
Software Defect Prediction Based on Feature Subset Selection and Ensemble Classification 213

Software Defect Prediction Based on Feature 
Subset Selection and Ensemble Classification

Ahmad A. Saifan1 and Lina A. Abuwardih2 

ABSTRACT

This research highlights a procedure which in-
cludes a feature selection technique to single out rele-
vant attributes, and an ensemble technique to handle
the class-imbalance issue. In this research we look
at two potential scenarios: (1) Ensemble models con-
structed from the original datasets, without feature
selection, and (2) Ensemble models constructed from
the reduced datasets after feature selection has been
applied. Four feature selection techniques are em-
ployed: Principal Component Analysis (PCA), Pear-
son’s correlation, Greedy Stepwise Forward selection,
and Information Gain (IG). The aim of this research
is to assess the effectiveness of feature selection tech-
niques using ensemble techniques. Five datasets, ob-
tained from the PROMISE software depository, are
analysed. Tentative results indicate that ensemble
methods can improve the model’s performance with-
out the use of feature selection techniques. Based
on the area under curve (AUC) performance mea-
surement PCA feature selection and bagging based
on K-NN perform better than both bagging based on
SVM and boosting based on K-NN and SVM. The
AUC values based on K-NN with PCA enhanced for
three datasets CM1, KC3, MC2. The AUC values for
the three datasets are 0.726, 0.775, and 0.750 respec-
tively. Feature selection techniques, including Pear-
son’s correlation, Greedy Stepwise, and IG, weaken
the ensemble models’ performance.

Keywords: Software Engineering, Software Defect
Prediction, Feature Selection, PCA, Bagging, Boost-
ing

1. INTRODUCTION

Introducing a software system that is free from de-
fects is a crucial aspect in the software engineering
domain. Software defect prediction techniques aim
to classify the defective portions of a software system
prior to its release. Timely prediction of software de-
fects permits software project managers to efficiently
manage people, cost, and time, which will boost the

Manuscript received on November 7, 2019 ; revised on March
28, 2020.

Final manuscript received on June 20,2020.
1,2The authors are with IS department, Faculty of IT,

Yarmouk university, Jordan., E-mail: ahmads@yu.edu.jo and
2013930022@ses.yu.edu.jo

DOI: 10.37936/ecti-cit.2020142.224489

software’s quality. The existence of defects in soft-
ware causes a reduction in quality which can result in
the failure of a software project [1]. Software quality
is measured using various software metrics including
depth of inheritance tree (DIT), lines of code (LOC),
number of children (NOC), and many more [2]. Se-
lecting which software metrics are helpful in predict-
ing the defects in software portions is an important is-
sue, and different studies have been conducted to date
to handle this issue such as [3, 4, 5]. Other studies
concentrated on using machine learning mechanisms
such as classification [6], clustering [7] and associa-
tion rules mining [8] to identify the defective parts in
the software system.

The classification technique is one type of machine
learning mechanism that is employed in software de-
fect prediction. It aims to categorize the parts of the
software that include defects. Classification consists
of two phases: model construction from training data,
and model evaluation using testing data. Various
forms of classification have been utilized in the soft-
ware defect prediction field, including support vector
machines [9], Bayesian Networks [10], Decision Trees
[11], and Naive-Bayes [12]. Despite this diversity and
availability of classification methods, software defect
prediction is considered an unsolved issue. The re-
sults, based on comparisons and benchmarking of the
software defect prediction that utilizes classification,
show that no one model is suitable for all datasets
[13,14]. An accurate defect prediction model is a ma-
jor requirement for a large-scale software system.

Two major issues influence a model’s performance:
class imbalance distribution, and non-relevant at-
tributes within the dataset that represent a noise.
These result in weakening the performance of the clas-
sifier [15].

A feature selection method is applied when the
learning process involves multi-dimensional datasets
[16]. The ensemble classification method is applied
when there is imbalanced class distribution within the
datasets [17]. Imbalanced class distribution means
that the quantum of non-defective software portions
exceeds the number of defective ones. In this re-
search, we examine the problem of feature subset
selection by employing four feature subset selection
methods: principal component analysis (PCA), Pear-
son’s correlation, Greedy Stepwise Forward selection,
and Information Gain (IG) to characterize the impor-
tant features used in model construction.

Bagging and Adaboosting ensemble classification



214 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.14, NO.2 November 2020

are also used for the purpose of defect prediction.
These algorithms are selected because they work well
with imbalanced data [18].

This research examines feature subset selection for
software defect prediction based on ensemble tech-
niques, with the aim of answering the following ques-
tions:

1. Does feature subset selection have an impact on
software defect predictors?

2. Does feature subset selection, coupled with en-
semble classification, perform well in software defect
predictors?

Software systems are now embedded in many areas
of our lives, and range from trivial to critical systems
that have a great impact on us. High-quality software
systems must be free from defects and operate as in-
tended, as defects will result in exhausting a project’s
resources including time, cost, and effort. Thus there
is increasing interest in the early detection of defects
through software defect prediction (SDP) models [19].

A software defect is a fault, weakness, or deviation
in the software product or in the software develop-
ment process [20]. In order to maintain control of
the overall development process, the quality of the
software must be measured. This measurement is ex-
pressed in terms of software metrics [21, 22, 23, 24].

A software defect prediction model generally de-
pends on machine learning, and consists of two
essential phases. In the first phase, the model
is constructed from a combination of training in-
stances. These instances come from historical soft-
ware datasets in which every instance acts as a sys-
tem, class, function or method, and is labeled by a
flag that represents its status such as clean, buggy, or
has a number of bugs. The software metrics represent
the features or attributes of the generated instances.
In the second phase, after the model is constructed,
new unknown instances are provided to validate the
produced model [25]. Figure 1, shows this scenario in
more detail.

Fig.1: The General Process of the Software Defect
Prediction Model [25].

This research is explained step by step. The first
section looks at previous studies which examined fea-
ture selection and ensemble classification for software
defect prediction. This is followed by a description of
the methodology used in our experiments. Then the
experiments and evaluation section shows the steps
followed during the experiment, together with the re-
sults of the evaluation process. Finally, we present

the conclusion and recommendations for future work.

2. RELATED WORK

Feature selection is considered a critical step in
machine learning and has been widely applied in
different domains including Text Classification [26],
Biomedical Science [27], and Education [28]. Features
selection is also utilized in the software engineering
domain for software defect prediction. It is known
that various software metrics may be related to de-
fective parts in software systems, therefore mitigating
those related metrics could improve a model’s perfor-
mance. Chandrashekar and Sahin [29] and Molina et
al. [30] investigated FSS in machine learning, while
Rathore and Gupta [27] undertook a study which
compared feature-ranking and feature-subset selec-
tion mechanisms for improving fault prediction. En-
semble classification is a solution introduced to han-
dle small-sized and imbalanced datasets [31]. The
ensemble classifier is a robust classifier that is con-
structed from a set of trivial classifiers and works
better than using a single classifier alone. Ensem-
ble learning has been employed successfully in differ-
ent domains including Biomedical Science [32], Ed-
ucation [33], and Concept Drift [34]. Woźniak et al.
[35] undertook a study of different ensemble methods.
The following sections present research that has been
carried out in software defect prediction according to
feature subset selection and ensemble classification.

2.1 Software Defect Prediction Depending on
Feature Subset Selection

In a study by Khoshgoftaar et al. [36], four con-
structed models and their performances were com-
pared. These models were inducted to handle differ-
ent situations:

- Feature selection and model construction from
genuine data.

- Feature selection from genuine data and model
construction from observed data.

- Feature selection using observed data and model
construction from genuine data.

- Feature selection using observed data and model
construction from observed data.

Six filter-based features ranking mechanisms were
applied: CS, IG, GR, RF, RFW, and SU. For classifi-
cation purposes, K-NN and SVM classifiers were em-
ployed, and experiments were conducted using nine
datasets from the PROMISE depository. The re-
sults showed that the performance of the model based
on feature selection using both observed and genuine
data was better than the other models. Also, there
was no difference in performance between using gen-
uine or observed data.

