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ABSTRACT

Music selection is difficult without efficient orga-
nization based on metadata or tags, and one effec-
tive tag scheme is based on the emotion expressed
by the music. However, manual annotation is la-
bor intensive and unstable because the perception of
music emotion varies from person to person. This
paper presents an emotion classification system for
digital music with a resolution of eight emotional
classes. Russell’s emotion model was adopted as com-
mon ground for emotional annotation. The music in-
formation retrieval (MIR) toolbox was employed to
extract acoustic features from audio files. The clas-
sification system utilized a supervised machine learn-
ing technique to recognize acoustic features and cre-
ate predictive models. Four predictive models were
proposed and compared. The models were composed
by crossmatching two types of neural networks, the
Levenberg-Marquardt (LM) and resilient backpropa-
gation (Rprop), with two types of structures: a tra-
ditional multiclass model and the cascaded structure
of a binary-class model. The performance of each
model was evaluated via the MediaEval Database for
Emotional Analysis (DEAM) benchmark. The best
result was achieved by the model trained with the cas-
caded Rprop neural network (accuracy of 89.5%). In
addition, correlation coefficient analysis showed that
timbre features were the most impactful for predic-
tion. Our work offers an opportunity for a compet-
itive advantage in music classification because only
a few music providers currently tag music with emo-
tional terms.
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1. INTRODUCTION

The appearance of digital music providers has
changed the way people listen to music by offering
direct access to a vast collection of music. However,
finding the right music is not easy without appropri-
ate tags or metadata to help the search. Creating
metadata manually is expensive and time consum-
ing. Music information retrieval (MIR) attempts to
address these problems. MIR is an interdisciplinary
science that combines musicology, psychology, signal
processing, and machine learning [1].

Emotional adjectives, such as search keywords, are
particularly effective for nonvocal music, such as clas-
sical music and film soundtracks, and 28% of people
who search for music use emotional keywords [1].

Unfortunately, most music providers tag music by
genre, artist name, year of production, and type of
instrument, and rarely provide tags such as emotional
terms. A branch of MIR known as music emotion
recognition (MER) attempts to address this problem.
Yang and Chen proposed the conceptual framework
for an MER system, as shown in Fig. 1 [1].
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Fig.1: A Music Emotion Classification System

Framework [1].

First, music was collected and annotated with one
of the emotion models mentioned in section 2, and
then acoustic features were extracted from the audio
file. Finally, a supervised machine learning technique
was applied to reveal the relationship between music
emotions and acoustic features.

In section 3, we briefly review 14 studies published
since 2008. Some studies adopted a dimensional emo-
tional model as a quadrant of emotion or support only
four emotional classes [2-4]. Some studies adopted
a categorical emotional model of four to six classes
[5-9]. Even though most of these works obtained
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over 80% accuracy, four to six classes are too limited
to describe emotion in music. Resolution at eight
emotions is sufficient in many applications, such as
background music, for emotional scenarios in video
games and commercial purposes [10-14]. Moreover,
several studies used small datasets with limited vari-
ety [2][6][7][15], causing potential problems when the
system tried to predict songs that were not in the
dataset.

According to the results of earlier studies, us-
ing multiple models for prediction is more accurate
than using a single model [2][7][8]. We hypothesized
that using multiple models with cascaded structures
could reduce the number of false predictions if each
model were specifically trained to discriminate only
two classes at a time.

Therefore, this study makes a major contribution
to the classification of eight music emotions via a neu-
ral network with a cascaded structure while maintain-
ing an accuracy greater than 80%. The models were
trained with a large dataset of 1,802 songs of various
kinds.

We can approach the problem in two ways: regres-
sion and classification. To train regression models,
the sample is labeled with the continuous values of the
fundamental factors of emotion. Because regression
models estimate the closest values of the factors, emo-
tional classes can be predicted based on these values.
In contrast, because the samples for training classifi-
cation models are labeled with a discrete number of
emotional classes, classification models can directly
predict the most probable class.

These two approaches used two different algo-
rithms. Both were specifically designed for the corre-
sponding approach, and neither has previously been
tested with the MediaEval Database for Emotional
Analysis (DEAM) dataset. Levenberg-Marquardt
(LM) backpropagation was chosen for the regression
approach, and Resilient backpropagation (Rprop)
was chosen for the classification approach. Addition-
ally, we investigated each algorithm in two ways. A
traditional multiclass model was employed and com-
pared to seven cascading units of the binary-class
model.

We found that the Rprop algorithm with a cas-
caded structure achieved the best accuracy when
compared to the other three methods and previously
proposed methods.

2. EMOTION REPRESENTATION

Emotions have been measured in two ways in psy-
chological studies. Some psychologists maintain that
emotions are discrete perceptions and have proposed
models based on categorical psychometrics. Others
believe that emotion is a continuous level of per-
ception and have proposed models employing dimen-
sional psychometrics. The most influential models
from each psychometric perspective are discussed in

the following subsection.

2.1 Categorical Psychometrics

Categorical psychometrics represents emotional
perception by a finite set of emotional descriptors.
One of the earliest models, proposed by Hevner, con-
sists of 66 emotional adjectives. Similar adjectives
are arranged into related emotional groups, forming
eight clusters [16].

This approach is easy to understand and more
meaningful than dimensional psychometrics, but
some emotional adjectives do not exist in some lan-
guages, or have different meanings, and emotions are
difficult to compare.

2.2 Dimensional Psychometrics

Dimensional psychometrics represents emotional
perception by numeric values plotted along funda-
mental emotional axes. The most influential model,
proposed by Russell, uses two dimensions of funda-
mental factors, i.e., valence and arousal, to form a
valence-arousal (VA) plane on a scale of -1 to 1, as
shown in Fig. 2 [17].

