0000 0000 0001 0000 0000 0000 0001 0000 0000
0000 0000 0000 0001 0000 50| 0001 0000 0001 0000 80| 0001
0000 | 168| 0001 0000 0001 0000 0000 0000 0001 0000 | 81| 0001
192| 0001 0000 0000 0001 0000 0000 0000 0001 0000 0001
0000 0000 0000 0001 | 100(0001 0000 0000 0001 0000 | 90| 0001
0000 0000 0000 0001 0000 0000 0000 0001 0000 0000
0000 0000 0000 0001 0000 0000 0000 0001 0000 0000
255 0000 0000 0000 |2s5| 0001 0000 0000 0000 | 255 0001 0000 0000
n bits
Fig.9: Mapping r1 to the direct memory.
SIP; SIPy SIP; STP, DIP, DIP, DIP; DIP, DP, DP; ACCEPT DENY
0| 0000 0000 0000 0| 1001 1000 1000 o 1111 ol 1001 | of 1111 o000 | O 1011 0100
& o &
1| 0000 0000 1| 1n 1001 1000 1000 1000 1001 | 1| 1000 |21-22| 1000 (>X=0001 X=0001 l
2| 0000 16 | 1000 0000 | 20| 1101 1000 1000 1000 1001 0000 0000 | | N
| X=0001 X=0000
0000 0000 0000 1111 1000 50| 1111 1000 1001 0000 | 50-79| 0010 !
0000 | 168| 0111 0000 | 50| 1111 1000 1000 1000 1001 0000 so| 1001 | |
I
192 0111 0000 0000 1111 | 100| 1111 1000 1000 | 100| 1111 0000 | 81-90| 0001 |
|
0000 0000 0000 |150| 1111 1000 1000 1000 1111 0000 0000 | |
|
172 1000 0000 0000 | 200| 1011 1000 1000 1000 | 200 1111 0000 [91-100 0100 | |
|
0000 0000 0000 1001 1000 1000 1000 1101 0000 187 1000 | |443 =00000001 (1 in DPy
< | 10111011 (187 in DPy)
255| 0000 0000 0000 |255| 1001 1000 1000 1000 | 255 1101 0000 0000 ||
I
X=1111 g X=0111 ¢ X=0111 o—» X=0111 &> X=0101 ¢—» X=0101 o> X=0101 o> X=0101 g-—» X=0101 o> X=0101-
¥Y=0111 ¥Y=0111 Y=1111 ¥=1101 ¥=1111 ¥=1111 ¥=1111 ¥=1111 ¥=1111 ¥=1001

Fig.10: Mapping all rules to the direct memory, and how to match any rule against any packet.

0111 and is stored in the variable Y (Y=0111). The
X and Y values are fed to the AND operator (X=1111
AND Y=0111). The calculated result is 0111 and is
stored in the variable X (X < X AND Y). Then the
firewall reads the second octet of the packet’s source
IP (168) and fetches the data from location 168 of the
SIP5 block in memory. The result is 0111 and stored
in the variable Y. The algorithm will process as in the
previous step by ANDing the values in X (0111) and
Y (0111). The result obtained from the calculation is
stored in X (0111) again. The other field calculations
in the rule are the same as the previous steps. The
final output stored in X is calculated with the value
contained in the ACCEPT and DENY variables as
shown in Figure 10 (Right-hand side). The results
indicate what the firewall should do with the packet
p1, either passing or dropping it. In this example, X
is equal to 0001, and ACCEPT and DENY variables
are equal to 1011 and 0100, respectively. Therefore,
the resulting calculation of X and ACCEPT (X «
X AND ACCEPT) is 0001, and X and DENY (X «
X AND DENY) is 0000. The results show that p;
can continue to pass through to another network (X

AND ACCEPT # 0). The method of matching a
packet against the rules is shown in Algorithm 3.3