Khoshgoftaar et al. [37] contrasted seven filter-
based feature ranking mechanisms on sixteen differ-



Software Defect Prediction Based on Feature Subset Selection and Ensemble Classification 215

ent software datasets using three diverse actual soft-
ware projects. They incorporated four datasets from
an extremely vast telecommunications software sys-
tem (LLTS), nine datasets from the Eclipse project,
and three data sets from a NASA software project.
They constructed the classification models using five
classifiers: Naive Bayes, multilayer perceptron, K-
nearest-neighbors, support vector machine, and lo-
gistic regression on the Weka environment. The eval-
uation was performed using area under the ROC
curve (AUC) and best arithmetic mean (BAM) per-
formance metrics. They used filter-based feature
ranking mechanisms similar to the techniques used
by Gao et al. [5], which included chi-squared (CS),
information gain (IG), gain ratio (GR), symmetrical
uncertainty (SU), and ReliefF (two types: RF and
RFW). Khoshgoftaar et al. [37] also factored in the
signal to noise ratio (SNR) that was not used by Gao
et al. [5]. The results showed that the IG was the
superior filter among all datasets. CS and SU were
somewhat inferior to IG but exceeded GR, RF, and
RFW. Also, SNR and IG provided a more settled per-
formance than RF and RFW regarding the different
classifiers and datasets. Their work was utilized on a
fixed size selected feature set and did not optimize the
size of the selected subset features that could improve
the classification performance.

Murillo-Morera et al. [38] presented a frame-
work for employing a genetic algorithm as a wrap-
per method for attribute selection as did Vivanco et
al. [39] for predicting the proneness of defects in a
software module. In addition, three empirical studies
that utilized the genetic defect prediction framework
were conducted. The first was a comparison between
framework performance and the most popular frame-
work in the literature. The second was a comparison
of framework performance and run-time with the ex-
haustive framework. The last empirical study was a
sensitivity analysis. The experiments were performed
on seventeen datasets obtained from the NASA-MDP
and PROMISE projects. The model was tested by
NxM cross-validation. The results showed that: 1)
the performance of the proposed framework was the
same as the most popular framework, 2) the frame-
work run-time did better than the exhaustive frame-
work, and 3) the configuration regarding the sensitiv-
ity analysis was improved. Their work did not con-
sider diversity metrics regarding performance such as
precision, recall, and F-measure, or the diversity of
the learning schemes.

Jia [40] proposed a hybrid feature selection method
to detect defects in software, using chi-squared (cs),
Information gain (IG), and Pearson Correlation co-
efficients. In order to build the model, Jia used a
random forest classifier approach testing her model
on five datasets from NASA. To evaluate the perfor-
mance of the defect prediction model, she used AUC
measure. Arora and Saha [41] proposed a software

defect prediction model based on two classifiers, ex-
treme learning machine (ELM), and kernel based ex-
treme learning machine (KELM). In their approach
they used five wrapper- and seven filter-based feature
selection methods. To test their approach, they used
seven datasets collected from the PROMISE repos-
itory. Moreover, they used the accuracy measure
to evaluate the performance feature selection model.
They found that ELM-based classifiers achieved a
higher testing accuracy with wrapper-based feature
selection methods, while KELM classifiers performed
better with filter-based methods.

2.2 Software Defect Prediction Depending on
Ensemble Models

A comparative study of seven ensemble methods
including bagging, boosting, random trees, random
forest, random subspace, stacking, and voting was
conducted by Tao et al. [42] on 14 different NASA
datasets. For evaluation purposes, 10-fold cross vali-
dation was applied. The performance of each of the
different ensemble models was compared to the Naive
Bayes model. The results showed that the model’s
performance was better when an ensemble model was
applied than when using a single model. In addition,
for the generated ensemble model, the voting and ran-
dom forest methods outperformed the others. The
work did not vary the base models in order to prove
whether the results were affected by base models or
not.

Jayaraj and Raman [43] utilized three boosting
techniques: boosting with decision stump, boosting
with REPtree, and boosting with M5. The experi-
ment was conducted on the KC1 dataset using the
Weka environment. For evaluation of the perfor-
mance of the three boosting methods, the accuracy,
root mean squared error, and mean absolute error
performance measures were used. The results discov-
ered that, of the three boosting methods, the boosting
with M5 method had the best accuracy. The study
was conducted on one dataset so the results could not
be generalized.

Wahono and Herman [44] introduced a novel soft-
ware defect predictor that depended on integration
of a the genetic algorithm and the bagging technique.
GA was utilized to choose the optimal and pertinent
feature subset. The bagging technique was utilized to
deal with the imbalance class distribution issue. Two
types of experiment were performed on nine NASA
datasets. The first experiment was performed on nine
NASA datasets using ten classification algorithms.
The second experiment used nine NASA datasets im-
plementing the GA and the bagging technique on ten
classification algorithms. The results showed that the
model’s performance was improved with integration
between the GA and bagging methods and that it
performed better than the original method (imple-
menting single model without the integration with



216 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.14, NO.2 November 2020

the FSS).

Also, Laradji et al. [45] carried out a study to
expose the effectiveness of integration between FSS
and ensemble methods on software defect predictor
performance. They proposed two types of ensemble
model (with and without selected features) depending
on the average probability ensemble (APE) method.
Different feature selection techniques, including Pear-
sons’ correlation, Fishers’ criterion, and the GFS
method, were used to identify the best method for
improving model performance. The experiments were
conducted on six datasets from the PROMISE de-
pository. The results revealed that greedy forward
selection obtained better outcomes than correlation-
based forward selection. When using the average
probability ensemble (APE), the model performance
was enhanced and it performed better than the tra-
ditional models such as weighted SVMs and random
forests. With integration of the GFS and APE ensem-
ble methods, the AUC measures for the used datasets
were close to 1.0. The study lacked a comparison be-
tween the proposed method and the existing ensemble
methods which could have supported the outcomes.

A study by Petrić et al. [17] to show the im-
provement of the defect prediction model used an ex-
plicit diversity method with stacking ensemble. Eight
datasets from the PROMISE depository were used to
construct four different base models: Naive Bayes,
C4.5 decision tree, K-nearest neighbor, and sequen-
tial minimal optimization. The diversity concept was
based on the idea that when constructing the en-
semble models, diversity should guarantee incorpo-
rating only models that produce faults in various in-
stances, not in the same instances. For the compar-
ison between two models at a time, weighted preci-
sion and diversity were utilized. Stacking ensembles
were constructed using base measure, precision mea-
sure, Matthew correlation coefficient measure, diver-
sity measure, and weighted accuracy diversity mea-
sure. In order to evaluate the models, a compari-
son was made between the proposed approach with
bagging and boosting ensemble methods by using the
same measures used in the stacking ensemble. The
results revealed that prediction performance with the
proposed diversity stacking ensemble was better than
single, bagging, and boosting models. The study did
not clarify the influence of various performance mea-
sures on the accurate classification of faulty instances.

Punitha and Latha [15] proposed a new approach
for the detection and prevention of software defects
that would solve the problem of imbalanced datasets.
This involved using a genetic algorithm alongside Ant
Colony Optimization (GACO) and a bagging mech-
anism to single out the appropriate feature. This
was followed by a sampling technique which incorpo-
rated a semi-supervised learning technique to create
the balanced label from the imbalanced datasets. Af-
ter the balanced label was generated, Hybrid Neuro-

Fuzzy Systems with the Naive Bayes method were
employed. The experiments were performed on four
NASA MDP datasets. Precision, recall, accuracy,
and F-measure performance measures were used for
performance evaluation of the proposed model. The
performance of the proposed approach was compared
with the hybrid BmSVM method. The results re-
vealed that the proposed hybrid learning approach
for defect prediction was very effective.

Abdou and Darwish [46] tested three types of en-
semble learner models, boosting, bagging, and rota-
tion forest, to predict defects in software. They used
seven datasets collected from the PROMISE reposi-
tory. Moreover, they used the accuracy measure to
evaluate the performance of the models. They found
that accuracy improved more when using ensemble
techniques than when using only single learners, es-
pecially in conjunction with rotation forest with the
resample technique that was used in most of the al-
gorithms used in the experimental results.

Alsaeedi and Khan [47] compared different ma-
chine learning technologies with ensemble classifiers,
(bagging, support vector machines, decision tree, and
random forest classifiers) in order to check their per-
formance in software fault prediction. They used
ten datasets from NASA, and employed accuracy,
F-measure, and ROC-AUC metrics to evaluate the
performance of the different classifiers. The results
showed that random forest performed better than the
others.

We can conclude from the reviewed literature that
no one model or technique is considered the best in
the software defect prediction field, as the best predic-
tion depends on many factors including dataset size,
programming language, and the features used.

3. RESEARCH METHODOLOGY

The research described in the document was con-
ducted using a series of experiments to study the per-
formance of ensemble models depending on the use
of features selection. Experiments were conducted
on five benchmark datasets obtained from the tera-
PROMISE depository [48]. These datasets were from
NASA MDP software projects which were written in
C, C++, and Java programming languages. Table 1
shows the selected datasets.