Various valence and arousal coordinates define 28
emotional adjectives. This approach is flexible, mea-
surable, and comparable, but the relationships be-
tween valence and arousal can be difficult to explain.
Culture and language have an effect on the VA rating.
For example, in English, “happy” is located at 0.11
for arousal and 0.83 for valence, but the coordinates
can be different in other languages [18].
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Fig.2: Emotional Adjectives on the VA Plane [17].

A systematic comparison of categorical and di-
mensional psychometrics by employing linear map-
ping techniques revealed a high correspondence be-
tween the two psychometrics formulations [19]. The
study also involved three dimensions (valence, energy
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Table 1: Emotional Octant and the Associated
Emotional Adjectives.
f VA Logical Range Emotions
1 High Arousal & Positive Valence &  Aroused, Astonished,
(Valence < Arousal) Excited
2 High Arousal & Positive Valence & Delighted, Happy
(Valence > Arousal)
Low Arousal & Positive Valence & Pleased, Glad, Serene,
3 (Valence > |Arousal|) Content, At Ease,
Satisfied, Relaxed
4 Low Arousal & Positive Valence & Calm. Slee
(Valence < |Arousall|) ? Py
5 Low Arousal & Negative Valence & Tired, Droopy,
(|Valence| < |Arousal|) Bored
6 Low Arousal & Negative Valence & Depressed, Gloomy,
(]Valence|> |Arousall|) Sad, Miserable
7 High Ar((f{l/:irféelf;g?gfsﬁlence & Frustrated, Distressed
8 High Arousal & Negative Valence & Annoyed, Afraid,
(]Valence| < Arousal) Angry, Tense, Alarmed
= 8 28

arousal and tension arousal) and showed that only
two dimensions were enough to represent perceived
emotions in music. The major difference between the
categorical and dimensional psychometrics was the
resolution of emotional representation.

Consequently, dimensional psychometrics can be
use as categorical psychometrics by reducing the res-
olution or grouping similar emotions together.

Therefore, we adopted Russell’s model as an oc-
tant of emotion for classification. The VA plane was
divided into eight emotional classes by a range of fun-
damental factors. Emotional adjectives possessing a
VA rating in a common range were grouped as one
emotional class. The logic for developing the range
of each class and the emotional adjectives is shown in
Table 1, and the ranges are shown as dashed lines in
Fig. 2.

3. PREVIOUS WORK

Music processing retrieves information in many
forms, such as score notes, lyrics, audio signals, and
chords [20-22]. Music emotion is often annotated
based on verbal reports of emotional responses, al-
though some studies have gathered data by monitor-
ing biological or physical expressions [23]. However,
we are interested only in the retrieval of information
from audio signals and annotations from verbal re-
ports.

Systems recognize music by referring to one of the
psychometrics frameworks described in section 2. For
dimensional psychometrics, a regression approach es-
timates the valence and arousal, whereas for categor-
ical psychometrics, a classification approach is em-
ployed.

In the fallowing subsections, we reveal how other
studies were addressed by employing key performance
indicators (KPIs) to compare these studies in terms of
five factors: methodology, number of samples, num-
ber of features, number of emotional classes, and ac-
curacy claimed by the measurement method of each

work. The exact numbers of samples and features,
and the results of the studies mentioned in this sec-
tion, are reported in Table 8, which includes the re-
sults of our work for comparison.

3.1 Regression Approach

Yang et al. employed a support vector machine
(SVM) as the regressor and ranked the importance of
the predictors using the ReliefF algorithm for feature
selection. The performance was evaluated with re-
spect to the R? statistic, and results of 28.1% valence
and 58.3% arousal were achieved [15].

Weninger et al. captured time-varying emo-
tion through music using recurrent neural networks
(RNNs). The performance was evaluated by the R?
statistic, and results of 50% valence and 70% arousal
were achieved [24].

One of the common challenges with multiple-
feature input data is ranking the most important
features. Features that have a substantial effect on
estimation should be weighted to improve the re-
sults of the calculation. For example, Fukayama and
Goto utilized adaptive aggregation to obtain a fea-
ture ranking and estimated the VA-value via Gaus-
sian process regressors The performance evaluated in
terms of the root-mean-square error (RMSE) reached
77% for valence and 80% for arousal [25].

A recent study conducted by Malik et al. used
stacked neural networks. The authors employed a
convolutional neural network (CNN) on the top layer,
followed by two RNN branches, each trained sepa-
rately, for valence and arousal. The RNNs were ap-
plied to time-varying features, while the CNN han-
dled time-invariant features. The CNN’s feature map
was the input to both RNNs. The performance was
evaluated in terms of the RMSE, with results of 73%
for valence and 80% for arousal [26].

Most VA value estimation problems are solved by
regression algorithms, but some researchers have used
classification approaches by converting a continuous
range to a finite range. Nguyen et al. divided va-
lence and arousal levels into six segments and coordi-
nated those segments to obtain a total of 36 segments.
Then, the random forest algorithm was implemented
in WEKA to classify valence and arousal as one of
these six levels. The accuracies were 57.3% for va-
lence and 70% for arousal [27].

3.2 Classification Approach

Hu and Yang created a dataset of Chinese-pop mu-
sic (C-pop) for the MER task, which was atypical be-
cause most MER tasks have been conducted on West-
ern music. The dataset was analysed by both regres-
sion and classification approaches. First, the dataset
was investigated via SVM, and an accuracy of 85%
was achieved for six-emotion classification. Then, the
dataset was analyzed by means of a support vector re-
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gressor (SVR), and the accuracy was 25% for valence
and 79% for arousal [28].

