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ABSTRACT: In emerging heterogeneous networks, seamless vertical handover
is a critical issue. There must be a trade-o� between the handover decision delay
and accuracy. This paper's concern is to contribute to reliable vertical handover
decision making that makes a trade-o� between complexity and e�ectiveness. So,
the paper proposes a neuro-fuzzy architecture that combines the capacity of learn-
ing of the arti�cial neural networks with the power of linguistic interpretation
of the fuzzy logic. The architecture can learn from experience how executing a
handover to a particular access network a�ects the quality of service. Vertical
Handover Intelligent Control (VHIC) provides not only �exibility for initial de-
ployment but also the adaptive capability to optimize the vertical handover with
minimal human interference. Simulation results reveal that VHIC is fast, reliable,
and enhances the throughput. Also, It decreases the end-to-end delay from near
3.5ms to 0.1ms, the jitter to almost 0µs, and the packet loss to 0%.
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1. INTRODUCTION

Heterogeneous Networks (HetNets) have become
necessary to overcome the limitations of wireless ac-
cess networks, to help them to evolve, and to achieve
the always-best-connected concept [1]. However,
many challenges arise from the heterogeneity in mo-
bile networks. Vertical Handover (VH) is still a sig-
ni�cant challenge that needs resolution before a truly
converged network can be relized. User Equipment
(UE) executes a VH when it switches between two
access networks of di�erent technologies. VH is used
to prevent a possible severe loss of performance or
connection loss caused by technical reasons.

The advanced HetNets require fast, e�cient, and
reliable VH. Many existing handover approaches are
motivated by their simplicity. However, most of them
focus on either low complexity, reliability, or perfor-
mance.

Arti�cial intelligence is required to keep up with
the rapid evolution of future generations of HetNets
and services. Learning neuro-fuzzy architectures are

ever-evolving and can address the problem of uncer-
tain, stochastic, and unavailable access network pa-
rameters in realistic HetNets. This paper proposes
a reliable architecture to reduce handover decision
delay and maintain the quality of real-time services
at the highest level. The proposed architecture de-
pends on Fuzzy Logic (FL), Arti�cial Neural Net-
works (ANNs), and Reinforcement Learning (RL). It
learns from the experience of how executing a VH
to a particular Candidate Network (CN) a�ects the
Quality of Service (QoS).

The structure of the rest of this paper is as follows.
Section 2 presents related work. Section 3 presents
the proposed architecture. Section 4 explains the
learning approach used. Section 5 presents a perfor-
mance evaluation of the proposed architecture. Fi-
nally, Section 6 concludes the paper.

2. RELATED WORK

Section 1 mentions that many existing VH pro-
posals focus on either complexity [2][3], performance
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[4][5][6], or reliability [7]. In the paper [2], Ben Zineb
et al. proposed a fuzzy Multiple Attribute Decision
Making (MADM) approach to reduce the high VH
decision delay and complexity of MADM solutions.
The proposal in [3] reduces the handover delay signif-
icantly. This proposal integrates IEEE 802.21 media
independent handover and software-defined network-
ing. The MADM approach [4] satisfies the perfor-
mance and user preferences to a greater extent. How-
ever, the VH decision delay is high. Also, users often
choose a low-cost access network, which leads to han-
dover failure in many instances. In paper [5], a two-
stage FL based VH is developed based on the QoS-
requirements. The simulation results show that it of-
fers better performance than traditional MADM. The
reference [6] presents a load-balancing VH approach
between WiMAX and Wi-Fi. The system improves
the capacity and QoS based on the information ex-
change between networks and mobile UEs. However,
the exchange of information and the VH which are de-
signed to give preference to users lead to a bottleneck
in wireless networks. That further leads to handover
failure. Li et al. [7] proposed Bandit and Threshold
Tuning (BaTT) to minimize the regret of handover
failures and augment the reliability in extreme mo-
bility. BaTT uses ε-binary-search and further devises
opportunistic Thompson sampling, which optimizes
the sequence of the target CNs to measure for reliable
handover with a particular regret. Their experiment
over a real LTE dataset from Chinese high-speed rails
validates a significant reduction of a 29.1% handover
failure.