Project CM1 describes a NASA spacecraft instru-
ment system written in C, consisting of 498 functions,
449 of which are defective (with at least one defect)
and 49 are non-defective. KC1 is a “C++” system
implementing storage management for receiving and
processing ground data consisting of 2109 functions,
326 of which are defective (with at least one defect)
and 1783 are non-defective. KC3 is another version
of KC written in Java consisting of 194 functions, 36
of which are defective (with at least one defect) and
158 are non-defective. MC2 is a Video Guidance Sys-
tem implemented in C, consisting of 125 functions,



Software Defect Prediction Based on Feature Subset Selection and Ensemble Classification 217

Table 1: NASA MDP Datasets Description.
] of Non- ]of Imbalanced %

Datasets Language ]of Instances ] of Attributes
Defective Defective Ratio Defect

CM1 C 498 38 449 49 9.16 9.83
KC1 C++ 2109 22 1783 326 5.46 15.45
KC3 Java 194 40 158 36 4.38 18.55
MC2 C 125 40 81 44 1.84 35.2
PC1 C 1109 22 1032 77 13.40 6.94

Table 2: Detailed Information of Software Metrics.
Software

Category
Metrics

Definition Description

McCabe

LOC
Line of code The number of

code lines

v(g)

Cyclomatic The number of
complexity linearly

independent
paths

ev(g)

Essential The scope to
complexity which a flow

graph can be
reduced

iv(g)

Design The cyclomatic
complexity complexity of a

modules reduced
flow graph

mul
Unique The number of
operators unique operators

mu2
Unique The number of
operators unique operators
Operators Total

Base N1 occurrences occurrences of
Halstead operators

Operators Total
N2 occurrences occurrences of

operands
N Length N1+N2
mu Vocabulary mu1+mu2
P Volume N * log2(mu)
V* Volume on (2 +

minimal mu2)*log2(2 +
implementat- mu2)

Derived ion
Halstead L Program V*/N

length
D Difficulty 1/L
E Effort to V/L

write
program

44 of which are defective (with at least one defect)
and 81 are non-defective. PC1 is flight software for
earth orbiting satellites written in C, consisting of
1109 functions, 77 of which are defective (with at
least one defect) and 1032 are non-defective. These
datasets are derived from different projects, and the
data distributions as well as feature attributes are dif-
ferent. We chose the common attributes (metrics) of
the dataset to build the prediction models. Table 2
shows the metrics of the software features used in the
experiment.

The appropriate selection of suitable software met-
rics is a serious issue in software defect prediction,
since the performance of a model is affected by the
software metrics selected. In software defect predic-

tion, the features are the software metrics that are ex-
tracted from the static source code. Figure 2 presents
an example of static code attributes. The process in
the selection of feature subsets is based on choosing
the best metrics and discarding the worst ones which
will have a negative impact on the classifier perfor-
mance.

Fig.2: Software metrics extracted from the static
source code.

In this research, we employ four different feature
subset selection methods to evaluate their effective-
ness on the performance of the constructed models
[49]: Information Gain, Greedy Stepwise forward se-
lection, Correlation Evaluation based on Pearson’s
correlation measure, and Principal Component Anal-
ysis. The first three methods are regularly used in the
SDP literature, whereas Principal Component Anal-
ysis (PCA) is rarely employed. Figure 3 summarizes
the research methodology.

Four-feature subset selection is used in this re-
search with more details as follows:

• In Principal Component Analysis, a combina-
tion of features is minimized by enforcing a
modification of the data. PCA adopts ade-
quate eigenvectors to compute a proportion of
the variance in the genuine data (default is
95%). The noise attribute can be cleared by
changing to the PC space, minimizing some
of the poorest eigenvectors, and then revert-
ing back to the genuine space. The result is a
diminutive set of ranked features.



218 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.14, NO.2 November 2020

Fig.3: The proposed research methodology.

• Correlation Evaluation assesses attribute in-
terestingness by gauging the Pearson’s corre-
lation between each attribute and the class.

• Greedy Stepwise tries to find the best choice
by selecting the preferable features and dis-
carding the worst ones at every step, and the
process is refined until the stopping condition
is satisfied. It enforces a greedy forward or
backward search over all of the feature sub-
sets. It can be launched without attributes,
with all attributes, or from a specific location
in the space, and is halted when the inser-
tion/removing of any residual attributes brings
a lessening to the evaluation.

• Information Gain is the information offered
about the objective class attribute Y, presum-
ing the value of attribute X. IG gauges the al-
leviation of the weighted average infection of
the divisions compared to the infection of the
complete dataset.

This research applies supervised learning methods
that have good results in SDP. Ensemble techniques
are used based on boosting and bagging algorithms.
Two base classifiers are used with AdaBoostM1 and
bagging algorithms from various families: Lazy (K-
NN) [49] and Support Vector Machine (SVM) [50].
These algorithms are chosen for two reasons: first,
they do not include an embedded feature selection
and second, they are typically employed in software
engineering and data mining areas [37].

Two classification algorithms are used in this re-
search as follows:

• Support Vector Machine (SVM) identifies the
decision planes to clarify decision limits. A

decision plane is split between groups of in-
stances with several class labels. SVM car-
ries out the classification task by introduc-
ing a hyperplane in a high-dimensional space
which distinguishes instances of several classes
[51]. SVM does very well in a high dimen-
sional space and in the binary classification
problem. The SVM algorithm is employed for
the five datasets without feature selection, and
for the five datasets using the four-feature sub-
set selection methods presented above. Also,
SVM serves as a base classifier for construct-
ing boosting and bagging classifiers.

• K-Nearest Neighbors (K-NN) is a case-based,
passive learning algorithm. Case-based algo-
rithms employ only the learning data with-
out generating statistics to standardize their
assumptions. The K-NN learner fulfills this
by computing the distance of the inspected in-
stance from each learning instance, and the
predicted class is acquired from the K nearest
neighbors [52]. The K-NN algorithm is em-
ployed for the five datasets without feature se-
lection and is also applied to the five datasets
using the four feature subset selection methods
presented above. Also, K-NN serves as a base
classifier for constructing boosting and bagging
classifiers.

• Bagging is introduced by Breiman [53] to en-
hance classification accuracy by grouping clas-
sifications of arbitrarily created training sets.
For the training set D of size n, bagging pro-
duces m new training sets Di, each of size ń,
by selecting samples with replacement from



Software Defect Prediction Based on Feature Subset Selection and Ensemble Classification 219

D evenly. Using sampling with replacement,
some instances may be replicated in each Di.
If ń=n, then for large n the set Di is predicted
to have 63.2% of the individual instances of D.
This type of sample is recognized as a boot-
strap sample. The m models are adjusted us-
ing the above m bootstrap samples and assem-
bled by averaging the outcome (for regression)
or voting (for classification). The base classi-
fiers used for the bagging algorithm are SVM
and K-NN.

• For Boosting we use the AdaBoost algorithm,
which is proposed by Freund et al. [54] to con-
struct an ensemble classifier using the selected
features. The AdaBoost algorithm is the most
common algorithm for the boosting method,
combining various weak classifiers into a sin-
gle, high performance, rigorous classifier. The
base classifiers used with AdaBoost algorithm
are SVM and K-NN.

There are two reasons for using two types of classi-
fier as base classifiers in the ensemble models. First,
we want to maintain diversity as each classifier be-
haves in a different way in dealing and constructing
models. Second, each one has advantages and dis-
advantages, so using both will utilize the pros and
avoid the cons. For classifier validation, we use 10-
fold cross-validation [55]. The 10-fold cross valida-
tion method is used to determine the size of training
and testing datasets. The dataset is divided into 10
groups. For each group we take one group as a hold
out, or test, data set. The remaining groups serve as
a training data set. We use 10-fold cross-validation
because this method is typical in the software defect
prediction field.

In order to evaluate and compare the above ensem-
ble algorithms, we use AUC (area under curve) mea-
sure for the experiments. AUC is the area under the
receiver operating characteristic (ROC) curve. The x-
axis is the false positive rate, and the y-axis is the true
positive rate. The false positive rate (FPR) gauges
how many non-defective instances are predicted as de-
fective among all non-defective instances. The true
positive rate (TPR) gauges how many defective in-
stances are predicted as defective among all defective
instances. The ROC curve value lies in the [0, 1] inter-
val [12]. The ROC curve can distinguish the trade-off
between the true positive rate and the false positive
rate. A classifier with a greater area under the curve
is favored over a classifier with a smaller area under
the curve. Lessmann et al. [6] favored the employing
of AUC since it enhances the comparisons between
the experiments. The AUC is employed widely in
empirical software defect prediction experiments be-
cause it recognizes the prediction performance for all
possible threshold values, and it acts as a general and
stable measure to compare several prediction models
[36].