Algorithm 1 : Matching firewall rules

=

Input: n, Sip1,2,3,4, dip1,2.3,4, dp12, SIP123.4,
DIP; 23,4, DP1 2, ACCEPT, DENY
2: Output: {0,1}
3: X ¢ 11..1,, Y « 00...0,,
4: Y « SIP[sip1]1, X « X AND Y
5. Y « SIP[sipa]2, X < X AND Y
6: Y « SIP[sips]s, X + X AND Y
7: Y « SIP[sipals, X + X AND Y
8: Y « DIP[dip1]1, X + X AND Y
9: Y < DIP[dipa]2, X ¢ X AND Y
. Y « DIP|[dips]s, X « X AND Y
. Y « DIP[dips]s, X « X AND Y
.Y « DPldpi]1, X + X AND Y
.Y + DPldps]a, X + X AND Y
: if X AND ACCEPT # 0 then
Print “ACCEPT MATCH”, Return 1

16: else if X AND DENY # 0 then

17 Print “DENY MATCH”, Return 0
18: else

19 Print “MISMATCH”

20: end if

To find out which rule number matches a packet
(p1), consider where the data bit appears as 1 in X.
For this example, the rule that matches against p; is

42 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.16, NO.1 March 2022

rule number 1 (X=0001). If a packet matches rule
number 2, the result is 0010. If it matches rule num-
ber 3 (X=0100), it is 0100 (DENY=0100, X AND
DENY = 0100).

The algorithm used for searching for the rule num-
ber is shown in Algorithm 3.3 This direct bit-level
memory matching is similar to a bloom filter [17],
but it has an advantage over the bloom filter. That
is, it can point to the number of rules.

Algorithm 2 : Searching the rule number

Input: x
Output: n
n < 0, len < len(x)
while x[n] # 1 do
n=n-+1
if n == len then
Print “Can’t find the rule”
Return NULL
end if
10: Print “Discovered the rule number: 7 n
11: Return n
12: end while

4. FAST FIREWALL FRAMEWORK

As the proposed firewall modifies several func-
tional structures such as rule design, rule creation,
conflict elimination, and rule verification (rule match-
ing), this research to create FFF (F3) has to redesign
the firewall from the kernel to the user interface, as
shown in Figure 11. The details of FFF development
are presented next:

4.1 Implementing the Firewall Core

A firewall core is a critical software system that
drives and controls all the firewall functionality.
Its tasks include transmitting and dropping data
with the kernel-level operating system, verifying rule
anomalies and conflicts, matching rules against pack-
ets, and packet analysis, etc. For this paper, the fire-
wall core was developed using the C/C++ language
(GCC 4.4.7) and GNU Make 3.8 on 64-bit Linux
kernel version 2.6, namely FFF _klm.ko, as shown
in Figure 11 (in Kernel Space). The FFF klm.ko
kernel module is responsible for filtering incoming
packets that flow from the incoming network card
(Network Interface Card;), Netfilter Kernel Mod-
ules (NKM), and the built-in software package called
Inbound filtering. To process packets with the
NKM, FFF klm.ko is always executed via the built-in
Procf_read and Procf_write function. Once the pack-
ets have been filtered, they are verified against the
firewall rules configured from the command-line (in
the user space) by Rule Matching (RM). If such pack-
ets can be matched to any of the rules, they must be
either forwarded to the destination network via the
outgoing network card (Cards) or blocked. On the
other hand, if they match no rules, they must be im-
plicitly thrown away.

User Space:

Command-line interface (FFF.o)
e Insert ¢ Update « Help ¢ Parse Command
¢ Delete ¢ Print ¢ FMFE (PM)
]

L Kernel Space: \V
Linux Kernel
Firewall Core (FFF_Kklm.ko)
Inbound filtering e Memory Mapping (MM)|
Outbound filtering ¢ Rule Matching (RM)

Procf_read
Procf_write

‘ Netfilter Kernel Modules (NKM)
{
R -

L Physical Layer:
l Network Interface Card, | | Network Interface Card, ‘

Packets flow in Packets flow out

Fig.11: FFF (F®): Fast Firewall Framework.