VH over emerging HetNets requires automation
and intelligence [8]. AI approaches can achieve excel-
lent performance because they are inspired by nature
findings and human reasoning.

FL relies on human intelligence to simplify the
decision-making process under uncertainty [9]. It
takes fuzzy variables as inputs and rapidly produces
a decision using IF-THEN rules. Therefore, FL has
simple computation, implementation, and interpre-
tation. Reference [10] presents a VH approach that
maximizes the user’s satisfaction. Simulation results
validate that this approach can solve the ping-pong
phenomenon and effectively take into account differ-
ent scenarios, vehicle speeds, and network conditions.
Authors in [11] used FL to filter out CNs that do not
satisfy the QoS requirements. Thus, the processing
time decreases. Authors in [12] used FL to reduce
the ping-pong effect. But, the scalability of a FL
controller in terms of input and output variables is
extremely low because the configuration of the rules
is manual. So, the FL implementation considers only
a few decision criteria. Also, FL based proposals fail
to adapt based on the application type.

Similar to the biological neural networks, ANNs
are composed of connected nodes (neurons). ANNs
afford a high level of learning from old decisions. In

[13], the authors showed the ability of ANNs to pro-
vide automatic VH decision making. Besides, ANNs
can achieve reliable performance within challenging
scenarios [14][15]. When it comes to real-time appli-
cations, ANNs afford higher accuracy and efficiency.
They tend to experience lower packet loss and sat-
isfy users in terms of QoS. ANN learning/training
increases VH decision delay. But they proceed in par-
allel, which permits solutions to problems where mul-
tiple constraints have to be satisfied simultaneously.

Taking note of the learning and reasoning abilities
of the FL and ANNs approaches, the purpose of this
paper proposal is to enhance performance and relia-
bility and achieve seamless near real-time VH.

3. PROPOSED VERTICAL HANDOVER
INTELLIGENT CONTROL ARCHITEC-
TURE

The proposed Vertical Handover Intelligent Con-
trol (VHIC) architecture is conceptually similar to
the Approximate Reasoning based Intelligent Control
(GARIC) architecture proposed in [16]. In GARIC,
the first ANN states evaluations, the second ANN ap-
plies FL to recommend actions, and the third ANN
determines to what degree these actions should be
modified. GARIC architecture tunes its controller
through updating weights on links in these networks.
As long as the learning proceeds, the followed action
more often is the one recommended by the controller.
Many real-world control problems can make use of
GARIC; this paper proposes VHIC as an adapted
version of it to control VHDM in HetNets. GARIC
inspired our VHIC design for many reasons:

• The non-linearity between inputs and outputs
makes the analytical modeling of the system very dif-
ficult.
• Approximate reasoning based controllers do not re-
quire analytical models.
• GARIC can learn and tune the controller even
when only weak reinforcement (binary failure signal)
is available. It provides an adaptive and non-linear
system that discovers how to deliver flexibility in the
input-output relation.
• GARIC uses a discounted reward approach that is
less complicated than average reward approaches.