The Weka 3.8.1 tool is used to carry out the vari-
ous feature subset selection methods and to perform
the SVM, K-NN, bagging, and boosting algorithms.
Weka is a java environment that implements a set of
machine learning algorithms for data mining purposes
[56].

In addition, IBMr SPSSr statistics 19 is used to
address the bivariate statistics with ANOVA as it is a
thorough system for resolving data. SPSS Statistics
deals with data from almost any paradigm and uti-
lizes it to produce tabulated reports, charts, plots of
distributions, descriptive statistics, and knotted sta-
tistical analyses [57].

4. EXPERIMENTS AND EVALUATION

The experiments were carried out on five pub-
lic datasets from PROMISE, a depository which in-
cludes many public software engineering datasets. 
We were interested in software defect datasets, ob-
tained from NASA projects, which were chosen dur-
ing the development of the software and are for soft-
ware written in the C, C++, and Java program-
ming languages. These datasets are used for re-
search in the software defect prediction field and are 
available for free download on http://openscience. 
us/repo/defect/mccabehalsted. The five selected 
datasets included different numbers of features rang-
ing from 40 features found in the KC3 and MC2 
datasets, to 22 features found in the KC1 dataset. 
The number of instances varied from 125 found in the 
MC2 dataset, which was the smallest one, to 2109 
instances found in the KC1 dataset, which was the 
largest one. Not all features are relevant. Some may 
lead to inappropriate results which may affect the 
model prediction negatively. The attributes on all 
of the datasets were of numerical type, and the class 
labels were nominal. In this research, we used the 
Weka tool to apply the feature selection mechanisms 
to the five chosen datasets. These methods included 
PCA, Pearson correlation, GS, and IG.

The intent of the experiments was to assess the 
effectiveness of feature subset selection mechanisms 
coupled with ensemble methods. This assessment was 
based on two main scenarios as follows:

Scenario 1: Two single, two bagging, and two 
boosting classifiers were constructed from the orig-
inal datasets using SVM and K-NN algorithms and 
without applying any feature subset selection. The 
performance results of the classifiers in terms of AUC 
were computed.

Scenario 2: Four feature selection mechanisms 
were utilized with the original datasets. The results 
were sets of reduced datasets. Two single, two bag-
ging, and two boosting classifiers were constructed 
from the reduced datasets using SVM and K-NN al-
gorithms. The performance results of the classifiers 
in terms of AUC were computed.



220 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.14, NO.2 November 2020

4.1 Without Feature Subset Selection

In this experiment, a set of single and ensemble
classifiers was constructed without applying any fea-
ture subset selection techniques, and then the AUC
was computed for each type of classifier.

• Single Classifier: For the five datasets, two
single classifiers were constructed based on
SVM and K-NN algorithms from the original
datasets, without applying any feature sub-
set selection methods. The AUC performance
measures were computed and are presented in
Table 3.

• Bagging Classifier: Two bagging ensemble
classifiers were constructed based on the bag-
ging algorithm using SVM and K-NN as base
classifiers, without applying any feature sub-
set selection methods. The AUC performance
measurements were computed and presented in
Table 3.

• AdaBoost Classifier: Two boosting ensemble
classifiers were constructed based on the Ad-
aBoostM1 algorithm using SVM and K-NN as
base classifiers, without applying any feature
subset selection methods. The AUC perfor-
mance measurements were computed and are
exhibited in Table 3.

Table 3: AUC of SVM and K-NN as single, bag-
ging, and boosting classifiers on five datasets - With-
out Feature Subset Selection.

Single Bagging Boosting
Classifier Classifier Classifier

d
a
t
a
s
e
t

SVM K-NN SVM K-NN SVM K-NN
CM1 0.716 0.660 0.731 0.697 0.706 0.692
KC1 0.681 0.793 0.687 0.787 0.725 0.645
KC3 0.683 0.660 0.726 0.717 0.684 0.693
MC2 0.660 0.694 0.675 0.705 0.673 0.666
PC1 0.823 0.828 0.843 0.850 0.831 0.824

Table 3 shows the AUC values for the bagging
and boosting classifiers using SVM and K-NN com-
pared with the single classifier using SVM and K-NN
without feature subset selection for different datasets.
The bold values mean that the AUC value for bag-
ging and boosting with base SVM and K-NN is better
than those for the single classifier with base SVM or
K-NN. For example, using the dataset CM1, the AUC
values for bagging and boosting classifiers with base
K-NN are 0.697 and 0.692 respectively. These are
greater than the AUC value for the single classifier
with base K-NN 0.660.

Regarding the bagging and boosting classifiers
(SVM and K-NN), there is an improvement in the
AUC values compared with SVM and K-NN as sin-
gle classifiers. The use of ensemble methods without
feature subset selection can improve the performance
of the AUC classifiers for most datasets.

4.2 With feature subset selection

In this experiment, a set of single and ensemble
classifiers was constructed after applying the four
types of feature subset selection techniques. Then
the AUC was computed for each type of classifier.

The number of features selected after applying the
four types of feature selection including the class label
is shown in Table 4.

Table 4: The Number of Selected Features on the
Five Datasets.

Feature subset selection
Datasets

PCA PC GS IG
CM1 12 7 6 7
KC1 8 6 9 6
KC3 11 7 9 6
MC2 12 7 11 7
PC1 13 7 9 7
Average 11.2 6.8 8.8 6.6

Table 4 shows the number of features selected by
applying the four-feature selection mechanism. The
differences in the number of chosen features depend
on a number of factors such as: original feature size
(datasets with a large number of features will lead
to a more greatly reduced set of features when the
filters are applied than those with a fewer features),
number of defective instances, overall number of in-
stances, and the programming languages used during
the development process. All of these can have an
impact on which features are selected by each filter.

Table 4 shows the number of attributes selected
by each of the feature subset selection methods. PC
and IG produce fewer numbers of selected features.
PCA and GS, on the other hand, tend to select a
much wider range of features to provide comparable
classification results.

In the Principal Component Analysis PCA was
employed to identify the reduced set of features.

• Single Classifier: For the five datasets, two
single classifiers were constructed based on
SVM and K-NN from the reduced datasets
by PCA. The AUC performance measurements
were computed and are exhibited in Table 5.

• Bagging Classifier: Two bagging ensemble
classifiers were constructed based on the bag-
ging algorithm using SVM and K-NN base
classifiers from the reduced datasets by PCA.
The AUC performance measurements were
computed and are exhibited in Table 5.

• AdaBoost Classifier: Two ensemble classifiers
were constructed based on the AdaBoostM1 al-
gorithm and using SVM and K-NN base clas-
sifiers from the reduced datasets by PCA. The
AUC performance measurements were com-
puted and are exhibited in Table 5.

Table 5 shows that PCA feature subset selection
decreased the AUC of SVM and K-NN as a single
classifier for more of the datasets than AUC of SVM



Software Defect Prediction Based on Feature Subset Selection and Ensemble Classification 221

Table 5: : AUC of SVM and K-NN as single, bag-
ging, and boosting classifiers on five datasets - With
PCA Feature Subset Selection.

Single Bagging Boosting
Classifier Classifier Classifier

D
a
t
a
s
e
t

SVM K-NN SVM K-NN SVM K-NN
CM1 0.698 0.657 0.715 0.726 0.698 0.639
KC1 0.672 0.693 0.676 0.655 0.732 0.530
KC3 0.583 0.785 0.609 0.775 0.551 0.648
MC2 0.698 0.721 0.709 0.750 0.708 0.563
PC1 0.797 0.787 0.823 0.785 0.763 0.647

and K-NN classifiers without feature subset selection.
The values in bold indicate that the use of the fea-
ture subset selection method leads to an improvement
of the AUC value, in comparison with when no fea-
ture selection is used. This was compared to meth-
ods without feature selection (Table 3), the ensemble
methods, more specifically K-NN bagging based on
PCA feature subset selection improved the AUC over
three datasets (CM1, KC3 and MC2). SVM boosting
based on PCA feature subset selection improved the
AUC over two datasets (KC1 and MC2). SVM bag-
ging based on PCA feature subset selection improved
the AUC only for the MC2 dataset. K-NN boost-
ing AUCs decreased in all the datasets comparison
with K-NN boosting classifiers without feature sub-
set selection. Moreover, we observe that the simple
classifiers and ensemble methods for feature selection
do not bring any improvement in accuracy for the
dataset PC1. The reason for that may be that the
PCA was not able to identify the dependencies be-
tween the features. So it is clear that the performance
of PCA feature subset selection depends largely on
the dataset. The best subset of features varied from
one dataset to another (see Table 4).