4.2 Implementing the User Interface

Any decision of the firewall core is executed via
the rules that the user configures in the User Space
with the command-line user interface (FFF.o). The
syntax of the rules of this research is similar to IPT-
ables [2]. Therefore, administrators can configure
them immediately without any learning difficulties.
The grammatical form of the rules is shown in Ta-
ble 4. According to the first example rule, “fff —out
—srcip 192.168.1.0 —mask 255.255.255.0 —destip any —
destport 80 —action accept” means to allow (accept)
the network 192.168.1.0 (256 IP addresses) to access
any web servers (HTTP = port 80), and it applies to
the outbound interface (-out). When the grammar
of the rules is applied to the rules in Table 3, the
results are shown in Table 5. The rules can be recon-
figured at any time with Insert, Delete, and Update
commands. Before the created rules are forwarded
to the firewall core to be executed on-demand, they
must always be parsed for grammatical integrity first
with Parse Command (PM) in userspace, as shown in
Figure 11. When the interpretation of the rules does
not make any mistakes, they are always checked for
conflicts by the FMFE method. After all conflicting
rules are resolved, they are passed to the firewall core
by the Procf read and Procf_write to map the rules
into the direct memory using the Memory Mapping
approach (MM), which is the last step of FFF. Then
it is ready to run.

FFF: Fast Firewall Framework to Enhance Rule Verifying over High-speed Networks 43

Table 4: The FFF command-line syntazx.

Command Description Example of how to use

fff The firewall name fff

in, out Inbound, outbound interface ::)li\t

srcip Source IP address —sreip 192.168.1.0
—srcip any

mask Subnet mark of IP address —mask 255.255.255.0

destip Detination IP address ~destip 200.0.0.0
—destip any
“srcport 1234

srcport Source Port —srcport 100-200
—srcport 1234, 1350

] o —destport any

destport Destination Port destport 443, 8080
—proto tcp

proto Protocol proto udp

proto all

action Decision of rule 7athon accept
—action deny

delete Delete any rule delete 5

print Print all rules print

help Help command —help

exit, quit Exit program —exit, —quit

5. PERFORMANCE EVALUATION

There are three metrics used for evaluating fire-
wall effectiveness in this paper: throughput, time,
and space complexity, which are detailed below.

5.1 Throughput

The evaluated firewalls were deployed on a produc-
tion network, as shown in Figure 12. The client-side
network connectivity starts from a client to the Inter-
net via ISP (3BB) using VDSL technology, which has
a 100/50 Mbps (download/upload stream). IPSets,
IPack, and FFF are installed in the font of the VDSL
router to evaluate their effectiveness using the IPERF
client software [18]. The sever-side network starts
from the Internet to the server at Mahasarakham
University via UNINET (ISP). This server has soft-
ware to estimate the packet throughput, known as
the IPERF server. The criteria for evaluating fire-
walls consist of several factors: TCP and UDP packet
transfer rates, and the number of rules. The TCP
packet evaluation criteria consist of the window size
as 16, 32, and 64 KB, respectively. The time interval
is equal to 1 sec, and the concurrent connection limit
is one channel. The data types used for the transfer
test are packets and binaries. The UDP bandwidth
used to evaluate the firewalls is 100 Mbps. Rule sets
with 100, 500, 1,000, 2,000, 3,000, 4,000, 5,000, 10,000
rules were used.

Reply packet

b
1 Gigabit m | Gigabit -
o =
Internet | | (3BB)
B - :%3}
W @

I
|
10 Gigabit ‘/ Request packet \1 77777 J[o T‘ .
T e T T Router VDSL Cllient side
Servér side) J Mahasarakham 100/50H1bps i

i

I
i | I University (VSU) ! : i
i | ! I:j‘ Firewall |
| ! 3 | |
! R ’ ! IPERF Client —=— P

5

I o I N / i
\‘ ‘ '}

IPERF Server : -

| IPSets, IPack, FFF|
\ /

evaluating

Fig.12: Network topology for

IPSets/IPack/FFF.