Figure 1 shows the proposed VHIC, where the con-
troller and evaluator are a Decision Making Network
(DMN) and an Evaluation Network (EN), respec-
tively. DMN decides whether to continue with the
currently connected network or to switch to another
one. EN learns to become a good evaluator of DMN
decisions. In GARIC, the controller and evaluator
have the same inputs. In VHIC, EN inputs are the
criteria values of the current access network (previous
decision). Also, EN uses a boolean failure signal to
indicate whether or not a failure occurs. The collec-
tion of decision criteria values for all available CNs is
the input to DMN.
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Fig.1: Flowchart of VHIC Architecture

3.1 Evaluation network

EN is a standard two-layer feed-forward network.
This model is more compact and faster to evaluate
than other ANNs. EN has two input nodes with a
bias node, three hidden nodes, and one output node.
As shown in Figure 2, A is the weights matrix of
connections between input and hidden nodes. B is
the weights matrix of connections between input and
output nodes. C is the weights matrix of connections
between hidden and output nodes. Each hidden node
receives three inputs xj and has three weights, while
the output node has six weights and receives from hid-
den nodes and directly from input nodes. The output
of hidden units yi is the sigmoid activation function
in Equation 1. The latter is preferred since it is real-
valued, differentiable, and allows less computation.

yi[t, t+ 1] =
1

1 + exp(−
∑3

j=1 aij [t]xj [t+ 1])
(1)

In Equation 2, υ denotes EN output, which is a
score indicating the decision goodness.

Fig.2: Evaluation network
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υ[t, t+ 1] =

3∑
j=1

bj [t]xj [t+ 1] +

3∑
i=1

ci[t]yi[t, t+ 1] (2)

Using double-time dependencies t and t+1 detects
whether weights update or the change in inputs cause
the change in υ, compares υ over time, and notices
whether better decisions or worse decisions are made.
To predict the future reinforcement r̂, Equation 3
suitably discounts υ and combines it with the external
boolean failure signal r. The latter indicates whether
or not a decision failure occurs.

r̂[t+1] =

 0 start,
r[t+ 1]− υ[t, t] failure,
r[t+ 1] + γυ[t, t+ 1]− υ[t, t] otherwise

(3)

γ is the discount rate that tells how important fu-
ture rewards are to the current state. γ takes a value
between 0 and 1. The estimation above of r̂ gives less
weight to the future value of υ than its current value.

3.2 Decision making network

DMN is a feed-forward neuro-fuzzy network with
five layers of nodes. Each layer performs one stage of
the fuzzy inference process (refer to Figure 3).

Fig.3: Decision making network

• Layer 1 is the input layer and consists of real-valued
decision criteria. Its nodes do no computation. Many
input variables may cause VHIC to be less sensi-
tive, and handover might not occur when necessary.
Therefore, there are only two input variables.

• Layer 2 is the fuzzification layer where a node cor-
responds to one possible linguistic value V of an in-
put variable. A node feeds its output to all the rules
that use the label V in their ‘IF’ part. This out-
put is a Membership Function (MF) µV (xj) that can
take values ranging from zero to one. In this paper,
VHIC uses triangular and trapezoidal MFs because of
their simple formulas and computational efficiency.
Besides, both triangular and trapezoidal MFs have
been used extensively, especially in real-time imple-
mentations. The triangular function in Equation 4 is
defined by a lower limit a, an upper limit b, and a
value m, where a < m < b.

µV (x) =


0 x 6 a or x > b,
x−a
m−a a < x 6 m,
b−x
b−m m < x < b

(4)

The trapezoidal MF is defined by a lower limit a, an
upper limit d, a lower support limit b, and an upper
support limit c, where a < b < c < d. Two special
cases of trapezoidal MF are used; the first one is used
with parameters a = b (refer to Equation 5), and the
second one is used with parameters d = c (refer to
Equation 6)

µV (x) =


0 x > d,
d−x
d−c c 6 x 6 d,

1 x < c
(5)

µV (x) =


0 x < a,
x−a
b−a a 6 x 6 b,

1 x > b
(6)

• Layer 3 implements the conjunction ωR of rule R
antecedents. Each node corresponds to a rule in the
rule base. The inputs come from all the nodes in
Layer 2 that participate in the ‘IF’ part of that rule.
The conjunction is done by the Softmin operator in
Equation 7 that is a softer version of the minimum
operator.