In the Pearson’s Correlation experiment, the Pear-
son’s measure was employed to identify the combina-
tion of features that have correlation with the class.
This resulted in a group of ranked features. We used
log2 n, where n is the number of independent fea-
tures in the genuine dataset, as a way to select the
top ranked features (i.e. the relevant features) over
the five datasets. The related literature does not de-
fine any specific direction on the proper number of
features to adopt. Therefore, we used the same tech-
nique as [58].
• Single Classifier: For the five datasets, two sin-

gle classifiers were constructed based on SVM
and K-NN classifiers from the selected features
by Pearson’s correlation datasets. The AUC
performance measures were computed and are
exhibited in Table 6.

• Bagging Classifier: Two bagging ensemble
classifiers were constructed based on the bag-
ging algorithm using SVM and K-NN base
classifiers based on the reduced datasets by
Pearson’s correlation. The AUC performance
measurements were computed and are exhib-

ited in Table 6.
• AdaBoost Classifier: Two boosting ensem-

ble classifiers were constructed based on the
AdaBoostM1 algorithm and using SVM and
K-NN base classifiers based on the reduced
datasets found by using Pearson’s correla-
tion. The AUC performance measurements
were computed and are exhibited in Table 6.

Table 6 shows the AUC for Pearson’s correlation
(PC) feature subset selection for the selected classi-
fiers. Again, the values in bold indicate that the use
of the feature subset selection method leads to an
improvement of the AUC value, in comparison to the
case when no feature subset selection is used. The
result shows that Pearson’s correlation feature sub-
set selection improves the classification performance
across all datasets except PC1.

Table 6: AUC of SVM and K-NN as single, bagging,
and boosting classifiers on five datasets with Pear-
sons’s Correlation Feature Subset Selection.

Single Bagging Boosting
Classifier Classifier Classifier

D
a
t
a
s
e
t

SVM K-NN SVM K-NN SVM K-NN
CM1 0.754 0.637 0.764 0.647 0.677 0.639
KC1 0.665 0.657 0.732 0.726 0.733 0.530
KC3 0.566 0.693 0.578 0.655 0.593 0.648
MC2 0.642 0.785 0.673 0.775 0.673 0.563
PC1 0.729 0.721 0.772 0.750 0.719 0.647

Compared with no feature selection (Table 3),
SVM bagging based on PC feature subset selection
improved the AUC over two datasets (CM1 and
KC1). However, K-NN boosting was unable to im-
prove the AUC for any of the datasets. The reason
is that K-NN is very sensitive to the input selection
as described in [59]. Moreover, again we observed
that the simple classifiers and ensemble methods, af-
ter applying PC feature subset selection, do not bring
about any improvement in accuracy for the dataset
PC1. So, it is clear that the performance of PC fea-
ture subset selection depends largely on the dataset.
The best subset of features varies from one dataset
to another (see Table 4).

In the Greedy Stepwise experiment, Greedy step-
wise feature subset selection was employed to identify
the relevant set of features. This resulted in a reduced
set of features (i.e. the relevant features).
• Single Classifier: For the five datasets, two sin-

gle classifiers were constructed based on SVM
and K-NN from the selected features by GS
datasets. The AUC performance measure-
ments were computed and are exhibited in Ta-
ble 7.

• Bagging: Two bagging ensemble classifiers
were constructed based on the bagging algo-
rithm using SVM and K-NN base classifiers
based on the reduced datasets by GS. The
AUC performance measurements were com-
puted and are exhibited in Table 7.



222 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.14, NO.2 November 2020

• AdaBoost Classifier: Two boosting ensem-
ble classifiers were constructed based on the
AdaBoostM1 algorithm and using SVM and
K-NN base classifiers based on the reduced
datasets by GS. The AUC performance mea-
surements were computed and are exhibited in
Table 7.

Table 7 shows the AUC for Greedy Stepwise (GS)
feature subset selection for the selected classifiers.
Again, the values in bold indicate that the use of the
feature subset selection method leads to an improve-
ment of the AUC value, compared to the case when
no feature subset selection is used. GS was able to im-
prove the AUC using different classifiers for the MC2
dataset only. Moreover, again we observed that the
simple classifiers and ensemble methods, after apply-
ing GS feature subset selection, do not bring about
any improvement in accuracy for the dataset PC1. So
it is clear that the performance of GS feature subset
selection depends largely on the dataset. The best
subset of features varies from one dataset to another
(see Table 4).

Table 7: AUC of SVM and K-NN as single, bagging,
and boosting classifiers on five datasets with Greedy
Stepwise Feature Subset Selection.

Single Bagging Boosting
Classifier Classifier Classifier

D
a
t
a
s
e
t

SVM K-NN SVM K-NN SVM K-NN
CM1 0.688 0.646 0.679 0.647 0.652 0.646
KC1 0.674 0.637 0.684 0.726 0.720 0.637
KC3 0.593 0.657 0.602 0.655 0.600 0.639
MC2 0.661 0.693 0.686 0.775 0.683 0.530
PC1 0.795 0.785 0.818 0.750 0.763 0.648

In the Information Gain experiment, Information
Gain was employed to determine the set of relevant
features. The results were a set of ranked features.
We used log2 n as a way to select the top ranked fea-
tures (i.e. the relevant features) over the five datasets
[58].

• Single Classifier: With the five datasets, two
single classifiers were constructed based on
SVM and K-NN from the selected features by
IG datasets. The AUC performance measure-
ments were computed and are exhibited in Ta-
ble 8.

• Bagging: Two bagging ensemble classifiers
were constructed based on the bagging algo-
rithm using SVM and K-NN base classifiers
and the reduced datasets by IG. The AUC per-
formance measurements were computed and
are exhibited in Table 8.

• AdaBoost Classifier: Two boosting ensem-
ble classifiers were constructed based on Ad-
aBoostM1 algorithm and using SVM and K-
NN base classifiers using the reduced datasets
by IG. The AUC performance measurements
were computed and are exhibited in Table 8.

Table 8: AUC of SVM and K-NN as single, bagging,
and boosting classifiers on five datasets with Informa-
tion Gain Feature Subset Selection.

Single Bagging Boosting
Classifier Classifier Classifier

D
a
t
a
s
e
t

SVM K-NN SVM K-NN SVM K-NN
CM1 0.721 0.629 0.733 0.647 0.721 0.629
KC1 0.647 0.646 0.739 0.664 0.749 0.646
KC3 0.622 0.637 0.597 0.647 0.580 0.637
MC2 0.666 0.657 0.671 0.726 0.630 0.639
PC1 0.742 0.693 0.773 0.655 0.770 0.530

Table 8 shows the AUC for information gain (IG)
feature subset selection for the selected classifiers.
Again, the values in bold indicate that the use of
the feature subset selection method leads to an im-
provement of the AUC value, compared to the case
when no feature subset selection is used. The re-
sult shows that all of the classifiers except the simple
K-NN classifier were able to improve the AUC for
some of the datasets. For example, compared to the
case without feature selection (Table 3), SVM bag-
ging and SVM boosting based on IG feature subset
selection improved the AUC over two datasets (CM1
and KC1). Moreover, again we observed that the sim-
ple classifiers and ensemble methods, after applying
IG feature subset selection, do not bring any improve-
ment in accuracy for the dataset PC1. So it is clear
that the performance of IG feature subset selection
depends largely on the dataset. The best subset of
features varies from one dataset to another (see Table
4).

In order to highlight all of the information of the
experimental results, we used boxplots to visually
show the classification AUC values and outliers of the
various algorithms on the various datasets. Figures 4
and 5 show AUC boxplots for all datasets using SVM
and K-NN algorithms, with the boxes representing
the three different modeling types: single, bagging,
and boosting classifiers on the four feature selection
techniques and without feature subset selection. The
middle line inside each box is the median. The ends
of the boxes are the quartiles. The whiskers outside
the boxes extend to the smallest and largest AUC
values. The outlier AUC values are plotted individu-
ally. Clearly, there was no significant difference in the
performance of the feature subset methods, as their
respective performance and effect varies from dataset
to dataset and the choice of classification algorithm.
This research outcome is similar to the findings from
[60, 61, 62].

4.3 One-Way ANOVA Test

The One-Way ANOVA-test (analysis of variance)
compares the means of two or more independent sets
in order to judge whether there is statistical evidence
that the associated instances’ means are significantly
different [63].