A small-scale experiment demonstrated that mu-
sic could be classified into four emotional classes with
the help of a hierarchical SVM using only two fea-
tures: tempo and mutation degree. Three SVM units
were utilized, with each unit trained for a specific pur-
pose. The first unit was trained to discriminate high
and low tempos. High-tempo songs are happy or ag-
gressive, while low-tempo songs are sad or soft. The
second and third units were trained to discriminate
between those emotions. The results were impressive,
yielding 95% accuracy [7]. The analysis was repeated
with a larger number of features and samples. The
results were satisfactory, with an accuracy of 89.64%
[2].

An investigation of six algorithms, which were
SVM, k-nearest neighbors (KNN), neuro-fuzzy net-
work classification (NFNC), fuzzy KNN (FKNN), a
Bayesian classifier, and linear discriminant analysis
(LDA), for classifying four emotional classes showed
that the accuracies of the LDA, SVM, and FKNN
algorithms were higher than 80% [3].

Nalini et al. investigated autoassociative neu-
ral networks (AANNs) and an SVM for classifying
five music emotions; the accuracies were 94.4% and
85.0%, but the models were trained with a small
dataset [6]. Another study applying the nearest mul-
tiprototype classifier to a very large dataset achieved
only 56.43% accuracy [9].

Trohidis et al. investigated how four algorithms
handled six emotional classes. The four algorithms
were binary relevance (BR), label powerset (LP), ran-
dom k-labelsets (RAKEL), and multilabel k-nearest
neighbor (MLKNN), and all achieved approximately
70% accuracy [5].

Deng et al., conducted a study classifying eight
music emotions by employing eight regressors to esti-
mate the likelihood of each emotional class, with each
regression model trained individually. This method
did not classify each song separately but rated the
likelihood of each emotion in each song. Therefore,
more than one emotion could be assigned to each
song. The accuracy was almost 60%, which is impres-
sive considering the number of samples, the number
of emotional classes, and the proposed method [8].

Most MER studies focus on only acoustic features
as inputs and ignore nonacoustic features, such as
artist and genre. However, the impact of these nona-
coustic features on the classification of four music
emotions was studied by Vale et al. The experiment
considered twenty-eight cases obtained by combining
three groups of features (artist, genre, and acoustic
features) and four types of classification algorithms
(SVM, naive Bayes, decision trees, and KNN). The
models were evaluated with the DEAM benchmark,
and their Fl-scores were 46%, 40%, 37%, and 41%.
The artist feature was not impactful, and the genre

feature was only slightly beneficial for the decision
tree method. The overall accuracy was not high be-
cause the experiments considered a limited number
of acoustic features [4].

4. DATASET

Most music datasets do not include audio files be-
cause of intellectual property concerns. Instead, the
datasets provide emotional annotations, and lists of
songs and where to find them [29-31]. Some datasets
include extracted features [32], and some datasets
consider the cultural background of the annotators
[28][33]. Datasets that do not provide audio files can
lead to problems because we cannot make any poten-
tially required changes to the process.

Fortunately, the DEAM benchmark includes a
dataset with audio files that can be redistributed
under a Creative Commons (CC) license; thus, this
dataset was utilized in this work. This DEAM bench-
mark includes 1,744 clips and 58 full-length songs.
The audio files are in stereo MP3 format with a 44.1-
kHz sampling rate and a 128-kbps bitrate. Music was
collected from three sources (freemusicarchive.org,
jamendo.com, and the medleyDB dataset) and in-
cludes a variety of genres (rock, pop, soul, blues,
electronic, classical, hip-hop, experimental, folk, jazz,
country, pop, rap, and reggae) in many languages.
No more than five songs from the same artist are in-
cluded [34-36]. The annotators were paid $8 per hour
to rate the valence and arousal separately via the
crowdsourcing platform Amazon’s Mechanical Turk
(MTurk), and the annotators’ background was not
considered. Each song was annotated by five to ten
people, and we used the average of the annotations
[37-39].

In Fig. 3, the subfigure on the left shows the num-
ber of music samples in the DEAM dataset associated
with each of the eight emotions, where numbers 1 to
8 refer to the emotional octant in Fig. 2 and Table 1.
The subfigure on the right shows where each sample
was located on the VA plan.
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Fig.3: Number of Music Samples in the DEAM

Dataset for Each of the Eight Emotions (left); a Scat-
terplot of All Samples on the VA Plane (right).

As shown in Fig. 3, each class has a different num-
ber of samples. The inequality of training samples
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can bias the results. The prediction of classes 1 and
2, which have the largest populations, might achieve
high accuracy, while the other classes might have
lower accuracy. The equalization of training sam-
ples by taking the number of samples in the smallest
class as the ceiling and removing the excessive sam-
ples might solve this problem, but a previous study
using the same dataset showed that even when the
number of samples in each class was equalized, the
accuracy for classes 3, 4, 7, and 8 was not significantly
improved [4]. The incorrect prediction of these classes
must be caused by other characteristics. Therefore,
we did not equalize the number of samples.

5. ACOUSTIC FEATURES
5.1 Feature Extraction

The acoustic features were extracted using the
MIR toolbox, which was run on MATLAB. The MIR
toolbox relies on a built-in auditory toolbox and the
Musical Instrument Digital Interface (MIDI) toolbox,
which must be installed separately [40-42]. This tool
was chosen because it can extract numerous features,
including the five groups of features described below
[29](43][44].

1) Dynamics is the physical intensity of a sound,
and is often described as loudness, energy, volume, or
audio power.