ωR =

∑
i µiexp(−κµi)∑
i exp(−κµi)

(7)

Parameter κ controls the Softmin operator hardness.
We recover the usual minimum when κ −→∞.
• Layer 4 corresponds to consequents. The input of
a consequent node comes from the rule that uses it.
Its output is the inverse µ−1V (ωR), which means a de-
fuzzification applied to the rule R. DMN applies the
Local Mean of Maximum (LMoM) before the combi-
nation of consequents to determine µ−1V (ωR). LMoM
works by inverting the non-constant portions. For a
triangular MF, LMoM gives Equation 8.

µ−1V (ωR) = mωR +
1

2
(a+ b)(1− ωR) (8)

Equation 9 and 10 calculates LMoM for trapezoidal
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MFs with parameters a = b and c = d, respectively.

µ−1V (ωR) = d+ ωR(c− d) (9)

µ−1V (ωR) = a+ ωR(b− a) (10)

• Layer 5 has one node that combines recommenda-
tions from all fuzzy control rules in the rule base and
uses the weighted sum in Equation 11 to calculate the
output QCN for every CN. Then, DMN recommends
the CN with maximum value Q.

QCN =

∑
R ωRµ

−1(ωR)∑
R ωR

, Q = maxQCN

(11)

3.3 Recommended decision modification

Values of r̂ from the previous time step and the
recommended decision Q are used to generate a fi-
nal decision Q’ that corresponds to the selected CN.
Q’ is stochastically chosen. The deviation func-
tion between Q and Q’ must be some non-negative,
monotonically decreasing function. For example, in
this paper, the deviation cannot be larger than the
exp(−r̂) function 12.

|Q′ −Q| ≤ exp(−r̂(t− 1)) (12)

The magnitude of this deviation is large when r̂ is
low and small when r̂ is high. That means if the pre-
viously made decision is bad, there must be a large
deviation from Q and an appropriate recommenda-
tion from DMN. In this case, there may be more than
one CN to satisfy Equation 12. So, VHIC considers
Q′ = QCN where |QCN − Q| is the closest to the
exp(−r̂(t − 1)) value. But, if the previously selected
decision is a good one, the deviation is small. Then,
possibly there is no other CN (with value QCN ) to
satisfy Equation 12. In this case, VHIC selects the
recommended CN. That shows that DMN remains
consistent with the fuzzy control rules.

4. LEARNING MECHANISM

4.1 Learning in evaluation network

In EN, learning occurs by adjusting weights and
resembles the reward/punishment scheme in ANNs.
If positive (negative) r̂ is received, values of weights
would be rewarded (punished) and changed in the di-
rection that increases (decreases) their contribution
to υ. Equation 13 updates the weights matrix B
where β is the learning rate. Similarly, Equation 14
updates weights matrix C. The introduction of the
bias is to fluctuate the activation function yi to the
right or left, and it has a constant value of 1. So, the
bias term is not trainable.

bj [t+ 1] = bj [t] + βr̂[t+ 1]xj [t], β > 0 (13)

ci[t+ 1] = ci[t] + βr̂[t+ 1]yi[t, t] (14)

Equation 15 updates weights matrix A. r̂ is an
error measure because no direct error measurement
is possible, and knowledge of the correct decision is
not available. Therefore, if r̂ is positive, EN adjusts
the weights to increase the score υ, and vice versa.

aij [t+ 1] = aij [t]+

βr̂[t+ 1]yi[t, t](1− yi[t, t])sgn(ci[t])xj [t] (15)

4.2 Learning in decision making network

DMN learning occurs by changing parameters that
describe MFs and moving them to the left and right.
It is sufficient to adjust only consequent MFs, since
the modification of consequents may correct errors in
the specification of antecedents. For this reason and
computation simplicity, VHIC tunes only consequent
MFs. DMN fixes all other weights at 1. Vector ρ
includes parameters of all consequent MFs.