Software Defect Prediction Based on Feature Subset Selection and Ensemble Classification 223

Fig.4: AUC Boxplots of various SVM classifiers on all datasets for the different feature selection techniques.

Fig.5: AUC Boxplots of various K-NN classifiers on all datasets for the different feature selection techniques.



224 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.14, NO.2 November 2020

We applied the One-Way ANOVA to check if there
were statistical differences between the means of the
two scenarios (without and with feature subset selec-
tion). The predetermined α= 0.05 is the significance
level for the ANOVA experiment.

Hypotheses: The null and alternative hypotheses
of one-way ANOVA can be declared as follows:
H0 : µ1 = µ2 (the two scenarios’ means are equal).
H1 : µ1 6= µ2 (the two scenarios’ means are different).
Where, µi is the instances mean of the ith scenarios.

5. RESULTS ANALYSIS AND DISCUS-
SION

The accurate selection of software metrics is an im-
portant factor that has an effect on the performance
of single and ensemble classifiers. The main ques-
tions of this research are: 1) Do feature subset selec-
tion methods have an impact on the performance of
ensemble techniques? and 2) If so, is this impact pos-
itive (improves the model’s performance) or negative
(decreases the model’s performance)? The answers
to these questions are presented using the One-Way
ANOVA, the results of which are shown in Tables 9
and 10.

Table 9: One-way ANOVA Results for SVM.
Feature Sum of df Mean F Sig.
Selection Squares Square
technique

w
it

h
o
u

t

Between
.001 2 .000

Groups
Within

.050 12 .004
.117 .890

Groups
Total .051 14

P
C

A

Between
.001 2 .000

Groups
Within

.074 12 .006
.073 .930

Groups
Total .075 14

P
ea

er
so

n

Between
.003 2 .001

Groups
Within

.060 12 .005
.029 .753

Groups
Total .063 14

G
S

Between
.000 2 .000

Groups
Within

.061 12 .005
.039 .962

Groups
Total .061 14

IG

Between
.001 2 .001

Groups
Within

.056 12 .005
.142 .869

Groups
Total .057 14

The results concluded by the One-Way ANOVA
can be presented as follows:

1. For SVM, the two scenarios are not statistically
significantly different, as presented in Table 9,
since the p-values for all the feature selection
techniques are greater than the predetermined
α = 0.05. Therefore, we accept the null hypoth-
esis which clarifies that all scenarios (without,

PCA, Pearson, GS, and IG) have means which
are equal, and that choosing the SVM as single,
bagging, or boosting classifiers has no impact.

2. For K-NN, we found two feature selection tech-
niques are statistically significantly different
since the p-value is less than the predetermined
α = 0.05. Therefore, we reject the null hypoth-
esis, and accept the alternate hypothesis which
states that the two scenarios are statistically
significantly different.

Table 10: One-way ANOVA Results for K-NN.
Feature Sum of df Mean F Sig.
Selection Squares Square
technique

w
it

h
o
u

t

Between
.006 2 .003

Groups
Within

.061 12 .005
.544 .594

Groups
Total .067 14

P
C

A

Between
.055 2 .027

Groups
Within

.036 12 .003
9.152 .004

Groups
Total .091 14

P
ea

er
so

n

Between
.033 2 .017

Groups
Within

.039 12 .003
5.134 .024

Groups
Total .072 14

G
S

Between
.022 2 .011

Groups
Within

.038 12 .003
3.421 .067

Groups
Total .060 14

IG

Between
.007 2 .004

Groups
Within

.016 12 .001
2.573 .117

Groups
Total .023 14

In order to determine which pairs of means scenar-
ios are statistically significantly different, and which
are not, we performed a multiple pairwise comparison
using Tukey’s Honestly Significant Difference (HSD)
criterion (Berenson et al., 1983). The significance
level for Tukey’s HSD test is α =0.05. Table 11
presents Tukey’s HSD on the K-NN classifier. The
bold values indicate the significant difference between
pairs in each group. Table 11 shows the significant
differences. These differences are found in the PCA
group between single and boosting scenarios where (p
=.01) < (α = 0.05). Also, in the same group (PCA),
there is a difference between the bagging and boost-
ing scenarios where (p =.006) < (α = 0.05). There
is also a difference in the Pearson group between the
bagging and boosting scenarios where (p =.032) < (α
= 0.05).
We can conclude that:

1. PCA feature subset selection improves the K-
NN performance when it is used as a boosting
classifier over a single classifier.

2. PCA feature subset selection improves the K-
NN performance when it is used as a bagging



Software Defect Prediction Based on Feature Subset Selection and Ensemble Classification 225

Table 11: Tukey’s HSD Multiple Comparisons for K-NN Classifier.
Dependent (I) Scenario (J) Scenario Mean Std. Error Sig. 95% Confidence
variable Difference (I-J) Interval

Lower Upper
Bound Bound

Without single bagging -.0242000 .0452765 .856 -.144991 .096591
boosting .0230000 .0452765 .869 -.097791 .143791

bagging single .0242000 .0452765 .856 -.096591 .144991
boosting .0472000 .0452765 .566 -.073591 .167991

boosting single -.0230000 .0452765 .869 -.143791 .097791
bagging -.0472000 .0452765 .566 -.167991 .073591

PCA single bagging -.0096000 .0346195 .959 -.101960 .082760
boosting .1232000 .0346195 .010 .030840 .215560

bagging single .0096000 .0346195 .959 -.082760 .101960
boosting .1328000 .0346195 .006 .040440 .225160

boosting single -.1232000 .0346195 .010 -.215560 -.030840
bagging -.1328000 .0346195 .006 -.225160 -.040440

Peaerson single bagging -.0120000 .0359414 .941 -.107887 .083887
boosting .0932000 .0359414 .057 -.002687 .189087

bagging single .0120000 .0359414 .941 -.083887 .107887
boosting .1052000 .0359414 .032 .009313 .201087

boosting single -.0932000 .0359414 .057 -.189087 .002687
bagging -.1052000 .0359414 .032 -.201087 .009313

GS single bagging -.0270000 .0355652 .734 -.121883 .067883
boosting .0636000 .0355652 .215 -.031283 .158483

bagging single .0270000 .0355652 .734 -.067883 .121883
boosting .0906000 .0355652 .062 -.004283 .185483

boosting single -.0636000 .0355652 .215 -.158483 .031283
bagging -.0906000 .0355652 .062 -.185483 .004283

IG single bagging -.0154000 .0233529 .791 -.077702 .046902
boosting .0362000 .0233529 .304 -.026102 .098502

bagging single .0154000 .0233529 .791 -.046902 .077702
boosting .0516000 .0233529 .110 -.010702 .113902

boosting single -.0362000 .0233529 .304 -.098502 .026102
bagging -.0516000 .0233529 .110 -.113902 .010702

classifier over a boosting classifier.
3. Pearson’s correlation feature subset selection

improves the K-NN performance when it is used
as a bagging classifier over a boosting classifier,
but does not improve it in comparison with bag-
ging K-NN and without feature selection.

6. THREAT TO VALIDITY

In this empirical study we employed four different
feature selection techniques to show their effective-
ness on three different ensemble classification meth-
ods. Five datasets obtained from the PROMIS repos-
itory were analyzed. The factors affecting the ex-
ternal validity were the quality of the datasets and
generalization. The characteristics of the datasets
were different as described in Table 1. For exam-
ple, the datasets were written in different languages,
had a different numbers of instances, different num-
bers of attributes, etc. The datasets were created
by NASA, are publicly available, and are often used
by researchers as described in the literature review
section. However, we cannot generalize the results
for this experiment to other software defect datasets.
The other validity issue is the choice of classification
algorithms and the feature selection techniques used
in the experiment. We selected three classification al-
gorithms and three feature selection techniques which
have been used successfully in software defect pre-

diction. However, new research can be conducted
using other algorithms and techniques in this area.
The third validity concern is the performance mea-
sure used to evaluate the performance of prediction
models. In the experiment, the area under curve
(AUC) was used to measure the percentage of the
correctly classified instances. However, other perfor-
mance measurements could be used, such as accuracy
and F-measure.

7. CONCLUSIONS

Software defect prediction is the process of cat-
egorizing software modules into defective or non-
defective entities. Building an efficient automated
software defect predictor that can detect defects early
is an important issue in software defect prediction, be-
cause the existence of a defect within a software sys-
tem results in a lower quality software system. That
in turn, may have a critical effect, especially with sys-
tems that have an impact on our lives.