2) Rhythm is a periodic pattern of changes or
events of pitch level, dynamics, or pulses. Pulse speed
is known as meter, phrasing, tempo, or beats-per-
minute.

3) Timbre can be explained as follows. When a
guitar and a violin play the same note, the sound is
similar, but we hear a difference; that difference is
timbre. Each musical instrument has its own timbre,
which is particularly useful for musical instrument
recognition.

4) Pitch is the level of sound. In Western music,
pitch is encoded by the letters C, D, E, F, G, A, B.
While a piano changes pitch discretely, some instru-
ments, such as a violin, allow continuous change.

5) Tonality is the arrangement of pitches and/or
chords into major and minor scales and keys. Major
and minor refer to the spaces between notes, with
note separation measured in whole and half steps.

The functions used for feature extraction, their
output and the running time for the entire dataset
are presented in Table 2. A total of 122 features were
extracted by the 37 functions, and some functions
produced multiple feature elements, such as feature
nos. 3 to 26, representing 12 notes in an octave.

The outputs of most extractors are a time series.
Some provide a continuous numerical value, but fea-
ture no. 90, for example, is a discrete value taken
from a set of twelve classes. To make the data com-
patible, we transformed the time series and discrete
class data into individual numerical values by using
the “mirmean” function to find the average of the

Table 2: List of MIR Toolbox Functions for Acoustic
Feature Extraction.

Feature Feature Extractor Output Time
No. Type Function Type (h)
1 Dynamics mirrms Time Series 0.89
2 Dynamics mirlowenergy Time Series 0.92
3-26 Rhythm mirfluctuation Time Series 0.93
27 Rhythm mirbeatspectrum  Time Series  4.82
28 Rhythm mirevents Time Series 3.46
29 Rhythm mireventdensity Time Series  4.00
30 Rhythm mirtempo Numeric 3.62
31 Rhythm mirmetroid Time Series 5.85
32 Rhythm mirpulseclarity Time Series 3.74
33 Timbre mirattacktime Time Series 33.51
34 Timbre mirattackslope Time Series 35.44
35 Timbre mirattackleap Time Series 33.86
36 Timbre mirdecaytime Time Series 34.72
37 Timbre mirdecayleap Time Series  34.03
38 Timbre mirdecayslope Time Series 33.67
39 Timbre mirduration Time Series 33.73
40 Timbre mirzerocross Time Series  0.97
41 Timbre mirrolloff Time Series 1.33
42 Timbre mirbrightness Time Series 1.08
43 Timbre mircentroid Numeric 1.12
44 Timbre mirspread Numeric 1.39
45 Timbre mirskewness Numeric 1.52
46 Timbre mirkurtosis Numeric 1.51
47 Timbre mirflatness Time Series 1.22
48 Timbre mirentropy Time Series 1.01
49-61 Timbre mirmfcc Time Series 1.32
62 Timbre mirroughness Time Series  2.08
63 Timbre mirregularity Time Series 325.32
64 Pitch mirpitch Numeric 1.51
65 Pitch mirmidi Time Series 12.10
66-77 Tonality mirchromagram Time Series 1.02
78-89 Tonality mirkeystrength Time Series 1.02
90 Tonality mirkey Classes 1.40
91 Tonality mirmode Time Series 1.18
92-115  Tonality mirkeysom Time Series 1.01
116-121 Tonality  mirtonalcentroid  Time Series 1.01
122 Tonality mirhcdf Time Series  3.58

time series, and the “mirgetdata” function to assign
a numerical value to represent each of the discrete
classes. For example, the classes of feature no. 90
were transformed into values from 1 to 12.

5.2 Feature Correlation

We measured the linear correlation between fea-
tures and the fundamental factors of emotion using a
linear correlation coefficient. The range of the corre-
lation coeflicient (r) is -1 to 1. An absolute r value
of 1 indicates a perfect linear relationship, and an r
value of 0 indicates the absence of a linear relation-
ship. The closer the absolute value of r is to 1, the
more ideal the linear relationship. Features with r
values close to 0 are still useful (unless the r value is
exactly 0) but have a less significant impact [45].

The correlations of each feature with valence and
arousal were measured separately and can be visual-
ized, as shown in Fig. 4.

To identify the impactful features, we ranked the
feature correlations in ascending order. The partial
correlation ranking is presented in Table 3. The cor-
relations of features with valence and arousal were
ranked separately, as shown in the “Rank of V” and
“Rank of A” columns. The significance of each fea-
ture can be calculated by summing the absolute val-
ues of “Valence r” and “Arousal r” of each feature.



58 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.14, NO.1 May 2020

Valence
Arousal

r=04196 r=0.6286

Normalized Feature Value Normalized Feature Value

Fig.4: Scatter Plot of Feature No. 29 Against Va-
lence (left), and Arousal (right).

Table 3: Correlation Values Between Extracted Fea-
tures and VA Ratings.

Feature Rank Rank Valence Arousal Correlation

No. of V. of A r r Status
49 1 1 -0.3339  -0.5241
45 2 2 -0.3262  -0.4497 Negative
39 3 7 -0.2882 -0.2463 Correlation
36 5 3 -0.241 -0.3667
62 60 108 0.0065 0.23
80 61 62 0.0081 0.0145

Poor
90 62 65 0.0095 0.0294 Correlation
112 57 60 0.0015 0.0088
99 45 61 -0.0206 0.0095
48 120 122 0.3933 0.6232
29 121 121 0.4196 0.6286 Positive
32 122 113 0.4266 0.3351 Correlation
42 116 120 0.3577 0.5828

As shown by the correlations ranking, some fea-
tures, such as feature no. 62, have a weak effect on
valence but a strong effect on arousal. The most im-
pactful feature for both valence and arousal is feature
no. 29. Furthermore, most of the impactful features
are timbre features.