Q computation intends to maximize υ so that the
system avoids failure. Therefore, gradient descent
uses the learning rule in Equation 16 and estimates
the derivative ∂υ/∂ρ, in order to maximize υ as the
objective function of ρ.

∆ρ(t) = ηs(t)r̂(t)
∂υ

∂Q

∂Q

∂ρ
(16)

Equation 17 calculates ∂υ/∂Q by the instanta-
neous difference ratio because the dependence of υ
on Q is quite indirect and computationally complex.
The instantaneous difference ratio is not a good esti-
mator of this derivative. Therefore, VHIC uses only
its sign and assumes the inherent existence of the
derivative.

∂υ

∂Q
≈ sgn

(
dυ

dQ

)
≈ sgn

(
υ(t)− υ(t− 1)

Q(t)−Q(t− 1)

)
(17)

Q is known, differentiable, and depends directly on
ρ. Label V is parametrized by vector ρV which in-
cludes parameters a, b, m, and a, b, c, d of triangular
and trapezoidal MFs, respectively. The derivatives
in Equations 18, 19, and 20 are computed by sub-
stituting for µ−1V using Equations 8, 9, and 10, and
differentiating using Equation 11. These derivatives
are combined to compute ∂Q/∂ρV .

• Triangular MF:{ ∂Q
∂a = ∂Q

∂b = 1
2

ωR∑
r ωR

(1− ωR),

∂Q
∂m =

ω2
R∑

r ωR

(18)

• Trapezoidal MF with a = b:
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
∂Q
∂a = ∂Q

∂b = 0,
∂Q
∂c =

ω2
R∑

r ωR
,

∂Q
∂d = ωR∑

r ωR
(1− ωR)

(19)

• Trapezoidal MF with c = d:
∂Q
∂a = ωR∑

r ωR
(1− ωR)

∂Q
∂b =

ω2
R∑

r ωR
,

∂Q
∂c = ∂Q

∂d = 0

(20)

The learning rate factor in Equation 16 is a multi-
plication of a constant η set to a small positive value,
r̂(t), and the perturbation s(t) in Equation 21.

s(t) =
Q′(t)−Q(t)

exp(−r̂(t− 1))
(21)

The multiplication s(t)r̂(t) means if a large per-
turbation leads to a great decision, then weights take
an extra reward. If a large perturbation is not fa-
vorable, then it has minimal effect on weights values.
Since ρV controls the meaning of MFs, the fixed rules
become consistent with the change of weight values
until VHIC achieves good performance.

5. PERFORMANCE EVALUATION

5.1 Simulation environment

We use simulator the ‘ns-3’ and the ‘FuzzyLite’
library to implement VHIC. The considered macro
cell indoor scenario collocates Long Term Evolution
(LTE) eNodeB with small access points WiFi1 and
WiFi2. It involves UEs with low mobility (≤ 3km/h)
and Voice over Internet Protocol (VoIP) traffic to
evaluate the performance of VHIC. Initially, the mon-
itored UE connects to WiFi1. Then while it moves,
it detects WiFi2 and LTE connections and selects the
appropriate access network according to VHIC. Table
1 summarizes the simulation parameters.

5.2 Implementation

In this paper, input variables are throughput and
end to end delay. We assume that failure happens
when the end to end delay is greater than 150ms [17].
EN has 15 weights initialized randomly to values in
[-0.1,0.1]. The learning rate is β = 0.3, and the dis-
count factor is γ = 0.9.

Figures 4 and 5 show the antecedent and con-
sequent labels, respectively. Table 2 shows their
initial definitions. Three labels describe the input
variables: ‘Low’, ‘Medium’, and ‘High’. The out-
put variable is described by 9 labels: ‘Very Low’
(VL), ‘Low’ (L), ‘Somewhat Low’ (SL), ‘Medium
Low’ (ML), ‘Medium’ (M), ‘Medium High’ (MH),
‘Somewhat High’ (SH), ‘High’ (H), and ‘Very High’
(VH). DMN uses nine fuzzy control rules, as shown
in Table 3, that are constructed by using labels in
Table 2. There are six antecedent labels in Layer 2,

nine rules in Layer 3, and nine consequents in Layer
4. Softmin parameter is κ = 10. Learning rate is
η = 0.001.