For firewalls’” TCP throughput running on the real
network connection, Figure 13, 14, and 15 show the
throughput of IPSets, IPack, and FFF packet trans-
fer using different TCP window sizes (WS), i.e., 16,
32, and 64 KB, respectively. The number of firewall
rules changes ranging from 100 to 10,000. The aver-
age throughput of each firewall to transfer packets set
the window size as 16 KB is 912.75 (IPSets), 923.87
(IPack), and 924.71 KB/sec (FFF), respectively. The
results show that all firewalls have similar through-
put, where packet transfer rates differ no more than
1.2 KB/sec. By increasing the size of windows from
16 to 32 KB, the overall throughput of firewalls ap-
proximately increases 1.75 times on average (from 0.9
to 1.6 MB/sec). Likewise, when the window size is
set to 64 KB, all firewalls can transfer packets bet-
ter, increasing from 1.6 to 2.1 MB/sec. In the case of
evaluating the throughput of TCP by communicating
over the binary data, shown in Figure 16, 17, and 18,
the size of the windows is increased from 16, 32, and
64 KB, respectively, similar to the TCP packets. The
results from our overall evaluation show that FFF
has a slightly higher throughput than the other two
firewalls, and the speed of rule matching tends to be
relatively stable. The maximum speed of binary data
transfer is approximately 18 Mbps on average.

Transfer TCP packets (window size = 16KB)
#—IPSets IPack FFF

100 500 1,000 2,000 3,000 4,000
Number of firewall rules

5,000 10,000

Fig.13: TCP throughput (packet) with WS=16K.

Transfer TCP packets (window size = 32KB)

—=—IPSets TPack FFF

100 500 1,000 2,000 3,000 4,000 35,000 10,000

Number of firewall rules

Fig.14: TCP throughput (packet) with WS=32K.

44 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.16, NO.1 March 2022

Table 5: Ezamples of FFF firewall rule syntax.

Rule Rules built according to syntax Meaning

1 fff —in —-srcip 192.168.1.0 —mask 255.255.255.0 Allows 256 source IPs to connect to 256 destination IPs
—destip 100.50.0.0/24 —destport 80-90 —action accept which are open with port number 80-90.

2 fff —in —-srcip 192.168.1.50-200 —destip 100.50.0.100-200 Allows 151 source IPs to connect to 101 destination IPs
—destport 50-79 —action accept which are open with port number 50-79.

3 fif —out —-srcip 192.168.1.20-150 —destip 100.50.0.100-255 131 source IPs are not allowed to connect to
—destport 91-100 —action deny 156 destination IPs that are open with ports numbered 91-100.

4 fif —in —-srcip 172.16.1.0 —mask 255.255.255.0 —destip all Allows 256 source IPs to connect to all destination IPs
—destport 21-22, 80, 443 —action accept which are open with port numbers 21-22, 80, 443.

Transfer TCP packets (window size = 64KB)

—u—IPSets IPack FFF

pREEESOEE
RSB

BEE3

=
1=}
=3

Throughput (KB/sec)
B0 B SO 0 JO 40 10 O 10 10

100 500 1,000 2,000 3,000 4,000 5,000 10,000
Number of firewall rules

Fig.15: TCP throughput (packet) with WS=64K.

Transfer TCP binary (window sizes = 16 KB)

#—TIPSets IPack FFF

100 500 1,000 2,000 3,000 4,000 5,000 10,000
Number of firewall rules

TCP throughput (binary) with WS=16K.

Throughput (Mbps)
=5
38 38

11.00
10.50
100 500 1,000 2,000 3,000 4,000 35,000 10,000
Number of firewall rules
Fig.17: TCP throughput (binary) with WS=32K.
18.40
2 1820 .
) -
& 18.00 a
<
21‘.80 - —
£1760
£l
g 1740
E 1720
17.00
100 300 1,000 2,000 3,000 4,000 5000 10,000
Number of firewall rules
Fig.18: TCP throughput (binary) with WS=64K.