On the basis of these correlation rankings, in sce-
narios with time or resource limitations, we can select
only impactful features to train the model rather than
considering all the features, but this process may re-
duce the accuracy. However, an optimized model for
use in the case of limited time and resources is not
the focus of this work, so we included all 122 acoustic
features as inputs for model training.

6. SYSTEM BUILDING

We implemented our system in MATLAB on a
workstation using a Xeon E3-1270 CPU with 48 GB
of 2133 MHz ECC memory. A Samsung 960 PRO
SSD was used for storage rather than an HDD to in-
crease the read/write speed to match the performance
of the CPU and RAM.

6.1 System Structures

Two different system structures were built to de-
termine which method is better for pursuing our goal.
The first was a regression approach that classifies the
VA response into classes at the output of the predic-
tive model. The second was a classification approach
that classifies the VA response into classes at the in-

put of the predictive model.

Previous work on the DEAM dataset achieved low
accuracy because a limited number of features were
used and because the SVM, naive Bayes, decision
trees, and k-NN techniques do not work well on this
dataset [4]. Therefore, we chose the LM algorithm
for the regression approach and the Rprop algorithm
for the classification approach. These two algorithms
appear to be the best choices in the MATLAB neural
network toolbox for each approach, as proven with
a variety of datasets. For further detail information
about these algorithms, please see [46-52].

6.1.1 Regression Approach

| |
| I
| VA response s |
| ! |
: Feature Acoustic Features= Regressi(?n |
| Extractor Model Trainer :
| Model |
S By
. \
Feature Acoustic Features
Extractor > Regressor
‘ VA response
Classifier
Category

Fig.5: Framework for the Regression Approach Sys-
tem.

The DEAM dataset provides annotations in the
form of valence and arousal responses. The regression
approach can use these annotations directly. Fig. 5
shows the framework of the regression system. The
LM algorithm was employed by the regression model
trainer module, and the regressor module produced
estimated VA responses. To determine whether these
predictions were correct, acceptable areas of error
were extended for the classifier module, as shown in
Fig. 6.
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/ Class 2

Arousal
Arousal

€
X

3 o Acceptable
% Errorof Class 1
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Valence \-'alenc'e
Fig.6: General Acceptable Areas of Error (left) and

Ezxtended Acceptable Areas of Error in the Classifier
Module (right).
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Fig.7: Framework for the Classification Approach
System.

6.1.2 Classification Approach

Fig. 7 shows the framework of the classification
system. The labeler module converts the VA re-
sponses to classes before their use as annotations in
the model trainer module because the raw annota-
tions cannot be used directly. The Rprop algorithm
is then employed in the classification model trainer
module.

6.2 Model Structures

The predictive model in each system was cus-
tomized to have two different structures (traditional
multiclass and cascading binary-class) to determine
which is better for model training.

6.2.1 Traditional Multiclass Model

Predicted
Estimated Class 1
Valence R -
M Estimated prop -
Arousal Predicted
Class 8

Fig.8: Traditional Structure of the Predictive Model
with the LM Algorithm (left) and the Rprop Algo-
rithm (right).

The LM and Rprop algorithms in the model trainer
module were trained with 122 acoustic features of
1,802 songs to predict music emotion, but the out-
puts of the model were different, as illustrated in Fig.
8.

6.2.2 Cascaded Model

The cascaded model was obtained by connecting
several units of binary-class submodels as a cascaded
structure, as shown in Fig. 9. Each submodel was
specifically trained to discriminate only two classes,
as described in Table 4.

Previous works that utilized a similar model struc-
ture demonstrated that the accuracy was better when

discrimination started with arousal than when dis-
crimination started with valence [2][7][8][28]. Ad-
ditionally, many regression approach studies have
shown that arousal prediction is always more accu-
rate than valence prediction [15][24-28]. Therefore,
we initiated unit 1 to discriminate between high and
lowarousal songs by training the model with the entire
dataset. Unit 2 was trained with only high arousal
songs to discriminate positive valence songs from neg-
ative valence songs among those high arousal songs
that were predicted by unit 1, etc. (Quadrants 1 to 4
and classes 1 to 8 refer to the quadrants and octants
on the VA plane in Fig. 2).

Level 1 Level 2 Level 3

— Class I
Quadrant 1 Unit4 H
- Class 2
High Arousal | | Unit 2
— Class 8
Quadrant 2 Unit5
- Class 7
Unit1
— Class 3
Quadrant 3 Unit6 H
L Class 4
Low Arvousal | ' Unit 3
— Class 5
Quadrant 4 Unit7 H
- Class 6

Fig.9: Cascaded Structure of the Predictive Model.

Table 4:
Unit.

Unit Trained With To Discriminate 1\'Iu‘mber of
Training Samples

Training Dataset and Purpose of Each

1 Entire Dataset High & Low Arousal 1,802
2 High Arousal Quadrant 1 & 2 1,242
3 Low Arousal Quadrant 3 & 4 560
4 Quadrant 1 Class 1 & 2 1,014
5 Quadrant 2 Class 7 & 8 228
6 Quadrant 3 Class 3 & 4 198
7 Quadrant 4 Class 5 & 6 362

6.3 Model Configuration

The dataset was divided into three parts to evalu-
ate the performance of the models: 15% of the data
was randomly selected for validation, another 15%
was assigned to the testing set, and the rest was used
as the training set. The networks were trained with
the training set and then tested with the validation
and testing sets. The result on the validation set
was used to update the weight parameter in the next
epoch (a completed iteration of the training proce-
dure) to shift the accuracy closer to 100%. The result
on the testing set was completely independent of the
training process.