Fig.4: Antecedents (throughput and end to end
delay) labels

Fig.5: Consequent (decision Q) labels

5.3 Results

It would be interesting to compare the VHIC
(learning FL) to VHDM-FL (VH Decision Making
based on FL only). The latter is a FL approach simi-
lar to the fuzzy controller of VHIC [18]. The adopted
performance metrics are throughput, end to end de-
lay, jitter, Packet Loss Rate (PLR), decision delay,
and a ratio of the decision to overall VH delays.

5.3.1 Throughput

Figure 6 represents the throughput obtained for
VHDM-FL and VHIC. VHDM-FL throughput is sta-
ble at 20kbps. On the other hand, VHIC enhances
the throughput.

5.3.2 End to end delay

The end to end delay metric is relevant to an-
alyze for real-time applications like VoIP. Figure 7
shows the performance results of end to end delay.
For VHDM-FL, the end to end delay decreases from
0.5ms to 0.2ms. In a brief time, VHIC lowers the
end to end delay from 3.5ms to 0.1ms. The VHIC
failure signal depends on the end to end delay, and as
learning proceeds, VHIC tries to eliminate failures.
Consequently, VHIC reduces the end to end delay
more quickly than VHDM-FL.
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Table 1: Simulation parameters

Parameter Value
UEs mobility model SteadyStateRandomWaypointMobilityModel
Propagation loss model indoorLossModel
Maximum queue delay for WiFi packets 500ms
Maximum queue size for WiFi 400 packets
WiFi Tx/Rx antenna gain 5dB
AP Tx power 18dBm
AP noise 5dBm
WiFi Rx Antenna 2
WiFi Tx Antenna 1
WiFi channel width 20MHz
UE noise 9dBm
UE Tx power 18dBm
UE Tx/Rx gain 0dBm
eNB TX power 46dBm
Macro eNB DL EARFCN 100
Macro eNB UL EARFCN 18100
Macro eNB bandwidth 25 RB
SRS periodicity 80
LTE RlcAm ReportBufferStatusTimer 20ms
LTE Tx buffer maximum size 10240B
LTE scheduler RrFfMacScheduler
LTE spectrum channel type MultiModelSpectrumChannel
eNB Antenna Model Type ParabolicAntennaModel
eNB Antenna Beamwidth 70 degrees
eNB Antenna maximum attenuation 20dBm
EPS bearer NGBR VIDEO TCP DEFAULT
VoIP data rate 24kbps
VoIP packet size 60B
VoIP On/Off time 5s
VoIP traffic model G.729A
VoIP packet inter-arrival time 20ms
ns-3 seed RngSeed 3
ns-3 number of trials RngRun 5

Table 2: MFs parameters for antecedents (3 labels) and consequents (9 labels)

Label a m b c d Label a m b c d
Low 0 - 0 10 50 Very Low (VL) 0 - 0 10 20
Medium 10 50 90 - - Low (L) 10 20 30 - -
High 50 - 90 100 100 Somewhat Low (SL) 20 30 40 - -

Medium Low (ML) 30 40 50 - -
Medium (M) 40 50 60 - -
Medium High (MH) 50 60 70 - -
Somewhat High (SH) 60 70 80 - -
High (H) 70 80 90 - -
Very High (VH) 80 - 90 100 100
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Fig.6: Throughput

5.3.3 Jitter

Jitter is a relevant metric to analyze because high
jitter values can lead to inadequate voice quality. Jit-
ter must be ≤ 20ms to have good voice quality [17].
According to Figure 8, on average, VHDM-FL jitter
is around 5µs. For VHIC, jitter decreases from the
average of 5µs to 0µs. When the UE connects to
WiFi, VHIC and VHDM-FL have some jitter. WiFi
can be particularly bad for creating jitter, and the
packet conflicts on WiFi increase with the increase in
the number of devices operating on the same chan-
nel. As much as the learning proceeds, VHIC finds
it reasonable to select LTE as the access network for
the UE. That minimizes the jitter and keeps it near
0µs.