Since UDP has less overhead associated with con-
nections, error checks, and the retransmission of miss-

ing data. Therefore, it can transfer large volumes of
data quickly. Besides, it is very suitable for test-
ing real-time or high-performance applications like
high-speed firewalls. According to the UDP through-
put shown in Figure 19, the firewalls are rated for
throughput by packet transfer with a bandwidth size
of 100 Mbps. The results clearly show that the fire-
walls can transfer UDP packets about 15 times more
quickly than TCP packets. FFF has the best perfor-
mance, with an average maximum throughput of 37.4
Mbps. Likewise, when testing all firewalls against the
binary data transfer method like in Figure 20, the
throughput is very high (Approx. 95.4 Mbps), almost
the same as the maximum configured bandwidth. As
mentioned above, it shows that communication in the
binary format over the UDP is the fastest, and the
fastest firewall capable of verifying the binary transfer
in this situation is FFF.

Transfer UDP packets (bandwidth=100 Mbps)

—o—IPSets IPack FFF

100 500 1,000 2,000 3,000 4000 5000 10,000
Number of firewall rules

Fig.19: UDP throughput (packet).

100 500 1,000 2000 3,000 4000 5,000 10,000
Number of firewall rules

Fig.20: UDP throughput (binary).

5.2 Time Complexity

There are two types of time estimates for high-
speed firewalls: rule establishment time and rule ver-
ification time. IPSets takes time to generate keys
from rules and hashes them into memory without col-

FFF: Fast Firewall Framework to Enhance Rule Verifying over High-speed Networks 45

lision. Therefore, the rule establishment time is the
key generation time plus hashing time, and that is
O(n?) [11]. Likewise, with IPack, it takes time to
eliminate conflicts, time for mapping the rules tree
to three-dimensional arrays, and time to pack three-
dimensional arrays to one dimension arrays. There-
fore, the total time of IPack to establish the rules is
O(n?) [11], the same as for IPSets. FFF needs less
time than both firewalls. FFF requires time to elimi-
nate the rule conflicts and some time to map rules into
the direct memory, so the total time it takes to im-
plement the rules is O(n). Additionally, it has a less
complex data structure for storing rules than IPack,
similar to IPsets. The time to verify the rules (match-
ing rules) for all three firewalls is O(1) because IPSets
uses the hashing technique, and TPack and FFF use
indexing methods to point directly to the memory
where the rules are stored.

5.3 Space Complexity

The space complexity is proportional to the main
memory used to store rules while the firewall is run-
ning. IPSets consumes memory for rules (hashed
keys) in two tables: Table G and V. Because of
the large number of keys generated by the rules, the
IPSets maker requires increasing the memory space in
cases of insufficient storage until it is equal to O(2").
For example, in Table 3, from r; to r3, when they
are made as keys of type ’hash:net,port,net’, the to-
tal number of keys is 1,336,335. If each key uses 32-
bits of data, then the amount of memory consumed
is 10.69 MB.

1,336, 335(keys) * 32(bits) * 2(tables)

IPSets =
Sets 8% 106

=10.69 M B

Assume that IPSets is assigned the default memory
value of 8 MB. Then, the next memory allocation
which result in insufficient memory is n = 4 (2* = 16
MB). The memory consumption in the case of IPack
is constant because the arrays have a fixed size, and
the formula is 65,536 + (2,322 * n), where n is the
number of rules. In Table 3, the total memory used to
store [Pack rules is 0.299 MB. Thus, IPack memory
space consumption is O(n).

65, 536 * 32(bits) + 2,322 % 4(n) * 32(bits)

IPack =
8 x 106

=0.299 M B

Finally, FFF uses ten blocks of memory to store
rules, as shown in Figure 10. Each block is equal to
256 positions, and each position is n bits, where n is
the number of rules. As an example from Table 3,
there are four rules. Therefore, FFF consumes little
memory to store the available rules:

10 % 256 * 4(n)
8 % 106
= 0.00512 M B

FFF =

The memory usage increases depending on the rate
of change of the n value. One rule is equal to one
bit. The space complexity of FFF is O(n) where n is
the number of bits. Assuming the tested rules range
from 1 to 10000, the memory used for each location
is 32 bits, and the number of keys generated from
each IPSets rule is a constant of 4096 keys (calculated
from the average). As a result, the memory required
to store all rules is shown in Figure 21.