Parameter adjustments commonly include max-
imum number of epochs, elapsed time, acceptable
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error rate, minimum gradient (convergent slope of
training, validation, and testing subdatasets), and
maximum failing (no improvement in accuracy). We
attempted to maximize the accuracy. We defined the
acceptable error rate as zero and allowed the maxi-
mum number of epochs, and the elapsed time to be
infinite. The mean squared error (MSE) is set to be a
loss function for both algorithms. Normally, cross en-
tropy is a loss function for classification tasks, but our
input data are continuous numbers. Therefore, the
MSE is more suitable for our data. We concentrated
on the minimum gradient and maximum failing ad-
justment as the stopping criteria for the training pro-
cess and left the other parameters at their default
values. The models in the same depth of cascaded
structures were constructed with the parameter val-
ues reported in Table 5. The reported values in the
min gradient and max failing columns were the re-
sults of trial and error by observing the relationship
between changes in parameter values and accuracy.
The values that gave the highest accuracy were se-
lected. The list of parameters and their default values
can be found in [51].

The architecture of neural networks is “Input node
- Hidden node - Output node”. We set the number of
input nodes as the number of extracted features, the
number of hidden nodes remained 10 by default, and
the number of output nodes of each model was set
based on the number of desired outputs. The desired
output of the LM algorithm was the estimated valence
and arousal. Thus, the number of desired outputs was
2. The desired output of the Rprop algorithm was the
specific class, which differed between the multiclass
model and the cascaded model. The desired number
of output classes of the multiclass model was 8, while
that of the cascaded model was 2, as previously noted.

Table 5: Parameter Configuration.

Model Arch- Min Max
itecture Gradient Failing
Multiclass LM 122-10-2 1.0E-07 10
Lv. 1 of Cascaded LM 122-10-2 1.0E-07 10
Lv. 2 of Cascaded LM 122-10-2 1.0E-07 10
Lv. 3 of Cascaded LM 122-10-2 1.0E-21 10
Multiclass Rprop 122-10-8 1.0E-50 300
Lv. 1 of Cascaded Rprop 122-10-2 1.0E-50 300
Lv. 2 of Cascaded Rprop 122-10-2 1.0E-100 300
Lv. 3 of Cascaded Rprop 122-10-2 1.0E-100 300

There is uncertainty in the results when the net-
work is retrained because of the variation in the ran-
domly selected parameters such as weight, bias, and
sample selection of subdatasets. Therefore, the net-
work must be retrained several times to reduce the
variation in the results. We performed retraining
11,000 times and chose the most accurate model.

7. RESULTS

The performance of model training is reported in
Table 6. Accuracies of the training step, validation

step, testing subdataset, and entire dataset are sepa-
rately reported in the training dataset accuracy (Acc.
Train), validation dataset accuracy (Acc. Val.), test-
ing dataset accuracy (Acc. Test) and entire dataset
accuracy (Acc. Entire) columns, respectively. The
Min MSE column shows the minimum mean square
error of each model unit. How many epochs, rep-
etitions, and how long each unit takes to train the
model are reported in the Best Epoch, Best Round,
and Time columns, respectively. The confusion ma-
trices in Fig. 10 show the prediction results of each
model. Numbers 1 to 8 refer to the emotional classes
in Table 1. Each cell shows the density of the popu-
lation in terms of number and percentage. The sum
of all cell numbers is equal to the sample size of the
dataset, and the percentages sum to 100%. The sum
of the numbers in the vertical cells is the total number
of samples in each class. The sum of the numbers in
the horizontal cells is the total number of predicted
classes. The diagonal cells from the top-left to the
bottom-right show the correct predictions for each
class. The accuracy is shown at the bottom-right cor-
ner of the matrices. The bottom row of the matrices
shows the recall. The right column of the matrices
shows the precision.

Table 7 and Fig. 11 show the evaluation of pre-
diction performance using the Fl-score. The overall
prediction performance based on the number of sam-
ples (with more training samples resulting a higher
score) can be seen by comparing Fig. 11 with Fig. 3
(left). Prediction is problematic in classes. 3, 4, and
7 because these classes have fewer samples than the
other classes.

With these limited samples, the feature patterns
may not be concrete enough to form a strong pre-
diction on these classes. In contrast, classes. 1, 2,
and 5, which have an overwhelming number of train-
ing samples, obtained much higher scores than other
classes.

The prediction accuracy for the cascaded LM
model offers no significant improvement over that of
the multiclass LM Thus, the LM algorithm is not
suitable for a cascaded structure. However, the di-
rect effect of the cascaded structure is obvious when
using the Rprop algorithm, the F1l-score of which is
the highest in every class prediction.

8. DISCUSSION

We compared the performance of our work with
that of other approaches. The progress of develop-
ment and improvement can be observed in Table 8
by sorting the studies by time and the five employed
KPIs. Normally a lower RMSE is better, but we in-
vert the values such that a higher value is better to
make the values comparable to those from other mea-
surement methods.

We also expanded our results to four emotions
and valence/arousal level predictions to make our re-
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Table 6: Performance Following Model Training.