Table 3: Decision control rules

Throughput End to end delay Q
Low Low SH
Low Medium ML
Low High VL
Medium Low H
Medium Medium M
Medium High L
High Low VH
High Medium MH
High High SL

5.3.4 Packet loss rate

Figure 10 represents the PLR obtained for VHDM-
FL and VHIC. On average, VHDM-FL PLR is 5%.
On the other hand, the PLR of VHIC decreases to
0%.

5.3.5 Decision delay

Figure 9 represents the decision delay, which is the
time duration to make a handover decision. VHDM-
FL is faster than VHIC. The latter has a 92% higher
decision delay than VHDM-FL because it uses learn-
ing capabilities. However, the VHIC decision delay
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does not exceed 1ms, so it guarantees the low de-
cision delay requirement for real-time applications.
This result is valuable because nowadays, HetNets,
mobile devices, and real-time applications require a
pleasant performance level at a lower cost in terms of
processing time.

5.3.6 Decision to overall VH delays

The decision to overall VH delays ratio is the ratio
between decision and total VH delays (time duration
between handover initiation and execution). Table 4
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Table 4: Decision delay to overall VH delay ratio

Approach Simulation time (s) VH event Overall VH delay (µ s) ratio (%)
VHDM-FL 10 WiFi1 7→ WiFi2 153 28

VHIC 10 WiFi1 7→ WiFi2 674 84
1240 WiFi2 7→ LTE 668 84
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Fig.10: Vertical handover decision phase delay

shows the results of this ratio and VH events. The
VH delay should be no more than a few hundreds of
milliseconds. VHDM-FL and VHIC overall VH de-
lays do not exceed one millisecond. Therefore, both
approaches are fast and meet that condition to exe-
cute a seamless VH. VHDM-FL decision delay does
not exceed 28% of the overall VH delay. VHIC deci-
sion takes 84% of the overall VH delay. Still, VHIC
leaves enough time to the UE to properly switch to
the selected CN and avoid handover failures.

Compared to VHDM-FL, VHIC consumes more
time because of the learning part. If the knowl-
edge is incomplete, wrong, or contradictory, then EN
tunes DMN. In contrast, VHDM-FL relies on lin-
guistic rules only instead of learning and has no for-
mal approach for tuning. As we can see from the
results, combining ANNs and FL in VHIC should
unite their advantages and exclude their disadvan-
tages. Due to its learning capabilities, VHIC can
meet the requirements set for real-time applications
better than VHDM-FL and makes a better trade-off
between complexity, performance, and reliability.

6. CONCLUSION

This paper has highlighted the VH issue, which is
a constant process in today’s HetNets and usage sce-
narios. It has looked into ANN and FL based VH.
Then, it has proposed an architecture named VHIC
and based on FL, ANN, and RL. VHIC makes han-
dover decisions according to application requirements
and experience gained from past handover decisions.
VHIC provides not only flexibility for initial deploy-
ment but also the adaptive capability to optimize the
efficiency of VH with minimal human interference.

Compared to the classical FL based VH, the learning
included in VHIC yields better overall performance
and reliability with a decision delay that respects the
real-time requirement.

The next step in this research work will be to con-
sider VHIC in medium and high mobility environ-
ments and realize it in some 5G networking architec-
ture implementations. The goal is to see how results
may change, and evaluate the scalability, complexity,
performance, reliability, and real-time requirements
support in such environment.
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