The memory consumption of IPSets, IPack

and FFF
IPSets IPack FFF
180
& 160
S 140
& 120

0 = - -
100 200 300

500 1,000 2,000 3,000 4,000 3,000 10,000
Number of firewall rules

Fig.21:
firewall.

The memory consumption trend of each

6. CONCLUSION

This research has successfully designed and devel-
oped a high-speed firewall framework named FFF
to address previously published high-speed firewall
drawbacks in IPSets and IPack. Each firewall eval-
uated in this research takes similar time to verify
packets against the rules and matching is constant,
that is O(1). In addition, the time to establish the
rules depends on the structural complexity of each
firewall, with the most complex being the IPack and
IPSets, respectively, which both take O(n?). In con-
trast, FFF takes less time to establish rules than both
of the other firewalls, and is O(n). The memory con-
sumption of each firewall is different depending on
the number of rules and the memory structure used
to store rules. IPSets consumes the highest memory
because the number of keys generated by rules is high.
On the other hand, FFF allocates the least memory
because its memory structure is bit-type data. Fi-
nally, the summary of time, space complexity, and
other features for the firewalls is shown in Table 6.

46

ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.16, NO.1 March 2022

Table 6: Summary of IPSets, IPack and FFF per-

formance evaluation.

. R Evaluation results

Firewall feature list 1PScts TPack FEE
Time for building structures O(n?) O(n?) O(n)
Time for rule verifying O(1) O(1) O(1)
Time to look up the rule no. N/A O(1) O(n)
Memory consumption o(2™) O(n) O(npit)
TP subnet support (A - C) C only ATl All
Basic operations Match only All All
Checking for rule conflicts No Yes Yes
Eliminating rule conflicts No Yes Yes
Skills for handling rules High Low Low
Technique for matching rules Hashing Tndexing Indexing
Data structure complexity Low High Low

Remarks: the basic operations: matching, forwarding and dropping the
packets; N/A: IPTables operates this function instead.

Note: Examples of FFF source files can be down-

loaded from https://github.com/Suchart-k/FFF.

ACKNOWLEDGEMENTS

This Research was Financially Supported By Fac-

ulty of Informatics, Mahasarakham University Grant
year 2022.

References

[1]

Microsoft 2021: Windows Defender Fire-
wall with Advanced Security. https://docs.
microsoft.com/en-us/windows/security/
threat-protection/windows-firewall/
windows-firewall-with-advanced-security
(2021). Accessed 23 Apr 2021.

Diekmann, C., Hupel, L., Michaelis, J.,
Haslbeck, M., Carle, G.: Verified iptables
Firewall Analysis and Verification. Journal of
Automated Reasoning 61(1), 191-242 (2018).
doi:10.1007/s10817-017-9445-1.

Richard Deal, Cisco Router Firewall Security,
Cisco Press, 2004.

H. Hamed, A. El-Atawy and E. Al-Shaer,
“On Dynamic Optimization of Packet Match-
ing in High-Speed Firewalls,” in IEEE Jour-
nal on Selected Areas in Communications, vol.
24, no. 10, pp. 1817-1830, Oct. 2006, doi:
10.1109/JSAC.2006.877140.

S. Khummanee, A. Khumseela and S. Puang-
pronpitag, “Towards a new design of firewall:
Anomaly elimination and fast verifying of fire-
wall rules,” The 2018 10th International Joint
Conference on Computer Science and Software
Engineering (JCSSE), 2013, pp. 93-98, doi:
10.1109/JCSSE.2013.6567326.

T. Chomsiri, X. He, P. Nanda and Z. Tan, “Hy-
brid Tree-Rule Firewall for High Speed Data
Transmission,” in IEEE Transactions on Cloud
Computing, vol. 8, no. 4, pp. 1237-1249, 1 Oct.-
Dec. 2020, doi: 10.1109/TCC.2016.2554548.

D. Rovniagin and A. Wool, “The geometric ef-
ficient matching algorithm for firewalls,” 200/
23rd IEEE Convention of FElectrical and Flec-
tronics Engineers in Israel, 2004, pp. 153-156,
doi: 10.1109/EEEIL.2004.1361112.