Acc. Acc. Val. Acc. Min Best Best . Acc.
Model/Submodel Train(%) (%) Test(%) MSE Epoch Round Time (h) Entire Fl-score
Multiclass LM 50.6 42.2 40.0 0.0327 7 1 6.1 47.8 See Table 7
Binary-Class LM Unit 1 85.9 86.7 84.8 0.0319 5 2 7.0 85.8 0.8980
Binary-Class LM Unit 2 83.9 81.7 84.9 0.0183 1 8 6.1 83.7 0.9055
Binary-Class LM Unit 3 76.8 81.0 81.0 0.0118 1 27 4.1 78.0 0.6886
Binary-Class LM Unit 4 69.9 67.1 64.5 0.0116 1 2,018 4.8 68.6 0.7531
Binary-Class LM Unit 5 78.8 79.4 64.7 0.0065 1 946 2.9 76.8 0.6667
Binary-Class LM Unit 6 79.0 63.3 70.0 0.0062 1 1,084 2.0 75.3 0.7656
Binary-Class LM Unit 7 71.7 59.3 74.1 0.0142 1 24 3.8 70.2 0.7882
Multiclass Rprop 59.6 62.2 52.2 0.2759 8 6 2.8 58.9 See Table 7
Binary-Class Rprop Unit 1 96.7 94.8 96.3 0.1361 18 3,455 2.6 96.3 0.9737
Binary-Class Rprop Unit 2 96.6 95.2 96.2 0.1141 4 3,074 2.2 96.3 0.9774
Binary-Class Rprop Unit 3 98.7 97.6 96.4 0.1369 1 3,484 1.6 98.2 0.9749
Binary-Class Rprop Unit 4 95.6 95.4 91.4 0.1349 2 10,603 1.6 95.0 0.9574
Binary-Class Rprop Unit 5 96.9 97.1 85.3 0.1397 1 122 0.3 95.2 0.9308
Binary-Class Rprop Unit 6 96.4 100.0 96.7 0.1250 19 9,950 0.1 97.0 0.9706
Binary-Class Rprop Unit 7 95.7 96.3 94.4 0.1435 1 357 0.1 95.6 0.9644
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Fig.10: The Comparison of Eight Emotion Prediction Results with the Multiclass LM Network (top left),
Cascaded LM Network (top right), Multiclass Rprop Network (bottom left), and Cascaded Rprop Network
(bottom right).

Table 7: The Evaluation of Prediction in Fach Class using the F1-Score.

Model Class 1 Class 2 Class 3 Class4 Class5 Class 6 Class7 Class 8 | Average Acc
F1l-score Fl-score Fl-score Fl-score Fl-score5 Fl-score Fl-score Fl-score|F1l-score )
Multiclass LM 0.7816 0.6176 0.1453 0.1390 0.4943 0.2940 0.1197 0.2086 0.3500 47.8%
Cascaded LM 0.8009 0.6108 0.1941 0.1823 0.5755 0.2274 0.1249 0.1823 0.3623 50.2%
Multiclass Rprop 0.8293 0.7534 0.0795 0.0414 0.6405 0.4696 0.1394 0.3683 0.4152 58.9%
Cascaded Rprop 0.9593 0.9406 0.7688 0.7796 0.8975 0.8324 0.7293 0.8382 0.8432 89.5%
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Multiclass LM # Cascaded LM

Fl1-score of Class 1 Fl-score of Class 2 F1-score of Cla

Fig.11:

sults comparable. When we measured our accuracy
with only valence and arousal level (level 1), the re-
sults were similar to those of every study that mea-
sured their results in terms of valence/arousal level.
Arousal prediction is always better than valence pre-
diction, as observed in experiments 1, 9, 13 to 16, 28
and 29.

Among the four emotional classification works, in
our work, when we measured our accuracy at level
2, nos. 30 to 32 we achieved average performance,
but no. 33 outperforms the others. Experiments 8
and 10 are comparable to experiments 31 and 33.
These works were conducted based on the same con-
cept of using cascaded structures to distinguish only
two classes at a time to classify a total of four emo-
tional classes.

Experiments 24 to 27 were conducted based on
the same dataset we used. However, the number
of samples associated with each emotion were equal-
ized, and the performance metric was the Fl-score.
Their achievements are comparable to our Fl-score
as shown in Table 7.

Among the eight emotional classification works,
our methods (nos. 34 to 37) are comparable to those
of experiment 11, which also employed multiple mod-
els. However, no. 11 simply employed eight models to
regress each class simultaneously without a structure
and their output format is “multilabel of multiclass”,
while nos. 35 and 37 employed a cascaded structure
of seven models to discriminate two classes at a time
and our output format is “single-label of multiclass”.

The result of experiment no. 37 is outstanding
because it took advantage of two aspects. First, is
used the Rprop neural network which is designed for
classes output. Second, we arranged of these Rprop
units by using seven cascading units of the binary-
class model in which each unit performs only one sim-
ple task. This reduces the workload of each unit and
gains accuracy. When the accuracy increases unit by
unit, level by level, the overall result can be substan-
tially increased. This result confirms our hypothesis
that using multiple model units can improve the over-
all performance.

However, there are two drawbacks associated with
using cascaded structures. The first drawback is the
complexity of the cascaded model. During training,
we must separately configure each submodel (seven
submodels in total), which might take at least seven

3 Fl-score of Clas:

Multiclass Rprop # Cascaded Rprop

|

Fl1-score of Cl

&

7 Fl-score of Cla

R
6 Fl-score of Cla:

F1-score of C1

The FEvaluation of Prediction in Each Class using the F1-Score.

times as long as the traditional multiclass model. For
the three-level structure, a sample must pass through
three models. The processing time can be slow if the
next sample has to wait until the previous sample has
passed the last level, but it would be more efficient
if the next sample could be input while the previous
sample was being processed at level 2. Then, when
these two samples move to levels 3 and 2, the next
sample can follow them, and so on. Additionally, the
programming effort to connect each submodel to form
a cascaded structure can be complicated.