The primary aim of this research was to assess
the effectiveness of feature subset selection techniques
coupled with ensemble methods on software defect
prediction models and to construct an efficient auto-
mated software defect model that has the ability to
improve the defect prediction process. Therefore, in
this research we investigated a new technique for con-
structing an automated software defect model based



226 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.14, NO.2 November 2020

on a hybrid machine learning technique and a good
feature selection method. The hybrid machine learn-
ing based on ensemble methods is bagging, thus we
selected this method as it has the ability to improve
prediction. It is efficient and has improved classifica-
tion results in a wide variety of other research fields.
The principal component analysis feature selection
technique is employed in the software defect model
since it has been shown to be a good feature selection
technique in research in other fields. We applied the
model to five datasets, consisting of different software
metrics, which were obtained from NASA projects in
the PROMISE depository. Then we applied princi-
pal component analysis and bagging ensemble meth-
ods in addition to applying single classifiers to con-
firm the effectiveness of that method. The results
demonstrate that K-NN bagging based on PCA is
better than the K-NN single classifier, and that it im-
proves classification results. Ensemble methods can
improve a model’s performance without any feature
selection techniques. The three feature selection tech-
niques employed in this research (Pearson’s correla-
tion, Greedy stepwise, and IG) actually decrease the
ensemble model’s performance.

As a future work, we plan to assess the effective-
ness of more feature subset selection mechanisms.
Also, different ensemble methods will be considered
such as stacking and voting. In addition, experiments
using datasets from different software projects will
also be included to try and discover whether the pro-
gramming languages used have an impact on defect
prediction or not. Furthermore, we plan to use more
base classifiers with ensemble methods to identify the
effect of base classifiers on ensemble model perfor-
mance.

ACKNOWLEDGEMENTS

This paper is part of the Master’s graduation
project submitted by Lina Abuwardih to IS depart-
ment, Faculty of IT, Yarmouk University.

References

[1] R. Chang, X. Mu., and L. Zhang, “Software
defect prediction using non-negative matrix fac-
torization,” Journal of Software, vol.6, no.11,
pp.2114–2120, 2011.

[2] N. Fenton, and J. Bieman, Software metrics: a
rigorous and practical approach, Third Edition
(3rd. ed.). CRC Press, Inc., USA., 2014

[3] S. Agarwal, and D. Tomar, “A feature selec-
tion based model for software defect prediction,”
International Journal of Advanced Science and
Technology, vol.65 , pp.39-58, 2014.

[4] S. Liu, X. Chen, W. Liu, J. Chen, Q. Gu, and D.
Chen, “Fecar: A feature selection framework for
software defect prediction,” 2014 IEEE 38th An-
nual Computer Software and Applications Con-
ference, Vasteras, 2014, pp. 426–435.

[5] K. Gao, T.M Khoshgoftaar, H. Wang, and N.
Seliya, “Choosing software metrics for defect pre-
diction: an investigation on feature selection
techniques,” Software: Practice and Experience,
vol.41, issue 5, pp.579–606, 2011.

[6] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch,
S, “Benchmarking classification models for soft-
ware defect prediction: A proposed framework
and novel findings,” in IEEE Transactions on
Software Engineering, vol. 34, no. 4, pp. 485-496,
July-Aug. 2008.

[7] M. Jureczko, and L. Madeyski, “Towards identi-
fying software project clusters with regard to de-
fect prediction,” in Proceedings of the 6th Inter-
national Conference on Predictive Models in Soft-
ware Engineering, page 9. ACM, 2010

[8] G. Czibula, Z. Marian, and I. G. Czibula, “Soft-
ware defect prediction using relational associa-
tion rule mining,” Information Sciences, vol.264,
pp.260–278, 2014.

[9] K. O. Elish, and M. O. Elish, “Predicting defect-
prone software modules using support vector ma-
chines,” Journal of Systems and Software, vol.81,
issue 5, pp.649–660, 2008.

[10] A. Okutan, A. and O. T. Yıldız, “Software defect
prediction using bayesian networks,” Empirical
Software Engineering, vol.19, issue 1, pp.154–181,
2014.

[11] P. Knab, M. Pinzger, and A. Bernstein, “Pre-
dicting defect densities in source code files with
decision tree learners,” in Proceedings of the 2006
international workshop on Mining software repos-
itories, pp. 119–125. ACM, 2006.

[12] T. Menzies, J. Greenwald and A. Frank, “Data
Mining Static Code Attributes to Learn Defect
Predictors,” in IEEE Transactions on Software
Engineering, vol. 33, no. 1, pp. 2-13, Jan. 2007

[13] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J.
Liu, “A general software defect-proneness predic-
tion framework,” IEEE Transactions on Software
Engineering, vol.37, no.3, pp.356–370, 2011.

[14] B. Ghotra, S. McIntosh and A. E. Hassan, “Re-
visiting the Impact of Classification Techniques
on the Performance of Defect Prediction Models,”
2015 IEEE/ACM 37th IEEE International Con-
ference on Software Engineering, Florence, 2015,
pp. 789-800.

[15] K. Punitha, and B. Latha, “Sampling imbalance
dataset for software defect prediction using hybrid
neuro-fuzzy systems with naive bayes classifier,”
Tehnicki vjesnik/Technical Gazette, vol.23, no.6,
pp.1795-1804, 2016.

[16] M. C. Prasad, L. Florence, and A. Arya, “A
study on software metrics based software de-
fect prediction using data mining and machine
learning techniques,” International Journal of
Database Theory and Application, vol.8, no.3,
pp.179–190, 2015.



Software Defect Prediction Based on Feature Subset Selection and Ensemble Classification 227

[17] J. Petrić, D. Bowes, T. Hall, B. Christianson,
and N. Baddoo, “Building an ensemble for soft-
ware defect prediction based on diversity selec-
tion,” in Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software
Engineering and Measurement, pp. 46. ACM,
2016.

[18] S. Wang, and X. Yao, “Using class imbal-
ance learning for software defect prediction,”
IEEE Transactions on Reliability, vol.62, no.2,
pp.434–443, 2013.

[19] A. A. Saifan, and N. Alsmadi, “Source Code-
Based Defect Prediction Using Deep Learning and
Transfer Learning,” Journal of Intelligent Data
Analysis, vol.23, no.6, pp.1243-1269, 2019.

[20] R. Ozakinci, and A. Tarhan, “The role of pro-
cess in early software defect prediction: Methods,
attributes and metrics,” in International Confer-
ence on Software Process Improvement and Capa-
bility Determination, pp. 287–300. Springer, 2016.

[21] H. Wang, T. M. Khoshgoftaar, and A. Napoli-
tano, “Software measurement data reduction
using ensemble techniques,” Neurocomputing,
vol.92, pp.124–132, 2012.

[22] A. A. Saifan, H. Alsghaier, K. Alkhateeb, “Eval-
uating the Understandability of Android Applica-
tions,” International Journal of Software Innova-
tion (IJSI), vol.6, no.1, pp.44-57, 2017.

[23] A. A. Saifan, A. Alrabadi, “Evaluating Main-
tainability of Android Applications,” The 8th In-
ternational Conference on Information Technol-
ogy ICIT 2017, Amman, Jordan, 2017.

[24] F. Hanandeh, A. A. Saifan, M. Akour, N. Al-
Hussein, K. Shatnawi, “Evaluating Maintainabil-
ity of Open Source Software: A Case Study,” In-
ternational journal of open source software and
processes, vol.8, issue 1, 2017.

[25] J. Nam, “Survey on software defect prediction,”
Department of Computer Science and Engineer-
ing, The Hong Kong University of Science and
Technology, Tech. Rep, 2014.

[26] G. Forman, “An extensive empirical study
of feature selection metrics for text classifica-
tion,” Journal of machine learning research, vol.3,
pp.1289–1305, 2003.

[27] P. Gupta, and T. Dallas, “Feature selection and
activity recognition system using a single triaxial
accelerometer,” IEEE Transactions on Biomedi-
cal Engineering, vol.61, no.6, pp.1780–1786, 2014.

[28] Q. A. Al-Radaideh, E. M. Al-Shawakfa, and M.
I. Al-Najjar, “Mining student data using decision
trees,” in International Arab Conference on Infor-
mation Technology (ACIT’2006), Yarmouk Uni-
versity,2006.

[29] G. Chandrashekar, and F. Sahin, “A survey on
feature selection methods,” Computers & Electri-
cal Engineering, vol.40, no.1, pp.16–28, 2014.