8]

[12]

[13]

[18]

H. Thomas, “HiPAC High Performance Packet
Classification for Netfilter,” Master Thesis, Uni-
versitat des Saarlandes, Fachbereich, German,
2004.

IPSets. (2021, 10 Feb). IP set features. [On-
line]. Available: https://ipset.netfilter.
org/features.html.

J. Kadlecsik and G. Psztor, Netfilter perfor-
mance testing, Netfiler Research Report 2004,
December, 2020.

Suchart Khummanee, “IP Packing Tech-
nique for High-speed Firewall Rule Verifica-
tion,” Journal of Internet Technology, vol.
20, no. 6 , pp. 1737-1751, Nov. 2019, doi:
10.3966,/160792642019102006006.

E. S. Al-Shaer and H. H. Hamed, “Modeling
and Management of Firewall Policies,” in IFEE
Transactions on Network and Service Manage-
ment, vol. 1, no. 1, pp. 2-10, April 2004, doi:
10.1109/TNSM.2004.4623689.

Khummanee S. (2019) The Semantics Loss
Tracker of Firewall Rules. In: Unger H., Sod-
see S., Meesad P. (eds) Recent Advances in In-
formation and Communication Technology 2018.
IC2IT 2018. Advances in Intelligent Systems and
Computing, vol 769. Springer, Cham. https:
//doi.org/10.1007/978-3-319-93692-5_22.
L. C. Noll, The core of the FNV hash, FNV Re-
search Report 2013, April, 2021.

R. Shahnaz, A. Usman and I. R. Chughtai, “Re-
view of Storage Techniques for Sparse Matrices,”
2005 Pakistan Section Multitopic Conference,
2005, pp. 1-7, doi: 10.1109/INMIC.2005.334453.
S. Khummanee, P. Chomphuwiset, P. Pruksasri
“Decision Making System for Improving Firewall
Rule Anomaly Based on Evidence and Behav-
ior,” Advances in Science, Technology and Engi-
neering Systems Journal, vol. 5, no. 4, pp. 505-
515 (2020), doi: 10.25046/2aj050460.

H. Byun and H. Lim, “Functional bloom fil-
ter, better than hash tables,” 2018 Interna-
tional Conference on Electronics, Information,
and Communication (ICEIC), 2018, pp. 1-3, doi:
10.23919/ELINFOCOM.2018.8330628.

B. A. Jon Dugan and E. Seth, IPERF - the ulti-
mate speed test tool for TCP, UDP and SCTP,
IPERF testing report 2017, June, 2020.

Suchart Khummanee received the
B.Eng. degree in Computer Engineer-
ing from the King Mongkut’s Institute of
Technology Ladkrabang, the M.Sc. de-
gree in Computer Science from the Khon
Kaen University, and the Ph.D. degree
in Computer Engineering from the Khon
Kaen University, Thailand. He is cur-
rently a full lecturer of Computer Sci-
ence at the Mahasarakham University,
Thailand. His research interests in the

b

network security, computer networks, agricultural robotics,
and Internet of things (IoT).

Panida Songram received a Ph.D. de-
gree in Computer Science from the King
Mongkut’s Institute of Technology Lad-
krabang. She is currently an Assistant
Professor at the Faculty of Informat-
ics, Mahasarakham University (MSU),
Thailand. Her research focuses on data
mining, algorithms, classification and
applications.

FFF: Fast Firewall Framework to Enhance Rule Verifying over High-speed Networks

=

47

Potchara Pruksasri has obtained
both B.Sc. and M.Sc. of Computer
Science at Khon Kaen University Thai-
land in 2000 and 2005 respectively.
In 2005, he has been employed as a
lecturer at Mahasarakham University,
Thailand. He is currently working on his
Ph.D. research at Computer Science De-
partment, Faculty of Informatics, Ma-
hasarakham University. His research fo-
cuses on information security and access

control of the supply chain information system to secure data
exchange of global supply chains.