The second drawback is that the performance of
the first level is crucial. If the submodel in the previ-
ous level fails to predict a sample, the levels after that
are useless because the accuracy of the submodel in
the first level greatly affects the final accuracy, and
the second level has more of an effect than the third,
as seen by comparing the individual accuracies of the
submodels (Table 6) and the final accuracies (Table
7). For example, in the cascaded Rprop model, even
though the average accuracy of the submodels is 96%,
the final accuracy is only 89.5%, as each percent loss
in each submodel had a different effect.

In the simulation, if the accuracy of unit 3 (level
2) is 80% and that of the rest is 100%, then the fi-
nal accuracy will be 93.8% because the total number
of samples passing through unit 3 is 560, so a loss
of 20% of unit 3 corresponds to 112 samples, or ap-
proximately 6.3% of the entire dataset (1,802). If the
accuracy of unit 6 (level 3) is 80% and that of the
rest is 100%, then the final accuracy will be 97.8%
because the total number of samples passing through
unit 6 is 198, so a loss of 20% of unit 6 corresponds
to 40 samples, or 2.2% of the entire dataset.

There are two drawbacks associated with the MIR
toolbox: 1) the time needed for feature extraction
and 2) the large consumption of memory. However,
with a powerful machine, we are able to run multiple
model training and feature extraction tasks. There-
fore, the total elapsed time is not the sum of the re-
ported elapsed times in Tables 2 and 6.

9. CONCLUSION

This paper proposes a MER system using eight
emotion classes. We evaluated the system with the
DEAM benchmark. The dataset was divided in a 7/3
ratio (training set/testing set). The system was im-
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Table 8: Comparison of the KPIs in Each Work.

Ref. |[Proposed No. of No. of No. of Achieve- Measure-

b No. Year Algorithms and/or Methods Samples Features Classes ment(%) ment
Method
1 [15] 2008 SVM Regressor with. RReliefF feature 195 114 V/A 28.1/58.3 R?
selection
2 5 2008 Binary Relevance 593 74 6 73.8 Accuracy
3 5 2008 Label Powerset 593 74 6 76.7 Accuracy
4 5 2008 Random k-Labelsets 593 74 6 79.5 Accuracy
5 5 2008 Multilabel k-Nearest Neighbor 593 74 6 71 Accuracy
6 6 2013 Auto Associative Neural Networks 85 52 5 94.4 Accuracy
7 6 2013 Support Vector Machine 85 52 5 85 Accuracy
8 7] 2013 Hierarchical SVM based on tempo & 80 9 4 05 Accuracy
mutation degree
9 [24] 2014 Recurrent Neural Networks 1,000 70 V/A 50/70 R?
10 2 2014 Hierarchical SVM 219 35 4 89.6 Accuracy
11 8 2015 Eight Regressors, individually trained 385 117 8 59.4 Accuracy
12 9 2015 Nearest multiprototype classifier 903 59 5 56.4 Accuracy
13 [25] 2016 Adaptiv; Aggregation of Gaussian 744 65 V/A 77/80 RMSE
rocess Regressors
14 [26] 2017 Stacked CNN & RNN 431 260 V/A 73/80 RMSE
15 [27] 2017 Random Forest 300 397 V/A 57.3/70 Accuracy
16 [28] 2017 Support Vector Regressor 818 539 V/A 25/79 Accuracy
17 [28] 2017 Support Vector Machine 818 539 6 85 Accuracy
18 3 2017 k-Nearest Neighbors 1,000 548 62 Accuracy
19 3 2017 Bayes classifier 1,000 548 4 69 Accuracy
20 3 2017 Linear Discriminant Analysis 1,000 548 4 80.4 Accuracy
21 3 2017 N euro-Fuzzy Network Classification 1,000 548 4 79.3 Accuracy
22 3 2017 Fuzzy KNN 1,000 548 4 83 Accuracy
23 3 2017 Support Vector Machine 1,000 548 4 82.7 Accuracy
24 4 2017 Support Vector Machine 943 33 4 46 F1-score
25 4 2017 Naive Bayes 943 33 4 40 F1l-score
26 4 2017 Decision Trees 943 33 4 37 Fl-score
27 4 2017 k-Nearest Neighbors 943 33 4 41 F1l-score
28 | 2018 Binary-Class LM Neural Networks 1,802 122 V/A 78.9/85.8  Accuracy
29 | 2018 Binary-Class Rprop Neural Networks 1,802 122 V/A 76.7/96.3  Accuracy
30 | 2018 Multiclass LM Neural Networks 1,802 122 4 70.6 Accuracy
31 | 2018 Cascaded LM Neural Networks 1,802 122 4 73.4 Accuracy
32 This 2018 Multiclass Rprop Neural Networks 1,802 122 4 79 Accuracy
33 Work 2018 Cascaded Rprop Neural Networks 1,802 122 4 93.5 Accuracy
34 | 2018 Multiclass LM Neural Networks 1,802 122 8 47.8 Accuracy
35 | 2018 Cascaded LM Neural Networks 1,802 122 8 50.2 Accuracy
36 | 2018 Multiclass Rprop Neural Networks 1,802 122 8 58.9 Accuracy
37 | 2018 Cascaded Rprop Neural Networks 1,802 122 8 89.5 Accuracy
plemented in MATLAB. 122 acoustic features were References

extracted by the MIR toolbox, and four model train-
ing methods were investigated: multiclass LM, cas-
caded LM, multiclass Rprop, and cascaded Rprop.
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