[30] L. C. Molina, L. Belanche, and A. Nebot, “Fea-

ture selection algorithms: A survey and exper-
imental evaluation,” 2002 IEEE International
Conference on Data Mining, 2002. Proceedings.,
Maebashi City, Japan, 2002, pp.306-313.

[31] M. Galar, A. Fernandez, E. Barrenechea, H.
Bustince, and F. Herrera, “A review on ensem-
bles for the class imbalance problem: bagging-,
boosting-, and hybrid-based approaches,” IEEE
Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), vol.42, no.4,
pp.463–484, 2012.

[32] H. I. Elshazly, A. M. Elkorany, A. E. Hassanien,
and A. T. Azar, “Ensemble classifiers for biomed-
ical data: performance evaluation,” in Computer
Engineering & Systems (ICCES), 2013 8th Inter-
national Conference on, pp.184–189, 2013.

[33] S. Kotsiantis, K. Patriarcheas, and M. Xenos,
“A combinational incremental ensemble of classi-
fiers as a technique for predicting students perfor-
mance in distance education,” Knowledge- Based
Systems, vol.23, no.6, pp.529–535, 2010

[34] M. Scholz, and R. Klinkenberg, “An ensemble
classifier for drifting concepts,” in Proceedings of
the Second International Workshop on Knowl-
edge Discovery in Data Streams, Porto, Portugal,
pp.53–64, 2005.

[35] M. Woźniak, M. Graña, and E. Corchado, “A
survey of multiple classifier systems as hybrid sys-
tems,” Information Fusion, vol.16, pp.3–17, 2014.

[36] T. M. Khoshgoftaar, K. Gao, and N. Seliya, “At-
tribute selection and imbalanced data: Problems
in software defect prediction,” in Tools with Arti-
ficial Intelligence (ICTAI), 2010 22nd IEEE In-
ternational Conference on, vol. 1, pp. 137–144,
2010.

[37] T. M. Khoshgoftaar, K. Gao, and A. Napoli-
tano, “An empirical study of feature ranking
techniques for software quality prediction,” In-
ternational Journal of Software Engineering and
Knowledge Engineering, vol.22, no.2, pp.161–183,
2012.

[38] J. Murillo-Morera, C. Castro-Herrera, J. Arroyo,
and R. Fuentes-Fernández, “An automated defect
prediction framework using genetic algorithms: A
validation of empirical studies,” Inteligencia Ar-
tificial, vol.19, no.57, pp.114–137, 2016.

[39] R. Vivanco, Y. Kamei, A. Monden, K. Mat-
sumoto, and D. Jin, “Using search-based metric
selection and oversampling to predict fault prone
modules,” in Electrical and Computer Engineer-
ing (CCECE), 2010 23rd Canadian Conference
on, pp.1–6, 2010.

[40] L. Jia, “A hybrid feature selection method
for software defect prediction,” IOP Conf. Ser.
Mater. Sci. Eng., vol.394, no.3, pp.032035, 2018.

[41] I. Arora, and A. Saha, “Software Defect Pre-
diction Using ELM and KELM Based Feature
Selection Models,” Proceedings of International



228 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.14, NO.2 November 2020

Conference on Sustainable Computing in Science,
Technology and Management (SUSCOM), Amity
University Rajasthan, Jaipur - India, February,
pp.26-28, 2019.

[42] W. Tao, L. Weihua, S. Haobin, and L. Zun,
“Software defect prediction based on classi-
fiers ensemble,” JOURNAL OF INFORMATION
&COMPUTATIONAL SCIENCE, vol.8, no.16,
pp.4241–4254, 2011.

[43] V. Jayaraj, and N.S. Raman, “Software defect
prediction using boosting techniques,” Interna-
tional Journal of Computer Applications, vol.65,
no.13, pp.1-4, 2013.

[44] R. S. Wahono, and N.S. Herman, “Genetic fea-
ture selection for software defect prediction,” Ad-
vanced Science Letters, vol.20, pp.239–244, 2014.

[45] I. H. Laradji, M. Alshayeb, and L. Ghouti, “Soft-
ware defect prediction using ensemble learning
on selected features,” Information and Software
Technology, vol.58, pp.388–402, 2015.

[46] A. Abdou and N. Darwish, “Early Prediction
of Software Defect using Ensemble Learning: A
Comparative Study,” International Journal of
Computer Applications, vol.179, no.46, pp.29-40,
June 2018.

[47] A. Alsaeedi, and M. K Khan, “Software De-
fect Prediction Using Supervised Machine Learn-
ing and Ensemble Techniques: A Comparative
Study,” Journal of Software Engineering and Ap-
plications, vol.12, no.5, pp.85-100, https://doi.
org/10.4236/jsea, 2019.

[48] J. S. Shirabad, and T.J. Menzies, “The promise
repository of software engineering databases,”
School of Information Technology and Engineer-
ing, University of Ottawa, Canada, 24, 2005.

[49] I. H. Witten, E. Frank, M .A. Hall, and C.
J. Pal, Data Mining: Practical machine learn-
ing tools and techniques, Fourth Edition, Morgan
Kaufmann, (Fourth Edition), 2017.

[50] A. W. Moore, “Support vector machines,” Tuto-
rial. School of Computer Science of the Carnegie
Mellon University, 2001, Available at http://

www.cs.cmu.edu/œ~awm/tutorials.[Accessed
August 16, 2009].

[51] J. A. Suykens, and J. Vandewalle, “Least squares
support vector machine classifiers,” Neural pro-
cessing letters, vol.9. issue 3, pp.293–300, 1999.

[52] G. H. John, and P. Langley, “Estimating con-
tinuous distributions in bayesian classifiers,” in
Proceedings of the Eleventh conference on Uncer-
tainty in artificial intelligence, pp.338–345. Mor-
gan Kaufmann Publishers Inc, 1995.

[53] L. Breiman, “Bagging predictors,” Machine
learning, vol.24, issue 2, pp.123–140, 1996.

[54] Y. Freund, R. E. Schapire, et al., “Experiments
with a new boosting algorithm,” in icml, vol. 96,
pp. 148–156, 1996.

[55] J. Han, J. Pei, and M. Kamber, Data mining:

concepts and techniques, Third Edition, Elsevier,
2012

[56] U. Waikato, “Weka tool,” http://www.cs.

waikato.ac.nz/ml/weka/index.html, accessed
June 22, 2020

[57] M. J. Norušis, IBM SPSS statistics 19 statistical
procedures companion, Prentice Hall, 2012.

[58] T. M. Khoshgoftaar, M. Golawala, and J. Van
Hulse, “An empirical study of learning from im-
balanced data using random forest,” in Tools with
Artificial Intelligence, 2007. ICTAI 2007. 19th
IEEE International Conference on, vol. 2, pp.
310–317, 2007.

[59] N. Garćıa-Pedrajas, and D. Ortiz-
Boyer,“Boosting k-nearest neighbor classifier
by means of input space projection,” Expert
Systems with Applications, vol.36, issue 7,
10570–10582, 2009.

[60] Z. Xu, J. Liu, Z. Yang, G. An and X. Jia, “The
Impact of Feature Selection on Defect Prediction
Performance: An Empirical Comparison,” 2016
IEEE 27th International Symposium on Software
Reliability Engineering (ISSRE), Ottawa, ON,
2016, pp. 309-320.

[61] M. Kondo, C.-P. Bezemer, Y. Kamei, A. E. Has-
san, O. Mizuno,“The impact of feature reduction
techniques on defect prediction models,” Empir.
Softw. Eng., pp.1–39, 2019.

[62] K. Muthukumaran, A. Rallapalli, N. Murthy,
“Impact of feature selection techniques on bug
prediction models,” in Proceedings of the 8th In-
dia Software Engineering Conference, Bangalore,
India, 18–20 February 2015; ACM: New York,
NY, USA, 2015; pp.120–129, 2015.

[63] A. Field, Discovering statistics using IBM SPSS
statistics, Fourth Edition, Sage, 2013.

Ahmad Saifan is an associate professor
in the department of information sys-
tems at Yarmouk University (YU) in
Jordan. He obtained his Ph.D degree in
software engineering from Queen’s Uni-
versity (Canada). His master degree in
computer science from YU. He had B.Sc
degree in computer science from YU. His
research interest include: datamining for
software engineering, model-based test-
ing, regression tests, software testing.

Lina A. Abuwardih obtained her
Master degree in Computer Information
Systems (CIS) from Yarmouk Univer-
sity, Jordan, 2017. She is working as
a teacher assistant in Jordan University
of Science and Technology (JUST). Her
research interests include: Information
Retrieval, Data Mining, software engi-
neering and Information Security.




